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Summary

For comparison of proportions there are three commonly used measurements: the difference, the 

relative risk and the odds ratio. Significant effort has been spent on exact confidence intervals for 

the difference. In this paper, we focus on the relative risk and the odds ratio when data are 

collected from a matched-pairs design or a two-arm independent binomial experiment. Exact one-

sided and two-sided confidence intervals are proposed for each configuration of two 

measurements and two types of data. The one-sided intervals are constructed using an inductive 

order, they are the smallest under the order, and are admissible under the set inclusion criterion. 

The two-sided intervals are the intersection of two one-sided intervals. R codes are developed to 

implement the intervals. Supplementary materials for this article are available online.
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1. INTRODUCTION

In medical research we often need to compare two treatments using binary data, and three 

parameters are commonly used: the risk difference (the difference of two proportions), the 

relative risk (the ratio of two proportions) and the odds ratio. The risk difference is an 

absolute measurement of effect, while the relative risk and the odds ratio are relative 

measurements for comparing outcomes. In retrospective case-control studies, the odds ratio 

is used because the other two parameters cannot be estimated. It is also well known that the 

odds ratio has a direct relationship with the regression coefficient in logistic regression. The 

relative risk is used in randomized controlled trials and cohort studies especially when the 

two relevant proportions are both small. In such a case, the risk difference is not as 

informative as the relative risk (see McCullagh 1980, Goodman 1985, and Agresti 2002, p.

*weizhen.wang@wright.edu. 

6. SUPPLEMENTARY MATERIALS
Proofs of Lemmas 2 through 5 and Figures S1 through S4 referenced in Sections 3 and 4 are available with this paper at the 
Biometrics website on Wiley Online Library.
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44). The relative risk and the odds ratio are comparable when the disease is rare with very 

low probability. For some common diseases (e.g., hypertension), the value of the odds ratio 

could be overestimated, and the relative risk should be used instead. It should be noted that 

the relative risk and the odds ratio are defined differently in Eq (3) and Eq (23) for a 

matched-pairs design and a two-arm independent binomial experiment. In this paper we 

focus on interval estimation of the relative risk and the odds ratio using data that are 

collected in a matched-pairs design or a two-arm independent binomial experiment, and are 

organized in a 2 × 2 contingency table. Results on the risk difference can be found, for 

example, in Wang (2010, 2012).

When no pivot quantity can be found for a discrete distribution, the coverage probability of 

a confidence interval is typically not a constant. Therefore, for a secure capture of the 

parameter of interest the coverage probability function of a desired confidence interval must 

be always at least the nominal level 1 − α for all parameter configurations, and we call it an 

exact confidence interval of level 1 − α (see Casella and Berger, 1990, p. 404). Such an 

interval guarantees predetermined coverage for a fixed sample size no matter where the true 

parameter vector is located in the parameter space. The implementation, however, is 

typically challenging as compared with asymptotic intervals. Some studies have shown that 

asymptotic intervals for proportions may have an infimum coverage probability lower than 

the nominal level by a fixed positive amount regardless of sample size, see Huwang (1995), 

Agresti and Coull (1998), Brown, Cai and DasGupta (2001), and Wang and Zhang (2014). 

In particular, the Wald interval, the Wilson interval (1927), and the Agresti-Coull interval 

(1998) for a binomial proportion are proven to have an incorrect infimum coverage even for 

very large sample sizes. One may turn to bootstrap intervals, especially when the parameter 

of interest is complicated. Such efforts can be found in, for example, Li, Taylor and Nan 

(2010), Lin et al. (2009) and Parzen et al. (2002). However, Wang (2013) proved that all 

bootstrap intervals for any function of proportions, including the relative risk and the odds 

ratio, always have an infimum coverage probability of zero. Therefore, practitioners are at 

their own risk to use these intervals, since the intervals may have a very small chance of 

capturing the parameter of interest, and the usage of exact intervals is justified.

Exact intervals for the relative risk and the odds ratio may be obtained by inverting exact 

tests in the case of two independent binomials, see for example, Gart (1971), Santner and 

Snell (1980), and Chan and Zhang (1999). This indirect construction may result in wider 

intervals. Wang (2010, 2012) proposed optimal intervals for the risk difference based on a 

direct analysis of coverage probability and an inductive order of the sample space. Shan and 

Wang (2013) developed an R-package, ExactCIdiff, to implement his intervals. This 

approach is now adapted to more complicated cases: the relative risk and the odds ratio. In 

Section 2 we describe preliminary results for the smallest one-sided interval construction. 

Section 3 discusses how to derive exact intervals for the relative risk and the odds ratio 

using a matched-pairs design and how to implement the computation. Section 4 deals with 

the case of a two-arm independent binomial experiment. The proposed intervals tend to be 

shorter than the ones from SAS (Version 9.3). Section 5 is a summary. The proofs and some 

figures are given in Supplementary Materials online.
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2. PRELIMINARY RESULTS

Following the work by Buehler (1957), Bol’shev (1965), Chen (1993), Lloyd and Kabaila 

(2003), and Wang (2010) the construction of an exact one-sided confidence interval 

becomes automatic provided that an order (or equivalently, a rank function on a finite 

sample space) is specified in advance. We describe this result here, as it will be applied four 

times in the paper. Suppose a random vector X is observed from a finite sample space S, i.e., 

. A rank function R(.), assuming positive integer values, is defined on S. The 

probability mass function of X is given by p(x; ξ), where ξ is the parameter vector belonging 

to a parameter space H, a subset of Rk. Suppose ξ = (θ, η) and

where θ is the parameter of interest and η is the nuisance parameter vector, [A, B] is a given 

interval in R1 (A and B may be ±∞, and the interval is open when the corresponding end is 

infinity) and D(θ) is a subset of Rk−1 depending on θ. We are interested in searching for the 

smallest exact lower one-sided confidence interval [LS(X), B] among all 1 − α intervals for θ 

with form [L(X), B] that satisfy

So a sample point x with a smaller rank has a larger confidence limit.

