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ABSTRACT

Uniform crossover is a popular operator used in genetic algo-
rithms to combine two tentative solutions of a problem rep-
resented as binary strings. We use the Walsh decomposition
of pseudo-Boolean functions and properties of Krawtchouk
matrices to exactly compute the expected value for the fit-
ness of a child generated by uniform crossover from two par-
ent solutions. We prove that this expectation is a polyno-
mial in p, the probability of selecting the best-parent bit.
We provide efficient algorithms to compute this polynomial
for ONEMAX and MAX-kSAT problems, but the results
also hold for domains such as NK-Landscapes.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory, Algorithms

Keywords
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1. INTRODUCTION

Uniform crossover is a well-known operator in the domain
of Evolutionary Computation [1]. This operator builds a
new solution by randomly selecting each “allele” from one
of the parent solutions. The “allele” in the best parent is
selected with probability p, which is called the bias. A com-
mon value for this bias is p = 0.5, where each parent has the
same probability of providing its “allele” to the offspring.

In this work we use a Walsh decomposition and provide
a closed-form formula for computing the expected value of
the fitness of a child generated by uniform cross from two
parent solutions z and y. We also study how the expected
value depends on p. From a theoretical point of view, the
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closed-form formula could be useful in runtime analysis and
it can help to understand the behaviour of uniform crossover.
From a practical point of view, it could be used to compute
an optimal value for the bias. However, in this case, we need
the expression to be easy to compute.

The remainder of the paper is organized as follows. In
the next section the mathematical tools required to under-
stand the rest of the paper are presented. In Section 3 we
present our main contribution of this work: the expected
fitness value of the solution generated by uniform crossover.
Section 4 provides closed-form formulas for the expression
of the expected fitness value in the case of the ONEMAX
and MAX-kKSAT problems. In Section 5 we analyze some
implications of the theoretical result and, finally, Section 6
presents the conclusions and future work.

2. BACKGROUND

In this section we present the concepts required to under-
stand the rest of the paper. In particular, we present some
background on Walsh functions [7] and the Walsh decompo-
sition of pseudo-Boolean functions.

DEFINITION 1. We define a pseudo-Boolean function f
as a map between B™, the set of binary strings of length n
and R, the set of real numbers.

DEFINITION 2. The (non-normalized) Walsh function with
parameter w € B™ is a pseudo-Boolean function defined over
B" as:

where the subindex in w; and x; denotes one particular com-
ponent of the binary string.

We can observe that the Walsh functions map B™ to the
set {—1,1}. The Walsh functions have some properties which
are useful in our math development of Section 3. We present
these properties in the following without a proof. The inter-
ested reader can refer to [6] to see a proof of these properties.

Let us consider the set of all the pseudo-Boolean functions
defined over B", R®". We can think in one pseudo-Boolean
function as an array of 2" real numbers, each one being
the function evaluation of a particular binary string of B".
Each pseudo-Boolean function is, thus, a particular vector
in a vector space with 2" dimensions. Let us define the
dot-product between two pseudo-Boolean functions as:

(f.9)= Y f(@)g(). )

zeB™



In B™ there are 2" Walsh functions that form an orthog-
onal basis in the set of pseudo-Boolean functions. Thus,

<¢w7wt> = 2"52}’ (3)

where § denotes the Kronecker delta, which is 1 if w = ¢ and
0if w # t.

Any arbitrary pseudo-Boolean function f can be expressed
as a weighted sum of Walsh functions. We can represent f
in the Walsh basis in the following way:

f@) =" awthu(z), (4)

weB™

where the Walsh coefficients a., are defined as:

1
= 5 (ur ). )

The previous expression is called Walsh decomposition of
f. In the following we will denote with i the binary string
with position ¢ set to 1 and the rest set to 0. We omit the
length of the string n in the notation, but it will be clear
from the context. For example, if we are considering binary
strings in B* we have 1 = 1000 and 3 = 0010. For a binary
string w € B" we denote with |w| the number of ones of w.
We define the order of a Walsh function v, as the value
|w]. Some properties of the Walsh functions are given in the
following proposition, which we present without proof.

