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EXACT CONTROLLABILITY AND STABILIZABILITY

OF THE KORTEWEG-DE VRIES EQUATION

DAVID L. RUSSELL AND BING-YU ZHANG

Abstract. In this paper, we consider distributed control of the system de-
scribed by the Korteweg-de Vries equation

∂tu+ u∂xu+ ∂3
xu = f(i)

on the interval 0 ≤ x ≤ 2π, t ≥ 0, with periodic boundary conditions

∂kxu(2π, t) = ∂kxu(0, t), k = 0, 1, 2,(ii)

where the distributed control f ≡ f(x, t) is restricted so that the “volume”∫ 2π
0 u(x, t)dx of the solution is conserved. Both exact controllability and sta-

bilizibility questions are studied for the system.
In the case of open loop control, if the control f is allowed to act on the

whole spatial domain (0, 2π), it is shown that the system is globally exactly
controllable, i.e., for given T > 0 and functions φ(x), ψ(x) with the same
“volume”, one can alway find a control f so that the system (i)–(ii) has a
solution u(x, t) satisfying

u(x, 0) = φ(x), u(x, T ) = ψ(x).

If the control f is allowed to act on only a small subset of the domain (0, 2π),
then the same result still holds if the initial and terminal states, ψ and φ, have

small “amplitude” in a certain sense.
In the case of closed loop control, the distributed control f is assumed to

be generated by a linear feedback law conserving the “volume” while mono-

tonically reducing
∫ 2π
0 u(x, t)2dx. The solutions of the resulting closed loop

system are shown to have uniform exponential decay to a constant state. As
in the open loop control case, a small amplitude assumption is needed if the
control is allowed to act on only a small subdomain.

The smoothing property of the periodic (linear) KdV equation discovered
recently by Bourgain has played an important role in establishing the exact
controllability and stabilizability results presented in this paper.

1. Introduction

In the present work we consider distributed control of a class of equations which
may be described as being of Korteweg-de Vries (KdV) type. These have the general
form

∂tu+ αu∂xu+ ∂3
xu = f(1.1)
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3644 DAVID L. RUSSELL AND BING-YU ZHANG

with α a real number. For α = 0 this is the third order linear dispersion equation
studied by the authors in [15]. All cases α 6= 0 are essentially equivalent, as we see
in [9], and therefore we here assume, for simplicity, that α = 1.

The distributed control case consists in a study of the equation (1.1) in which
f ≡ f(x, t), with possible restrictions on the form of that function which we will
indicate as we proceed, appears as the control function by which solutions are to be
influenced. We study this system on the interval 0 ≤ x ≤ 2π, t ≥ 0, with periodic
boundary conditions

∂kxu(2π, t) = ∂kxu(0, t), k = 0, 1, 2,(1.2)

so that x = 2π is effectively identified with x = 0, yielding a spatial domain
equivalent to a circle.

To explain the control problem to be studied, a certain amount of background is
required. For appropriately smooth solutions of the unforced equation (f(x, t) ≡ 0)
on the indicated domain with periodic boundary conditions (1.2), and extensions of
those boundary conditions as required to express further smoothness, it is known
[9], [10] that there is an infinite set of conserved integral quantities of which only
the first three are of interest to us here:∫ 2π

0

u(x, t)dx,(1.3)

∫ 2π

0

u(x, t)2dx,(1.4)

∫ 2π

0

(∂xu(x, t))2 − 1

3
u(x, t)3dx.(1.5)

From the historical origins [9], [12] of the KdV equation, involving the behavior
of water waves in a shallow channel, it is natural to think of (1.3) as expressing
conservation of volume or mass. That context suggests that the control problem
might also be appropriately studied in a volume conserving context. For solutions
of (1.1) continuously differentiable with respect to t and three times continuously
differentiable with respect to x we have

∂t

∫ 2π

0

u(x, t)dx =

∫ 2π

0

(
−u(x, t)∂xu(x, t)− ∂3

xu(x, t) + f(x, t)
)
dx

=

∫ 2π

0

{
∂x

(
−1

2
u(x, t)2 − ∂2

xu(x, t)

)
+ f(x, t)

}
dx

=

∫ 2π

0

f(x, t)dx,

from which we conclude that volume is conserved in the control system (1.1) just
in case, as we assume henceforth,∫ 2π

0

f(x, t) dx ≡ 0.(1.6)

A more interesting case is obtained if some further a priori restrictions are
imposed on the applied control f(x, t). Let us suppose that g(x) is a smooth
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EXACT CONTROLLABILITY AND STABILIZABILITY OF THE KdV EQUATION 3645

function defined for x ∈ [0, 2π] such that

2π[g] =

∫ 2π

0

g(x) dx = 1,(1.7)

where [g] denotes the mean value of the function g over the interval (0, 2π). We
further restrict attention to controls of the form

f(x, t) = Gh := g(x)

(
h(x, t)−

∫ 2π

0

g(y)h(y, t)dy

)
;(1.8)

thus h = h(x, t) may be considered as the new control function. It is easily seen
that ∫ 2π

0

f(x, t)dx ≡ 0

for f of the form (1.8); therefore the restriction (1.6) is satisfied for all controls of
the form (1.8).

Depending on the support of the function g(x) in the domain [0, 2π], there are
two different control situations. If the support of the function g is the whole interval
[0, 2π], then our control acts on the whole domain and we refer to it as global control.
If the support of the function g is a proper subset of the interval [0, 2π], our control
acts only on a subdomain and we refer to it as local control. Obviously we have
more control power in the global control situation than in the local control case. On
the other hand, the local control situation includes more cases of practical interest
and is therefore more relevant in general.

Our main concerns in this paper are exact controllability and stabilizability of the
system (1.1), (1.2), (1.8).

In order to describe our main results precisely, we introduce some preliminary
material at this point.

Let

φk(x) =
1√
2π
eikx, k = 0,±1,±2, ....

Then {φk}∞k=−∞ forms an orthonormal basis in the space L2(0, 2π). We may define
the Sobolev space Hs

p(0, 2π) of order s (s ≥ 0) as the space of all real 2π-periodic
functions

v(x) =
+∞∑

k=−∞
vkφk(x)

such that {
+∞∑
k=−∞

|vk|2(1 + |k|)2s

}1/2

< +∞.(1.9)

The left hand side of (1.9) is a Hilbert norm for Hs
p(0, 2π); we denote it by ‖v‖s.

We now describe the main results of this paper.
For the control system just introduced the exact control problem consists in

using the indicated control function to transfer the system, during [0, T ], between
a given initial state u(x, 0) = u0(x) and a given terminal state u(x, T ) = u1(x), in
an appropriate function space of system states, necessarily, in view of the volume
conserving control actions under consideration, such that∫ 2π

0

u0(x)dx =

∫ 2π

0

u1(x)dx.(1.10)
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3646 DAVID L. RUSSELL AND BING-YU ZHANG

In the global control case, the control h acts on the whole domain [0, 2π] and we
have the following strong controllability result.

Theorem 1.1. Let T > 0 and s ≥ 1 be given and assume that the function g in
(1.8) satisfies

|g(x)| > β > 0, ∀x ∈ [0, 2π].(1.11)

Then for any u0, u1 ∈ Hs
p(0, 2π) with [u0] = [u1], there exists a control function

h ∈ L2([0, T ];Hs−1
p (0, 2π)) such that the equation

∂tu+ u∂xu+ ∂3
xu = Gh(1.12)

has a solution u ∈ C([0, T ];Hs
p(0, 2π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x).

In other words we have “global” exact controllability in the global control case.

In the local control case, the support of the function g may be a very small part
of the domain [0, 2π]; thus our control power is quite limited. In this situation, we
have the following “local” exact controllability result.

Theorem 1.2. Let T > 0 and s ≥ 0 be given. Then there exists a δ > 0 such that
for any u0, u1 ∈ Hs

p(0, 2π) with [u0] = [u1] and

‖u0‖s ≤ δ, ‖u1‖s ≤ δ,
one can find a control h ∈ L2([0, T ];Hs

p(0, 2π)) such that the equation

∂tu+ u∂xu+ ∂3
xu = Gh(1.13)

has a solution u ∈ C([0, T ];Hs
p(0, 2π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x).

It is familiar that each control problem has associated with it a corresponding
stabilization problem in which the control is required, for each t, to be a functional
of fixed form (i.e., independent of t) of the system state u(·, t) and the objective
of the control action is to cause the system to approach, as t → ∞, a particular
set of equilibrium states. As explained in more detail for the linear case in [15],
the stabilization problem in our current context has as its goal that the controlled
solution u(x, t) should tend, as t→∞, to the constant state ū(x) ≡ [u0]. To achieve
this goal for the system (1.1), (1.2) and (1.8), we may employ, for some K > 0, the
following feedback control law:

h(x, t) = −Ksign(g(x))u(x, t);(1.14)

we obtain the closed loop system, studied earlier in [8] and [19],

 ∂tu+ u∂xu+ ∂3
xu = −KGu, u(x, 0) = u0(x),

u(0, t) = u(2π, t), ∂xu(0, t) = ∂xu(2π, t), ∂2
xu(0, 2π) = ∂2

xu(2π, t),

(1.15)

where the function g(x) in the definition of the operator G is then assumed to be
nonnegative.

In the global control case where the function g ≡ 1, it has been shown in [8] that
the solution u(x, t) decays to the mean value of its initial data exponentially in the
space Hn

p (0, 2π) if u0 ∈ Hn
p (0, 2π) (n ≥ 2).
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In the local control case, as explained earlier, feedback control may act on only a
small part of the domain [0, 2π]; thus the control power is limited. In this situation
we have the following asymptotic stability result for small amplitude solutions of
the system (1.15).

