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Abstract

Sequential analysis is now commonly used for post-market drug and vaccine safety surveillance, 

and a Poisson stochastic process is typically used for rare adverse events. The conditional 

maximized sequential probability ratio test, CMaxSPRT, is a powerful tool when there is 

uncertainty in the estimated expected counts under the null hypothesis. This paper derives exact 

critical values for CMaxSPRT, as well as statistical power and expected time to signal. This is 

done for both continuous and group sequential analysis, and for different rejection boundaries. It is 

also shown how to adjust for covariates in the sequential design. A table of critical values is 

provided for selected parameters and rejection boundaries, while new functions in the R 

Sequential package can be used for other calculations. In addition, the method is illustrated for 

monitoring adverse events after pediarix vaccination data.
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1. Introduction

Post-market drug and vaccine safety surveillance, or simply vaccine safety surveillance, is a 

system of statistical and computational mechanisms directed to prevent possible threats to 

the population’s health integrity caused by administration of recently approved vaccines. In 

this context, the number of adverse events following the vaccination is potentially 

informative to decide, within a short-term monitoring, if a new vaccine is to be kept in or 

withdrawn from the market. According to Kulldorff et al. (2011), given a predefined 

postexposure risk window, the random number of adverse events, say Ct, following a vaccine 

that was administrated in the period (0, t] can be modeled as a Poisson process. Hence, a 
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sequential hypothesis testing procedure can be designed in order to monitor adverse events 

data.

Under the null hypothesis, H0, the mean of Ct, denoted here by μt, is a known function of the 

population at risk. Usually, μt is simply the number of people exposed to the vaccine up to 

time t times the baseline risk of an adverse event during the postexposure risk window. 

Under the alternative hypothesis, HA, Ct is still Poisson but with increased mean (R × μt), 

where R > 1 is the relative risk due to the vaccination. For testing these hypotheses, 

Kulldorff et al. (2011) proposed to use the maximized sequential probability ratio test 

(MaxSPRT). MaxSPRT is now widely used for detecting increased risks associated to 

adverse events followed by post-licensed vaccines (Belongia et al., 2010; Davis, 2013; Klein 

et al., 2010; Li et al., 2014, 2016; Yih et al., 2009, 2011). But, MaxSPRT is applicable only 

if μt is known or if there is a historical data with sufficient information to provide a reliable 

estimate of it (Li and Kulldorff, 2009). When μt can only be estimated with uncertainty, the 

conditional maximized sequential probability ratio test (CMaxSPRT) introduced by Li and 

Kulldorff (2009) is the appropriate tool. CMaxSPRT consists of comparing accruing data 

with historical data in order to dispense with the knowledge about μt. This is the reason why 

CMaxSPRT has been considered as a very important tool for post-market vaccine safety 

surveillance (Yih et al., 2011).

Let V denote the person-time in the historical data, which results from the cutoff date for 

collection of the historical sample, and use c to denote the number of adverse events 

observed in the (0, V] period. Seeking to offer a realistic model for adverse events data 

analysis, we suppose that V is defined irrespectively to the number of adverse events that is 

observed in the historical period.

Let Pk denote the person-time accumulated up to the arrival of the kth adverse event in the 

surveillance period. For fixed c, V is the sum of a Gamma distribution with shape c and 

scale 1/λV with a modified exponential distribution with parameter 1/λ. More details on the 

distribution of V are given in the appendix. For fixed k, Pk follows a Gamma distribution 

with shape k and scale 1/λP. With CMaxSPRT, the hypotheses are of the form:

H0:λP = λV against H1:λP = R × λV , R > 1. (1.1)

Based on the likelihood ratio test method, Li and Kulldorff (2009) derived the CMaxSPRT 

test statistic:

Uk = I k
c > Pk

V clogc 1 + Pk/V
c + k + klog k 1 + Pk/V

Pk/V (c + k) . (1.2)

The null hypothesis is rejected for the first k such that Uk ≥ CV, where k = 1, …, K, CV is a 

flat signaling threshold (critical value), and K is a predefined maximum length of 

surveillance. It merits reinforce that the notation “CV,” for critical value, should not be 

confounded with the notation “V.” While the former is a user-defined fixed number, the last 

is a random variable measuring the person-time in the historical data. Calculation of CV 
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demands a computable probability distribution of the statistic maxkUk, which is hard to 

obtain in practice. Thus, because the exact test is infeasible, Li and Kulldorff (2009) suggest 

to use Monte Carlo testing. But, this limitation can be transcended. The main contribution of 

the present work is the derivation of analytical expressions to perform CMaxSPRT. 

Therefore, Monte Carlo is no longer needed to find CV. The derived expressions enabled us 

to introduce six new features in the sequential design:

i. Management of a minimal number of events before allowing a signal, which can 

be advantageous in terms of surveillance time.

ii. Exact calculation of statistical power, expected length of surveillance and 

expected time to signal.

iii. New option to define the maximum length of surveillance. The maximum length 

of surveillance of CMaxSPRT was defined by Li and Kulldorff (2009) in terms 

of the maximum observed number of events (K), which is a bit awkward as it is 

hard for investigators to project how many events they would observe during a x-

year surveillance study. As a convenient alternative, in this article, we show how 

the maximum length of surveillance can be defined by the cumulative person-

time instead of observed number of events. The former is much more natural and 

easy to use for planning purpose. Before the start of a surveillance, it is much 

more meaningful to plan the end of the surveillance once we reach, say, 2 million 

doses and each dose has a follow-up time of x number of days.

iv. Usage of type I error probability spending functions in place of flat CV’s.

v. The conventional CMaxSPRT was developed solely to continuous sequential 

analysis. But the new derivations of the present article allow application of group 

sequential analysis.

vi. Incorporation of co-variates in the statistical model.