PROPOSITION 1. Let us consider the Walsh functions de-
fined over B™. The following identities hold:

’lﬁo = 17 (6)

Ywet = Yuwiht, (7)
Yu(z @ Y) = Yu(T)Puw(y), (8)
Yu(z) = Yz (w), (9)

Yo =1, (10)

> w@=a={ g Buo
Yi(z) = (=1)" =1 -2z, (12)

where @ denotes the component-wise sum (XOR) in Z.

Given a set of binary strings W and a binary string u
we denote with W A u the set of binary strings that can be
computed as the bitwise AND of a string in W and wu, that
is, W Au = {wAulw € W}. For example, B* A 0101 =
{0000, 0001, 0100,0101}.

When working with Walsh functions, it is normal to en-
counter integer values which are elements of the Krawtchouk
matrices. Let K™ denote the n-th Krawtchouk matrix [2],
which is an (n+1) x (n+ 1) integer matrix, whose elements
are defined by the following formula:

N~y (=i ([

’C'r‘,j _Z(_l) < r—1 )( l )7 (13)
1=0

where 0 < r, 7 < n and we assume in the previous expression

that Z =0ifb>aorb<0.

The elements of the Krawtchouk matrices can also be de-
fined with the help of the following generating function:
Ta—a)y =32k, (14)

r=0

(1+2)"

PROPOSITION 2. We have the following identity between
the elements of the Krawtchouk matrices:

K, = (-1 (15)

n—r,j

PROOF. We use (13) to write:
N~y nd j

K~ TJ_Z( 1) (nfrfl)(l)
N n—j j
72( 1) (n—j—n—l—r—l—l)(j—l)
e (L 200)(

r— ]—l) ji=1)"
Now we can make a variable change and introduce h = j —1:

K= (LG

(16)
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where we restrict the lower limit of the sum from h;, = j—n
to hiy, = 0 and the upper limit from hypy = j to hup = n,
since the new terms added and removed are all 0. Finally:

KO, = (-1 (1) ( noJ ) ( ] ) = (1K

h=0

From (14) we deduce that IC(") = 1. Observe that IC(")
is the constant coefficient in the polynomial. Krawtchouk
matrices have an important role when we sum an exponen-
tial number of Walsh functions. The following proposition
provides an important result in this line.

PROPOSITION 3. Let t € B™ be a binary string and 0 <
r < n. Then the following two identities hold for the sum of
Walsh functions:

> vu@ =k, (18)
wenm At
3 () = 2 (19)
weEBM AL

PROOF. Let us develop the left hand side of (18):

S @ = S [ @ by (). (20)

wEBM AL wEBM AL j=1
|w|=r |lwl=r wj=1

Now we can identify the second member of the previous
expression with the coefficient of a polynomial. Let us con-



sider the polynomial ng)(z) defined as:

QOB

ff=F

It n
G+us@)=> 2| > ]I ¢
=0 wEB™ AL
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From (21) we conclude that the summation in (20) is
the coefficient of z/!/~" in the polynomial Q(zt)(z), that is,
qjt|—r- According to (12) and (21) we can write fo)(z) =
(z+ 1) (z —1)l=7t - Obviously, |Z A t|+ |z At] = |t]. Ac-
cording to (14), the polynomials Qgp(z) are related to the
Krawtchouk matrices by Q% (z) = (—1)l#" Sl xcllth 21

LAt
TAL (\t\)
\ |IC oAt
and applying Proposition 2 we obtaln (18).

The expression (19) can be obtained in the following way:

and we can write ¢; = (—1) Replacing I by [t|—

%] It|
Yo tu@ =] D dul@) =) qu-r=00)
weEBT AL r=0 w‘EB‘%i/\t r=0
— 2|§m&\§\oz/\t\7 (22)

since the factor (z — 1)/*"* in the polynomial Q%" (z) is 1
only if |z A t| = 0 and zero otherwise. Now we can replace
|Z A t] by |t|, since if |T A t| < [t], then we have |z At] > 0
and the previous expression is 0. [