Theorem 1.3. Let K > 0 and s = 0 or s ≥ 1 be given. There exist positive
constants M , δ and γ such that if u0 ∈ Hs

p(0, 2π) with ‖u0 − [u0]‖s ≤ δ, then the
corresponding solution u of the system (1.15) satisfies

‖u(·, t)− [u0]‖s ≤Me−γt‖u0 − [u0]‖s,(1.16)

for any t ≥ 0, so that small amplitude solutions u decay at a uniform exponential
rate to the corresponding constant state [u0] with respect to the norm in the space
Hs
p(0, 2π) as →∞.

The paper is organized as follows. In Section 2, we consider a linear system
associated with the system (1.1), (1.2), (1.8),

 ∂tv + ∂3
xv = Gh, v(x, 0) = v0(x),

v(0, t) = v(2π, t), ∂xv(0, t) = ∂xv(2π, t), ∂2
xv(0, 2π) = ∂2

xv(2π, t),

(1.17)

and a linear closed loop system associated with (1.15),

 ∂tv + ∂3
xv = −KGv, v(x, 0) = v0(x),

v(0, t) = v(2π, t), ∂xv(0, t) = ∂xv(2π, t), ∂2
xv(0, 2π) = ∂2

xv(2π, t).

(1.18)

It has been shown in [15] that the linear system (1.17) is exactly controllable
in the space L2(0, 2π) and H3

p(0, 2π). We present here a more general result: the
system (1.17) is exactly controllable in the space Hs

p(0, 2π) for any s ≥ 0. Moreover
we show that there exists a bounded linear operator Φ from the initial/terminal
state pair v0, v1, each in the space Hs

p(0, 2π), to the corresponding control h in the

space L2(0, T ;Hs
p(0, 2π)), i.e.,

‖Φ(v0, v1)‖L2(0,T ;Hsp(0,2π)) ≤ c(‖v0‖s + ‖v1‖s).(1.19)

The global exact controllability of the linear system and the estimate (1.16) ob-
tained in this section will play an important role in establishing the exact control-
lability of the nonlinear system. In addition, we show that the solutions of the
linear system (1.18) satisfy an inequality similar to (1.16) without the small ampli-
tude assumption on their initial values. This again is a generalization of the result
known in [15].

In Section 3 we demonstrate the exact controllability results for the nonlinear
system. Our approach is straightforward; in the global control case, since our
control power is strong, the proof of Theorem 1.1 is simple and is mainly based on
the exact controllability of the associated linear system and the standard Fredholm
Alternative Theorem of functional analysis. In the local control case, using the
strongly continuous semigroup W (t) generated by the third order operator −∂3

x in
the space L2(0, 2π), one can rewrite the nonlinear system (1.1), (1.2), (1.8) in its
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3648 DAVID L. RUSSELL AND BING-YU ZHANG

equivalent integral equation form:

u(t) = W (t)u0 +

∫ t

0

W (t− τ)(Gh)(τ)dτ −
∫ t

0

(u∂xu)(τ)dτ.

This motivates us to define the map

Γ(u) := W (t)u0 +

∫ t

0

W (t− τ)(GΦ(u0, u1))(τ)dτ −
∫ t

0

(u∂xu)(τ)dτ,

which, from the definition of the operator Φ in Section 2, satisfies (Γ(u))(0) = u0

and (Γ(u))(T ) = u1. It then remains to be shown that the map Γ is a contraction in
an appropriate space X . The difficulty in this approach is that a smoothing effect
needs to be established for the operator∫ t

0

W (t− τ)(u∂xu)(τ)dτ

in order to overcome loss of regularity due to the term u∂xu and to show that Γ is
a map from the space X into itself.

In Section 4 we show how the stability result Theorem 1.3 can be established
through use of a discrete Lyapounov method, provided appropriate existence,
uniqueness, and regularity results for the system (1.15) are available. In Section 5
we prove those results. As a consequence we obtain, for small amplitude solutions,
the asymptotic stability results which eluded the authors in [8] and [19]. As in the
case of open loop control, no results for large system states are yet available.

2. The Linear System

We first consider the associated linear open loop control system ∂tv + ∂3
xv = Gh, v(x, 0) = v0(x),

v(0, t) = v(2π, t), ∂xv(0, t) = ∂xv(2π, t), ∂2
xv(0, t) = ∂2

xv(2π, t),
(2.1)

where the operator G is defined by (1.8) and h is the applied control function.
Let A denote the operator

Aw = −w′′′(2.2)

on the domain D(A) = H3
p(0, 2π). A generates a strongly continuous group W (t)

on the space L2(0, 2π); the eigenfunctions are simply the orthonormal Fourier basis
functions in L2(0, 2π),

φk(x) =
1√
2π
eikx, k = 0,±1,±2, ....

We have the following exact controllability result for the system (2.1).

Theorem 2.1. Let T > 0 and s ≥ 0 be given. Then for any v0, v1 ∈ Hs
p(0, 2π)

with [v0] = [v1], there exists a control function h ∈ L2([0, T ];Hs
p(0, 2π)) such that

the equation

∂tv + ∂3
xv = Gh

has a solution v ∈ C([0, T ];Hs
p(0, 2π)) satisfying

v(x, 0) ≡ v0(x), v(x, T ) ≡ v1(x).
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Proof. It is familiar that the operator A, as defined in (2.2), has eigenvalues

λk = −ik3,

corresponding to eigenfunctions φk(x) for −∞ < k < ∞. Relative to the basis
φk, −∞ < k <∞, the initial state v0(x) and the terminal state v1(x) have the
expansions, convergent in Hs

p(0, 2π),

vj =
+∞∑
k=−∞

vk,jφk, vk,j =

∫ 2π

0

vj(x)φk(x)dx(2.3)

for j = 0, 1.
The homogeneous (adjoint) equation is

∂tu+ ∂3
xu = 0, x ∈ (0, 2π), t ∈ R,(2.4)

also with periodic boundary conditions; it has corresponding solutions

uk(x, t) = eλktφk(x).(2.5)

For smooth h, periodic on (0, 2π), we readily compute, using integration by parts
with v satisfying (2.1), that

d

dt

∫ 2π

0

v(x, t)uk(x, t)dx =

∫ 2π

0

(Gh)v(x, t)uk(x, t)dx.

Integrating with respect to t, we have∫ 2π

0

v(x, T )uk(x, T )dx−
∫ 2π

0

v(x, 0)uk(x, 0)dx

=

∫ T

0

∫ 2π

0

(Gh)v(x, t)uk(x, t)dxdt.

(2.6)

Continuity considerations then show that the identity (2.6) continues to be valid
for h ∈ L2([0, T ];Hs

p(0, 2π)) for s ≥ 0. Evaluation of the integrals in (2.6) with

ṽk =

∫ 2π

0

v(x, T )φk(x)dx(2.7)

and uk as in (2.6) shows that

ṽk − vk,0eλkT =

∫ T

0

eλk(T−τ)

∫ 2π

0

(Gh)(x, t)φk(x)dxdt(2.8)

for k = 0,±1, ....
If we define pk(t) = eλkt, then P ≡ {pk | −∞ < k < ∞} may be seen, from

the result in [4], to form a Riesz basis for its closed span, PT , in L2(0, T ). We let
Q ≡ {qk | −∞ < k <∞} be the unique dual Riesz basis for P in PT such that∫ T

0

qj(t)pk(t)dt = δkj , −∞ < j, k <∞.(2.9)

We take the control h in (2.1) to have the form

h(x, t) =
+∞∑
j=−∞

hjqj(t)(Gφj)(x),(2.10)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3650 DAVID L. RUSSELL AND BING-YU ZHANG

where the coefficients hj are to be determined so that, among other things, the series
(2.10) is appropriately convergent. Substituting (2.10) into (2.8) yields, using the
biorthogonality (2.9),

ṽk − vk,0eλkT = eλkT
+∞∑
j=−∞

hj

∫ T

0

eλktqj(t)

∫ 2π

0

G(Gφj)(x)φk(x)dxdt

= hke
λkT

∫ 2π

0

G(Gφk)(x)φk(x)dx,

(2.11)

for −∞ < k < ∞. We verify easily that G is a self-adjoint operator in L2(0, 2π)
such that ∫ 2π

0

G(Gφk)(x)φk(x)dx = ‖Gφk‖2L2(0,2π), −∞ < k <∞.

Since |φk(x)| ≡ 1
2π , for −∞ < k <∞, we have

‖Gφk‖2L2(0,2π) =

∫ 2π

0

∣∣∣∣g(x)

(
φk(x)−

∫ 2π

0

g(s)φk(s)ds

)∣∣∣∣2 dx
=

1

4π2

∫ 2π

0

g(x)2dx− 2

∣∣∣∣∫ 2π

0

g(x)φk(x)dx

∣∣∣∣2

+

∫ 2π

0

g(x)2dx ·
∣∣∣∣∫ 2π

0

g(x)φk(x)dx

∣∣∣∣2

:= βk.

Since φ0(x) ≡ 1
2π , it is easy to see, using (2.3), that β0 = 0. The fact that g(x)

is real valued shows that g(x)φk(x) cannot be a constant multiple of g(x) on any
interval; thus the first identity above shows that βk 6= 0, k > 0. The familiar
Lebesgue lemma together with the second identity above shows that

lim
k→∞

βk =

∫ 2π

0

g(x)2dx 6= 0.(2.12)

Clearly ṽ0 must be zero, since β0 = 0. From (2.12) and the fact that βk 6= 0 for
k 6= 0 it follows that there is a δ > 0 such that

|βk| > δ for k 6= 0.

