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ABSTRACT

In this article we examine the problems of boundary control and stabilization for a one-
dimensional wave equation with interior point masses. We show that singularities in waves
are “smoothed one order” as they cross a point mass. Thus in the case of one interior point
mass, with e.g., L2-Dirichlet control at the left end, the most general reachable space (from
0) which one can expect is L2 x H~! to the left of the mass and H' x L? to the right of
the mass. We show that this is in fact the optimal result (modulo certain compatibility
conditions). Several related results for both control and stabilization of such systems are
also given.
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1. INTRODUCTION AND MAIN RESULTS

In recent years there has been much interest in the topic of control and stabilization
of so called “hybrid systems” in which the dynamics of elastic systems and possibly rigid
structures are related through some form of coupling. To mention a few examples; see
[1] for serially connected beams, [8],[9],[10] for beams with end masses and [4],[12],[14] for
networks of strings and beams.

In this article we examine a simple model for an elastic string involving an interior point
mass. We obtain a precise description of the space of exact controllability when control is
active at one or both ends of the string and also describe the best possible stabilization
results via velocity feedback at one or both ends. We refer to [14] for a discussion on the
modelling and well-posedness of networks of strings containing in particular, point masses.
Approximate controllability results for these networks were announced in [13].

It will be convenient to regard the string-mass system as two separate strings in which
one end of each string is attached to a common point mass. Thus assume the first string
occupies ; = (—£;,0) C R and the second one 2, = (0,¢3) C R, where ¢; and ¢, are
positive.

For simplicity of the exposition we suppose both strings to be homogeneous. The defor-
mations of the first and second string will be described respectively by the functions

u=u(z,t), €, t>0
v=uv(z,t), € t>0.
The position of the mass (which is attached to the strings at the point z = 0) is described
by the function z = 2(t) for ¢ > 0.
To fix ideas we suppose that the strings satisfy Dirichlet boundary conditions at the end

points (z = —¥;,¢3). Then the equations modelling the dynamics of this system in the
absence of controls are as follows:

P1Uye = O1Ugy, r€, t>0

P2Vt = O9Uzy, €y, t>0
(1.1) Mzu(t) + o1uz(0,1) — 02v(0,t) =0, t>0
u(—41,t) = v(ly,t) =0, t>0
L u(0,t) = v(0,t) = 2(1), t > 0.

The constants p; > 0 and p; > 0 represent the density of each string and M > 0
represents the mass of the point mass. The tensions in each string are assumed positive
and denoted by o; and o3. If the only forces acting on the point mass are those of the
strings then o, = o3, however, if an external force is present (for example, gravity acting
along the x-axis) then the two tensions will be different.

Note that when M = 0, system (1.1) describes the motion of a string with a piecewise
constant wave speed.

Of course, in order to determine the solution of (1.1) in a unique way we have to add
some initial conditions at time ¢ = 0 that will be represented by

u(z,0) = u’(z), wu(z,0) =u!(z), T €y
(1.2) v(z,0) = v%(z), wvi(z,0)=0l(2), z € Qy
2(0) = 2%, z/(0) = 2%,
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As usual, depending on the regularity properties and the compatibility conditions these
initial data satisfy, we may expect a different degree of regularity of solutions.
Let us introduce the energy

0
1 M
Eu(t) = / [prlude, O + orlus(z, )P} d + 3 |z
~t
17
+3 /[p2|vt(:c,t)|2 + oalva (2, 8)|?)da.

0

(1.3)

In the absence of controls, i.e. for solutions of (1.1), this energy is constant in time.

We are interested in the controllability properties of this system when control is active
at one or both of the end points of the string-mass system. We will discuss these control
problems from two different point of views. One of which consists of finding suitable
observability estimates and then applying HUM (cf. J.L. Lions [6], [7]) and the other one
is based on the use of nonharmonic Fourier series and moment problems (cf. D.L. Russell

[11]).

We will see that the presence of the point mass introduces some important changes on
the behavior of the system with respect to the observability properties.

Let us recall what one has concerning the observability of (1.1) in the absence of the
mass (i.e. when M = 0):

() HT > 4 \/—fl: + Ez\/{j_f there exists C(T) > 0 such that
T
(1.4) Eo(0) <C [[lus(~1,0 + [ox(la, )Pl
0
(b) ET > 2 (el \/g_x s \/;Z) there exists C(T') > 0 such that

T
(1.5) Eo(0) < C/|vz(€2,t)|2dt

We will see that an estimate of the form (1.4) holds for any M > 0 but only if T >
2 max (Kh /f’;,ﬁg, /{%) Thus when controlling at both extremes z = —£;, £, we will get
the analogue of the results one can prove for two serially connected strings without the

point mass but only for 7" > 2 max (@1 \/g, 4, \/;Ez)

However, concerning the observability inequality (1.5) the situation is completely differ-
ent when M > 0. By an explicit computation (see Proposition 2.5) one sees that when a
wave starting from initial data

u® = ¢° € Hi (), v =0
u' = ¢! € L), vl =0

22=2'=0



crosses the point mass, part of the wave is reflected off the point mass and part is trans-
mitted. The part which is reflected keeps the same regularity as the initial data but the
part that crosses the mass is regularized by one degree (i.e. v(+,t) € H2(Q,) for all ¢ > 0).
Of course this is a phenomena due to the presence of the mass that does not occur when
M =0.

This phenomena explains why, if we want to observe the initial energy of the solution
(in this case the H!-norm of ¢) we need an estimate on vz:(¢,t) in L?(0,T) and not only
on vy (£s,1).

When M >Q0and T > 2 (Kl {f’; + 49, /ff ’ we are able to prove that

T
(1.6) Em(0) + {[vaz(- 0)l1720,) + llvze(, 0)[Z2¢0,) < C/]vx,(fz,t)ﬁdt
0

and this inequality is sharp in the sense that the reverse one holds for all T > 0.

As a consequence of (1.6) we deduce that when controlling from only the end z = £,
with L2(0,T) controls, the controllability is achieved in a space which is smaller than the
usual one (the one we have for M = 0) since the components corresponding to the first
string are of one more degree of regularity. The well-posedness of the system (1.1) in this
asymmetric space is due to the presence of the point mass and does not hold when M = 0.