3. ANALYSIS OF CROSSOVER

In evolutionary computation, a crossover operator is a pro-
cedure which takes two tentative solutions to a problem x
and y, called parents, and computes one or two solutions,
called children, based on the features of x and y. Let us
denote with C(x,y) the random variable giving one child of
the crossover operator. If the crossover gives two children,
we can imagine that it deterministically returns one. What
we want to compute is the expected fitness value of this child
of the crossover. That is, E{f(C(z,y))} for a crossover op-
erator represented by the probability distribution C(z,y).
We focus on combinatorial optimization problems using bi-
nary strings for the solution representation. We can write
the expectation as:

E{f(C(z,y)} = D> f(z)Pr{C(x,y) = 2},

zEB™

and using the Walsh decomposition of f we can rewrite the
previous expression in

E{f(Cz,y)} = Y ( > awww(z’)) Pr{C(z,y) = 2}

z€B™ \weBn

:Z (wa Pr{Cmy-z})
weER™ z€B™
=" Z awbw (z,Y), (23)
weEB™

where by, (z,y) denotes the Walsh coefficient of the proba-
bility function Pr{C(z,y) = z} with respect to z.

To calculate the desired expectation we will assume the
use of the uniform crossover operator. As we will see, the
Walsh coefficients by, (z,y) for the uniform crossover can be
easily computed with the help of the Walsh functions. For
other crossover operators, like the one point or the two point
crossover, it is not yet clear if Walsh analysis can be used to
obtain an efficient formula for the expectation.

We will denote uniform crossover by UX. Let x,y € B"
be the parent solutions. For each position (bit) of the child
binary string z, UX selects the bit in x with probability p
and the bit in y with probability 1 — p, where p € [0,1]
is called the bias. In most cases the bias is p = 0.5. We
will replace the notation C'(x,y) used to represent a generic
random variable representing the child of a crossover by a
new notation including the parameter p of UX: U, (z,y).

In UX each position of the binary string is treated in-
dependently. Thus, the probability distribution of U,(z,y)
can be written as a product of simpler probability distribu-
tions related to each bit. Let us denote with B,(z;i,y;) the
random variable with range in B that represents the bit se-
lected to be at position 7 of the child if the parent bits at this
position are x; and y; in UX with bias p. The probability
distribution of B,(x;,y;) is:

0 if z; = y; and x; # 2,

T 1 iffL‘i:yZ':Zi,
Pr{Bp(I“yl) - Zl} B P if T = 2; and Yi ;é Zi,
1—p ify, =2z and x; # z;.

(24)
The probability distribution of UX is:

Pr{Uy(z,y) = 2} = [ [ Pr{Bo(z:, 1) = =i} (25)

i=1

The following lemma provides the Walsh decomposition of
Pr{U,(z,y) = z}. We decorate the Walsh coefficients with
p to highlight the dependence of the coefficient with p.

LEMMA 1. Let z,y,w € B™ and p € [0,1]. The follow-
ing identity holds for the Walsh coefficient by ,(x,y) of the
probability function Pr{U,(z,y) = z}

L ()1 — 2p)EEVL - (26)

bw,p(.’ll, y) = on

PRrROOF. From (5) the Walsh coefficient by,,,(x,y) is

1

boolis) = g 3 BulPrUpla) =2}
L ;sz)f[lPr{Bp(xi,yo -
_ %Z (f[l(—l)wizi> iﬁlPr{BPm,y» = 2}
= > > ilj(—nwwr{Bp(m,yi) — )
_ QLn ﬁl ;B(_DWI'PI«{B,,@Z-, yi) =z} (27)



For the inner sum we can write

D (1) Pr{By(wi,yi) = =i}

z; €EB
= Pr{B,(zi,y:) = 0} + (—1)"" Pr{By(zs,y:) = 1}
=1—26""Pr{B,(z:,y:) = 1}, (28)

where we exploit the fact that we must get 0 or 1 in a bit
after the crossover, that is:

Pr{B,(z:,y:) = 0} + Pr{B,(wi,y:) = 1} = 1.
Including this result in (27) we have

1

bu(@,9) = 5 [ (1= 267 Pr{B, (wi,5) = 1)

=

(1 =2P{By(zi,y:) =1}) . (29)

[
[\]
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wi=1

Using the definition of Pr{B,(z;,y;) = 2} in (24):

0 if Ti =Y = 0,
Pr{Bp(:c“yz) = 1} = p ifz; =1and y; =0,
1- if z; =0 and y;, = 1.