Setting h0 = 0 and

hk =
e−λkT vk,1 − vk,0

βk
, k 6= 0,(2.13)

we get from (2.11)

ṽk = vk,1,

where vk,1 is given by (2.3).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXACT CONTROLLABILITY AND STABILIZABILITY OF THE KdV EQUATION 3651

It remains to show that h defined by (2.13) and (2.10) is in L2([0, T ];Hs
p(0, 2π))

provided that v0, v1 ∈ Hs
p(0, 2π). To this end, let us write

Gφj(x) =
+∞∑
k=−∞

ajkφj(x),(2.14)

where

ajk =

∫ 2π

0

Gφj(x)φk(x)dx, −∞ < j, k <∞.

Thus

h(x, t) =
+∞∑
j=−∞

+∞∑
k=−∞

hjajkqj(t)φk(x)

and

‖h‖2L2([0,T ];Hsp(0,2π)) =

∫ T

0

+∞∑
k=−∞

(1 + |k|)2s

∣∣∣∣∣∣
+∞∑
j=−∞

ajkhjqj(t)

∣∣∣∣∣∣
2

dt

=
+∞∑
k=−∞

(1 + |k|)2s

∫ T

0

∣∣∣∣∣∣
+∞∑
j=−∞

ajkhjqj(t)

∣∣∣∣∣∣
2

dt

≤ c
+∞∑
k=−∞

(1 + |k|)2s
+∞∑
j=−∞

|hj |2|ajk|2

≤ c
+∞∑
j=−∞

|hj |2
+∞∑

k=−∞
(1 + |k|)2s|ajk|2,

(2.15)

where the constant c comes from the Riesz basis property of Q in PT . However

|ajk| =
∣∣(Gφj , φk)L2(0,2π)

∣∣
=
∣∣(gφj , φk)L2(0,2π) − (g, φj)L2(0,2π)(g, φk)L2(0,2π)

∣∣
=

∣∣∣∣∣
+∞∑

m=−∞
gm(φmφj , φk)L2(0,2π)

−
(

+∞∑
m=−∞

gm(φm, φj)L2(0,2π)

)(
+∞∑

m=−∞
gm(φm, φk)L2(0,2π)

)∣∣∣∣∣
=

∣∣∣∣ 1

2π
gk−j − gjgk

∣∣∣∣
≤ 1

2π
|gk−j |+ |gj||gk|,
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where

g =
+∞∑

m=−∞
gmφm.

Hence

|ajk|2 ≤ c
(
|gk−j |2 + |gj|2|gk|2

)
and

+∞∑
k=−∞

(1 + |k|)2s|ajk|2 ≤ c
+∞∑
k=−∞

(1 + |k|)2s|gk−j |2 + c
+∞∑
k=−∞

(1 + |k|)2s|gj |2|gk|2

≤ c
+∞∑
k=−∞

(1 + |k + j|)2s|gk|2 + c
+∞∑
k=−∞

(1 + |k|)2s|gj|2|gk|2

≤ c(1 + |j|)2s
+∞∑
k=−∞

(1 + |k|)2s|gk|2 + c|gj|2
+∞∑

k=−∞
(1 + |k|)2s|gk|2

≤ c
(
(1 + |j|)2s + |gj |2

)
‖g‖2s.

We have, according to (2.13),

‖h‖2L2([0,T ];Hsp(0,2π)) ≤ c

 +∞∑
j=−∞

(
(1 + |j|)2s + |gj |2

)
|hj |2

 ‖g‖2s
≤ c

 +∞∑
j=−∞

(
(1 + |j|)2s + |gj |2

) ∣∣eλjT vj,1 − vj,0∣∣2
|βj |2

 ‖g‖2s
≤ cmax

j 6=0
|βj |−2‖g‖2s

+∞∑
j=−∞

(1 + |j|)2s
(
|vj,1|2 + |vj,0|2

)
≤ cmax

j 6=0

1

|βj |2
‖g‖2s(‖v1‖2s + ‖v0‖s).

With this the proof is complete.

Corollary 2.1. Equations (2.10), (2.13) and (2.14) define, for s ≥ 0, a bounded
operator Φ :

h = Φ(v0, v1), ∀v0, v1 ∈ Hs
p(0, 2π),

from Hs
p(0, 2π)×Hs

p(0, 2π) to L2([0, T ];Hs
p(0, 2π)) such that

W (T )v0 +

∫ T

0

W (T − τ)(G(Φ(v0, v1)))(·, τ)dτ = v1(2.16)

for any (v0, v1) ∈ Hs
p(0, 2π)×Hs

p(0, 2π) and

‖Φ(v0, v1)‖L2([0,T ];Hsp(0,2π)) ≤ c(‖v0‖s + ‖v1‖s),(2.17)

where c depends only on T and g.
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Now we turn to consideration of the associated linear closed loop system

 ∂tv + ∂3
xv = −KGv, v(x, 0) = v0(x),

v(0, t) = v(2π, t), ∂xv(0, t) = ∂xv(2π, t), ∂2
xv(0, 2π) = ∂2

xv(2π, t).

(2.18)

Theorem 2.2. Let s = 0 or s ≥ 1 be given. Then for any v0 ∈ Hs
p(0, 2π), the

system (2.18) has a unique solution v ∈ C(R;Hs
p(0, 2π)). Moreover there exist

positive constants γs and Ms, depending only on s (γs1 ≤ γs2 if s1 ≥ s2), such that

‖v(·, t)− [v0]‖s ≤Mse
−γst‖v0 − [v0]‖s.(2.19)

for any v0 ∈ Hs
p(0, 2π).

Proof. The existence of the solution v follows from standard semigroup theory (cf.
[11]). The estimate (2.19) has been established in [15] when s = 0.

We first show that the estimate (2.19) holds for s = 1. Without loss of generality,
we assume that [v0] = 0 and therefore [v(t)] ≡ 0. Let w = ∂xv. It solves

 ∂tw + ∂3
xw = −KGw −K[∂x, G]v, w(x, 0) = v′0(x),

w(0, t) = w(2π, t), ∂xw(0, t) = ∂xw(2π, t), ∂2
xw(0, 2π) = ∂2

xw(2π, t),

(2.20)

where [∂x, G] ≡ ∂xG−G∂x. Hence

w(t) = WKv
′
0 −K

∫ t

0

WK(t− τ)([∂x, G]v)(τ)dτ,

where WK(t) is the semigroup generated by the operator A + KG in the space
L2(0, 2π).

Note that the mean values of v′0 and [∂x, G]v over the interval (0, 2π) are both
zero. Using the estimate (2.19) with s = 0, one obtains

‖w(t)‖0 ≤M0e
−γ0t‖v′0‖0 +KM0

∫ t

0

e−γ0(t−τ)‖[∂x, G]v‖0(τ)dτ.(2.21)

Direct computation shows that

[∂xG]v = g′v − g[v(·, t)]g − g[v(·, t)]g′ ,

where [v(·, t)]g ≡
∫ 2π

0 g(y)v(y, t)dy. Using the estimate (2.19) yields

‖[∂x, G]v‖0 ≤ c‖v‖0 ≤ cM0e
−γ0t‖v0‖0

for some constant c > 0 depending only on the function g. Turning back to (2.21),
we have

‖w(t)‖0 ≤M0e
−γ0t‖v′0‖0 + cKM0

∫ t

0

e−γ0(t−τ)e−γ0τdτ‖v0‖0

≤M0e
−γ0t‖v′0‖0 + cKM0te

−γ0t.

(2.22)

Combining (2.19) with s = 0 and (2.22) yields the estimate (2.19) with s = 1.
To show the estimate (2.19) is true for s > 1 we need the following technical

lemma.
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Lemma 2.1. Let Ds represent the fractional derivative of order s:

Dsu =
+∞∑

k=−∞
uk|k|seikx

for any u ∈ Hs
p(0, 2π). Define

[Ds, G]u = Ds(Gu)−G(Dsu)

for any u ∈ Hs
p(0, 2π). Then for any s > 1, one has

‖[Ds, G]u‖0 ≤ c(s, ‖g‖2)‖u‖max{1,s−1}.(2.23)

Supposing, as we will show later, that the lemma is true, we establish the estimate
(2.19) by induction. Assume that (2.19) is true for 1 ≤ s ≤ s0. We show that (2.19)
is true for s1 = s0 + 1. To this end, let w = Ds1 . It solves (2.20) with the operator
∂x replaced by Ds1 , and we have the following estimate:

‖w(t)‖0 ≤M0e
−γ0t‖v′0‖0 +KM0

∫ t

0

e−γ0(t−τ)‖[Ds1 , G]v‖0(τ)dτ.(2.24)

Then from (2.23) we have the estimate (2.19) with 1 ≤ s ≤ s0, so that

‖w(t)‖0 ≤M0e
−γ0t‖Ds1v0‖0 + cKMs0

∫ t

0

e−γ0(t−τ)e−γs0τdτ‖v0‖0

≤M0e
−γ0t‖Ds1u0‖0 + cKM0te

−γs0 t.

(2.25)

Together with the estimate (2.19) for s = 0, (2.25) implies that (2.19) is true for
s = s1. By induction we have proved the estimate (2.19) is true for s ≥ 2. The
case 1 < s < 2 is proved similarly.

Finally we give a proof of Lemma 2.1 in order to complete the proof of Theo-
rem 2.2.