LEMMA 1: Assume α ∈ (0, 1). For a given rank function R(.) on S and any x ∈ S, consider

(1)

If fx(θ) is a continuous function in θ, define

(2)

then

i) [LS(X), B] is of level 1 − α and satisfies 1) and 2);

ii) for any 1 − α interval [L(X), B] satisfying 1) and 2), L(X) ≤ LS(X).

This lemma follows Theorem 4 in Wang (2010). Due to ii), [LS(X), B] is the smallest 

interval since it is a subset of any other interval. Then it is the best under the given rank 

function R(.). In order to derive the smallest exact interval for parameters including the 

relative risk and the odds ratio with A = 0 and B = +∞, we have to resolve the following two 

problems for implementation:

A) provide a reasonable rank function R(.) for each of four cases;
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B) find the infimum in Eq (1) over D(θ) and the smallest solution of Eq (1) 

efficiently.

For a sample space S with n sample points, there are about 2n possible rank functions on S. 

Some are clearly bad for interval construction. For example, the rank function Rc(.) that 

assumes a constant value over S (i.e., all sample points are tied) produces an interval with a 

constant confidence limit over S. Lemma 1 still shows that it is the smallest under Rc(.). 

However, such an interval is useless in practice, and can be uniformly improved by simply 

giving up those ties. Therefore, identifying a reasonable rank function is extremely 

important and also challenging, but Lemma 1 does not discuss it. One may use, for example, 

the maximum likelihood estimator for θ as the rank function. This, however, generates too 

many ties and results in a wide confidence interval. Wang (2010) proposed an inductive 

construction on rank function that yields an admissible interval. We apply this idea to two 

interesting parameters: the relative risk and the odds ratio.

Searching for the infimum of a given function is a classic, but difficult problem in numerical 

computation, especially for a multivariate function. A more challenging issue is that the 

infimum must be computed a large number of times. Programs exist for optimization, 

however, none is able to provide a solution precisely and quickly. Our study suggests that a 

two-stage grid search (explained later) for the infimum on D(θ) is an effective solution.

3. CASE I: A MATCHED-PAIRS DESIGN

In a 2 × 2 table with a matched-pairs design, suppose there are n independent and identical 

trials, and each trial is inspected by two criteria 1 and 2. By criterion i, each trial is classified 

as Si or Fi for i = 1, 2. The numbers of trials with outcomes (S1, S2), (S1, F2), (F1, S2) and 

(F1, F2) are the observations, and are denoted by N11, N12, N21 and N22, respectively. Thus 

Xp = (N11, N12, N21) follows a multinomial distribution with probabilities p11, p12, and p21, 

respectively, denoted by Multinomial(n, p11, p12, p21). Let p1* = P (S1) and p*1 = P(S2) be 

the two paired proportions. The involved items are displayed below.

S2 F2

S1 (S1, S2), N11, p11 (S1, F2), N12, p12 p1* = p11 + p12

F1 (F1, S2), N21, p21 (F1, F2), N22, p22

p*1 = p11 + p21 ∑i,j Nij = n,∑i,j pij = 1

The relative risk θpr and the odds ratio θpo are given by:

(3)

Here, the subscripts p, r and o stand for “paired proportions”, “relative risk” and “odds 

ratio”, respectively. Two one-sided 1 − α confidence intervals [L(Xp), +∞) and [0, U(Xp)] 

and a two-sided 1 − α confidence interval [L(Xp), U(Xp)] are to be constructed for θpr and 

θpo. To the best of our knowledge, no exact confidence intervals have been proposed for 
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these parameters. StatXact 10 (2013) claims to compute an interval for so called “the odds 

ratio” (see Equations 13.17 and 13.7 in the user manual). It is indeed θpr, but we find that 

their computed interval is for p12/p21 not θpr. SAS (Version 9.3) does not have any 

discussion on exact intervals for the parameters. The sample space and the parameter space 

are

(4)

with (n + 1)(n + 2)(n + 3)/6 sample points and

(5)

respectively. The random vector Xp has a joint probability mass function

(6)

with n22 = n−n11 −n12 −n21 and p22 = 1−(p1* + p*1−p11). We illustrate the setting below.

Example 1. Bentur et al. (2009, p.847) conducted a study on airway hyper-responsiveness 

(AHR) status before and after stem cell transplantation (SCT) on 21 patients. The AHR 

status for each patient is assessed by a methacholine challenge test (MCT) twice, before and 

after SCT. The data summary is given as follows.

Before SCT

AHR yes AHR no total

After SCT AHR yes 1(=n11), p11 7(=n12), p12 8, p1*

AHR no 1(=n21), p21 12(=n22), p22 13

total 2, p*1 19 21

For example, one (= n11) patient has AHR before and after SCT, and p11 is the probability 

that a patient has AHR before and after SCT. Exact confidence intervals for θpr and θpo will 

be derived to study the effect of SCT on AHR status especially in this small sample.