This article is organized in the following way: next section introduces the calculation of the 

exact CMaxSPRT critical value. Note that the exact solution for the critical value calculation 

is the key for solutions (i)–(vi). Then, this material is organized in a way that after reading 

Sections 2–4, the reader can jump to read each of the other sections independently of the 

others. That way, the person, e.g., interested in the adjustment for co-variates, can quickly 

read what it is interested in, without having to struggle though other parts of the manuscript. 

With this in mind, the other features are organized as follows: Section 3 develops the new 

strategy of selecting the maximum length of surveillance in terms of the cumulative person–

time ratio. Section 4 talks about how to consider a minimum number of events before 

allowing for rejection of the null hypothesis. Section 5 shows how to consider adjustments 

for covariates. Section 6 describes the arbitrary management of the type I error spending. 

Section 7 details the calculation of power, expected length of surveillance and expected time 

to signal. Section 8 gives further mathematical insights for saving computation time in the 

critical value calculation. Section 9 illustrates the usage of the method for a real data of 

adverse events following a Pediarix vaccination. Section 10 closes the article with a brief 

discussion on the main results.
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2. Exact critical values for cmaxsprt

For each k = 1, …, K, define the random variable:

τk = Pk/V , (2.1)

and take the CMaxSPRT statistic as a function of τk, i.e., replace Uk by U(τk) in (1.2). For a 

fixed critical value CV, and given that U(τk) is downward monotone with τk, there always 

exists tk ∈ (0, ∞) such that U(τk) ≥ CV iff τk ≤ tk, that is:

tk = sup t ∈ ℜ+:U(t) ≥ CV . (2.2)

Thus, for a fixed relative risk R, the probability of rejecting the null hypothesis at the kth 

adverse event is given by

πk(R, CV) = Pr rej . H0 rej . kth event R
= Pr τk ≤ tk R, τk* > tk* for each k* < k . (2.3)

For fixed tk and observed V = v, the event {τk ≤ tk} implies that {Pk ≤ vtk}. But note that Pk 

follows a Gamma distribution; hence, the continuous stochastic process Pk can be rewritten 

in terms of a new process, say Ck, where Ck~Pois(Rvtk). Therefore, for k = 2, …, K, the 

probability in (2.3) can be rewritten as

πk(R, CV) = ∫
0

∞
Pr Ck ≥ k R, V = v, Ck* < k* for each k* < k fV (v)dv . (2.4)

where fV(v) is the probability density function of V. The probability of rejecting the null 

hypothesis at the very first event, i.e., for k = 1, is given by

∫
0

∞
Pr C1 ≥ 1 R, V = v fV (v)dv . (2.5)

In practice, the total person-time, V, observed in the historical data will usually be greater 

than the actual summation of person-time from the c events. Therefore, the distribution of V 
is not exactly Gamma because V incorporates the extra person-time observed after the 

arrival of the cth event. Following the same reasoning proposed by Li and Kulldorff (2009), 

we can assume that the cutoff date for the historical data is established irrespectively to the 

number of observed adverse events. Also, it seems reasonable to suppose c ≥ 1. With this, 

we can write

V = ∑
i = 1

c
Y i + ZY c + 1, (2.6)

where Yi : i = 1, …, (c + 1) are i.i.d. with common density
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fY (y) = λV e−λV y, (2.7)

and Z, independent of each Yi, follows an uniform distribution in the (0, 1) interval. The 

demonstration that V can be written as in (2.6) is left to the appendix.

Define the auxiliary random variables

W c = ∑
i = 1

c
Y i, and W * = W c/λV .

Note that W* follows a Gamma distribution with rate 1 and shape c. Now take the 

transformation

Y * = Yc + 1/λV ,

which by its turn has density e−yI(y>0). For fixed W* = w, Z = z, and Y* = y, we have

V = v = w + zy ,

in which case Ck~Pois(Rvtk). Therefore, the conditional probability of rejecting H0 at the 

kth event given realized W* = w, Z = z, and Y* = y is calculated as

πk(R, CV, w, z, y) = Pr ∩j = 1
k − 1 Cj < j , Ck ≥ k V = v

= ∑
c2 = 0

1
∑

c3 = c2

2
⋯ ∑

ck − 1 = ck − 2

k − 2
Pr Ck ≥ k Ck − 1 = ck − 1, V = v

×

× ∏
j = 1

k − 1
Pr Cj = cj Cj − 1 = cj − 1, V = v

= ∑
c2 = 0

1
∑

c3 = c2

2
⋯ ∑

ck − 1 = ck − 2

k − 2

1 − ∑
ck = ck − 1

k − 1
Pr Ck = ck Ck − 1 = ck − 1, V = v

× ∏
j = 1

k − 1
Pr Cj = cj Cj − 1 = cj − 1, V = v

= ∑
c2 = 0

1
∑

c3 = c2

2
⋯ ∑

ck − 1 = ck − 2

k − 2

a ck − 1 ∏
j = 1

k − 1 μj
cj*

cj*! − ∑
ck = ck − 1

k − 1
a ck ∏

j = 1

k μj
cj*

cj*! ,

(2.8)

where
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a cj = e−Rvtj(Rv)cj = e−R(w + zy)tj[R(w + zy)]cj,

cj* = cj − cj − 1, μj = (tj−tj−1), and c0 = t0 = 0.