To show (2.23), we note that

[Ds, G]v = Ds(gv)− gDsv − [v]gD
sg + g[Dsv].

Using [17, Lemma 1.1] with r = 1, we get

‖Ds(gv)− gDsv‖0 ≤ c(‖g‖s‖v‖1 + ‖g‖2‖v‖max{1,s−1}).(2.26)

In addition,

‖[v]gD
sg‖0 ≤ c‖v‖0

and

‖g[Dsv]g‖0 ≤ c|[Dsv]g| ≤ c
+∞∑
|=−∞

gj||j|s|vj | ≤ c‖v‖max{1,s−1}.

Consequently, the estimate (2.23) follows.
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3. Exact Controllability

In this section we prove the exact controllability results for the open loop non-
linear control system:

 ∂tu+ u∂xu+ ∂3
xu = Gh, u(x, 0) = u0(x),

u(0, t) = u(2π, t), ∂xu(0, t) = ∂xu(2π, t), ∂2
xu(0, 2π) = ∂2

xu(2π, t).

(3.1)

In the global control case, due to the rather strong control power available, not only
is the result stronger, but also the proof is simpler. For brevity of notation, when
in the sequel we wish to denote a function u = u(x, t) as an element of L2[0, 2π],
or some related space, we will just write u(t) rather than the more cumbersome
u(·, t); this should not result in any confusion.

Proof of Theorem 1.1. According to Theorem 2.1, there exists

h1 ∈ L2(0, T ;Hs+1
p (0, 2π))

for which one may find u ∈ C([0, T ];Hs+1
p (0, 2π)) satisfying ∂tu+ ∂3

xu = Gh1,

u(x, 0) = u0, u(x, T ) = u1(x)

for given u0, u1 ∈ Hs+1
p (0, 2π). Adding u∂xu to both sides of the above equation,

one obtains  ∂tu+ u∂xu+ ∂3
xu = Gh1 + u∂xu,

u(x, 0) = u0, u(x, T ) = u1(x).

Thus it suffices to show that there exists h2 ∈ L2(0, T ;Hs
p(0, 2π)) such that

(Gh2)(x, t) = (u∂xu)(x, t)(3.2)

for all x ∈ (0, 2π) and t ∈ (0, T ).
Note that the equation (3.2), by the definition of the operator G, reduces to

h2(x, t) − 1

2π

∫ 2π

0

h2(y, t)g(y)dy = − 1

g(x)
u(x, t)∂xu(x, t),(3.3)

and u∂xu/g ∈ C([0, T ];Hs
p(0, 2π)) by virtue of the assumption (1.11). Let Y sg be

the space Hs
p(0, 2π) endowed with the weighted norm

‖v‖Y sg := (gv, v)
1
2

Hsp(0,2π).

For v ∈ Y sg , define

(G̃(v))(x) = v(x) −
∫ 2π

0

v(y)g(y)dy.

Then the following claim is readily checked.

Claim. As an operator from Y sg to Y sg ,

i. G̃ is a Fredholm operator ;
ii. G̃∗ = G̃;
iii. N(G̃) = {1};
iv. G̃ has a bounded inverse considered as an operator from Y sg /N(G̃) to Y sg .
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As a result,

R(G̃) = R(G) = N(G̃∗)⊥ = N(G̃)⊥.

Since, for any t ∈ (0, T ),

(u∂xu/g, 1)Y sg =

∫ 2π

0

u(x, t)∂xu(x, t)dx = 0,

one has

u(t)∂xu(t)/g ∈ N(G̃)⊥ = R(G̃)

for any t ∈ (0, T ). Therefore the equation (3.3) has a solution h2(., t) ∈ Hs
p(0, 2π)

for each fixed t ∈ x(0, T ). The continuous dependence of h2(·, t) on t follows from
part iv of the claim. The proof is complete.

In the local control situation, as we pointed out in the introduction, a smoothing
property is needed for the operator

v(t) =

∫ t

0

W (t− τ)f(τ)dτ

from f to v. This needed smoothing property was provided in Bourgain’s recent
work [3], where he dealt with the Cauchy problem for the periodic KdV equation.

For a function w : (0, 2π)×R, define the quantities

Λ1(w) =

( ∞∑
n=−∞

(1 + |n|)2s

∫ ∞
−∞

|ŵ(n, λ)|2
1 + |λ− n3|dλ

)1/2

,

Λ2(w) =

( ∞∑
n=−∞

(1 + |n|)2s

[∫ ∞
−∞

|ŵ(n, λ)|
1 + |λ− n3|dλ

]2
)1/2

and

Λ3(w) =

( ∞∑
n=−∞

(1 + |n|)2s

∫ ∞
−∞
|ŵ(n, λ)|2(1 + |λ− n3|)dλ

)1/2

,

where ŵ(n, λ) denotes the Fourier transform of w(x, t) with respect to both the x
and t variables.

Following Bourgain [3], for any s ≥ 0, we introduce the following space:

Xs =
{
w ∈ L2(R;Hs

p(0, 2π)); Λ3(w) <∞
}

(3.4)

with the norm ‖v‖Xs := Λ3(w). It is clear that Xs is a Hilbert space.
In the following, the function ψ(t) is assumed to be smooth and satisfy

ψ(t) =

 1, if t ∈ [− 1
2 ,

1
2 ];

0, if t 6= (−1, 1).

Before we proceed to show the exact controllability result in the local control
case, we present the following five technical lemmas, which not only play important
roles in the proof of Theorem 1.2, but also provide the basic tools for establishing
stabilizability in Section 4 and Section 5.
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Lemma 3.1. For any h ∈ Xs, one has

‖ψ(t/δ−1)h‖Xs ≤ c1(δ)‖h‖Xs(3.5)

where

c1(δ) =

 c2(b)δ(1−2b)/2 for any 1/2 < b ≤ 1 and 0 < δ ≤ 1;

+∞ as δ → +∞;

and c2(b)→ +∞ as b→ 1/2+.

Proof. See Lemma 2.2 of [20].

Lemma 3.2. For any u0 ∈ Hs
p(0, 2π),

‖ψ(t/δ)W (t)u0‖Xs ≤ c1(δ)‖u0‖s.(3.6)

Lemma 3.3.

‖ψ(t/δ)

∫ t

0

W (t− τ)f(τ)dτ‖Xs ≤ c1 (δ) (Λ1(f) + Λ2(f)) .(3.7)

Lemma 3.4. For any 0 < T ≤ +∞

sup
−T<t<+T

‖
∫ t

0

W (t− τ)f(τ)dτ‖s ≤ cΛ2(f)(3.8)

where c > 0 is independent of T .

Lemmas 3.2–3.4 are slight modifications of results included in the proof of The-
orem 5 in [3] (cf. [20]).

Lemma 3.5. For any u, v ∈ Xs,b with [u(., t)] = [v(., t)] ≡ 0,

Λ1(ψ2(t/δ)∂x(uv)) + Λ2(ψ2(t/δ)∂x(uv)) ≤ cδ1/12‖u‖Xs‖v‖Xs ,(3.9)

where c > 0 is independent of δ.

If u = v, the estimate (3.9) is contained in Lemma 7.41 and Lemma 7.42 in [3].
Estimates (3.9) and (3.7) together reflect a smoothing property of the linear KdV
equation (1.1) with α = 0 from the forcing term f to the solution u.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let W (t) be the semigroup generated by the operator A, de-
fined by (2.2), on the space L2(0, 2π). We rewrite the system (3.1) in its equivalent
integral equation form:

u(t) = W (t)u0 +

∫ t

0

W (t− τ)(Gh)(τ)dτ −
∫ t

0

W (t− τ)(u∂xu)(τ)dτ.(3.10)

Assuming temporarily that

[u0] = [u1] = 0,(3.11)

we define

w(T, u) :=

∫ T

0

W (T − τ)(u∂xu)(τ)dτ .(3.12)

According to Corollary 2.1, for given u0, u1 ∈ Hs
p(0, 2π), if one chooses

h = Φ(u0, u1 + w(T, u))(3.13)
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in the equation (3.10), then

u(t) = W (t)u0 +

∫ t

0

W (t− τ)(GΦ(u0, u1 + w(T, u)))(τ)dτ

−
∫ t

0

W (t− τ)(u∂xu)(τ)dτ

(3.14)

and

u(0) = u0, u(T ) = u1(3.15)

by virtue of the definition of the operator Φ (cf. Corollary 2.1). This suggests that
we consider the map

Γ(u) = W (t)u0 +

∫ t

0

W (t− τ)(G(Φ(u0, u1 + w(T, u))))(τ)dτ

−
∫ t

0

W (t− τ)(u∂xu)(τ)dτ.

(3.16)

If the map Γ is shown to be a contraction in an appropriate space, then its fixed
point u is a solution of (3.1) with h = Φ(u0, u1 + w(T, u)) and satisfies u(x, T ) ≡
u1(x). We show this is the case in the space Xs.