(30)
And the factor inside (29) is

(1 =2Pr{By (i, ys) = 1}) = (=

We can develop (29) in the following way:

1)¥ (1 —2p+2ps¥). (31)

1 n
buw,p(T,y) = on H )Y (1 —2p +2p6Y1)
1

= Lyuw) T] (- 20+208%). (32)

The expression (1 —2p+ 2p5;’j) takes only two values: 1
ify; = x; and 1—2p when z; # y;. A factor 1—2p is included
in the product for all the positions ¢ in which z; # y; and
w; = 1. Then the product in (32) becomes (1 — 2p)!(@Fv) vl
and we obtain (26). [

Now we are ready to present the main result of this work.
THEOREM 1. Let f be a pseudo-Boolean function defined

over B" and a, with w € B" its Walsh coefficients. The
following identity holds for E{f(U,(x,y))}:

E{f(Up(z,))} = ZA‘” 1—2p)" (33)

where the coefficients Agfi, are defined in the following way:

A= X

weB™
[(xBy)Awl=r

awthu (). (34)

PROOF. According to (23) and (26) we can write

E{f(Up(,9))} = 2" Y awbu,p(,y)

weB™
= Z awww(y)(l — 2p)‘(z®y)/\w\
weB™

weBN
\(IEBy)/\w\ r

n

=> (1-29" >

r=0 wEB™
[(z@y)Aw|=r

aww(y), (35)

and we get (33). [

Note that the expression for the expected fitness after
applying UX is a polynomial in (1 — 2p). The degree of
this polynomial depends on the Hamming distance between
the parent solutions, |z @ y|, and the maximum order of
the Walsh decomposition, pma.. The degree of the poly-
nomial will be the minimum between these two numbers,
since [(x ® y) A w| < |w| and |[(x ® y) A w| < |z Dyl
This means that the maximum degree of the polynomial
i8S T'maee = Min(Pmaz, | D Yl).

PROPOSITION 4. Let A(T,L be the polynomial coefficients
for f and B( the polynomial coefficients for g. Then, the
polynomial coeﬁiczents forh=f+g are C{") = A{) +B(T).

Proor. Let a, with w € B™ be the Walsh coefficients

of f and b,, the Walsh coefficients of g. Then, the Walsh
coefficients of h = f + g are ¢y = aw + bw. Therefore:

Ca(:T; = Z Cotu(y) = Z (@w + bw)tw (y)

wEBT weBN
[(x®y) Aw|=r [(xBy)Aw|=r

= Z Q' (y) + Z

wEBN weBn
[(z@y)Aw|=r [(z@y)Aw|=r

— A" (r)
=Ay, + By,

buwthuw ()

O

When UX is used in the literature a common value for p
is 1/2. In this case, the expression for the expected fitness
value is a simple coefficient, as the following corollary proves.

COROLLARY 1. Let f be a pseudo-Boolean function de-
fined over B" and a,, with w € B"™ its Walsh coefficients.
The expected value of the fitness function after applying UX
to solutions x and y with bias p = 1/2 is:

E{f(Uia(a,9)} = AT = 3
(ot o] =0

awthu(y).  (36)

PRrROOF. If we set p = 1/2 in the polynomial (33) all the
terms (1 — 2p)” with r > 0 vanish and the expected fitness

value is A;())y [}

4. TWO EXAMPLES

The result of Theorem 1 allows one to compute the ex-
pected fitness after UX is applied if we know the Walsh
decomposition of the objective function f. One can argue
that the computation of the coefficients of the polynomial



(33) can be costly. However, we can restrict the cost to
be polynomial only considering k-bounded pseudo-Boolean
functions. This class of problems includes MAX-kSAT and
NK-Landscapes, as well as all linear pseudo-Boolean func-
tions such as ONEMAX. In order to illustrate that this com-
putation can be efficient, we provide expressions for the co-

efficients ASJ;, in the case of two well-known problems in
combinatorial optimization: ONEMAX and MAX-kSAT.