3.1 INTERVALS FOR θpr

Three intervals (lower one-sided, upper one-sided and two-sided) are to be constructed for 

θpr. The two-sided 1 − α interval can be obtained by using the intersection of the two one-

sided 1 − α/2 intervals. The next lemma discusses how to obtain an upper one-sided interval 

from a lower one-sided interval. Therefore, we focus on the construction of a lower one-

sided 1 − α interval. Let [a, b] = [a, +∞) if b = +∞.

LEMMA 2: Suppose [L(N11, N12, N21), +∞) is a lower one-sided 1− α confidence interval for 

θpr. Then
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(7)

is an upper one-sided 1 − α confidence interval for θpr. Furthermore, [L(N11, N12, N21), 

U(N11, N12, N21)] is a two-sided 1 − 2α interval for θpr.

The parameter space Hp can be expressed in terms of (θpr, p11, p21) with

(8)

as follows: Hpr = {(θpr, p11, p21) : (p11, p21) ∈ Dpr(θpr), ∀ θpr ∈ [0, +∞)}, where

(9)

The first line in (9) is a triangle with three vertices, (0, 0), (1/θpr, 0) and (0, 1/(θpr + 1)), in 

the p11-p21 plane, and the second is the intersection of two triangles, one just mentioned and 

the other with three vertices, (0, 0), (1, 0) and (0, 1). See both cases in Figure S1 in 

Supplementary Materials. The joint probability mass function pp is rewritten as

(10)

where pp and p12 are given in (6) and (8), respectively.

As in Lemma 1, the construction of a one-sided interval [L(Xp), +∞) depends on a rank 

function Rpr(.) on Sp. Point xp is large if Rpr(xp) is small. Here are three natural rules on Rpr.

a) Rpr(0, n, 0) = 1. i.e., point (0, n, 0) is the largest.

b) Rpr(n11, n12, n21) ≤ Rpr(n11, n12 − 1, n21) for any n12 ∈ [1, n − n11 − n21].

c) Rpr(n11, n12, n21 − 1) ≤ Rpr(n11, n12, n21) for any n21 ∈ [1, n − n11 − n12].

Rule a) follows the intuition that (0, n, 0) provides the largest estimate for θpr. Rules b) and 

c) follow the monotonicity of function θpr = (p11 + p12)/(p11 + p21). One would expect a 

similar rule for the case that n12 and n21 are fixed and n11 varies. Both the numerator and the 

denominator of θpr include p11, so it is not appropriate to propose a simple rule for n11.

The rank function Rpr(.) is determined by combining Rules a), b), c) and numerical 

evaluation sequentially on all sample points. Again, Rpr(0, n, 0) = 1. We next describe how 

to assign a value for the rank function from small to large (i.e., determine sample points 

from large to small). Suppose that Rpr(.) has been assigned values to sets Epr,1 through Epr,k 

with values 1 through k (e.g., Epr,1 = {(0, n, 0)}) for some k ≥ 1. i.e., set Epr,i contains the ith 

largest point(s) for i ≤ k. Let . Now we identify a nonempty set Epr,k+1 in Sp 

that contains the (k + 1)th largest point(s). If such a set is found, then by induction, the 

function Rpr(.) is defined on Sp because Spr,k is strictly increasing and Sp is finite.
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For each point xp = (n11, n12, n21), we introduce five points: A = (n11 + 1, n12, n21), B = (n11, 

n12 − 1, n21), C = (n11, n12, n21 + 1), D = (n11 − 1, n12, n21), E = (n11 + 1, n12 − 1, n21), that 

are next to but less than xp. Let Nxp be the neighbor set that consists up to four points:

(11)

See Nxp in Figure S2 in Supplementary Materials for xp = (3, 3, 2).

The neighbor set for Spr,k, denoted by Npr,k, consists of points in Nxp for any xp ∈ Spr,k but 

not in Spr,k. i.e.,

(12)

However, some points in Npr,k are impossible to be the (k + 1)th largest due to Rules b) and 

c). To eliminate them from the selection, consider a subset of Npr,k, called the candidate set 

Cpr,k, given by

(13)

Set Epr,k+1 is to be selected from Cpr,k, not Npr,k. For each , 

consider an equation similar to (1)

(14)

where ppr is given in (10). Let  be the smallest solution to the above equation if a 

solution exists, and let  be 0 otherwise. Then define

(15)

(16)

Eq (15) assures that the rank function Rpr(.) yields the smallest (best) interval (with the 

largest lower confidence limit) in each step. Since Epr,k+1 is not empty, and Sp is finite, there 

always exists a positive integer kpr such that Spr,kpr = Sp. Thus, the rank function Rpr(.) is 

defined on the entire Sp, and the construction for Rpr(.) is complete. Then the smallest lower 

one-sided 1 − α confidence interval [Lpr, +∞) for θpr, under the rank function Rpr(.), is 

derived following Lemma 1, the smallest upper one-sided 1 − α interval [0, Upr] follows 

Lemma 2, and [Lpr, Upr] is a two-sided 1 − 2α interval. If we use an existing function, e.g., 

the maximum likelihood estimator of θpr, to define an order, then many sample points, for 

example, the points (n11, n12, n21) with n11 + n12 = n11 + n21, are tied since they have the 

same estimate, 1, for θpr. So, the corresponding confidence limits are equal to each other at 
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these sample points following Lemma 1. In particular, the confidence limits at points (n11, 

n12, n21) = (i, 0, 0), for i = 1, …, n, remain unchanged, indicating that the order by the 

maximum likelihood estimator is unreasonable.