We modify the map Γ as follows:

Γ(u) = ψ1(t)W (t)u0 + ψ1(t)

∫ t

0

W (t− τ)ψ2(τ)(GΦ(u0, u1 + w(T, u)))(τ)dτ

− ψ1(t)

∫ t

0

ψ2(τ)W (t − τ)(u∂xu)(τ)dτ

(3.17)

for any u ∈ Xs, where ψ1(t) is a smooth function with its support inside the interval
(−T−1/2, T+1/2) and ψ1(t) = 1 for t ∈ [−T, T ], and ψ2(t) is a nonnegative smooth
function with supp ψ2 ⊂ (−T − 1/2, T + 1/2) satisfying ψ2(t) = 1 for any t in the
support of ψ1. Applying (3.5)–(3.9) to (3.17) (δ = 2T ) yields

‖Γ(u)‖Xs ≤ c‖u0‖s + cΛ1(ψ2(t)G(Φ(u0, u1 + w(T, u)))

+ cΛ2(ψ2(t)G(Φ(u0, u1 + w(T, u)))

+ cΛ1(ψ2(t)(u∂xu)(t)) + cΛ2(ψ2(t)(u∂xu)(t)).

It then follows from the definitions of Λ1 and Λ2 and the operator Φ that

Λ1(ψ2(t)G(Φ(u0, u1 + w(T, u)))) ≤ c ‖GΦ(u0, u1 + w(T, u))‖s
≤ c (‖u0‖s + ‖u1‖s + ‖w(T, u)‖s) .

Similarly, one obtains

Λ2(ψ2(t)G(Φ(u0, u1 + w(T, u)))) ≤ c (‖u0‖s + ‖u1‖s + ‖w(T, u)‖s) .
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Using Lemmas 3.1, 3.2 and 3.3, it follows that

‖w(T, u)‖s = ‖
∫ T

0

W (T − τ)(u∂xu)(τ)dτ‖s

≤ sup
t∈R
‖ψ1(t)

∫ t

0

W (t− τ)ψ2(τ)(u∂xu)(τ)dτ‖s

≤ Λ2(ψ2(τ)(u∂xu)(τ)dτ)

≤ c‖u‖2Xs
Consequently,

‖Γ(u)‖Xs ≤ c (‖u0‖s + ‖u1‖s) + c ‖u‖2Xs .(3.18)

For M > 0, let SM be a bounded subset of Xs:

SM = {v ∈ Xs | [v] = 0, ‖v‖Xs ≤M} .

Then, for any u ∈ SM ,

‖Γ(u)‖Xs ≤ c‖u0‖s + c‖u1‖s + cM2.

We choose δ > 0 and M > 0 such that

2cδ + cM2 ≤M, cM < 1/2.(3.19)

Then,

‖Γ(u)‖Xs ≤M,

for any u ∈ SM , if ‖u0‖s ≤ δ and ‖u1‖s ≤ δ. In addition, for any u, v ∈ SM , since

Γ(u)− Γ(v) = ψ1(t)

∫ t

0

W (t− τ)ψ2(τ)(GΦ(0, w(T, u) − w(T, v)))(τ)dτ

− ψ1(t)

∫ t

0

W (t− τ)ψ2(τ)

(
1

2
∂x ((u+ v)(u− v))

)
(τ)dτ

and

w(T, u)− w(T, v) =

∫ T

0

W (T − τ)
1

2
∂x ((u+ v)(u− v)) (τ)dτ,

a similar argument shows that

‖Γ(u)− Γ(v)‖Xs ≤
c

2
‖u+ v‖Xs‖u− v‖Xs

≤ cM‖u− v‖Xs

≤ 1

2
‖u− v‖Xs .

Thus the map Γ is a contraction on SM provided that δ and M are chosen according
to (3.19) and ‖u0‖s ≤ δ, ‖u1‖s ≤ δ. As a result, its fixed point u ∈ SM is a unique
solution of the integral equation

u(t) = ψ1(t)W (t)u0 + ψ1(t)

∫ t

0

W (t− τ)ψ2(τ)(G(Φ(u0, u1 + w(T, u))))(τ)dτ

− ψ1(t)

∫ t

0

ψ2(τ)W (t − τ)(u∂xu)(τ)dτ
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for any t ∈ R. In particular, for t ∈ [0, T ],

u(t) = W (t)u0 +

∫ t

0

W (t− τ)(G(Φ(u0, u1 + w(T, u))))(τ)dτ

−
∫ t

0

W (t− τ)(u∂xu)(τ)dτ.

That is to say, u ∈ C([0, T ];Hs
p(0, 2π)) solves ∂tu+ u∂xu+ ∂3

xu = GΦ(u0, u1 + w(T, u)),

u(x, 0) = u0(x), u(x, T ) = u1(x),

for t ∈ [0, T ].
Here we need to point out a detail which is missing from the above argument;

in order for the map Γ(u) to make sense it is necessary to be certain that w(T, u)
is well defined, which is true, of course, if w(t, u) is continuous in Hs

p as a function
of t. To this end, let us suppose that u ∈ Xs. Since Lemma 3.5 shows that

(Λ1 + Λ2)(ψ(t/δ)∂x(v2)) ≤ c ‖v‖2Xs ,
it is clearly enough to show that if (Λ1 + Λ2)(f) is bounded, then

wf (t) ≡
∫ t

0

W (t− τ)f(·, τ)dτ

is continuous in Hs
p as a function of t. It is a standard exercise to demonstrate this

if f ∈ Hs ≡ L2(R1;Hs
p); we omit the details. Let us denote by HΛ the completion

of Hs relative to the norm ‖f‖Λ ≡ (Λ1 + Λ2)(f), noting that the sum of a norm
and a seminorm is, indeed, a norm. Then HΛ is a Banach space which includes Hs
as a dense subspace relative to ‖ ‖Λ; i.e., given f with ‖f‖Λ bounded, we can find a
sequence {fk} ⊂ Hs converging to f relative to ‖ ‖Λ. Using Lemma 3.4 we see that
the corresponding functions wfk(·, t) converge uniformly to wf (·, t) relative to ‖‖s on
finite t intervals. It follows that wf (·, t) is continuous in Hs

p as a function of t. This
is all that is needed to show that w(T, u) is well defined in the argument presented
above. Since the other terms in (3.17) cause no problem in regard to continuity,
it also follows from this that the controlled solution u, i.e., the fixed point of Γ, is
continuous in Hs

p as a function of t, so that the sense in which the endpoints of the
control problem are achieved is not ambiguous. This is an important point because
it is not in general true that functions in Xs are continuous in Hs

p as functions of t.
To summarize, we may choose the control

h = Φ(u0, u1 + w(T, u))

to guide the corresponding solution u(t) from u(0) = u0 to u(T ) = u1, provided
the assumption (3.11) is satisfied. In the general case wherein that assumption is
not valid, the ‘volume’ [u(., t)] continues to be conserved, as we have seen in the
introduction:

[u(., t)] = [u0] = [u1] := β, ∀t ∈ [0, T ].

Since the above proof is strongly based on Lemma 3.3, which requires that [u(., t)] ≡
0, it does not cover the general case β 6= 0. However, the basic idea of the proof in
the general case is the same as in the case we have just treated; it suffices merely
to indicate the needed modifications.
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Let u be a solution of (3.1) with [u(., t)] ≡ [u0] = β, and let v(x, t) = u(x, t)− β.
It is easily seen that v(x, t) solves

 ∂tv + v∂xv + ∂3
xv + β∂xv = Gh, v(x, 0) = u0(x) − β := v0(x),

v(0, t) = v(2π, t), ∂xv(0, t) = ∂xv(2π, t), ∂2
xv(0, t) = ∂2

xv(2π, t).

(3.20)

As before we first consider the associated linear system

 ∂tw + ∂3
xw + β∂xw = Gh, w(x, 0) = u0(x) − β := w0(x),

w(0, t) = w(2π, t), ∂xw(0, t) = ∂xw(2π, t), ∂2
xw(0, t) = ∂2

xw(2π, t).

(3.21)

The same proof as given for Theorem 2.1 shows that the system (3.21) possesses
the identical exact controllability properties.

Passing to the nonlinear system (3.20), we let Wβ(t) be the semigroup generated
by the operator

Aβ = −∂3
x − β∂x

with D(Aβ) = H3
p(0, 2π) in the space L2(0, 2π). Then (3.20) is equivalent to

v(t) = Wβ(t)v0 +

∫ t

0

Wβ(t− τ)(Gh)(τ)dτ −
∫ t

0

Wβ(t− τ)(v∂xv)(τ)dτ.

The proof is the same as before except that we consider the map Γ in the space

Xβ
s :=

v ∈ L2(R : Hs
p(0, 2π));

(
+∞∑

n=−∞
(1 + |n|)2s

∫ ∞
−∞

(1 + |λ− n3 − βn|)|v̂(n, λ)|2dλ
)1/2

<∞


instead of the space Xs. Also, we need the extended definitions

Λβ1 (w) =

( ∞∑
n=−∞

(1 + |n|)2s

∫ ∞
−∞

|ŵ(n, λ)|2
1 + |λ− n3 − βn|dλ

)1/2

,

Λβ2 (w) =

( ∞∑
n=−∞

(1 + |n|)2s

[∫ ∞
−∞

|ŵ(n, λ)|
1 + |λ− n3 − βn|dλ

]2
)1/2

.

The needed Lemmas 3.1, 3.2 and 3.3 still hold with the spaces Xs, Λ1 and Λ2

replaced by the spaces Xβ
s , Λβ1 and Λβ2 , respectively (see [3] and [20]). The proof

may thus be considered complete.

Remark 3.1. Professor J. L. Bona, in a private communication, has pointed out
that the fact that this controllability result is valid on arbitrarily short time in-
tervals is counterintuitive in the context of soliton solutions of the KdV equation;
such solitons originating some distance from the control region, i.e., the support of
the function g(x), could not be affected significantly by the indicated control mech-
anism until some time had elapsed. This is a valid, and valuable, observation; it
indicates that the results obtained here for small solutions (these would not, in gen-
eral, include soliton solutions on a periodic domain) probably cannot be extended
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without some additional condition on the control interval to obtain control results
for solutions of arbitrary amplitude; the present results are only valid for solutions
small enough in amplitude so that the KdV equation continues to behave in much
the same way as the third order linear dispersion equation described in Section 2.