4.1 ONEMAX

ONEMAX is a toy combinatorial optimization problem
defined over binary strings which is commonly studied due
to its simplicity. The objective function for ONEMAX is
defined as:

fl@) = lol = Y-z (37

Using properties of Walsh function given in (12) we obtain:

and we deduce that the Walsh coefficients for ONEMAX are:

n/2 if lw| =0,
aw =1 —1/2 if jw| =1, (39)
0 if |w| > 1.

Since all the nonzero Walsh coefficients have order 0 or 1,
only the coefficients Ag,)%, and Ag% can be nonzero, yielding a
linear polynomial in p for the expected value E{ f(U,(z, y))}.

LEMMA 2. Let x,y € B" be two binary strings, the poly-

nomial coefficients A&% and A(Ilz, for the ONEMAX problem
are:

1 1 _
AQ) = Sle@yl+lzAyl, ALY = —Zlz@y|+EAyl (40)

ProOF. The development of the Agc% coefficient is:

Ay= X

n

atbuly) = 2= 2 3 (1-2y)

2 2 <
weB™ i—1
[(z@y)Aw[=0 Py
_n_ l(n — ‘m D |) + -
T2 2 4 Yi

1 n
i=1

Ti=Yq

1
= sle@yl+ 1z ®y) Ayl,

where x @ y denotes the complement of z®y (bitwise XNOR).

The binary string x @y has 1 in the positions in which
z; = yi. The development of the Ag}; coeflicient is:

n

A=Y el =5 > (-2

weB™ i=1
[(z®y)Aw|=1 T FY4
1 n
=—gle@yl+ > v
i=1
T, FY;

1
—gle@yl+l@dy) Ayl

which gives the expressions in (40) taking into account that
(zdyY)ANy=zAyand (zdDyYy) Ay=TAy. O

THEOREM 2. Let z,y € B" be two binary strings and
p € [0,1]. In the ONEMAX problem an expression for

E{f(Up(z,y))} is:
E{fUp(z,y))} = [z Ayl + plz Agl+ (L= p)lz Ayl, (41)

which allows one to efficiently evaluate E{ f(U,(z,y))} using
bitwise operations and simple arithmetic.

PROOF.
E{f(U =AL) + AN (1 -2
{f(Up(z,y))} = Ay + Az y (1 —2p)
0 1 1
= A0 + Al —2pAl)

_ 1 _
=l +lo ) =2 (~gle @l +mAu)

If we take into account that |z ® y| = [T A y| + |z A 7| we
obtain (41) after some manipulation. [

The formula (41) can be also explained as follows. The
term |z Ay| counts the bits which are 1 in both = and y, and
these bits keep their value in any child. The term |z AY| are
the bits which are 1 in  and 0 in y and each one of these
bits will be in the child with probability p. For this reason,
the expected number of these bits in the child is p|z A 7.
Finally, the term |Z A y| counts the bits which are 1 in y
and 0 in x. These bits will be in the child with probability
1 — p, which explains the contribution of (1 — p)|Z Ay| to the
expected value.

In the case of ONEMAX the formalism presented in this
paper is not required to find the expectation formula. The
argument in the last paragraph is enough to find an expres-
sion. For the MAX-kSAT problem the formalism is helpful,
since it is difficult to reach a formula of the expectation using
arguments similar to the ones in the previous paragraph.

4.2 MAX-KSAT

MAX-kSAT is an NP-hard combinatorial optimization prob-
lem with the objective of maximizing the number of satisfied
clauses of a Boolean formula in conjuctive normal form. It
is related with the SAT decision problem, since finding the
optimum (maximum) in MAX-kSAT solves the related SAT
decision problem.