It is also interesting to understand this phenomena from the point of view of nonharmonic
Fourier series. Let us consider, for simplicity, the case py = ps =€, =€y = 0y = 09 = 1.
By a careful study of the spectrum of the elliptic operator involved in system (1.1) we can
see that v,(#3,t) is given by the nonharmonic Fourier series

(17) v,,-(l,t) = z (akeik"t + bkeiwkt)

k=—o00

where a;, and b are complex numbers related to the Fourier coefficients of the initial data
and iwy is a sequence of eigenvalues such that

(1.8) {|wk—k7r|-—>0ask—>oo

wi £ kn,Vk € L.
When M = 0 this second sequence of eigenvalues is wx = k7 + 5 and v.(1,1) is given by
a (harmonic) Fourier series of the form v,(1,t) = 3 age’™* 4 bei(mk+m/2)t,

In terms of (1.7) the inequality (1.5) (that we already know does not hold when M > 0)
would be equivalent to

T
(1.9) Z [ar|® + |5 |?] < C/ lvz(1,8)|%dt.
k=—o0 0

However all results concerning inequality (1.9) for nonharmonic Fourier series existing in
the literature require an asymptotic spectral gap (cf. [2],[3] and [16]) that, in view of (1.8),
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does not hold in our case. Instead, of (1.9), employing a result of D. Ullrich [15] we get
the following weaker version of (1.9)

oo

T
(1.10) Z [|ak + bk|2 + (wk — k7r)2|ak — bklz] < C/ Ivz(l,t)|2dt
0

k=—o00

which holds for T' > 4, and is just the Fourier version of the observability inequality (1.6).
When controlling at both extremes £ = —¥¢;,42 but with

(1.11) b Bty [P < T <omax (e, /22 0, |22
o1 03 o1 g3

(which is only possible if £14/p1/01 # €2/p2/02) we again obtain, as above, an asymmet-
ric controllability space since the solution components corresponding the string with the
longest propagation time has one more degree of regularity over a portion of that string.
Thus we also obtain controls with different regularities, namely, the control on the side of
the mass with the smoother solution belongs to Hi(0,T) and the control at the other end
belongs to L?(0,T).

Therefore, even if we control at both ends this new phenomena appears in which the
controllability space is asymmetric when T satisfies (1.11).

We will also discuss briefly the stabilization problem concernings two different situations.
First we prove that by introducing boundary damping at both extremes ¢ = —£;,4,
the energy of solutions decays exponentially uniformly. Moreover trajectories converge
exponentially to a constant equilibrium that can be determined in terms of the initial
data. We then consider the case where the boundary damping acts only at one extreme
point. In this case the energy of every solution converges to zero but there is not a uniform
exponential decay since a sequence of eigenvalues of the system approaches the imaginary
axis. This phenomena is similar to that founded by B. Lee and Y.C. You [5] and W.
Littman and L. Markus [10] when studying the stability properties of strings and beams
damped at one extreme through a point mass.

This paper will be devoted to the particular case of two homogeneous strings with a
point mass but the techniques and ideas involved in it are rather general and may be used
to discuss non-homogeneous strings, other boundary conditions at the extremes, other
dynamics at the point mass and also other situations where more than two strings and one
mass are present. A more detailed discussion of some of these extensions will be given in
the last section.

The rest of the paper is organized as follows. In section 2 we give some preliminary results
concerning the existence, regularity and uniqueness of solutions of both the uncontrolled
and the controlled system. In section 3 we examine the controllability problem for the case
where the control acts at both extremes. In section 4, by using energy methods, we prove
estimate (1.7) and its consequence concerning controllability. In section 5 we carefully
analyze the problem of controlling from only one extreme by means of moment problems
and nonharmonic Fourier series. In particular we discuss and prove inequality (1.10). In
section 6 we discuss the boundary-stabilization problem. Finally, in section 7, we give
some extension of our main results.



Throughout this paper C will denote a positive constant that may vary from line to line.
We will only make explicit the dependence of these constants with respect to the various
parameters of the problem when this becomes necessary.

2. EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS

In this section we give some preliminary results concerning the existence, uniqueness
and regularity of solutions. First we consider the system (1.1) without controls and then
the case of non-homogeneous boundary conditions.

2.1. Homogeneous boundary conditions. Let us introduce the vector spaces

91 ={p € H'(): p(—1) = 0}
192 ={¢ € H' () : ¢(£2) = 0}
= {(p, %) € 91 x 92 : p(0) = ¥(0)}

endowed with the norms

loll3, = / oa(a)2de, =12

(e, I3 = ||99l|191 + 1115,

Note that the space ¥ is algebraically and topologically equivalent to Hj (—¢;,£;). However
since we are considering a system made of two different strings it is convenient to think of
J as a subspace of ¥; x 5.

Let us also consider the following closed subspace of ¥ x R:

Wi = {(¢,%,2) €9 x R: (0) = %(0) = 2},
which 1s continuously and compactly embedded in the space
Wy = L*(Q;) x L*(Q,) x R.

Define the Hilbert space H by
H= W1 X W()

with the product topology. In terms of the vector-valued function
Yy = (u,v,z,d,'[),z')t

(the superscript ! denotes transposition), we may define an unbounded operator A on H
by
2 2 0 0
0 I P1
Ay = ( ) y; A= 0 %fd2 0

A0 3 v
TLdsy =22ds 0



where d denotes the (distributional) derivative operator and §, denotes the Dirac delta
function with mass at = 0. The domain of A is given by

DA)={y € H:u e H*(Q),v € H (D), (u,,%) € W1 }.
When D(A) is endowed with the graph-norm topology

llylloeay = {llyll3 + [MAyll5} /2

it becomes a Hilbert space with continuous and compact embedding in H.
System (1.1)-(1.2) can be written as
dy

(2.1) pr = Ay, y(0) = y° = (u%,0°,2°%, ul, 0!, 21)"

It is easy to see that A is skew-adjoint and m-dissipative on H and therefore generates
a strongly continuous group of isometries on . Therefore we have the following existence
and uniqueness result for (1.1)—(1.2):

PROPOSITION 2.1. (i) For every y° = (u%1%,2% ul,v!,2')* € K there exists a unique
solution of (1.1)-(1.2) in the class

(2.2) (u,v,2) € C([0, T); Wi ) N C'([0, T); Wy).

Furthermore, the energy FEjs remains constant along this solution trajectory.
(ii) If y° € D(A) then the corresponding solution has the following additional regularity

u € C([0,T]; H*(Q1) N C([0,T); H ()
{ v € C([0,T); H*(Q22) N C([0, T]; H'(€22).

Let us denote those solutions satisfying (2.2) by finite-energy solutions.
We can also prove the following regularity result for finite-energy solutions:

(2.3)

PROPOSITION 2.2. For every T > 0 there exists some constant C(T) > 0 such that the
following inequality holds for every finite-energy solution:

T
(2.4) / [uta(—L1,8)° + [02(C2, £) P}t < CEne(0).