4. Asymptotic Stability

Having established, in the proof of Theorem 1.2 in Section 3, an exact control-
lability result for the system (3.1) valid for “local” control and small initial and
terminal states, it is reasonable to conjecture that, again for small initial states,
the asymptotic stability results which eluded the authors in [19] and [8] might now
be within reach. We will see that this is, indeed, the case but, because Bourgain’s
smoothing results, as we have seen, are valid only for bounded time intervals, we
cannot proceed with use of the continuous time infinite dimensional Lyapounov
approach as in the corresponding work with “point dissipation” in [16]. Instead,
we find it necessary to work with the discrete Lyapounov theory and discrete time
intervals [(k − 1)T, kT ], k = 1, 2, 3, ..., where T > 0 is as specified below.

Let H be a separable Hilbert space and let A be a bounded operator on H.
We will assume that A is a stability operator in the discrete sense, i.e., there is a
positive number M and a real number r satisfying 0 < r < 1 such that, using ‖ · ‖H
interchangeably to denote the norm in H or in L(H,H) as required,

‖Ak‖H < Mrk, k = 0, 1, 2, ....(4.1)

Thus for solution sequences {xk} of the linear recursion equation

xk+1 = Axk, k = 0, 1, 2, ...,(4.2)

with initial states x0 given in H, we have the estimate

‖x‖H ≤Mrk‖x0‖H , k = 0, 1, 2, ....

Consider then in L(H,H) the operator equation

X = A∗XA+W,(4.3)

where W is a given positive definite self-adjoint operator on H and A∗ denotes the
adjoint operator of A. Multiplying (4.3) on the left by (A∗)k and on the right by
Ak, k = 0, 1, 2, ..., transposing the term on the left to the right for k = 1, 2, 3, ...,
and adding the resulting equations, we have, for any positive n,

X = (A∗)n+1XAn +
n∑
k=0

(A∗)kWAk.

From (4.1) we see that the indicated sum converges and the operator I−1
n , where

In(X) = X − (A∗)nXAn,
converges to the identity operator in L(H,H) as n → ∞. Thus we have for (4.3)
the unique solution

X =
∞∑
k=0

(A∗)kWAk,

and it is easy to see that X ∈ L(H,H) is positive definite and self-adjoint. Con-
versely, if we have a positive definite self-adjoint solution X of (4.3), use of Ak+1 =
AAk, k = 0, 1, 2, ..., together with the form of (4.3) shows that

(A∗)k+1XAK+1 = (A∗)kA∗XAAk = (A∗)k(X −W )Ak,
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from which, since 0 < X −W < X (in the sense of quadratic forms on H), an
estimate of the form (4.1) readily follows, along with the estimate

‖xk‖H ≤Mrk‖x0‖H , k = 0, 1, 2, ...,

valid for solutions {xk} of (4.2).
If we generalize (4.2) to a nonlinear recursion equation

xk+1 = Axk + q(xk), k = 0, 1, 2, ...,(4.4)

where q : H → H is continuous and satisfies

lim
‖x‖H→0

‖q(x)‖H/‖x‖H = 0,(4.5)

we can use the framework just developed to show that solutions of (4.4) with small
initial states x0 ∈ H also tend exponentially to 0 as k → ∞. For we have (using
the convenient notation 〈x, y〉 = y∗x, where 〈·, ·〉 is the inner product in H)

(xk+1)∗Xxk+1 = (Axk + g(xk))∗X(Axk + q(xk))

= (xk)∗A∗XAxk + (xk)∗Xq(xk) + q(xk)∗Xxk + q(xk)∗Xq(xk).
(4.6)

Using (4.5) and (4.6) together with the assumed positivity of X , we can see that if
‖xk‖H is sufficiently small we will have

(xk+1)∗Xxk+1 ≤ (xk)∗((1− ε)X −W )xk(4.7)

for ε positive and sufficiently small, in particular small enough so that 0 <
(1− ε)X −W < ρX for some ρ ∈ [0, 1). Thus

(xk+1)∗Xxk+1 ≤ ρ(xk)∗Xxk, k = 0, 1, 2, ...,(4.8)

and we conclude that xk → 0 at a uniform exponential rate as claimed. We will use
a variant of this approach in the work to follow to the closed loop system (1.15).

Now let A be defined as in (2.2) and G as in (1.8). In [15] we have described
the feedback control system wherein the external input, or control, f , appearing in
(1.1), is given by

f(x, t) = −K(Gu)(x, t), K > 0.

The linear version of (1.1), corresponding to α = 0, takes in the Hilbert space
Hs
p(0, 2π) (s ≥ 0) the abstract form

du

dt
= (A−KG)u,(4.9)

solutions u(t) corresponding to a given initial state u0 ∈ Hs
p(0, 2π) being given for

t ≥ 0 by

u(·, t) = WK(t)u0,

where WK(t) is the strongly continuous semigroup of bounded operators on
Hs
p(0, 2π) generated by the operator A − KG. Since G is a bounded operator,

the existence of WK(t) follows immediately from that of W (t) (cf. [11]). Because
A and G annihilate the one-dimensional subspace of constant states (functions) in
Hs
p(0, 2π), so does A − KG, and, as a consequence, WK(t) leaves the space Hs

p,0,
which may be defined as either the orthogonal complement of the subspace C of
constant functions in Hs

p(0, 2π), or, equally well, as Hs
p,0 ≡ Hs

p(0, 2π)/C, invariant.
We will continue to use A−KG and WK(t) to denote the restrictions of those oper-
ators to D(A)∩Hs

p,0 and Hs
p,0 respectively; there should be no resulting confusion.
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In Section 2, we have shown that WK(t) has uniform exponential decay to 0 in the
space Hs

p,0; there are positive constants M and γ0 such that

‖WK(t)‖s,0 ≤Me−γ0t, t > 0.(4.10)

Here we use ‖ · ‖s,0 to denote either the uniform operator norm in L(Hs
p,0, H

s
p,0) or

the vector norm in that space Hs
p,0: ‖u‖s,0 = ‖u− [u]‖s.

Let us fix T > 0 and define

γ = e−γ0T ; 0 < γ < 1.(4.11)

Also defining
AK = WK(T ),

we have the inequality (4.1) with A replaced by AK , provided we restrict AK to
Hs
p,0 as just discussed, which we assume henceforth. It follows that there is a unique

positive definite self-adjoint solution XK ∈ L(Hs
p,0, H

s
p,0) of the discrete Lyapounov

equation

XK = (AK)∗XKAK + Is,(4.12)

where Is denotes the identity operator on Hs
p,0.

In the case of solutions u = u(x, t) of (1.15) the identity (4.4) is replaced by

u(t) = WK(t)u0 −
∫ t

0

WK(t− τ)(uux)(τ)dτ,

and a similar identity obtains on later intervals,

u(t+ t0) = WK(t)u(t0)−
∫ t

0

W (t− τ)(uux)(τ + t0)dτ,

provided existence and adequate regularity have been established on [0, t+t0]. Since
the dynamics are time invariant, we can write (4.4) in the form

u(t+ t0) = WK(t)u(t0) + qK(t, u(t0)).

Now let T > 0 be fixed as in (4.11) and s ≥ 0 be given. Suppose we can show that,
for ψ ∈ Hs

p,0, qK(T, ψ) is well defined and:

i) qK(T, ψ) = qK(·, T, ψ) ∈ Hs
p,0;

ii) Given any ε > 0, we can find δ > 0 such that for ‖ψ‖s,0 < δ we have

‖qK(T, ψ)‖s,0 < ε‖ψ‖s,0.(4.13)

iii) There exists an η > 0 such that if u0 ∈ Hs
p,0 with ‖u0‖s,0 ≤ η, then the

corresponding solution u of (1.15) satisfies

sup
0≤t≤T

‖u(·, t)‖s,0 ≤ c‖u0‖s,0,(4.14)

where c > 0 is independent of u0.

If this can be shown to be the case, we can repeat the argument of (4.4)–(4.8)
more or less word for word, replacing xk by u(kT ), k = 0, 1, 2, ..., A by AK, X by
XK and q(xk) by qK(T, u(kT )) to obtain an inequality, for 0 < ρ < 1,

u((k + 1)T )∗XKu((k + 1)T ) ≤ ρu(kT )∗XKu(kT ), k = 0, 1, 2, ...,(4.15)

provided ‖u(0)‖s,0 = ‖u0‖s,0 is sufficiently small. From this, we see that there
exists an M > 0 such that

‖u(kT )‖s,0 ≤Mρk‖u0‖s,0(4.16)
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for any k ≥ 0. Since ρ < 1, there exists a k0 > 0 such that if k > k0, one would
have

‖u(kT )‖s,0 ≤ η,
where η is as given in iii). Consequently, for k > k0,

sup
kT≤t≤(k+1)T

‖u(·, t)‖s,0 ≤ cMρk‖u0‖s,0

where c > 0 is independent of k. From this we clearly see that ‖u(t)‖s,0 has uniform
exponential decay to 0 as t→∞, provided ‖u(t0)‖s,0 = ‖u0‖s,0 is sufficiently small.

In the next section we will prove i) , ii) and iii) in the context of general results on
well-posedness of generalized solutions of the closed loop system (1.15), in a sense to
be made specific there, and the relationship between those solutions and solutions
of the corresponding linear equation with the same initial conditions. That work,
together with the discussion presented above, will provide the proof of Theorem 1.3.