Thus, the probability of rejecting the null hypothesis at the kth event, adjusted for the extra 

person-time, is given by

πk(R, CV) = Pr Ck ≥ k R, Ck* < k*:k* < k

= ∫
0

1∫
0

∞∫
0

∞
πk(R, CV, w, z, y)fW *(w)fY *(y)fZ(z)dwdydz

= ∫
0

1∫
0

∞∫
0

∞
πk(R, CV, w, z, y)e−wwc − 1

(c − 1)! e−ydwdydz

= ∑
c2 = 0

1
∑

c3 = c2

2
⋯ ∑

ck − 1 = ck − 2

k − 2
∏
j = 1

k − 1 μj
cj*

cj*! × A ck − 1

− ∑
ck = ck − 1

k − 1
∏
j = 1

k μj
cj*

cj*! × A ck ,

(2.9)

where

A ck = ∫
0

1∫
0

∞∫
0

∞
e−R(w + zy)tk R(w + zy) ck e−wwc − 1

(c − 1)! e−ydwdydz

= ∫
0

1∫
0

∞
e−y Rztk + 1 ∫

0

∞
e−Rwtk[R(w + zy)]cke−wwc − 1

(c − 1)! dwdy dz

= Rck∫
0

1∫
0

∞
e−y Rztk + 1 ∫

0

∞
e−Rwtk ∑

l = 0

ck
Dl

ckwl(zy)ck − l

e−wwc − 1

(c − 1)! dwdy dz

= Rck∫
0

1∫
0

∞
e−y Rztk + 1

∑
l = 0

ck
Dl

ck(zy)ck − l∫
0

∞
e−Rwtkwl e−wwc − 1

(c − 1)! dwdy dz

= Rck ∑
l = 0

ck
Dl

ck (l + c − 1)!
Rtk + 1 l + c(c − 1)!∫0

1
zck − l∫

0

∞
e−y Rztk + 1 yck − ldydz

= Rck ∑
l = 0

ck
Dl

ck (l + c − 1)!
Rtk + 1 l + c(c − 1)!

ck − l

!∫
0

1 zck − l

Rztk + 1 ck − l + 1dz

B ck, l

,

(2.10)

and Dl
ck = ck!/ l! ck − l ! .
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For ck = l, we have

B ck, l = log Rtk + 1 / Rtk .

Otherwise, make G = Rztk, and then:

B ck, l = ∫
0

Rtk
Rtk l − ck − 1 Gck − l

(G + 1)ck − l + 1dG

= Rtk l − ck − 1∫
1

Rtk + 1 (u − 1)ck − l

uck − l + 1 du

= Rtk l − ck − 1∫
1

Rtk + 1 ∑g = 0
ck − l Dg

ck − lug −1 ck − l − g

uck − l + 1 du

= Rtk l − ck − 1 ∑
g = 0

ck − l
Dg

ck − l −1 ck − l − g∫
1

Rtk + 1 ug

uck − l + 1du

E g, ck, l

,

(2.11)

where

E g, ck, l =
log Rtk + 1 for g = ck − l,

Rtk + 1 g − ck + l − 1
g − ck + l for g < ck − l .

(2.12)

Hence,

B ck, l = Rtk l − ck − 1 log Rtk + 1 + ∑
g = 0

ck − l − 1 ( − 1)ck − l − gDg
ck − l

g − ck + l

Rtk + 1 g − ck + l − 1 .
(2.13)

Finally, the overall statistical power under R > 1 of the CMaxSPRT test, say π(R, CV), is 

given by:

π(R, CV) = ∑
k = 1

K
πk(R, CV), (2.14)

and the overall size of the test, which is the type I error probability under R=1, is given by

π(1, CV ) = ∑
k = 1

K
πk(1, CV), (2.15)

with πk(1, CV) calculated according to (2.9).
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As (2.15) is downward monotone with CV, the bisection method can be applied in order to 

find CV attaining with a desired significance level. The bisection method is a well-known 

numerical procedure extensively used for finding roots of equations (Autar et al., Autar et al. 

2011).

Because π(R, CV) is increasing with R, CMaxSPRT can be used under flexible hypotheses 

forms such as H0 : R ≤ r0 versus H1 : R>r0, with r0>0 arbitrary.

2.1. The algorithm

Consider to find CV under a significance level of α = (0, 1). Also, define a precision 

parameter, say ϵ, such that |α–π(1, CV)| ≤ ϵ. The bisection method is then based on the 

following six steps:

• Step (i)—set CV1 := 0 and CV2 := 50.

• Step (ii)—set CVmed := (CV1 + CV2)/2. Set k = 0 and tk = 0.

• Step (iii)—while k ≤ K, update k := k + 1 and find tk such that 

tk = sup tk*:U tk* ≥ CVmed . Then, set t1 = · · · = tM.

• Step (iv)—Using expression (2.15), calculate π(1, CVmed). If |α–π(1, CVmed)| ≤ 

ϵ, stop and take CVmed as the critical value solution. Otherwise, proceed to Step 

(v).