PROOF: It is well known by now (cf. [7]) that this estimate is of local nature. Therefore
does not depend at all on whether or not there is a point mass on the string. However we
have to use the conservation of the energy Ep(t) in (1.3) to obtain the upper bound in
terms of the initial energy. i

It is also convenient to consider system (1.1) in the presence of some external distributed
force:

(pruge = o1z + f(z,1), €0, 0<t<T

P2V = 0205z + g(z, 1), €8, 0<t<T
(2.5) ¢ Mzy(t) + o1ug(0,t) — o2v,(0,t) = A(2), 0<t<T
u(0,t) = v(0,t) = z(), 0<t<T
u(—41,t) = v(la,t) =0, 0<t<T.

By standard semigroup methods we get:



PROPOSITION 2.3. For every y° € ¥ and (f,g,h) € L1(0,T;W,) there exists a unique
finite-energy solution of (2.5), (1.2) in the class (2.2). Moreover, there exists a constant
C > 0 such that

T

[ Qa8 + boa (62, OF ] e < © [15°1Be + 1 P inocay

(2.6) J

+llgllro ey + 1Bl om)
We will also need the following result:

PROPOSITION 2.4. Suppose that y® = 0 and
OF oG dH
=% =% "“a
where (F,G,H) € L*(0,T;W;). Then the solution (u,v, z) of (2.5), (1.2) is such that
(u,v,2) = (U, Vo, Z4)
with
(U,V,2,Us, Vi, Z1)* € C([0,T); D(A))
and therefore, in particular,
(u,v,2) € C([0,T]; W1)
(2.7) (ug,ve,2¢) € C([0,T]; Wo) + LY(0,T; W)
(U, V) € C([0,T); H2(21) x H%(Q2))
Moreover, there exists a constant C' > 0 such that
T

29) [0, 0P + foa @, 0PI < CICE, G, H o s
0
PRrROOF: We have (u,v,2) = (U, Vi, Z;) where (U,V, Z) is the solution of (2.5), (1.2) with
zero initial data and (f,¢,h) = (F,G, H). We have
(U) V, Za Uta lfta Zi)t € C([O7 T]a D(‘A))

and therefore (2.7) holds.
The regularity property (2.8) is more subtle and can be proved proceeding as in [7]
Chapter I, Th. 4.2, p. 46. I

Let us now study the regularity of solutions where the initial data belong to a space
where the regularity is not the same in each of the strings. More precisely, let us consider
initial data

)

(2.9) y' €
such that
(2.10) u’ € B (), u'edr, ul(0)=2z"

Of course, (2.9)-(2.10) do not imply that y° € D(A) and therefore we cannot apply the
regularity Proposition 2.1 (ii) provides. However, we can prove the following result.
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PROPOSITION 2.5. Suppose that the initial data y° satisfies (2.9)-(2.10). Then the solu-
tion of (1.1)-(1.2) is such that, in addition to (2.2), we have '

(2.11) u € C([0, T); H*(Qy) N CY((0, T; 6.
Moreover, there exists C > 0 such that
(2.12) Hu||2L°°(0,T;H2(Ql) + ||Ut“2L°°(o,T;ol) < C[Em(0) + “u0||2m(91) + |l |13,]

for every solution with initial data satisfying (2.9)-(2.10).

PROOF: It is sufficient to prove the existence of some 7 > 0 and C > 0 such that (2.11) and
(2.12) hold in the time interval [0,7]. By scaling the spatial variable in ©; and changing
the time scale we may assume £; = 1 and in the wave equation u satisfies, that p; = o; = 1.
Likewise, by changing the length of the second string we may assume p; = 02 = 1 in the
wave equation v satisfies. However the conditions at the point mass change and we are
lead to consider the following system:

( Ut = Uzz, -l1<z <0, 0<t<T
Vit = VUgg, O<z<dd O0O0<t<T
¢ mzy(t) + ug(0,t) — yv.(0,t) =0, 0<t<T
u(—1,t) = v(¢4,t) =0, 0<t<T
C u(0,t) = v(0,1) = z(2), 0<t<T

with v > 0 and m > 0, £ being the length of the second string.

t

A

R1 RZ

Figure 1

The value of © and v in the region
Ry ={(z,t) € (-1,0) x (0,1) : t < —z}

and

Ry; = {(z,t) € (0,€) x (0,£) : t < z}

10



respectively do not depend on the point mass because of the finite speed of propagation
(see Figure 1).
Therefore, in R; and R,, u and v remain as smooth as in the absence of mass. In par-

ticular » € C([0, 1]; H2(Ry(¢)) NC([0,1]); H!(R,(t))) where Ry(t) = (—1, —t). Moreover

ul|pee 0,152 (Ry (1)) + [uellLoo (0,181 (R o)) < C [Hel[la2(=1,0y + [ |2 (=1,0)] -

Let us compute now u and v in S; and S, respectively where

$i={(z1)e (—g,o) X (0,1) : 12t — pu| < p+ 22 }

Sp = {(x,t) € (O,g) x (0,p) |2t — | < u—2az}

with g = min(¢,1) (¢ = 1 in figure 1).
We have from D’Alembert’s formula

t+z
(213)  u(a,t) = %[z(t — )+ 2t +2)] + -;- / ug(0,8)ds  in S

t—z

t+z
(2.14) v(z,t) = %[z(t —z)+2(t+ )]+ % / [uz(0,5) + m2"(s)]dz in S,.

Likewise for (z,t) in Sy and S;, u and v, respectively, are given in terms of the initial data
by D’Alembert’s formula. By Proposition 2.1 we know that the solution is continuous,
in particular, along the rays t = |z|, (—=p/2 < £ < p/2). Imposing continuity in the
expressions for v and v along these rays leads to

(2.15) ) + T o) = 2 4 L) £4RE), #(0) =
and

(2.16) ug(0,t) = z4(t) + ud(—t) — u'(—t)

where

(2.17) L(t) = u°(t) — /ul(s)ds; R(t) = v°(t) + /vl(s)ds.

From the conditions the initial data satisfy we deduce from (2.17) that L and R belong
to H¥(0,u). It thus follows from (2.15) that z = 2(t) belongs to H2(0, ). Then, from
(2.10) and (2.16) we deduce that u,(0,t) € H(0, n).

Now, from (2.13) we easily deduce that

(2.18) ueC ([0, g] ;12 (~t,0)) nc* (o, %] JHY(~t,0))

11



Finally, it is easy to check that the expressions we have for v in R; (as solution of the
wave equation) and in S; (by (2.13)) are such that u, and u, are continuous across ¢ = —t.
This concludes the proof of the proposition. il

REMARK 2.5: It is obvious from the proof of this Proposition that we cannot replace in
the hypothesis (2.10) and in the conclusions (2.11)—(2.12) the space H?(—1,0) x H!(-1,0)
by any H*(—1,0) x H*"!(-1,0) with s > 2. In other words, the most extra regularity
degree we may keep in one of the strings is one.