Let us assume that n Boolean decision variables exist in
the Boolean formula and let C' be a set of clauses. In the
MAX-kSAT problem each clause ¢ € C' is composed of k
literals, each one being a decision variable x; or a negated
decision variable 7;. For each clause ¢ € C we define the
vectors v(c) € B" and u(c) € B" as follows (see [5]):

.y _ J 1 if z; appears (negated or not) in c,

vi(e) = { 0 otherwise, (42)
.y _ J 1 if z; appears negated in c,

uic) = { 0 otherwise. (43)

According to this definition u A v = w. The objective
function of this problem is defined as

flz) = Z fe(z);  where
ceC
fe(z) =

{ 1 if c is satisfied with assignment z, (44)

0 otherwise.



A clause c is satisfied with z if at least one of the literals
is 1. Using the vectors v(c) and u(c) we can say that c is
satisfied by x if T Au Ve AvAT#0.

Sutton et al. [5] provide the Walsh decomposition for the
MAX-kSAT problem. Let the function f. evaluate one clause
c € C. The Walsh coefficients for f. are:

0 ifwAD#0,
Ay = —2% 1fw:0’ (45)
571 Yw(u) otherwise.

The following provides the polynomial coefficients A;T)y (c)
for the function f., where we include the clause in the coef-
ficient to distinguish the value of one clause from another.

LEMMA 3. Let z,y € B" be two binary strings and r > 0.
Then, the following identity holds for the polynomial coeffi-
cients Agf)y (c) in the case of the function f.:

Jo

A0 = 55 - B2, s)

where a = [v(c) A (x & y) A (u(c) @ y)l, B = [v(e) A (z S y)|
and v = |v(e) A (z B y) A (ulc) B y)l.

PRrROOF. In the following we will remove the argument ¢
in the vectors v(c) and u(c) to alleviate the notation. Let us
assume that » > 0. The nonzero Walsh coefficients a., are
the ones for which w Av = 0, which are exactly w € B" A v,
then we can restrict the sum of (34) to these binary strings.
We can also assume that the strings w in the sum are w # 0,
since r > 0. Then we can write:

AT = Y awtu(y)

weB™
[(@@y)Aw|=r
-1
Z 271/111) (w)uw(y) by (45)
weEB™ Av
l(e®y) Aw|=r

-1
=% 2
wEB™ Av
l(e@®y) Aw|=r

Yw(u®y) by (8).

(47)

We can now write each w as the sum of two strings w’ and
w” where w' € B"A(vA(z®y)) and w”’ € B*A(vA(z B y)).

o -1
Av=5 2 >

w! EBM A (vA(2DY)) w! €B™ A(vA(z®y))

|w|=r

ww’+w” (u @ y)

¢w/ (u S y)

-1
=5 >
w! EBMA(vA(zBy))
|w’|=r

Z Yo (u D y)
w!’ €EBPA(vA(zDy))
Let us now define o = |v(c) A (z @ y) A (ulc) B y)|, B =
[v(e) A (z @ y)| and v = |v(c) A (z @ y) A (u(c) @ y)|. Then,
using the results of Proposition 3 we can write:

ALY = SR (2 EElg)

% ) (48)
2[.; T,

where we used the fact that 2 = 27.2/" @&Vl When r = 0
we have to take into account that w = 0 is one possible string
in the sum and ap = 1 — 1/2%. Then we have:

ASZ = Z QW (?J)

wEBM
[(z@y)Aw|=0

1
—w-g Y

weB™ Av
(e @y) Aw|=0,w#0

:ao,% 3

weBT A (vA(zDy))
w#0
1
ST DY
wEB™ A(vA(zDY))

:1_2% Z ww(u@y)

wEBMA(vA(zDy))

ww(u ® y)
Yuw(u S y)

ww(u®y)+2ik

L o lonGay)l

_4_%
=1l-25 (49)
According to the definition of Krawtchouk matrices we
have IC((f a) = 1, which allows us to combine (48) and (49) to
yield (46). [

All the Ay; (c) coeflicients for each particular clause can
be efficiently computed in O(k) time. The bitwise operations
required to compute «, 8 and v only need to explore the bits
set to one in v(c) (that is, k bits). With the values of o, 8
and -y each of the k+1 coefficients can be computed in O(1).
The coefficients for the MAX-kSAT objective function f are
given in the following theorem.