• Step (v)—if π(1, CVmed)>α, then update CV1 := CVmed, otherwise, update 

CV2 : = CVmed. Go to Step (ii).

The number of iterations needed to reach the CV solution is equal to ln (1/ϵ)/ ln (2). For 

example, a precision of ϵ = 0.00000001 leads to ⌈ ln (1/0.00000001)/ln (2)⌉ = 27 iterations.

Table 1 brings critical values for common values of α, K, and c. Solutions were obtained 

through direct application of the algorithm described above. This algorithm was programed 

and executed in R language and the code is now part of the R Sequential package, which can 

be run with the function “CV.CondPoisson.” Unfortunately, due to space limitations, we can 

offer only a few variety of values for c and K, but any other tuning parameters configurations 

can be easily obtained through the function “CV.CondPoisson.”

3. Maximum length of surveillance by doses/person-time

Although Li and Kulldorff (2009) have defined the maximum sample size, K, in the scale of 

the expected number of events, in this section, we show that it can also be settled in terms of 

the person-time ratio, Pk/V, under the null hypothesis. The critical value can still be 

calculated through the algorithm of Section 2.1, which demands a simple adjustment on Step 

(iii) as explained in the following remark.

Remark

The upper limit on the surveillance can be defined in terms of a constant, T, at which the 

surveillance is interrupted and the null is not rejected at the first k*th event such that 

Pk * /V > T . This alternative setting for the maximum length of surveillance can be easily 
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implemented by replacing the constraint “while k ≤ K” by “while tk ≤ T” in Step (iii) of the 

algorithm presented in Section 2.1. Likewise, when convenient, one can also use both 

constraints, T and K, in that algorithm simultaneously.

Some practitioners might prefer to define the maximum length of surveillance in terms of K, 

but others will prefer to use T. In both cases, the final choice will probably be made in such 

a way that target statistical powers are satisfied for fixed overall significance levels. For 

example, one may want to find T such that the statistical power is surely greater than 0.9 for 

R = 2 and α = 0.05. The same can be done by those analysts that prefer to establish the 

maximum length of surveillance by K. Naturally, when one defines the maximum length of 

surveillance in terms of T, it is involuntarily establishing a K-value that corresponds to that 

T choice and vice versa.

Table 2 illustrates the correspondence between K and T. For α = 0.05 and R = 2, and historic 

information scenarios of c = 50, 60, …, 200, this table brings lower bounds T0 of T, and 

correspondent lower bounds K0 of K, required to accomplish with target statistical powers of 

0.9 and 0.99. All solutions were obtained through the function “SampleSize.CondPoisson” 

of the R package Sequential.

4. Requiring a minimum number of events before signaling

Unsafe drugs/vaccines should not endure in the market. Hence, the expected time to signal, 

defined as the expected number of events when the null hypothesis is rejected, is the 

meaningful design criterion for post-market safety surveillance. According to Kulldorff and 

Silva (2017), the expected time to signal can be substantially reduced by requiring a 

minimum number M of events before allowing the rejection of H0. In this direction, 

Kulldorff and Silva (2017) show that values of M in between 3 and 6 are typically 

advantageous in the sense of reducing expected time to signal under the same power 

magnitude.

If one desires to permit the H0 rejection only after a certain minimum number M of events, 

the unconditional probability of rejecting H0 at the Mth event is given by

Pr CM ≥ M R = 1 − ∑
m = 0

M − 1
A(m) × tMm /m!, (4.1)

with A(.) calculated according to (2.10), then the numerical calculation of CV described in 

Section 2.1 must be adjusted by replacing “Set k = 0” by “Set k = M−1” in Step (ii).

5. Adjusting for covariates

CMaxSPRT is now adapted for categorical covariates (e.g., age groups, sex). Suppose that 

there are N covariate strata from a set of strata levels n = 1, …, N. Without loss of generality, 

let n = 1 denote the reference group. If we know the relative risks between the other strata 

compared to the reference group under the null hypothesis, we can easily transform the 

person-times from other strata to the reference scale to adjust for confounding. Specifically, 

for n = 1, …, N, let rn denote the ratio between the baseline risks for stratum n vs. stratum 1 
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(r1 = 1) and (Pn,k, Vn) denote the stratum-specific person-times 

(Pk = ∑n = 1
N Pn, k, V = ∑n = 1

N V n), then the revised test statistic is given by

Uk = I k
c > PkV clogc 1 + Pk/V

c + k + klog k 1 + Pk/V
Pk/V (c + k) , (5.1)

where Pk = ∑n = 1
N rnPn, k and V = ∑n = 1

N rnV n.

Unfortunately, the relative risks rn, n = 1, …, N, are typically unknown in real applications 

and thus we need to estimate them using observed data. Let cn denote the number of events 

in stratum n in the historical cohort, i.e., ∑n = 1
N cn = c, then the relative risk rn can be 

estimated using

cn/V n
c1/V 1

.

With the estimated relative risks, the transformed person-times are given by

V = ∑
n = 1

N cn/V n
c1/V 1

V n =
V 1
c1

c

and

Pk = ∑
n = 1

N cn/V n
c1/V 1

Pn, k =
V 1
c1 ∑

n = 1

N cnPn, k
V n

.