2.2. Non-homogeneous boundary data. In this section we prove the existence and
uniqueness of weak solutions when we introduce L?(0, T')-Dirichlet controls at the extreme
points ¢ = —#1,4,.

Let us consider the system

( P1ULt = O1Uzz, ze, 0<t<T
P2Vt = O2Vzg, €N, 0<t<T
Mzyu(t) + o1u.(0,t) — 02v,(0,t) =0, 0<t<T
u(0,t) = v(0,1) = 2(¢), 0<t<T

(2.19) $ u(—£1,t) = p(t), 0<t<T

v(lz,t) = ¢(1), 0<t<T
u(z,0) = u(z), wus(z,0)=ul(z), rey
v(z,0) = v°(z), wvi(z,0)=(z), z €

L 2(0) =20,  2,(0) = 2.

with p,q € L?(0,T), u® € L?(Q;), v* € L?(Q,), the initial velocity u! and v! belonging
respectively to the dual spaces ¥} and 9} and 2%, 2! € R.

The solution (u, v, z) of (2.19) has to be understood in the sense of transposition. Let
us give its precise definition. For that, consider the following system with homogeneous
boundary conditions:

(P11 = O1Pzz + f zeQ, 0<t<T
P2y = 02¥zs + g T €Ny, 0<t<T
MCu(t) + 0102(0,8) — 029,(0,8) = h(t) 0<t<T
o(—01,t) = (L2, 1) =0 0<t<T

(2.20) < ©(0,1) = (0,1) = {(¢) 0<t<T

(2, T) = pi(2,T) =0 z €
P(z,T) = (2, T) =0 z € Q

L C(T) = ¢(T) =0.

For every (f,g,h) € L*Y(0,T;Wy) in view of the time-reversibility of the system and as
a consequence of Proposition 2.3, system (2.20) has a unique solution

{ (v, 9,¢) € C([0,T); Wy)
(w1, %1,¢e) € C([0,T); Wo)

12
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satisfying

T
(2.22) /[ oz (€1, )12 + [z (€2, 1)*)dt < CII(f, 9, WL (0, 75w0)-
0

Multiplying by ¢ and 9 in the eql‘lations satisfied by v and v in (2.19) and integrating
formally by parts with respect to ¢ and ¢t we obtain the following identity:

/ / ufdzdt + / / vgdzdt + / zhdt = / u®pi(z,0)dz

0 —£ -6
(223) — P2 /v0¢i($a0)dx + P1 (Ul,‘P(',O))Ql +p2<vl’¢('70))92

0
T

T
+ou [ ptyor(—ta )it = o [ ettty + m26(0) - M2(0).

We adopt this identity as the definition for weak solutions of (2.19) in the sense of
transposition, i.e. (u,v, z) is said to be weak solution of (2.19) (in the sense of transposition)
if (2.23) holds for every (f,g,h) € L1(0,T; Wy).

In (2.23) observe that the initial velocities (u',v!,2') are applied (in the sense of the
duality in W) to the elements (¢(:,0),%(+,0),((0)) of W;. Therefore two initial data that
coincide in Wy x W] (note that W] is a quotient space of (J; x J2 x R)") give rise to the
same solution.

We have the following result.

PROPOSITION 2.6. For every p,q € L?(0,T), (u%,v%) € L?2(Q) x LY(Qy), (u!,v!) € (¥} x
9%) and 2%, 2! € R there exists a solution (in the sense of transposition) of (2.19) in the
class

(2.24) (u,v,z) € C([0,T]; Wy)
(2.25) (ug, v, 21) € CH([0,T]; 9] x 95 x R).

Moreover, there is a one-to-one correspondence between the initial data as elements of the
quotient space Wy x W{ and the solutions of (2.19) in the class (2.24)—(2.25).

PROOF: In view of Proposition 2.3, the right hand side of (2.23) defines a linear and
continuous form on (f, g, k) € L*(0,T; Wy). Therefore, there exists a unique

(2.26) (u,v,z) € L*(0,T; Wy)
satisfying (2.23). Furthermore, there exists C' > 0 such that

1w, v, 2)|| 0. 7:w0) < C {llpllL20.y + gl 20,1 + 11w’ 22000+

(2.27)
+ 1[0 p2gaq) + 1wt llog + 110 log + 12° + 2]} .
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When the data are smooth, the solution of (2.19) satisfies (2.24). By a density argument
using (2.27), we deduce that (2.24) holds for our weak solution.

Suppose now that
OF 0G dH )

(fag)h) = (_5{’"5{7?

with (F,G,H) € D((0,T); W;) (C* and compactly supported with respect to time). In
this case the solution of (2.20) can be written as

0% 0¥ dT
(p,¥,¢) = (E’ T E)
where (@, ¥, %) is the solution of (2.20) with data (F, G, H) instead of (f, g, h).

In view of Proposition 2.4 we have

(2.28) lloz(—L1, )20,y + [1¥2(L2, )20, 1) + |l0(+, 0)[lo, + [1¥(-, 0)l]s, + [C(0)]
< C|I(F, G, H)ll 13 0.1.w-
On the other hand
pree(z,0) = p1®u(z,0) = 019:.(x,0) + F(z,0) = 01 8,.(z,0) € L} ()
pathi(z,0) = pa¥s(z,0) = 02¥,.(z,0) + G(z,0) = 09¥,.(z,0) € L*(Qy)
M¢(0) = MZ4(0) = —02$,(0,0) + 0,9.(0,0) € R
with the bound
(2.29) 4+ 0), e+ 0), GOl e < CIICE, G H) |1 ormiwwe)-
As a consequence of (2.28)—(2.29) we deduce that
(u,v,2) € WH°(0,T;(9,) x (92) x R).
The continuity in time of (uy, vy, 2z¢) with values in (¥;)' x (9;)" x R can be proved again
by density.
Let us finally consider these weak solutions when the initial and boundary data corre-
sponding to the first string have one more degree of regularity, i.e.

(230)  pe HY(0,T), u° € H'(—6:,0), ul € L¥(%,), u9(0) = 2°, p(0) = u(~4y).
We have the following result.