THEOREM 3. Let z,y € B"™ be two binary strings and
r > 0. Then, the following identity holds for the polyno-
mial coefficients Ay; of the MAX-KSAT problem:

AL, =" AT (o) (50)

ceC

where A;T%,(c) is given by (46). These coefficient can be com-
puted in O(km) where m is the number of clauses.

PrOOF. It is a direct consequence of Lemma 3. []

COROLLARY 2. Let x,y € B" be two binary strings and f
the objective function for the MAX-kSAT problem, defined
in (44). The expected value of the fitness function after ap-
plying UX to solutions x and y with bias p = 1/2 is:

1
> CEE] (51)

cec
~(c)=0

E{f(U1/2(z,y))} =m —

where 3(c) = |o(c) A (z @ y)| and y(c) = [v(e) A & @ g) A
(u(c) @ ).

PrOOF. Combining the results of Corollary 1 and Theo-
rem 3 we obtain the desired result:

v(c)
E{f(Uy/2(z,9))} = Z <1 - g%(c)>

ceC



From these results, we conclude that the expectation curve
of the fitness value after applying UX to two solutions in
the MAX-kSAT problem is a polynomial in p with degree at
most k.

S. FURTHER ANALYSIS

We next analyze some of the consequences of these results.
In particular, we study what is the value of the expected
fitness if the second child of the UX is selected instead of
the first one. We also investigate the optimal value for the
crossover bias p.

5.1 Expectation of the Sibling

Until now we only have considered one of the two possible
children that UX generates. In particular, for two solutions
x and y we always considered the one built taking the bits
of x with probability p, which we call z. In this section we
consider the other child, which have inverted bits in the po-
sitions in which x and y differ. The following result provides
the expected fitness of this second child given by z® (x Dy).

THEOREM 4. Let f be a pseudo-Boolean function defined
over B", z,y € B" two binary strings. The expected fit-
ness of the second child in the UX when it is applied to
z and y (in that order) with bias p is E{f(U,(y,x))} =

E{f(Ur-p(z,9))}

ProoF. The first child takes the bits of z with probability
p and and bits of y with probability 1 — p. The second child
takes the value of y with probability p and the value of x with
probability 1—p. As a consequence to compute the expected
fitness value for the second child we have to commute the
order of x and y in the expectation formula without changing
p or we have to replace p by 1—p without changing the order
of z and y in the expectation formula. []

In Figure 1 we graphically interpret the result of the pre-
vious theorem. We can observe that the expectation curve
(expectation as a function of p) of the second child is just a
reflection of the one of the first child using as axis the line

p=1/2.

10| . —

- ~ s

First child \

Second child

p=1/2

Figure 1: The expectation curve of the second child
in the UX is a reflection of the expectation curve of
the first child with respect to the line p = 1/2.

5.2 Optimal Crossover Bias
Given a particular problem and two solutions x and y,

we can compute the coefficients Af[f, of the polynomial and
find the optimal value of p to maximize (or minimize) the

expected fitness of the child. This can always be done us-
ing numerical analysis, but we consider here some cases in
which a closed-form formula can be derived, namely, when
IE{f£U,,(ac7 y))} is a polynomial of degree less than or equal
to 3.

In the order 1 case, the expectation is E{f(U,(x,y))} =
Ag% +(1- 2p)A;1,L. In this case the optimum is one of the
extremes: p =0 or p = 1. If we consider maximization and
f(z) > f(y), then an optimal bias is p* = 1, which can be
interpreted as “select x as the child”. One problem having
always a degree-1 polynomial is ONEMAX. In fact, if for
a particular objective function f the expectation curves for
all the possible solution pairs z, y is linear in p, then the
function f(z) has to be a weighed sum of the variables x;.
This kind of functions can always by solved in O(n).