In consequence, the ratio Pk/V  is simplified to

Pk/V = 1
c ∑

n = 1

N cnPn, k
V n

= μk/c,

where

μk = ∑
n = 1

N cnPn, k
V n

is the expected number of events, under the null hypothesis, in the surveillance population at 

interim test k. Thus, the adjusted test statistic for covariates is
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Uk = I k
c > Pk

V
clog

c 1 + Pk/V
c + k + klog

k 1 + Pk/V
Pk/V (c + k)

= I k > μk clogc 1 + μk/c
c + k + klog k 1 + μk/c

μk/c (c + k) .
(5.2)

Note that μk = ∑n = 1
N cnPn, k

V n
, given observed V n = vn, n = 1, …, N, follows a gamma 

distribution. Hence, all reasoning used in Section 2 to derive exact critical values hold under 

the same steps (i)–(v).

6. Group sequential analysis: the type I error probability function 

spending aproach

In practice, data can arrive not only in continuous but also in a near-continuous manner or 

even in grouped chunks of data (Nelson et al., 2012; Zhao et al., 2012). Therefore, 

sometimes even the exact calculations of Section 2 will produce conservative critical values 

since the number of sequential tests can be smaller than K. To solve this limitation, instead 

of using a flat critical value in the scale of the likelihood ratio, one can define the sequential 

decision rule through a type I error spending approach. Doing so, we can arbitrate the 

amount of type I error probability to be spent at each test no matter if the cases arrive one by 

one or in groups of unpredictable lengths.

Following the definition of Jennison and Turnbull (2000), the type I error spending is a 

nondecreasing function taking values in the (0, α) interval. Here denoted by S(k), the type I 

error spending is meant to establish the rate at which the type I error probability shall be 

spent along the sequential tests. With this, the signaling threshold for the kth event can be 

settled to take in account the actual amount of person-time contribution observed with that 

particular adverse event.

Aiming a more suggestive notation, instead of a function of R and CV, redefine the notation 

for the type I error probability associated to the kth event so that it turns out as a function of 

R and tk given the fixed previous time thresholds, i.e., for k > 1, the type I error probability 

is now denoted by πk(R, tk|t1, …, tk−1). Hence, one can always establish a target type I error 

spending S(k) for monitoring the kth event by solving πk(R, tk|t1, …, tk−1) for tk as follows:

tk = sup tk*:πk R, tk* t1, …, tk − 1 ≤ S(k) . (6.1)

A well-known choice for S(k) is the power-type form:

S(k) = α × k
K

ρ
, ρ > 0.

Jennison and Turnbull (2000) suggest that, if the design criteria are expected sample size, 

then ρ values around 2 are recommended. Studies devoted to explore suitable choices of ρ 
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having the expected time to signal as the main design criteria are just emerging. An example 

is the work of Silva (2018) suggesting that values of ρ around 0.5 are appropriate choices if 

the design criterion is the minimization of the expected time to signal.

7. Statistical performance

As already mentioned, the three key performance measures for post-market vaccine safety 

surveillance are the statistical power, the expected time of surveillance, and the expected 

time to signal.

7.1. Power

Remind that the overall statistical power of the test, evaluated for R > 1, can be calculated 

using (2.14). Statistical powers for the scenarios of Table 1, and assuming a true relative risk 

of R = 2, are placed in Table 3. All values were obtained with the function 

“Performance.CondPoisson” of the R Sequential package.

7.2 Expected length of surveillance and expected time to signal

Because in post-market safety surveillance the vaccine is already administrated at the 

population, maximum sample sizes can be easily administrated. But, for a fixed power, one 

might want to calculate, previously to the beginning of the surveillance, the expected length 

of surveillance, and the expected time to signal. The expected length of surveillance 

evaluated for R > 1, and denoted by EL(R, CV), is given by

EL(R, CV) = ∑
k = 1

K
k × πk(R, CV) + K × [1 − π(R, CV)], (7.1)

and the expected time to signal, denoted by ETS(R, CV), is given by

ETS(R, CV) =
∑k = 1

K k × πk(R, CV)
π(R, CV) , (7.2)

with πk(R, CV) obtained according to (2.9) and π(R, CV) obtained from (2.14). Table 4 

presents expected time to signal for a true relative risk of R= 2 under the same tuning 

parameters of Table 1.

8. Conservative and liberal tests

The exact calculation of CV can take a long time to run in high-level programing languages 

such as e.g., the software R (Team 2014). This is so because of the double sum implied by 

the terms A(ck) and B(ck, l). To circumvent this limitation, conservative and liberal 

approximations for CV are offered as alternatives for a faster computation.

8.1. Conservative tests

A conservative critical value solution, say CVcons, can be defined in such a way that, if CV 

is the exact solution obtained according to Section 2, then π(1, CV) ≥ π(1, CVcons). To do 

so, note that:
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B ck, l = ∫
0

1 zck − l

Rztk + 1 ck − l + 1dz ≤ zck − l

Rztk + 1 ck − l + 1
z = 1

= tk + 1 l − ck − 1 .
(8.1)

The last inequality holds because the integrand in (8.1) is increasing with z. Thus, define the 

modified A(ck), denoted by A*(ck), obtained by replacing B(ck, l) by

B* ck, l = tk + 1 l − ck − 1 . (8.2)

Since B(ck, l) always contributes with a positive value, it holds that A*(ck) ≥ A(ck). Let 

π*(R, CV) denote the probability in (2.9) calculated after replacing A(ck) by A*(ck). Hence, 

the probability π*(R, CV) overestimates the actual size π(R, CV), and then a solution 

CVcons that returns π*(R, CVcons) = α + ϵ is always greater than or equal to the exact 

critical value CV, but this conservative critical value requires much less computational effort 

than the computation of the exact CV. Another option to deal with the long run time of the 

exact solution is to discard the extra person-time.