Three facts are worth mentioning for the computation in (14) and (15). i) Find Epr,k+1 from 

Cpr,k in (13) instead of Npr,k in (12). ii) Using a two-stage grid search for the infimum in 

(14). i.e., for each Dpr(θpr) a partition is given first. We pick a point (θpr, p11, p12) in each 

set of the partition and identify the point that yields the minimum value of the function in 

(14). Then on the set of the partition that contains this point, we have another finer partition 

and search for the minimum again. iii) Suppose two points xp1 and xp2 belong to Cpr,k and 

we already compute L* (xp1). If we find fxp2(L* (xp1)) < 1 − α, then xp2 does not belong to 

Epr,k+1 and the computation of L*(xp2) is not needed. These three facts make the 

computation more efficient, and are also used for the other three cases in this paper. Next, 

we provide a closed form for Lpr(0, n, 0), which is useful for checking the precision of the 

numerical calculation.

LEMMA 3: For any rank function R(.) with R(0, n, 0) = 1, let [L(N11, N12, N21), +∞) be the 

smallest one-sided 1 − α interval for θpr under R. Then

(17)

Example 2. For illustration purpose, we show the construction of the largest four Lpr(xp)’s 

on four sample points with ranks 1 through 4, when 1 − α = 0.95 and n = 3.

Due to a) Rpr(0, 3, 0) = 1. So Lpr(0, 3, 0) = 0.5832 following (17), or one can obtain the 

same result by solving a special case of (1):

To find the sample point with rank 2, we have

following (11), (12) and (13). Then solve (14) twice by using x′ = (0, 2, 0) and x′ = (1, 2, 0), 

respectively, with Spr,1 = {(0, 3, 0)}, and obtain L*(0, 2, 0) = 0.4320 and L*(1, 2, 0) = 

0.5504. Since L*(1, 2, 0) is larger than L*(0, 2, 0), set Epr,1 = {(1, 2, 0)} and the rank 

function Rpr(1, 2, 0) = 2.

To find the sample points with ranks 3 and 4, repeat a similar step to the above paragraph. 

Then Rpr(1, 1, 0) = 3 and Rpr(2, 1, 0) = 4. The details are given in Table 1. Note that Cpr,3 is 

a proper subset of Npr,3 and set Epr,3 is found within Cpr,3 instead of Epr,3. This would save 

a lot of computing time especially when n is large.
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The lower confidence limits on these four points, (0,3,0), (1,2,0), (1,1,0) and (2,1,0), are also 

given in Table 1 following Lemma 1 with the rank function Rpr(.) at the four points. For 

example, Lpr(1, 1, 0) = 0.5151 is the smallest solution of the following function of θpr, 

which is also a special case of (1).

Example 1 (continued). Confidence intervals for θpr are reported in Table 2. For example, 

the 95% intervals [Lpr, +∞), [0, Upr] and the 90% interval [Lpr, Upr] for θpr are equal to 

[1.2906, +∞), [0, 15.9291] and [1.2906, 15.9291], respectively. It is clear that SCT 

increases the chance of having AHR because the lower-sided and two-sided intervals are 

inside (1, +∞). We obtain Lpr(1, 7, 1) = 1.2906 and Lpr(1, 1, 7) following Lemma 1 under 

the rank function Rpr(.), then Upr(1, 7, 1) = 1/Lpr(1, 1, 7) = 15.9291 by Lemma 2. The 

computation takes time as the infimum in (14) is found over a two-dimensional region 

Dpr(θpr) many times.

3.2 INTERVALS FOR θpo

Similar to Lemma 2, we provide a one-to-one relationship between lower and upper 

confidence intervals for θpo. Therefore, we only derive a lower confidence interval as upper 

one-sided and two-sided intervals follow Lemma 4.

LEMMA 4: Suppose [L(N11, N12, N21), +∞) is a lower one-sided 1 − α confidence interval for 

θpo. Then

(18)

is an upper one-sided 1 − α confidence interval for θpo. Furthermore, [L(N11, N12, N21), 

U(N11, N12, N21)] is a two-sided 1 − 2α interval for θpo.

The parameter space Hp is expressed in terms of (θpo, p11, p21) with

(19)

as follows: Hpo = {(θpo, p11, p21) : (p11, p21) ∈ Dpo(θpo), ∀ θpo ∈ [0, +∞)}, where

which is a right curved triangle. See Figure S3 in Supplementary Materials for this set with 

different values of θpo. The joint probability mass function pp in (6) is rewritten as ppo(n11, 

n12, n21; θpo, p11, p21) = pp(n11, n12, n21; p11, p12, p21), where p12 is in (19).