PROPOSITION 2.7. Suppose that the initial and boundary data in Proposition 2.6 satisfy
the further regularity and compatibility conditions (2.30). Then, in addition to (2.24)-
(2.25) we have

(2.31) u € C([0,T); H'(Q1)) N CY([0,T); L*(Q4)).
Furthermore, u,(—¢;,t) € L?*(0,T) and there exists some C > 0 such that

T
(232) / fus(—1,8) 2dt < C |llal 3207y + 1P o2 + 116 sy + 116 Baayy+
’ 0

w20, + 110 175,y +12°12 + 121

PRrROOF: The proof of (2.31) is very similar to that of Proposition 2.5. As we pointed out
in Proposition 2.2, estimate (2.32) is of local nature and holds from (2.31). I
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3. CONTROL AT BOTH EXTREMES

In this section we consider the problem of controlling our system from only both ends
z = —¥¢1,45. The system reads now:

( P1Utt = O1Uzg, z€e, 0<t<T
p2Vtt = O2Vzz, ref, 0<t<T
Mzyu(t) + o1uz(0,t) — 02v,(0,t) =0, 0<t<T
u(—£1,t) = p(t), 0<t<T

(3.1) < v(fy,t) = q(t), 0<t<T

u(0,t) = v(0,1) = 2(¢), 0<t<T
u(z,0) = u%(z), w(z,0)=ul(z), T €y
v(z,0) =v%(z), wv(z,0)=v(z), T €y

( 2(0) = 2%, 2(0) = 2'.

We have the following results.

THEOREM 3.1. Suppose that T > 2 max (El1 /‘3’;,32, /% ). Then, for every

(u®,2°,2°%) € W,
(3.2) { (ul,vl,2Y) € (9;) x (¥92) xR

there exist controls p,q € L?(0,T) such that the solution of (3.1) satisfies

wz,T) =u(z,T)=0, z€
(3.3) v(z,T) = vz, T)=0, z€Q
2(T) = 2(T) = 0.

REMARK 3.1: Concerning Thoerem 3.1 we have the following:

(1) As a consequence of Proposition 2.6 the solution of (3.1) (which is defined by trans-
position) satisfies (2.24)—(2.25).

(2) Due to the linearity and time-reversibility of system (3.1), we deduce that for any
initial data as in (3.2) and final data (a°,%°,2°,4',9",2') satisfying the same properties
there exist controls p,q € L%(0,T) such that the solution of (3.1) satisfies

u(z,T) = 4%z), wuz,T)=1a'(z), ze€
(3.4) v(z,T) = 8%z), vz, T) =12 z), €
2(T) =2 2(T)=7"

(3) The controllability space (3.2) is that same as what one obtains when M = 0, however

the control time is strictly larger when £1+/p1 /01 # €21/ p2/02.
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THEOREM 3.2. Suppose that T > £, /51; + €3 /£% and for instance, 41, /% > £, /%,

o3
Then, for every initial data as in (3.2) satisfying the additional regularity and compatibility
properties

(3.5) u® € 9, u! € L*(Qy), u°(0) = 2°

there exist controls p € H}(0,T) and q € L?>(0,T) such that the solution of (3.1) satisfies

(3.3).

REMARK 3.2: Concerning Theorem 3.2 we have the following:

(1) In addition to satisfying (2.24)-(2.25), by Proposition 2.7, the solution of (3.1) also
satisfies (2.31).

(2) Due to the linearity, time-reversibility and well-posedness of the system in the (asym-
metric) space (3.2),(3.5), as a consequence of Theorem 3.2, we deduce that we can drive
system (3.1) from any initial state in the class (3.2),(3.5) to any terminal state in the same
class.

(3) The control time we obtain is the same as in the absence of the mass (M = 0). How-

ever we only get controllability in the usual space (3.2) when T > 2 max (21, B8y /22 ).

The proof of Theorem 3.2 will be given at the end of section 4.
Applying Lions’ HUM (cf. [6],[7]) Theorem 3.1 is a direct consequence of the following
observability result for solution of the uncontrolled problem:

( P1Ptt = O1Pzz z€eQy, 0<t<T

p2¥it = 02Yzs T€QN,, O0<t<T
(3.6) { MCu(t) + o19:(0,t) — 029,(0,1) =0 0<t<T
o(—£1,t) = ¥(le,t) =0 0<t<T
 (0,8) = 9(0,t) = ¢(¢) 0<t<T

PROPOSITION 3.3. Let Ty = 2max (311 /f’;,@z, /5—% , and suppose that T > T,. Then

max (41, 42) M
2 2(p1 + p2)

T
) [lilon-1,00 +oalual, 0P

0

(3.7) (T —To)Em(0) < (

for every finite-energy solution of (3.6).

PROOF OF PROPOSITION 3.3: We proceed in several steps.
Step 1. Consider the z-dependent energy:

1T—($+31)"'1
68 a@=5 [ lak@dEalEnPla —6<a<o
(z+€)m1
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where 71 = /p1/01. It is easy to check that e;(-) is non-increasing. Thus

(3.9) ei(z) <e(—4) = % / lpe(—£1,t)?dt, —£, <z <O.
Step 2. Consider
1 T—(t;—l)Tz
(3.10) exz) = 5 [p2lpe(z, 1) + oalpz(2,8)[*] dt, 0<z <t
2
(82—1)1'2

where 75 = y/(p2/02). This energy is non-decreasing and therefore

(3.11) ex(x) < ea(tr) = / (s, O)2dt, 0 <z <y

Step 3. From (3.9), (3.11) we deduce in particular that
T—p 0 T—p €,
[ [ lolerte o) + orlente ) dedt | / [palibe(, 2 + oaltra(2, )[?] dedt
o =4

u
T

< max(ts, &) [ [oalpa(~t1, O +oala(la, )]
0

where p = max (71141, 72€2).
Moreover, since <p(0 t) = ¥(0,t) = ((t), we have

M / P <MD 220y | L

1 +P2

T

M
/ o1lon(—1, 1) + o2 l4bs (1, )2)dt
0

P1+p2

Thus

T—p
(T — 21) Ers (0) = / Ea(t)dt

I

(€1,0) M t
max(ty, L2 9 B ) ,
S< 2 2<p1+p2>) / (7% (~E0 D + 0l (la, ). W

REMARK 3.3: (1) Inequality (3.7) provides explicit constants. In particular, we have
explicitly the dependence of the observability constant with respect to the mass. As
M — 0 we obtain the usual constant one has for a wave equation with piecewise constant
coeflicients.

(2) The reverse inequality of (3.7) has been proved in Proposition 2.2.
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4. CONTROL AT ONE EXTREME

In this section we consider the problem of controlling our system from only one extreme-
point, for instance, z = £3. The system reads now:

( P1Utt = O1Ugg, €, 0<t<T
P2Vt = O2Vzq, €N, 0<t<T
Mzy(t) + o1uz(0,t) — o2v:(0,t) =0, O0<t<T
u(0,t) = v(0,t) = 2(¢), 0<t<T

(4.1) ¢ u(—41,1) =0, 0<t<T

v(a,t) = ¢(t), 0<t<T
u(z,0) = u(z), wu(z,0)=u'(z), z €
v(z,0) =v%(z), wvi(z,0) =0 (z), z €y

( 2(0) = 2%, 2(0) = 2%

We have the following result.
THEOREM 4.1. Suppose that T > 2 (Zl, [£ + £y, /ﬁ) Then, for every

(u,ul) € 9; x L)

(4.2) (v, v1) € LE(Q2) x (92)
(2°,2') € R?,

such that

(4.3) u°(0) = 2°

there exists a control function ¢ € L*(0,T) such that the solution of (4.1) satisfies (3.3).