8.2. Discarding the extra person-time: liberal tests

Consider two Poisson processes, X[W*tk] and X[(W* + ZY*)tk], i.e., for fixed positive 

constants W* = w, Z = z, and Y* = y, the random variables X[wtk] and X[(w + zy)tk] have 

means Rwtk and R(w + zy)tk, respectively. Thus, it holds that

Pr X wtk ≥ k R ≤ Pr X (w + zy)tk ≥ k R (8.3)

for any positive constants w, z and y. The exact critical value of Section 2 is based on the 

critical value given in the scale of Ck, which has the same distribution as X[(W* + ZY*)tk]. 

If we neglect the extra person-time information ZY, then Ck turns to behave as X[W*tk]. 
From (8.3), the resultant critical value, say CVlib, will be slightly larger than the exact CV. 

This is the same as assuming that the distribution of V = W + ZY is approximately equal to 

the distribution of the random variable W. Under this assumption, the probability of 

rejecting the null hypothesis at the kth test becomes far simpler:

πk R, CVlib = ∑
c2 = 0

1
⋯ ∑

ck − 1 = ck − 2

k − 2
∏
j = 1

k − 1 μj
cj*

cj*! × A* ck − 1 − ∑
ck = ck − 1

k − 1
∏
j = 1

k μj
cj*

cj*!

× A* ck ,

(8.4)

where:
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A* cj =
c + cj − 1 !

1 + tj
c + cj(c − 1)!

,

cj* = cj − cj − 1, μj = (tj−tj−1), and c0 = t0 = 0.

Therefore, critical values calculated using (8.4) will produce tests with actual significant 

levels slightly greater than the desired α.

8.3. When should we adopt exact, conservative or liberal calculations?

One may wonder if the gains, in terms of computation time, from conservative or liberal 

approaches would pay back the decrease, or the overshoot, on the test size. To formulate an 

answer for this question, we offer Table 5 with actual test sizes for each approach, and Table 

6, which presents computation times, expressed in hours (h), minutes (m) and seconds (s), 

taken for calculating the critical values associated to the same tuning parameters (α, K, c) of 

Table 5.

Observe that, as it should be, the test size of the exact approach attains exactly equal to α 
value in all scenarios. In contrast, usage of conservative and liberal solutions requires 

prudence. Their actual test sizes can differ in more than 10% in comparison to the exact 

solution for small c, like 10 for example. But, this difference is less than 1% in all scenarios 

when c is equal to 200. Hence, as a general rule, conservative and liberal solutions should 

not be used if K and c are of moderate magnitudes. In such cases, the liberal approach can 

lead to test sizes greater than α, and the conservative approach can lead to substantial power 

losses. Furthermore, under situations of small K, the exact approach takes only a few 

seconds to run, then there is no need for using liberal or conservative approximations.

In terms of computation time, the liberal approach is far faster. It requires just few seconds 

to run in all scenarios, which contrasts with the several hours taken by the exact for large K, 

like for example K = 50.

The conservative approach is also fast. It presents an intermediate execution time, reaching 

some minutes on its worse performances.

Considering these results, we suggest the following rule of thumb: use the exact calculation 

for small K, like in the scale of dozens, for example. If K is of moderate or intermediate 

magnitude, like 50 for example, use the conservative approach. Finally, use the liberal 

approach for large K like those with magnitudes of hundreds.

9. Monitoring adverse events for pediarix vaccination

This section illustrates the usage of CMaxSPRT for a time series of health insurance claims 

from the CDC-sponsored VSD project. The data are composed by 82 weekly entries, each 

representing the number of adverse events related to neurological symptoms within 28 days 

after Pediarix vaccination, which summed up to 31 adverse events. Pediarix, manufactured 

by GlaxoSmithKline, is a vaccine that, with a single injection, can protect children from five 
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different diseases: diphtheria, tetanus, whooping cough, hepatitis B, and Polio. The adverse 

events counts are shown in Figure 1.

As CMaxSPRT demands historical information, this data was divided in two subsamples, 

each with 41 entries. This way, the first 41 observations are treated as the historical sample, 

then the second sub-sample is taken by surveillance data. Although this division is artificial 

as the entire series is composed by surveillance information, this exercise might be useful for 

exemplifying how the exact CMaxSPRT works in practice. The part representing the 

surveillance data is highlighted with the dark down triangles shown in Figure 1.

Note that there is an abrupt change in the cumulative cases after week 42, then, analyzing 

this data indeed has practical and interesting appeals. Because both samples belong to the 

same population exposed to the same vaccine, one should apply a formal test for checking 

the evidence of a possible change on the relative risk, for some reason and irrespective to the 

vaccine itself, after that point in time.

9.1. Tuning parameters settings

For this application, we used α = 0.05 and ρ = 1.5. Because the number of adverse events in 

the historical period was c = 11, for a historical person-time information of v = 61.603, we 

iterated expression (2.9) for different K values to find out the minimum sample size required 

for a power of at least 0.9 under target R = 2, and the resulting sample size was 40. Hence, K 
= 40 was adopted for the present example.