Consider the case in which the expectation is quadratic in
p. Then the polynomial has a maximum if A§c2)y < 0. We
can find the derivative and solve the corresponding linear
equation to obtain a tentative optimal value for p. The
value for this optimum is

1A%
pP=5+ — 0
2 44D

(52)

If this value is inside the interval [0, 1] then it is an optimal
value for the bias, otherwise, one optimal value is p* = 1,
since we assume f(z) > f(y). One interesting observation
here is that if (52) gives the value for the optimal bias, and
f(z) > f(y) then p > 1/2. That is, the optimal bias would
suggest to increase the probability of selecting the compo-
nents of the best solution (z). This scenario is graphically
represented in Figure 2. This is common sense, since one
expects the best individual to have the best solution com-
ponents, those that increase the fitness value of the solu-
tion. Problems having a quadratic polynomial are those
with at most two-variable interactions in their fitness func-
tion. For example, the subset sum problem [3] or the 0-1
Unconstrained Quadratic Optimization [4], both NP-hard
problems.
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Figure 2: Shape of the expectation curves depending
on the degree of the polynomial.

Finally, let us assume that E{f(U,(z,y))} is a cubic poly-
nomial. In this case the derivative polynomial can have zero,

! Closed-form formulas of the expectation-optimal bias p can
also be derived for polynomials up to degree 5, but we don’t
consider them here.



one or two roots in the interval [0, 1]. Their values are:

2
a2+ [(42)" 3408,
p= 3 . (53)
348,

It can happen that one of these values is the optimal bias
for UX (it is not possible that both values are optimal) or
it could be that the optimal value is in one of the extremes
(or both). The interesting observation here is that if (53)
computes the optimal bias, then it can happen that p <
1/2 (in Figure 2 we plot a cubic polynomial having this
behaviour). In general, if the degree of the polynomial in p is
higher than 2, then we can find situations in which increasing
the probability of selecting components of the worst solution
(y) the expected fitness value of the child is higher.

Table 1: Instance of the MAX-3SAT problem with
n = 7 for which the optimal bias p is less than 0.5
when z = 1111000 and y = 0000000.

Clauses
r1VZT2VZT3 | TsVagVT1 | 1 VX2V X5
r3VT1VZT2 | s V2eVIT2 | 1 VX3V x5
x2VZT1IVZT3 | s Ve VT3 | T2V X3V x5
1VZT2VTs | TsVZegVTa | T1 VsV s
aVTIVT2 | 5 VX7 VITT | T2V Xa Vs
e VX7 VT2 | 3V x4V 5
x1 Va2V Ts

We designed an instance of MAX-3SAT for which we find
the optimal bias p is less than 0.5. The instance has n =7
variables and 18 clauses which are shown in Table 1. Let x =
1111000 and y = 0000000, then f(z) = 12 and f(y) = 11.
For these two solutions the expectation curve for the uniform
crossover is the one plotted in Figure 3, with expression

E{/(Uy(@.9)} = g +5(1-20)— S(1-20)" - 2(1-29)".

The optimal expected fitness value is 12.6284 and can be
found at p = 0.473401 < 0.5.

i

Figure 3: Expectation curve of the MAX-3SAT in-
stance in Table 1 when x = 1111000 and y = 0000000.
The cubic polynomial is E{f(U,(z,y))} = ‘2 + :(1 —
2p) — 2(1 — 2p)*> — 5(1 — 2p)®. The optimal expected
value is 12.6284 at p = 0.473401.

6. CONCLUSIONS AND FUTURE WORK

We have derived an expression for computing the expected
fitness value of a solution which is the result of applying the
uniform crossover to two solutions x and y. Since UX has
only one parameter, the bias p, this expression is obvoiusly
a function of p when z and y are fixed. We prove that
this function is a polynomial in p and the degree of the
polynomial is bounded by the number of bits in which x and
y differ and the maximum order of the nonzero coefficients
in the Walsh decomposition of the objective function.

We have developed the expression as a closed-form for-
mula for two optimization problems: ONEMAX and MAX-
kSAT. The complexity of computing the expectation for
these two problems is similar to the complexity of evaluating
the objective function. With the help of these polynomials
it is possible to compute the bias for which the expected fit-
ness is optimal, which could be used to create new crossover
operators exploiting this information. We found that it is
not always the case that the optimal value for p is above 0.5
and we have provided an instance of MAX-3SAT for which
the optimal value is less than 0.5.

As future work we plan to extend the results in this paper
and we plan to analyze other variation operators using the
same tools. We can also propose new variation operators or
search algorithms based on the expected fitness.
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