REMARK 4.1: (1) As a consequence of Proposition 2.6 the solution of (4.1) satisfies (2.24)-
(2.25). Furthermore, by Proposition 2.7, it also satisfies (2.31).

(2) Due to the linearity, time-reversibility and well-posedness of the system in the (asym-
metric) space (4.2)—(4.3), as a consequence of Theorem 4.1, we deduce that we can drive
system (4.1) from any initial state to any final state in the class (4.2)-(4.3).

(3) The control time we obtain is the same as for the case M = 0. However, notice that,
when M = 0, the controllable space is larger and is given by (3.2). The controllable space
we obtain for M > 0 is the optimal one.

By HUM, Theorem 4.1 is equivalent to the following observability result for the solutions
of the uncontrolled problem (3.6).

PROPOSITION 4.2. Suppose that T > 2 (El,/% + £, /{:—5) Then, there exists C =
C(T) > 0 such that the following holds for every finite-energy solution of (3.6):

1G5 OIF 20,y + e OIEa,y + (- 0[5, + Hebe( OIZ2(qn)
T
4.4
“4 +1¢(0)1* + 16 (0)]* < C/Izbz(fz,t)lzdt-
0
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REMARK 4.2: This inequality is sharp in the sense that, as pointed out in Proposition 2.7,
the reverse one holds for all T > 0. As a consequence of this double inequality we deduce
that the controllable space (4.2)-(4.3) is the optimal one.

PROOF: However, first note that by rescaling the spatial variables and renaming the den-
sities p; and p, we can obtain the system (4.1) with £; = ¢, = 1. Thus it will suffice to
prove Proposition 4.2 for the case Q; = (—1,0) and Q, = (0,1).

We proceed in several steps.
Step 1. Consider the space-dependent energy e;(:) defined in (3.10). Since it is non-
decreasing we have

T
a(e) S V)= 2 [P 0<a<l.
0

This implies, in particular, that

T—19 1 T

(4.5) / /[p2|¢t(m,t)|2+02|¢z(:c,t)|2] d:cdtgaz/|z/)z(1,t)|2dt,
T2 0 0

where 7 = 1/p2/0s. Taking into account that #(1,t) = 0 for , < ¢t < T — 7 from
Poincaré’s inequality and (4.5) we deduce that

T—1, T
/ [(0,¢)|*dt < C/sz(l,t)!zdt
T2 0

and therefore, since (0,t) = ¥(0,t) = ((t),

T—T2

T
(4.6) [ U8 + kP ae < [,

T2

On the other hand, since e3(0) < e2(1) we have

T—1o

T
(4.7) / [ p211¢(0,1)1* + o2 11h2(0,)|?] dt < o / b= (1,1)|*dt

T2

and therefore, since ((t) = (0, 1),

T—1y T
(4.8) / palCu(t)dt < o / a1, )2t
Ty 0
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Furthermore, since o1¢:(0,t) = —M(u(t) + 02%:(0,t), in view of (4.7)—-(4.8) we have

T
(4.9) o2 (0, )sry oy < C / a1, ) 2dt.
0

Step 2. As a consequence of (4.6) and (4.9) we have

T
(4.10) 1000, 132 (ry Tmrg) + 102 (0, )1 Fr=1 (ry Ty < C/ |2 (1,¢)]%dt.
0

The well-posedness of the wave equation satisfied by ¢ in the z-variable allows us to
prove that (see [17],[18] for details)

0 T—rma+112
@iy [ [ letenPdide <0 [le( Dk + 10O s ]

-1 T2—T1 T

where 7, = /p1/01. Combining (4.10) and (4.11) we deduce that

T—(r2+7m) 0 T
(4.12) / / lo(z, 8)[2dzdt < C / o2 (1, 8)[2dt.
T2+71 1 0

Step 3. Set u =7, + 72 and let € > 0 be so that
(4.13) T—2c>2u
and n = n(t) € C*(u, T — p) such that

0<n(t)<1, p<t<T—up

n(p) =n(t—p)=0
nt)=1, p+e<t<T—-—p—c¢

L'%E € Lo(p, T — )

(4.14)

Let us introduce the function ¢ = ¢(z,t) such that

—d: =, —-l<zx<0, <t<L<T-
(4.15) { ¢ © T p

¢(—1,t) = ¢,(0,) =0, p<t<T—p

We have

(416) - /sou(:v,t)qﬁ(w,t)dw = /IsO(:v,t)l?‘d:C —#2(0,)¢(0,2), p<t<T—p

-1
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and
0 0
@17) [ edetbule,ds = [1bule,Pdn = ol D0y, wSEST
-1 —

We multiply by ¢n the equation satisfied by ¢ and integrate in the region (z,t) €
Q1 x (p, T — ) to get, in view of (4.16)—(4.17),

T—p ©r o T—p 0
o [ e ol == [ [ewndzitrar [ [ioPndsi
i -1 u -1

(4.18) .

¢z(0,t)¢(0,)n(t)dt.

7 t\.?

On the other hand

T—p 0 n

T—
1 t
@19) | [ [osnded) <3 [ o0l nwd+ / joc 01, Ed
p -1 "
Note that
(4200 16GBllo, = leC-Dller < ClleDlzzay, <t<T—p

Combining (4.18)—(4.20) we deduce that

T—p 0

(4.21) / e t)!l.yn(t)dtwl{ / / $Pdzdt + oy

Since 01¢:(0,t) = 021.(0,t) — M (t), we have

T—p

/ 2(0,8)8(0, (1)t

"

} |

T—u

o / 02(0, (0, )n(t)dt = o3 / 20, £)6(0, )n(t)dt

(4.22) g !