9.2. Data analysis results

The overall relative risk estimate for this hypothetical data is

R = k × v
c × pk

= 20 × 61.603
11 × 69.037 = 1.62,

with k = 20 adverse events observed after an amount of pk = 69.037 person-time accrued in 

the surveillance period. This suggests an elevation on the relative risk after week 41. But, a 

formal sequential test should be applied in order to take in account the sample variability in 

drawing a definitive decision in favor or against H0. Figure 2 presents the observed 

CMaxSPRT statistic, dotted line, test by test. The exact critical value is shown with a solid 

flat line. The observed CMaxSPRT test statistic remained below the critical value throughout 

the monitoring period. Hence, there are no strong evidences against H0, leading to the 

conclusion that the relative risk was likely the same for the entire time series of 82 

observations.

10. Discussion

Coding computational programs to implement the exact CMaxSPRT test can be a 

troublesome work. To make things easier, we have implemented the results of this paper in 

the R “Sequential” package. Sequential was designed for continuous/group sequential 

analysis and to analyze either Poisson type data or binomial 0/1 type data. With the package, 

one can easily reproduce tables and any other calculations shown in this article.
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Concerning the decision on when/why to use CMaxSPRT, as already emphasized in the 

Introduction, CMaxSPRT has been developed as an alternative to MaxSPRT in cases where 

μt under H0 is either unknown or when trustful estimates of it are not available. But, as 

demonstrated by Li and Kulldorff (2009), the bias caused by usage of MaxSPRT in such 

circumstances is only relevant for K ≥ c/5. Therefore, CMaxSPRT is needed instead of 

MaxSPRT when approximately K ≥ c/5, while it is unusual to have K ≥ c. Hence, besides 

the suggested rule of thumb of Section 8.3 about when to choose among the exact, 

conservative or liberal solutions, one can instead choose the regular MaxSPRT when K<c/5 

because it involves simpler and faster computations. For example, consider the sample size 

calculation in order to attend a power of 0.99 under a target relative risk of R = 2 with c = 

50. Using the Sequential package, and a PC(Windows 7, Intel(R) Core(TM) i7–2675QM 

CPU, 2.20GHz), the execution time of CMaxSPRT is around 98 seconds, which is 

contrasted by the 18 seconds observed with the regular MaxSPRT.

Another important feature developed in this article is the possibility of managing the type I 

error probability spending for CMaxSPRT, which favors to design appropriate signaling 

thresholds for a given design criterion. For example, in clinical trials it is expensive to 

expose many patients to the experiment, hence expected sample size is the meaningful 

design criterion. In this case, a convex shape for the type I error spending is indicated since 

it usually leads to reduced sample sizes (Silva 2018). However, in post-market vaccine safety 

surveillance, the costs of increasing the sample size is negligible (Silva and Kulldorff 2015). 

But, as stressed in details by Silva and Kulldorff (2015), the expected time to signal is a very 

important design criterion. A delayed signalization of elevated risks can lead to a large 

number of affected individuals. In this scenario, a concave shape for the type I error 

spending is the recommended choice (Silva 2018).

Construction of confidence intervals for the relative risk is a direct result as the power 

function, expression 2.14, is increasing with R. But, due to space limitations, we prefer to let 

this discussion for future works since it would demand further mathematical demonstrations 

and proper examples.
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Figure 1. 
Time series formed by 82 observed counts of adverse events after Pediarix vaccination 

indexed by week.
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Figure 2. 
Observed CMaxSPRT after Pediarix vaccination indexed by the test order. The signaling 

threshold was obtained under α = 0.05 with power of 0.9 for relative risk of at least 2.
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Table 1.

Exact critical values for CMaxSPRT using α = 0.01, 0.05, c = 5, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, and 

K = 20, 30, 50. All solutions were obtained by running the “CV.CondPoisson” function of the R Sequential 
package. (Silva and Kulldorff 2013).

α = 0.01 α = 0.05

c K = 20 K = 30 K = 50 K = 20 K = 30 K = 50

5 5.045802 5.110297 5.164204 3.270508 3.325895 3.372863

10 5.107656 5.185651 5.254975 3.340221 3.40892 3.469784

20 5.15563 5.247806 5.333842 3.394381 3.477358 3.55485

30 5.176597 5.276471 5.372742 3.418073 3.508914 3.596611

40 5.188503 5.293283 5.396597 3.431531 3.508914 3.62216

50 5.196208 5.304405 5.412835 3.440244 3.539671 3.639593

60 5.201612 5.312331 5.424701 3.446356 3.548400 3.652315

80 5.208702 5.322900 5.440909 3.454375 3.560043 3.669717

100 5.21315 5.329638 5.451537 3.459408 3.567469 3.681107

150 5.219332 5.339152 5.466938 3.466402 3.577955 3.697632

200 5.222538 5.344160 5.475263 3.470031 3.583476 3.706563
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Table 2.

Lower bounds, T0 and K0, for the maximum length of surveillance by doses/person-time (T) and by observed 

cases in the surveillace period (K), respectively, for reaching an actual target statistical powers of 0.9 and 0.99 

under a level α = 0.05, historical number of events c = 50, 60,…, 200, and a true relative risk R = 2.