The construction of an interval [L(Xp), +∞) depends on a rank function Rpo(.) on Sp. Since 

θpo and θpr have the same monotonicity in p11, p12 and p21, Rules a), b) and c) for Rpr(.) in 

Section 3.1 are also valid for Rpo(.). However, we add one more rule for Rpo(.): d) Rpo(n11, 
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n12, n21) = Rpo(n22, n12, n21), which follows that θpo is invariant if p11 and p22 are 

exchanged. This rule in fact makes the sample space simpler. For a point xp = (n11, n12, n21) 

let  be a set in Sp:

(20)

By Rule d), the rank function Rpo(.) assumes a constant value on set . Thus Rpo(.) 

generates ties, and the confidence interval assumes a constant value on  that coincides 

with the nature of θpo. When computing probability, each  is one sample point in a new 

sample space

(21)

and the associated probability mass function is

(22)

Each (n11, n12, n21) that satisfies (21) is called the representation of . In this section, 

can be the representation or the set in (20). The advantage of  in (21) over Sp in (4) is that 

the former contains fewer elements. For example, when n = 3, there are twenty points in Sp 

but only thirteen points in . Each set  and its representation are listed below:

x
‒

p in terms of (20) the representation of x
‒

p x
‒

p in terms of (20) the representation of x
‒

p

{(0,0,0), (3,0,0)} (0,0,0) {(0,0,1), (2,0,1)} (0,0,1)

{(0,0,2), (1,0,2)} (0,0,2) {(0,0,3)} (0,0,3)

{(0,1,0),(2,1,0)} (0,1,0) {(0,1,1),(1,1,1)} (0,1,1)

{(0,1,2)} (0,1,2) {(0,2,0),(1,2,0)} (0,2,0)

{(0,2,1)} (0,2,1) {(0,3,0)} (0,3,0)

{(1,0,0),(2,0,0)} (1,0,0) {(1,0,1)} (1,0,1)

{(1,1,0)} (1,1,0)

In the list above, for example, Rpo(0, 3, 0) = 1 and Rpo(0, 0, 0) = Rpo(3, 0, 0).

The construction of the rank function Rpo(.) is the same as Rpr(.) except that xp and Sp in (4) 

and ppr in (10) are replaced by  in (20),  in (21) and  in (22), respectively. In 

particular, we need to follow (12) through (16) to build up Rpo(.). Once Rpo(.) is defined on 

, the smallest lower one-sided 1 − α confidence interval [Lpo, +∞) for θpo under Rpo(.) is 

derived following Lemma 1, the smallest upper one-sided 1 − α confidence interval [0, Upo] 

follows Lemma 4, and [Lpo, Upo] is a 1 − 2α interval.
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Example 1 (continued). The three intervals above are also reported in Table 2. SCT does 

increase the odds of having AHR because the lower one-sided and the two-sided confidence 

intervals are inside (1, +∞). Again, we compute the lower one-sided interval first, then the 

upper one-sided and two-sided intervals follow Lemma 4.

As a closing remark for this section, the associate editor pointed out that the interval 

construction just developed can also be applied to the multinomial sampling in a 2 × 2 table 

to infer another odds ratio

see Agresti (2002, p. 44). However, the technical details are quite different due to the 

structure of this odds ratio (OR), and will not be discussed in this paper.

4. CASE II: A TWO-ARM INDEPENDENT BINOMIAL EXPERIMENT

We also have a 2 × 2 table, but each row contains a binomial experiment as follows:

S F

experiment 1 S1, X, p1 F1, n1 − X, 1 − p1 n1

experiment 2 S2, Y, p2 F2, n2 − Y, 1 − p2 n2

where X ~ Bin(n1, p1) is a binomial observation with n1 trials and a success probability p1 

and Y ~ Bin(n2, p2) is independent of X. The relative risk θir and the odds ratio θio,

(23)

are of interest. The subscript i stands for “independent proportions”. Compared with Xp = 

(N11, N12, N21) that has three parameters p11, p12 and p21 in Section 3, we now observe a 

simpler random vector Xi = (X, Y) with two parameters p1 and p2. In consequence, the 

interval construction is easier. The sample space and the parameter space are given below:

(24)

and

(25)

The joint probability mass function is

(26)
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Example 3. Consider a study in Essenberg (1952), where a two-arm randomized clinical 

trial was conducted for testing the effect of tobacco smoking on tumor development in mice. 

In the treatment (smoking) group, there were 23(= n1) mice, and tumors were observed on 

21(= x) mice; in the control group, n2 = 32 and y = 19. Let p1 and p2 be the tumor rates for 

the treatment and control groups, respectively. A comparison between p1 and p2 using θir 
and θio will be discussed for the smoking effect on tumor development.

4.1 INTERVALS FOR θir

Similar to Lemmas 2 and 4, there exists a one-to-one relationship between lower and upper 

one-sided intervals.

LEMMA 5: Suppose [Ln2,n1(Y, X), +∞) is a lower one-sided 1 − α confidence interval for 1/θir 
= p2/p1. Then

(27)

is an upper one-sided 1 − α interval for θir. Suppose [Ln1,n2(X, Y ), +∞) is a lower one-sided 

1 − α interval for θir, then [Ln1,n2(X, Y), U(X, Y)] is a two-sided 1 − 2α interval for θir.

Following Lemma 5, only the construction of Ln1,n2(X, Y) for all possible n1 and n2 is 

needed. We drop the subscript and use L(X, Y) for future discussion. The interval 

construction depends on a rank function Rir(.) on Si. Here Rir(.) should satisfy several rules 

that are from the monotonicity of θir = p1/p2 as a function of p1 and p2.

a) Rir(n1, 0) = 1. i.e., point (n1, 0) is the largest.

b) Rir(x, y) ≤ Rir(x − 1, y) for any x ∈ [1, n1] and y ∈ [0, n2].

c) Rir(x, y − 1) ≤ Rir(x, y) for any x ∈ [0, n1] and y ∈ [1, n2].