T—p
- M / Cut(t) (0, t)n(t)dt.

m
On the other hand

(4.23) / Ca(£)$(0, (1) dt = / C(£)64(0, )n(t)dt — / C(B)B(0, E)me(t)dt
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Now, observe that

1:(0,) < Cllge(-D)lloy < Clle()llo; w<tST —p

Therefore, there exists C > 0 such that

T—un 1 T—p T—p
(424) | csonwal <3 [lecolnodc [iaora

© u n
Moreover

180, 1) < Cllé(-, t)llo, < Clle(- )| z2(-1,0)

and thus

T—p T—p 0 T—p
(4.25) Co(£)$(0, t)n,dt gc{ ldzdt + |§t(t)|2dt}

/ [ [rees ]
and

T—u 0 T—n
gc{ / /cpzda:dt-}- / |¢,(o,t)|2dt}.

p -1

T—p
(4.26) ' [ 00,0900,

Combining (4.21)-(4.26) with € > 0 small enough we deduce that
T-p—¢ T—p

[ leaides [ e ol

ute M
(4.27) Vo

T— T—pn
<c{ / / SAdedi + / [|<t<t)|2+1¢z<o,t>|21dt}.

n

Step 4. As a consequence of (4.5), (4.6), (4.8), (4.12) and (4.27) we have

T—p—cef 0 1
/ [/ipzdiv-l-“%ot('at)”?gfl + /[|¢z|2+|¢t|2] dz+lC(t)lz+lct(t)|2} di

(4.28)  *Te ! °

T
<C [ |[9z(1,1)]2dt.
/

Recall that, in virtue of Proposition 2.7, system (3.6) is well-posed in the space

80€L2(—1,0), Pt 61911
Y € Vs, % € L*(0,1)
Ca(t € R
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with compatibility condition
$(0) = ¢.
Therefore, (4.4) is an immediate consequence of (4.28) and the time-reversibility of system
(3.6). 1
We are now in a position to prove Theorem 3.2.

PROOF OF THEOREM 3.2: Theorem 3.2 is a direct consequence (by HUM) of the following
observability result for the uncontrolled problem (3.6).

PROPOSITION 4.3. Suppose that T > ¢, /f‘; + 434 /'5% and £y /f’; > 4y, /ff Then, there
exists C(T') > 0 such that the following holds for every finite energy solution of (3.6):
(4.29)

H‘P(HO)”%?(QI) + ||<Pt(.’0)H%t91)’ + |l¢(70)|l?92 + ||¢t(a 0)”%2(92)4'

+ O + &0 <C [||<Px(—elat)”§f-l(o,T) + ||1/’x(€2at)||2L?(o,T)] -

PROOF OF PROPOSITION 4.3: As in the proof of Proposition 4.2 we assume that ¢; =
¢, = 1 without loss of generality.

Let 7, and 1, be the same as in the proof of Proposition 4.2 and let y = 11—'2*iz For any
sufficiently small € > 0 we have

T—p—e
')t 2 To—T + ',t 2 To—7 :| dt
s [ 0 oy 0
pte
< Cllpz(=1L, )1 H-1(0,1)
and
T—p—e¢
[ 01, s g+ ot O s ]
pte
T—p—e 1 T—p—e
(4.31) + / /[|¢t(~’v,t)|2 + [z (2, 1)[*)dzdt + / [1E@)1? + 1&:(2)[*)dt
pte 0 pte
T
<c [w..ka,
0

The inequality (4.30) is a standard estimate that holds for the wave equation (which we
may apply here due to the finite speed of propogation) while (4.31) is proved in the same
way that (4.28) was.

Since
T—p—e T—p—e

e )lIEo,y < C e O3, () mammy F O e oy | s
IH[; ﬂ_-*_/e [ H ( ’271) (H(271’))]

the inequalities (4.30) and (4.31) can be combined and we deduce easily (4.29) as in step
4 of the proof of Proposition 4.2. 1
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5. REPRESENTATION OF CONTROLLABILITY SPACES BY NONHARMONIC FOURIER SERIES

In this section we give a characterization of the controllable and observable spaces for
(4.1) in terms of nonharmonic Fourier series. For simplicity, we limit our analysis to the
case where

(51) E1:£2:01:0’2=p1:p2:1,
although a similar analysis is valid, for example, when the above parameters are rational.

5.1. Spectral analysis. We begin with a spectral analysis of the operator A in (2.1).
Since A is skew-adjoint with compact inverse, o(A) consists of a discrete sequence of
imaginary eigenvalues. We seek nontrivial solutions y for

(5.2) Ay =iwy we€R.
We obtain nontrivial solutions only when w € o(A) = S; U Sy, where
{ 51 = (tkm)kez\ (0}

Sy = (iwk)kez\{o},
where for k € N, wy = —w_; and wy is the kth positive root of

(5.3)

(5.4) Mw = —2cotw.
It is easy to see from (5.4) that |wg — k7| — 0 as k — oco. In fact, if we let
(5.5) br = km —wi k€N,
a simple calculation using Taylor’s formula applied to (5.4) gives
2 -2
(5.6) b = Ve +0(k™") ask — oo.
The eigenfunctions of A corresponding to the eigenvalue w are given by

U, 2sinw(z +1)

V., é sinw(z — 1)

VA _(-a)cosw

= -w = sz

(5.7) u(2) U tasinw(z +1) |’

Vo isinw(z — 1)
ZW —'IIML:l COS Ww
where ¢ = 1 when w € S; and a = —1 when w € 55.
Under the above normalization there exist positive constants Cy, Cy for which
(5.8) Ci < |lpwllse < Cy Vw € o(A).

REMARK 5.1: The form of the eigenfunctions in (5.7) shows that each spectral class, S;
and S5, has its own physical significance; namely, if w € S; then ¢, describes a sinusoidal
motion of the string which does not move the mass, while if w € S; then ¢, describes
an even, piecewise sinusoidal motion of the string with a jump in the spatial derivative at
the point mass. It is insightful to note that, although (¢ )weo(a) forms an orthogonal set,
| Vir — Vi ||H1(Qz)+||Vk,r—Vwk llL2(2,) — 0as k — oo. It thus becomes increasingly difficult
to distinguish such consecutive modes (as the frequency gets large) by only observing the
v (or only the w) portion of the state. This explains why, in terms of the eigenfunctions,
we obtain an asymmetric observability (and hence also controllability) space when we only
observe (or control) at an endpoint.
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5.2. Reduction to moment problem. Let us consider a general class of control prob-
lems which will include the problem (4.1).
Let b € D(A)" and consider the system

(5.9) y = Ay +bg(t) y(0) =0,

where g € L?(0,T). A unique mild solution y € C([0,T]; D(A)') is given by

(5.10) y(t) = B4,
where for 0 <t < T, &, : L?(0,T) — D(A)' is given by

14
(5.11) ®,h = / et ph(s)ds.

0

This notion of mild solution coincides with that of the weak solutions in the sense of
transposition introduced in section 2. (Note that D(A) = Wy x W].) We adopt here this
notation and terminology of the theory of semigroups for the sake of clarity and brevity.