5. Well-Posedness of the Closed Loop System

In this section we consider the well-posedness problem for the closed loop system

 ∂tu+ αu∂xu+ ∂3
xu+KGu = 0, u(x, 0) = u0(x),

u(0, t) = u(2π, t), ∂xu(0, t) = ∂xu(2π, t), ∂2
xu(0, 2π) = ∂2

xu(2π, t),

(5.1)

and provide a proof for the statements i), ii) and iii) in the previous section.
In the sequel we adhere to the notational conventions introduced in [20] and

Section 3 of this paper; in particular we define Λk, k = 1, 2, 3, as in Section 3 and
we let the space Xs be defined as in (3.4) with norm ‖w‖Xs = Λ3(w), s ≥ 0.

The first major result of this section is the following theorem on existence,
uniqueness and smoothness of solutions.

Theorem 5.1. Let s ≥ 0 be given. There is a positive valued function T = T (r),
r > 0, with possible infinite values, nonincreasing with increasing r, such that,
given an initial state u0 ∈ Hs

p(0, 2π) with ‖u0‖s ≤ r, the system (5.1) has a unique
solution u ∈ C([−T (r), T (r)];Hs

p(0, 2π)), which is a restriction of a function ũ in

the space L2(R;Hs
p(0, 2π)) satisfying

‖u‖Xs <∞.

Preparatory to the proof of this result, we introduce three lemmas which will be
cited in the proof itself.

Lemma 5.1. The group of bounded operators WK(t) satisfies, relative to the orig-
inal group W (t), the relationship

WK(t)u0 = W (t)u0 −K
∫ t

0

W (t− τ)G(WK(τ)u0)dτu(5.2)

for any u0 ∈ L2(0, 2π). Further, for f ∈ L2(R;L2(0, 2π)),∫ t

0

WK(t− τ)f(τ)dτ =

∫ t

0

W (t− τ)f(τ)dτ

−K
∫ t

0

W (t− τ)G

(∫ τ

0

WK(τ − r)f(r)dr

)
dτ.

(5.3)
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Proof. Let u0 ∈ D(A) = D(A−KG) and u(t) = WK(t)u0. It is easy to see that

∂tu(t) = Au(t)−KGu(t) = Au(t)−KG(WK(t)u0).

Applying the “variation of parameters” formula, we have (5.2) for u0 as specified.
The result for general u0 ∈ L2(0, 2π) then follows by continuity. The result (5.3) is
proved similarly. The proof is complete.

Since all equations (5.1) with α > 0 are equivalent under rescaling of the variable
u, it will be enough to consider the case corresponding to α = 1. The most natural
approach, using the strongly continuous group of bounded operators W (t), would
be to replace (5.1) by the integral equation

u(t) = W (t)u0 −
∫ t

0

W (t− τ) ((u∂xu)(τ) +KGu(τ)) dτ ;(5.4)

indeed, in those cases wherein u does not have enough regularity for (5.1) to be
satisfied in the strict sense, the term “solution of (5.1)” must be understood in
the sense of this integral equation. However, when one attempts to use a fixed
point approach based directly on this equation it turns out that we must assume K
small in order to obtain the contraction property. Seeking to avoid this unnecessary
restriction, one is next led to use the group WK(t) in a somewhat non-standard way,
as indicated in

Lemma 5.2. If u is a solution of (5.1) such that u∂xu ∈ L2(R;L2(0, 2π)), then
u(t) satisfies the integral equation

u(t) = WK(t)u0 −
∫ t

0

W (t− τ)(u∂xu)(τ)dτ

−K
∫ t

0

WK(t− τ)G

∫ τ

0

W (τ − r)(u∂xu)(r)drdτ.

(5.5)

Proof. Using the notation of the semigroup WK(t), we can rewrite the system (5.1)
in the following integral equation form:

u(t) = WK(t)u0 −
∫ t

0

WK(t− τ)(u∂xu)(τ)dτ(5.6)

Then (5.5) follows from (5.6) by using (5.3) with f = u∂xu. The proof is complete.

Once the identity of (5.4) and (5.5) is established for u∂xu as described, the
corresponding identity with much weaker assumptions on that function follows from
continuity considerations. Thus we may also define weak solutions of (5.1) to be
solutions of the integral equation (5.5).

With respect to the last term occurring in (5.5) we have the result expressed in

Lemma 5.3. Let s ≥ 0 and T > 0 be given. Let φ and θ be smooth nonnegative
functions on R with compact support, identically equal to 1 on [−T, T ]. For v ∈
Xswith [v(·, t)] ≡ 0, define (cf. (5.7))

ũ(t) =

∫ t

0

WK(t− τ)G

∫ τ

0

W (τ − r)(v∂xv)(r)dr,(5.7)
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assuming the function g(x) in terms of which G is defined (cf. (1.8)) lies in Cs[0, 2π],
and

û(t) = φ(t)

∫ t

0

WK(t− τ)G

∫ τ

0

W (τ − r)θ(r)(v∂xv(r))dr.(5.8)

Then ũ ∈ C([−T, T ];Hs
p(0, 2π)) and, for c̃ = c̃(T ) > 0,

sup
−T≤t≤T

‖ũ(t)‖s < c̃‖v‖2Xs .(5.9)

Further, û agrees with ũ(t) for t ∈ [−T, T ], lies in Xs and, for ĉ > 0, independent
of v, we have

‖û‖Xs ≤ ĉ‖v‖2Xs .

Proof. From work already carried out in the proof of Theorem 1.2 we see that∫ τ

0

W (τ − r)(v∂xv)(r)dr

lies in C([−T, T ];Hs
p(0, 2π)) if v ∈ Xs with [v(·, t)] ≡ 0, its supremum Hs

p(0, 2π)

norm on any finite interval being bounded in terms of ‖v‖2Xs . Then, if the function
g(x) in the definition of G is smooth as indicated, it will also be true that

h(t) ≡ G
∫ τ

0

W (τ − r)θ(r)(v∂xv(r))dr

lies in C([−T, T ];Hs
p(0, 2π)). Then for

ũ(t) =

∫ t

0

WK(t− τ)h(τ)dτ

the standard arguments show that ũ(t) ∈ C([−T, T ];Hs
p(0, 2π)) and that we have

a bound of the form (5.9). To show that û ∈ Xs we note that, since WK(t) is the
semigroup generated by A−KG, it is quite direct to see that, with

ĥ(t) ≡ G
∫ τ

0

W (τ − r)θ(r)v∂xv(r)dr,

we have

û(t) = φ(t)

∫ t

0

W (t− τ)
[
ĥ(τ) −KGû(τ)

]
dτ.

Since ĥ(t) and KGû(τ) ∈ C([−T, T ];Hs
p(0, 2π)), θ(τ) (h(τ)−K(Gũ)(τ)) ∈ Hs and

therefore HΛ, these spaces being defined just as in the proof of Theorem 1.2 in
Section 3. Then Lemma 3.3 applies to show that û lies in Xs with norm in that
space bounded by the norm of ĥ−KGû in the space HΛ, which, in turn, is bounded
in terms of ‖v‖2Xs , completing the proof.

Proof of Theorem 5.1. For simplicity, we assume that [u0] = 0. The general case
can be proved similarly (cf. [3] or the proof of Theorem 1.2 in Section 3).

Let v ∈ Xs with [v(·, t)] ≡ 0; define

(F1(v))(t) =

∫ t

0

W (t− τ)θ(τ/δ)(v∂xv)(τ)dτ,

(F2(v))(t) = K
∫ t

0

W (t− τ)θ(τ/δ)(GF1(v))(τ)dτ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3668 DAVID L. RUSSELL AND BING-YU ZHANG

(FG(v))(t) = G

[∫ t

0

W (t− τ)(GF1(v))(τ)dτ

]
,

(FK(v))(t) = K2

∫ t

0

W (t− τ)θ(τ/δ)(FG(v))(τ)dτ,

(IK(u0))(t) = K
∫ t

0

W (t− τ)θ(τ/δ)GWK(τ)u0dτ.

Then consider the mapping w = Γ(v), where

Γ(v) ≡ φ(t/δ) [W (t)u− IK(u0)− F1(v) + F2(v)− FK(v)] .(5.10)

Inspection shows that the equation u = Γ(u) is equivalent to the integral equation
(5.5) for − δ2 ≤ t ≤

δ
2 .

From the properties of WK(t) as a strongly continuous semigroup on Hs
p(0, 2π),

s ≥ 0, we obtain for any positive T the uniform bounds

‖WK(t)u0‖s ≤ c‖u0‖s, −T ≤ t ≤ T ;(5.11)

‖
∫ t

0

WK(t− τ)f(τ)dτ‖s ≤ c sup
−T≤t≤T

‖f(·, t)‖s, −T ≤ t ≤ T.(5.12)

Assume 0 < δ ≤ 1. Using these with Lemmas 3.1–3.5 we obtain the following
estimates.