These rules are shown in

where “←” means “larger than or equal to”.

The parameter space Hi is rewritten in terms of (θir, p2) with p1 = θirp2 as follows:

where Dir(θir) is a line segment. See Figure S4 in Supplementary Materials. The joint 

probability mass function pi for (X, Y) is rewritten as pir(x, y; θir, p2) = pi(x, y; θirp2, p2), 

where pi is given in (26). The construction for the rank function Rir(.) is similar to Wang 

Wang and Shan Page 12

Biometrics. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2010). By induction, we start with Rir(n1, 0) = 1. Let Epr,1 = {(n1, 0)}. Suppose Rir has been 

defined on k(≥ 1) sets Eir,1, , , Eir,k with values 1, 2, …, k. Let

be the neighbor set of . Then, from

a subset of Nir,k, we pick the point(s) (x, y) that has the largest possible lower confidence 

limit to form a set Eir,k+1 and assign a rank of Rir(x, y) = k + 1 to any point (x, y) ∈ Eir,k+1. 

This is similar to (15) and (16). Following induction, the construction of the rank function 

Rir(.) is complete. Then the smallest lower one-sided 1 − α confidence interval [Lir, +∞) 

under the rank function Rir(.) is derived following Lemma 1, the smallest upper one-sided 1 

− α confidence interval [0, Uir] follows Lemma 5, and [Lir, Uir] is a 1 − 2α interval.

Example 3 (continued). We apply the three intervals above to Example 3 and then compare 

to exact intervals from SAS (Version 9.3). The intervals are reported in Table 3. For 

example, the 95% intervals [Lir, +∞), [0, Uir] and the 90% interval [Lir, Uir] for θir are 

equal to [1.1671, +∞), [0, 2.0859] and [1.1671, 2.0859], respectively. The lower one-sided 

and two-sided intervals are subsets of (1, +∞), so the smoking group has a higher tumor rate 

than the control group. Regarding interval construction, we first compute Lir = 1.1671 with 

n1 = 23, n2 = 32, x = 21 and y = 19 (using the rank function Rir(.) and Lemma 1), then 

compute Lir = 0.4794 using n1 = 32, n2 = 23, x = 19 and y = 21, and then Uir = 1/0.4794 = 

2.0859 (use Lemma 5). The calculation takes about 4 minutes on an HP-2760 laptop with 

Intel(R) Core(TM) i5=2520M CPU@2.50 GHz and 8 GB RAM using an R-code from the 

authors. SAS (Version 9.3) provides two exact intervals for θir using “proc freq; exact 

relrisk;”. The first interval (default in SAS, Santner and Snell, 1980) is computed by 

inverting two separate one-sided exact tests that use the unstandardized relative risk as the 

test statistic; it is clearly too wide. The second interval (method=fmscore) also inverts tests, 

but uses the Farrington-Manning relative risk score statistic (Chan and Zhang, 1999), which 

is a less discrete statistic than the raw relative risk, and produces much sharper confidence 

limits (Agresti and Min, 2001) than the default. However, our two-sided intervals are 

shorter. See Section 4.3 for another comparison.

4.2 INTERVALS FOR θio

The construction of intervals [Lio, +∞), [0, Uio] and [Lio, Uio] for θio is similar to that for θir 
since the monotonicity of θio as a function of p1 and p2 is the same for θir.

First, we have the following and skip the proof.

LEMMA 6: Suppose [Ln2,n1(Y, X), +∞) is a lower one-sided 1 − α confidence interval for 1/θio 
= p2(1 − p1)/[p1(1 − p2)]. Then
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(28)

is an upper one-sided 1 − α interval for θio. Suppose [Ln1,n2(X, Y), +∞) is a lower one-sided 

1 − α interval for θio, then [Ln1,n2(X, Y), U(X, Y)] is a two-sided 1 − 2α interval for θio.

Secondly, the rank function Rio(X, Y) needed for the construction of L(X, Y) satisfies the 

same three rules for Rir(X, Y). However, there is a new computing issue. The parameter 

space Hi is rewritten in terms of (θio, p2) with

(29)

as follows: , where Dio(θio) 

is an interval independent of θio. See Figure 1.

The joint probability mass function pi for (X, Y) is rewritten as pio(x, y; θio, p2) = pi(x, y; p1, 

p2), where pi and p1 are given in (26) and (29), respectively. We need to compute 

probabilities on the curve of a fixed value for θio to find the infimum in (1) by a grid search 

on the curve. However, as shown in the circle curve of θio = 20 (Figure 1) that is obtained by 

partitioning [0, 1] with equal spacing in p2, the partitioned points are clearly not evenly 

distributed on the curve. This is very different from Figure S4 (in Supplementary Materials), 

where the circle points are evenly distributed on the line of θir = constant. Had we used the 

circle points in Figure 1 for a grid search for the infimum in (1), it would have led to an 

inaccurate numerical solution. So we introduce a new parameter u so that both p1 and p2 are 

functions of u ∈ [0, 2] at each fixed value of θio:

(30)

where

This makes the selected points on the curve much more evenly distributed, as shown in the 

circle-line curve of θio = 10. More importantly, these points are symmetric about the line 

p1+p2 = 1, which does not occur for the circle points. In fact, point (p2, p1) is the intersection 

of the curve with a fixed value θio and the line p1 + p2 = u for any u ∈ [0, 2]. Therefore, we 

partition u on interval [0, 2] with an equal spacing instead of p2 on interval [0, 1]. This 

change is clearly justified by a comparison of the two spacings in Figure 1 (θio = 10 vs θio = 

20).
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Lastly, we use the rank function Rio(.) to derive the smallest 1 − α interval [Lio, +∞) 

following Lemma 1, and obtain [0, Uio] of level 1 − α and [Lio, Uio] of level 1 − 2α by 

Lemma 6.