Target power = 0.9 Target power = 0.99

c K0 T0 K0 T0

50 66 0.79 290 3.89

60 56 0.56 244 2.78

70 50 0.43 157 1.53

80 47 0.35 126 1.07

90 44 0.29 107 0.80

100 43 0.25 96 0.65

110 41 0.22 89 0.55

120 40 0.20 83 0.47

130 39 0.18 79 0.41

140 39 0.16 76 0.36

150 38 0.15 73 0.33

160 37 0.14 71 0.30

170 37 0.13 69 0.27

180 37 0.12 68 0.25

190 36 0.11 67 0.24

200 36 0.11 64 0.21
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Table 3.

Statistical powers of CMaxSPRT for a true relative risk of 2, with α = 0.01, 0.05, c = 5, 10, 20, 30, 40, 50, 60, 

80, 100, 150, 200, and K = 20, 30, 50. All solutions were obtained by running the “Performance.CondPoisson” 

function of the R Sequential package.

c

α = 0.01 α = 0.05

K = 20 K = 30 K = 50 K = 20 K = 30 K = 50

5 0.127 0.150 0.174 0.312 0.340 0.367

10 0.175 0.223 0.276 0.396 0.451 0.504

20 0.234 0.323 0.432 0.489 0.581 0.673

30 0.268 0.388 0.539 0.539 0.654 0.768

40 0.291 0.434 0.614 0.570 0.700 0.825

50 0.308 0.467 0.669 0.592 0.732 0.860

60 0.320 0.492 0.709 0.607 0.755 0.888

80 0.337 0.528 0.765 0.629 0.785 0.919

100 0.348 0.552 0.800 0.642 0.805 0.937

150 0.364 0.587 0.850 0.662 0.832 0.959

200 0.373 0.606 0.875 0.672 0.846 0.969
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Table 4.

Expected time to signal of CMaxSPRT for a true relative risk of 2, with α = 0.01, 0.05, c = 5, 10, 20, 30, 40, 

50, 60, 80, 100, 150, 200, and K = 20, 30, 50. All solutions were obtained by running the 

“Performance.CondPoisson” function of the R Sequential package.

c

α = 0.01 α = 0.05

K = 20 K = 30 K = 50 K = 20 K = 30 K = 50

5 9.39 12.30 16.60 7.34 9.30 12.08

10 10.52 14.14 19.63 8.38 10.89 14.53

20 11.47 15.75 22.34 9.26 12.26 16.60

30 11.90 16.49 23.53 9.65 12.86 17.40

40 12.14 19.92 24.16 9.87 13.19 17.75

50 12.30 17.19 24.51 10.02 13.39 17.90

60 12.42 17.38 24.73 10.11 13.53 17.96

80 12.56 17.63 24.96 10.24 13.69 17.97

100 12.66 17.78 25.05 10.32 13.79 17.92

150 12.78 17.98 25.11 10.43 13.91 17.78

200 12.85 18.09 25.09 10.49 13.96 17.66
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Table 5.

Comparing actual test sizes among exact, conservative, and liberal approaches for CMaxSPRT.

α K c Exact Conservative Liberal

0.01 10 10 0.01 0.009 0.011

0.01 10 50 0.01 0.01 0.01

0.01 10 200 0.01 0.01 0.01

0.01 50 10 0.01 0.008 0.012

0.01 50 50 0.01 0.01 0.011

0.01 50 200 0.01 0.01 0.01

0.05 10 10 0.05 0.045 0.055

0.05 10 50 0.05 0.049 0.051

0.05 10 200 0.05 0.05 0.05

0.05 50 10 0.05 0.043 0.058

0.05 50 50 0.05 0.048 0.052

0.05 50 200 0.05 0.049 0.051
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Table 6.

Computation Time when finding critical values based on exact, conservative and liberal approaches for 

CMaxSPRT. The calculations were executed in R language using a PC(Windows 7, Intel(R) Core(TM) i7–

2675QM CPU, 2.20GHz).

α K c Exact Conservative Liberal

0.01 10 10 3 s <1 s <1 s

0.01 10 50 3 s <1 s <1 s

0.01 10 200 3 s <1 s <1 s

0.01 50 10 4 h 26 m 11s 5m 20s 11 s

0.01 50 50 4 h 23 m 53s 5m 54s 13 s

0.01 50 200 4 h 24 m 4 7s 5 m 30 s 13 s

0.05 10 10 3s 1 s <1 s

0.05 10 50 3s 1 s <1 s

0.05 10 200 3s 1 s <1 s

0.05 50 10 4 h 15 m 11 s 6 m 14 s

0.05 50 50 2 h 23 m 43 s 5 m 40 s 14 s

0.05 50 200 2 h 29 m 50 s 5 m 52 s 14 s

Seq Anal. Author manuscript; available in PMC 2020 March 09.


	Abstract
	Introduction
	Exact critical values for cmaxsprt
	The algorithm

	Maximum length of surveillance by doses/person-time
	Remark

	Requiring a minimum number of events before signaling
	Adjusting for covariates
	Group sequential analysis: the type I error probability function spending aproach
	Statistical performance
	Power
	Expected length of surveillance and expected time to signal

	Conservative and liberal tests
	Conservative tests
	Discarding the extra person-time: liberal tests
	When should we adopt exact, conservative or liberal calculations?

	Monitoring adverse events for pediarix vaccination
	Tuning parameters settings
	Data analysis results

	Discussion
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.