From Lemma 3.3:

‖φ(·/δ)W (·)(u0)‖Xs ≤ c‖u‖s.(5.13)

From Lemma 3.4 (noting that Λ2(f) ≤ ‖f‖L2(R;Hsp(0,2π))), the boundedness of G

and (5.11):

‖φ(·/δ)IK(u0)‖Xs ≤ c(b)δ
1−2b

2

[∫ ∞
−∞
|θ(t/δ)|2‖GWK(t)u0‖sdt

] 1
2

≤ c(b)δ 1−2b
2 δ

1
2 sup
−δ≤t≤δ

‖GWK(t)u0‖s ≤ c(b)δ1−b‖u0‖s.
(5.14)

From Lemmas 3.1 and 3.4:

‖v(·/δ)F1(v)‖Xs ≤ c(b)δ
7−12b

2 ‖v‖2Xs .(5.15)

From Lemmas 3.1, 3.4 and 3.5:

‖φ(·/δ)F2(v)‖Xs ≤ c(b)δ
1−2b

2

[∫ ∞
−∞
|θ(τ/δ)|2‖GF1(v)‖2sdτ

] 1
2

≤ c(b)δ 1−2b
2 δ

1
2 sup
−δ≤t≤δ

‖GF1(v)‖s ≤ c(b)δ(13/12)−b‖v‖2Xs .
(5.16)

Finally in this list, from Lemma 3.4, (5.11) and (5.12):

‖φ(·/δ)FK(v)‖Xs ≤ c(b)δ
1−2b

2

[∫ ∞
−∞
|θ(t/δ)|2‖FG(v)(·, t)‖sdt

] 1
2

≤ c(b)δ 1−2b
2 δ1/2 sup

−δ≤t≤δ
‖F1(v)‖s

≤ c(b)δ
1−2b

2 δ1/2 sup
−δ≤t≤δ

‖F1(v)‖s ≤ c(b)δ(13/12)−b‖v‖2Xs .

(5.17)
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Combining (5.14)–(5.17) with the form of Γ in (5.16) and choosing ε0 so that
(recalling b > 1/2)

ε0 ≡
7− 12b

12
≤ 1

12
,

we have (cf. (5.16))

‖Γ(v)−WK(t)u0‖Xs ≤ cδε0‖v‖2Xs(5.18)

so that

‖Γ(v)‖Xs ≤ c‖u0‖s + cδε0‖v‖Xs .(5.19)

Let

D = {v ∈ Xs; [v(·, t)] ≡ 0, ‖v‖Xs ≤ 2c‖u0‖s}(5.20)

and let δ ∈ (0, 1) be chosen small enough so that

4c2‖u‖sδε0 ≤ 1.(5.21)

Then for any v ∈ D, (5.19) shows that ‖G(v)‖Xs ≤ 2c‖u0‖s and thus Γ(D) ⊂ D.
A similar computation allows us to see that

‖Γ(v1)− Γ(v2)‖Xs ≤
1

2
‖v1 − v2‖Xs , v1, v2 ∈ D.

As a consequence, Γ has a unique fixed point u ∈ D which is a solution of the integral
equation (5.5) and thus a generalized solution of (5.1) for −δ/2 ≤ t ≤ δ/2. We take
T = δ/2. The conclusion that u ∈ C([−T, T ], Hs

p(0, 2π)) follows from application
of Proposition 5.3 to the third term on the right hand side of (5.5), noting that
the comparable result for the second term there has already been obtained as part
of the proof of Theorem 1.2 in Section 3; the first term on the right hand side of
(5.12) clearly causes no difficulty. This completes the proof.

In the above proof of Theorem 5.1, if we withdraw the assumption 0 < δ ≤ 1,
we would have

‖Γ(v)‖Xs ≤ c‖u0‖s + ξ(δ)‖v‖2Xs ,
where ξ(δ) is a positive continuous function with ξ →∞ as δ tends to∞. For fixed
δ > 0, let η = ξ−1(δ). If ‖u0‖s ≤ η, then ‖Γ(v)‖Xs ≤ 2c‖u0‖s. The map Γ is still a
contraction mapping on the ball D. Consequently, we have the following:

Corollary 5.1. Let s ≥ 0 and T > 0 be given. There exist positive numbers η and
M such that for any u0 ∈ Hs

p(0, 2π) with ‖u0‖s ≤ η, the corresponding solution u
of the system (5.1) satisfies

sup
−T≤t≤T

‖u(t)‖s ≤M‖u0‖s.

If s = 0, 1 or s ≥ 2, then solutions of the system (5.1) have the following a priori
estimate:

sup
[−T,T ]

‖u(·, t)‖s ≤ ξ1(‖u0‖s, T )

where ξ1 : R+ × R+ → R+ is a nondecreasing continuous function (see [8]). Then
a standard argument gives us the following global result.

Corollary 5.2. Let s = 0, 1 or s ≥ 2 and T > 0 be given. Then for any u0 ∈
Hs
p(0, 2π), the system (5.1) has a unique solution u ∈ C([−T, T ];Hs

p(0, 2π)) which
is a restriction on [−T, T ] of a function ũ ∈ Xs.
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The second principal theorem concerns the continuity of the solution u with
respect to the initial state u and the relationship between solutions of (5.1) in
general (w.l.o.g. α = 1) and solutions of the linear equation ((5.1) with α = 0).

Theorem 5.2. Using the same notation as in the statement of Theorem 5.1, if
‖u‖s < r and T ′ < T (r), there is a neighborhood U of u0 in Hs

p(0, 2π) such that
if v0 ∈ U and [v0] = [u0], the solution v(t) corresponding to the initial state v0 is
defined for t ∈ [−T ′, T ′] and satisfies

sup
−T ′≤t≤T ′

‖v(t)− u(t)‖s ≤ β‖v0 − u0‖s,(5.22)

where β = β(r) > 0 depends only on r. Further, if

w(t) = WK(t)u0

is the solution of the corresponding linear system with the same initial state u0 with
‖u0‖s ≤ r, r sufficiently small, then

sup
−T (r)≤t≤T (r)

‖w(t)− u(t)‖s ≤ β̂‖u0‖2s,(5.23)

where β̂ = β̂(r) depends only on r.

Proof. The continuity of the solution u on the interval [−T (r), T (r)] obtained in
Theorem 5.1, together with examination of the proof of that theorem, allows us to
see that if instead of defining Γ on D as in (5.10), (5.20) we had instead defined Γ
on

D̂ =

{
v ∈ Xs ∩ C([−T (r), T (r)];Hs

p(0, 2π)); [v(·, t)] ≡ 0,

‖v‖Xs + sup
−T (r)≤t≤T (r)

‖v(·, t)‖s ≤ 2c‖u0‖s

}(5.24)

using

‖v1 − v2‖Xs + sup
−T (r)≤t≤T (r)

‖v1 − v2‖s ≡ ρ̂(v1, v2)

as the metric on D̂, we would have obtained the invariance of D̂ and the contraction
property of Γ on D̂ in much the same way as before. Taking U to be a sufficiently
small neighborhood of u0 and v0 ∈ U and defining a modified map Γ̃ just as in (5.10),
with u0 replaced by v0, and then replacing T (r) of Theorem 5.1 by T ′ < T (r), we

see for U sufficiently small that D̂ is invariant under both Γ and Γ̃ and there exists
a common contraction constant γ̂, 0 ≤ γ̂ < 1, applicable to both maps, i.e.,

ρ̂ (Γ(v1),Γ(v2)) < γ̂ρ̂(v1, v2), ρ̂
(

Γ̃(v1), Γ̃(v2)
)
< γ̂ρ̂(v1, v2),

for v1, v2 ∈ D̂. From the form of the first term on the right hand side of (5.5) it is

clear that, for given w ∈ D̂, there is a positive number β̃(r) such that

ρ̂
(

Γ(w), Γ̃(w)
)
≤ β̂(r)‖u0 − v0‖s.(5.25)

Let v be the fixed point of Γ̃; the standard proof of the contraction fixed point
theorem shows that for any v1 ∈ D̂ the sequence {vk | k ≤ 1} generated by vk+1 =
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Γ̃(vk), k = 1, 2, 3, ..., converges to v relative to the metric ρ̂, and we have

ρ̂(v, v1) ≤ 1

1− γ ρ̂(v2, v1).(5.26)

Taking v1 = u, (5.25) and (5.26) give

ρ̂(v, u) ≤ 1

1− γ ρ̂(Γ̃(u), u) =
1

1− γ ρ̂(Γ̃(u),Γ(u)) ≤ β̃(r)

1− γ ‖u0 − v0‖s.

As γ also depends only on r, we have (5.25) with β(r) = β̃(r)/(1− γ).

The result (5.23) is obtained in much the same way, except that we need only
refer to the map Γ as originally defined with respect to the interval [−T (r), T (r)],
but again using the metric ρ̂(u, v). We start the fixed point iteration with

v1(t) ≡WK(t)u0(5.27)

and note that, with the modified metric, the counterpart of (5.25) will yield

ρ̂ (Γ(v),WK(t)u0) ≤ cδε0‖v‖2Xs .

Then, from the definition of D̂, we have (with a different c)

ρ̂(v2, v1) = ρ̂ (Γ(v),WK(t)u0) ≤ cδε0‖u0‖2s.(5.28)

Then we obtain (5.26) and, taking (5.27),(5.28) into account,

ρ̂(v, w) ≤ c

1− γ δ
ε0‖u0‖2s,

from which (5.23) follows, and the proof is complete.
Finally, with regard to the application of these results to the proof of Theo-

rem 1.3, we note that since (cf. i), ii), iii) near the end of Section 4) the function

qK(t, u0) = u(t)−WK(t)u0

is, again from Theorem 5.1, continuous in Hs
p(0, 2π) as a function of t, we have the

first conclusion of i) as indicated. The second conclusion follows, after a continuity
argument, from ∫ 2π

0

v∂xvdx = 0.

Finally, condition ii) follows from (5.23) of Theorem 5.2, and condition iii) follows
from Corollary 5.1.
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