Example 3 (continued). Three proposed exact intervals and their correspondents from SAS 

based on Thomas (1971) (see also Gart, 1971) are reported in Table 3. Lower one-sided and 

two-sided intervals are inside (1, +∞) indicating that the odds of developing a tumor for the 

smoking group was higher than the control group. The proposed intervals are much smaller 

subsets of those from SAS. An R code for the proposed intervals is available. Exact intervals 

for p1 − p2 in Wang (2010) are also included in Table 3.

4.3 A SMALL COMPARISON

The comparison between exact and approximate intervals is not valid since they do not have 

the same confidence level 1 − α, even though the approximate interval claims to be of level 

1 − α. Here we present a limited comparison between the proposed exact 90% confidence 

intervals [Lij, Uij] for j = r and j = o in Case II and the corresponding exact 90% intervals 

from SAS using “proc freq; exact relrisk(method=fmscore); exact or;”, denoted by 

. When n1 = n2 = 10, there are 121 intervals on all sample points. We only 

compare the interval lengths that are finite, and they are given in Figure 2. Each point in the 

plot has coordinate ( , Uij − Lij) at a sample point (x, y) ∈ Si. Most points are in 

the lower triangle; also the average of the length ratio, , over 

these sample points is equal to 0.9490992 and 0.723343, respectively, for j = r and j = o. 

Both indicate a shorter length for the proposed intervals. Figure 3 gives the coverage 

probability comparison of these intervals. The left one in Figure 3, for example, is the plot of 

the infimum coverage probabilities of two intervals, [Lir, Uir] and , over set 

Dir(θir) versus θir. The coverage probability of proposed intervals is closer to the nominal 

level than that from SAS. A similar result is expected for other sample sizes.

5. SUMMARY

The relative risk and the odds ratio are commonly used in medical research to compare two 

treatments. Estimating them both with accuracy and precision is important for practitioners. 

In this paper, we propose twelve intervals in four sets, each set contains two one-sided 

intervals and one two-sided interval for each of four parameters θpr, θpo, θir, and θio. They 

are all of level 1 − α. The one-sided intervals are smallest under the rank functions, and are 

also admissible by the set inclusion criterion (see Wang, 2006). This indicates that a uniform 

improvement is impossible. An inductive construction is employed and in each step of the 

process, the shortest (best) interval is picked as shown, for example, in Eq (15). This, similar 

to Wang (2010, Proposition 3), indeed justifies the admissibility of the one-sided intervals. 

The computation time on intervals is affected by the number of nuisance parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Wang and Shan Page 15

Biometrics. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

The authors thank Dr. Yi-Hau Chen, an associate editor, and two referees for their valuable comments and 
suggestions that improved the manuscript significantly. Shan’s research is partially supported by NIH Grant 
5U54GM104944.

References

Agresti, A. Categorical Data Analysis. 2nd ed. John Wiley & Sons, Inc; New York: 2002. 

Agresti A, Coull BA. Approximate is better than “exact” for interval estimation of binomial 

proportions. The American Statistician. 1998; 52:119–126.

Agresti A, Min Y. On small-sample confidence intervals for parameters in discrete distributions. 

Biometrics. 2001; 57:963–971. [PubMed: 11550951] 

Bentur L, Lapidot M, Livnat G, Hakim F, Lidroneta-Katz C, Porat I, Vilozni D, Elhasid R. Airway 

reactivity in children before and after stem cell transplantation. Pediatric Pulmonology. 2009; 

44:845–850. [PubMed: 19670401] 

Bol’shev LN. On the construction of confidence limits. Theory of Probability and its Applications. 

1965; 10:173–177. (English translation). 

Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statistical Sciences. 

2001; 16:101–133.

Buehler RJ. Confidence intervals for the product of two binomial parameters. Journal of the American 

Statistical Association. 1957; 52:482–493.

Chan ISF, Zhang Z. Test-based exact confidence intervals for the difference of two binomial 

proportions. Biometrics. 1999; 55:1202–1209. [PubMed: 11315068] 

Casella, G.; Berger, RL. Statistical Inference. Duxbury Press; Belmont, CA: 1990. 

Chen J. The order relations in the sample spaces and the confidence limits for parameters. Advances in 

Mathematics. 1993; 22:542–552.

Essenberg JM. Cigarette smoke and the incidence of primary neoplasm of the lung in albino mice. 

Science. 1952; 116:561–562. [PubMed: 13015110] 

Gart JJ. The comparison of proportions: a review of significance tests, confidence intervals, and 

adjustments for stratification. Review of the International Statistical Institute. 1971; 39(2):148–

169.

Goodman LA. The Analysis of Cross-Classified Data Having Ordered and/or Unordered Categories: 

Association Models, Correlation Models, and Asymmetry Models for Contingency Tables With or 

Without Missing Entries. The Annals of Statistics. 1985; 13:10–69.

Huwang L. A note on the accuracy of an approximate interval for the binomial parameter. Statistics & 

Probability Letters. 1995; 24:177–180.

Li Z, Taylor JMG, Nan B. Construction of confidence intervals and regions for ordered binomial 

probabilities. The American Statistician. 2010; 64:291–298.

Lin Y, Newcombe RG, Lipsitz S, Carter RE. Fully specified bootstrap confidence intervals for the 

difference of two independent binomial proportions based on the median unbiased estimator. 

Statistics in Medicine. 2009; 28:2876–2890. [PubMed: 19691015] 

Lloyd CJ, Kabaila P. On the optimality and limitations of Buehler bounds. Australian and New 

Zealand Journal of Statistics. 2003; 45:167–174.

McCullagh P. Regression Models for Ordinal Data. Journal of the Royal Statistical Society. Series B. 

1980; 42:109–142.

Parzen M, Lipsitz S, Ibrahim J, Klar N. An estimate of the odds ratio that always exists. Journal of 

Computational and Graphical Statistics. 2002; 11:420–436.

Santner TJ, Snell MK. Small-sample confidence intervals for p1−p2 and p1/p2 in contingency tables. 

Journal of the American Statistical Association. 1980; 75:386–394.

Shan G, Wang W. ExactCIdiff: an R package for computing exact confidence intervals for the 

difference of two proportions. The R Journal. 2013; 5(2):62–70.

Wang and Shan Page 16

Biometrics. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



StatXact 10th release of the most popular exact statistics analysis software. Cytel Inc. 675 

Massachusetts Avenue; Cambridge, MA: 2013. p. 02139

Thomas DG. Algorithm AS-36: exact confidence limits for the odds ratio in a 2 × 2 table. Applied 

Statistics. 1971; 20:105–110.

Wang W. Smallest confidence intervals for one binomial proportion. Journal of Statistical Planning 

and Inference. 2006; 136:4293–4306.

Wang W. On construction of the smallest one-sided confidence interval for the difference of two 

proportions. The Annals of Statistics. 2010; 38:1227–1243.

Wang W. An inductive order construction for the difference of two dependent proportions. Statistics & 

Probability Letters. 2012; 82:1623–1628.

Wang W. A note on bootstrap confidence intervals for proportions. Statistics & Probability Letters. 

2013; 83:2699–2702.

Wang W, Zhang Z. Asymptotic infimum coverage probability for interval estimation of proportions. 

Metrika. 2014; 77:635–646.

Wilson EB. Probable inference, the law of succession, and statistical inference. Journal of the 

American Statistical Association. 1927; 22:209–212.

Wang and Shan Page 17

Biometrics. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 

The parameter space Hio (the unit square), the sets of θio = 0.05 (the solid curve), θio = 20 

with the equal p2-spacing (the circle curve), θio = 10 with the equal u-spacing (the circle-line 

curve), two lines p1 + p2 = u for u = 0.5 (the dashed line, short) and u = 1 (the dashed line, 

long). Note θio ∈ [0, +∞), p2 ∈ [0, 1] and u ∈ [0, 2].
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Figure 2. 

The length comparison for the proposed two-sided 90% intervals and the 90% intervals from 

SAS in Case II when n1 = n2 = 10. The horizontal axis is the length of the SAS interval and 

the vertical axis is for the proposed interval. Each circle is the length of two intervals at a 

sample point.
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Figure 3. 

The coverage comparison for the proposed two-sided 90% intervals and the 90% intervals 

from SAS in Case II when n1 = n2 = 10.
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Table 1

The details of the construction of Lpr at the four largest sample points in Example 2.

k Epr,k Npr,k Cpr,k L ∗(x
¯

p
′ ) max{L ∗(x

¯
p
′ )} xp Rpr(xp) Lpr(xp)

(0,3,0) 1 0.5832

1 (0,3,0) (0,2,0) (0,2,0) 0.4320

(1,2,0) (1,2,0) 0.5504 0.5504 (1,2,0) 2 0.5504

2 (1,2,0) (0,2,0) (0,2,0) 0.4320

(1,1,0) (1,1,0) 0.5151 0.5151 (1,1,0) 3 0.5151

(2,1,0) (2,1,0) 0.4750

3 (1,1,0) (0,2,0) (0,2,0) 0.4104

(1,0,0) (1,0,0) 0.1127

(1,1,1) (1,1,1) 0.2169

(0,1,0) (2,1,0) 0.4521 0.4521 (2,1,0) 4 0.4521

(2,1,0)

(2,0,0)
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Table 2

Exact one-sided and two-sided intervals for θpr and θpo in Example 1 when n11 = 1, n12 = 7, n21 = 1, n22 = 12.

Two-sided 90% Two-sided 95%

Lower 95% Upper 95% Lower 97.5% Upper 97.5%

θ pr 1.2906 15.9291 1.0448 23.0365

θ po 1.4149 26.9615 1.1956 37.4813
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Table 3

Exact one-sided and two-sided intervals for θir, θio and p1 − p2 in Example 3 when n1 = 23, x = 21, n2 = 32, y = 

19.

Two-sided 90% Two-sided 95%

Lower 95% Upper 95% Lower 97.5% Upper 97.5%

θ ir Our method 1.1671 2.0859 1.1259 2.2289

SAS(default) 0.1919 123356 0.0960 152092

SAS(fmscore) 1.1755 2.1519 1.1204 2.2301

θ io Our method 1.9534 33.0987 1.5832 48.5190

SAS 1.6022 48.2034 1.3114 71.3653

p1 − p2 Wang (2010) 0.1330 0.4860 0.0947 0.5126
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