The central problem for controllability of (5.9) is to determme the range of ®;. By
integrating (5.10) against ¢, we obtain the modal solutions:

t

(5.12) yo(t) = / et =9p g(s)ds, w € o(A),

0

where

Vo(t) = (W), vu);  bu = (b,0w),

and (-,-) denotes the duality pairing of D(A)' and D(A) relative to < -,- >g. Thus
T =, eo(a) Twpw € R(®7) if and only if there exist g € L2(0,T) for which

T
(5.13) 2y = / e9th g(s)ds, Ve € a(A).
0

Hence the problem of determining R(®r) has been replaced by one of determining the
moment space (i.e., the sequences (z,,) associated with some g € L2(0,T) in (5.13)) of the
moment problem (5.13).

5.3. Some general results on moment problems. Before determining the moment
space of (5.13) we first give some background and some results of independent interest.
A Riesz basis for a Hilbert space X is the image of an orthonormal basis through a
bounded, invertible operator B : X — X.
The following is due to Ullrich [15].
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THEOREM 5.2. Let (04)nez be a distinct sequence of complex numbers with (0p,)NZ = {§
and lim|, |0 [0n —n| = 0. Then

. int __ toat
(5.14) (™) ez U (——e ¢ )
nclZ

forms a Riesz basis for L?(0,4).
COROLLARY 5.3. For each T > 4n the moment problem

T T

(5.15) /ei"tf(t) dt = an, /ei”"tf(t) dt =b,; nel,

0 0

has a solution f € L?(0,T) if and only if

a, — b
. L 22 n) € £ b,) € 2.
(516) (n—wn)e ? (a)e ’ ( )E
PROOF: It is obvious that if the result is true when T = 4w, then it is true for T > 4r.
Hence we may assume T = 4w. By Theorem 5.2 we know that

T T .

(5.17) /ei"tf(t)dt = Ck; /Mf(t) dt = dy.

n—oy
0 0

has a solution if and only if (cx) € €% and (di) € €2. Putting a, = ¢, — dn(n — 0,) and
bp, = ¢p, n € I we recover (5.15).
Since

(cn) € £ and (d,) € £* & (5.16) holds

the result holds. I

When applied to the moment problem (5.13), Corollary 5.3 completely describes the
moment space. However it will be more convenient to utilize a dual version of Corollary
5.3, which we give below after we develop some notation.

Let
M = {(an) U (by) : (an),(bn) satisfy (5.16) }.

Then M becomes a Hilbert space when endowed with the inner product

o, — 1N Op—N

(518)  ((@n) U (bn), (an) U (ba))ac = ((an), (@n))es + <(“" = ”") , ( - b") )en

One easily computes M’, the dual space of M relative to the £2 inner product, to be the
Hilbert space of sequences (cx)rez U(dk)kez with (cx +di) € €% and ([of — k][cx — di]) € 2
with corresponding scalar product given by
((ex) U (dr), (&) U (di))aer = (([ok — Fllex — di]), ([on — Kl[éx — di)))ee

(5.19) (
+ ((ck + di), (Ek + di))e2.
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COROLLARY 5.4. For any T > 0 there exists M > 0 such that for any N € N

T
(5.20) ~ﬂ§:m”+hWW%<MMUWMMf
0 k=

Furthermore, there exists m > 0 such that for any N € N

47

(5.21) /

PROOF: Let Cr: L%(0,T) — M by

N 2
Z axe’* + bre'?*t| dt > m|(ak) U (bi)||50-
k=—N

Crf = (ar) U (bx): (5.15) holds .

By Theorem 5.2 and the proof of Corollary 5.3, Cr is continuous for all T' > 0 and becomes
onto when T > 4w. Equation (5.20) is simply the statement that C}. is continuous for T' > 0
while (5.21) states that C}. is bounded away from zero for T' > 4x. 1

5.4. Fourier description of observable space. We close this section with a description
of the observable space in terms of nonharmonic Fourier series. In particular, we obtain
a slight improvement of Theorem 4.1 for the case where (5.1) holds and also examine the
dependence of the observability in terms of the frequency of the initial data.

PROPOSITION 5.5. Assume (5.1) and let y = (u,v, 2,%,0,2)! be a finite-energy solution of
(2.1) with

Z APk + kaOwk-
kez\{o}

Then for any T > 0 there exists C > 0 for which

(5.22) /wwwwasmwouwm%.

Furthermore, there exists ¢ > 0 for which

4

(5.23) [ 1ox20Pa > el@) U (o)l

0

In particular, Theorem 4.1 and Proposition 4.2 remain true when T = 4 and (5.1) holds.
PRroOOF: For h = (u,v,z,u,0,2)" € D(A) define b* : D(A) — R by

b*h = v, (1).
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Then b can be viewed as an element of D(A)' and we are in the setting of (5.9). Under the
normalization of the eigenfunctions taken in (5.7) we have

b*pw =1 Vuw € o(A).

It follows that for T'> 0

T T
(5.24) / b*y|2dt = /

Thus (5.22) and (5.23) follow from (5.24) and Corollary 5.4. Define E as the completion
of H with respect to the norm

2

Z akeikrrt + bkeiwkt dt.

kez\{o}

(5.25) = [|(ax) U (bi)l|ne-

E

D akprn + b,
kez\{0})

Corollary 5.4 and (5.22) show that the map E — R defined by

T 1/2
yo — /|b*y|2dt
0

defines a norm on E for any T' > 4. By Proposition 4.2, an equivalent norm on F is
given by the left side of (4.4). It thus follows that the inequality (4.4) remains valid when
((5.1) holds and) T > 4. Consequently Theorem 4.1 remains true when ((5.1) holds and)
T>4.1

Let us now give a characterization of the observable space E defined in (5.25) in terms
of the eigenfunctions.

Let
. = (Pk7r+§0wk QG = Pkr — Puw,

2 FTTos

LEMMA 5.6. (pr)rez\{o} U (9k)rez\{o} forms a Riesz basis for the space E defined by
(5.25). In particular,

E:{ Z Ckpk+dek:(ck)€£2,(dk)e£2}_

kez\{o}

PROOF: From (5.6) and (5.19), an equivalent representation for M' as it applies to our
problem is

M = {(ar)rez\(oy U (be)rez\foy : ((ax — br)bk) € €2, (ar + bi) € £7}.

Thus the topology obtained by making (px) U (¢gx) form an orthonormal basis must also
be equivalent to the natural one given by (5.23). I

We can now easily prove the following result which describes the dependence of the
observability upon the frequency.

28



PROPOSITION 5.7. Assume (5.1) and let y = (u,v, 2,u,9,2)" be a solution of (2.1) with

N

y° = Z ckPk + diqk-
k=—N,k#0

Then there exists C > 0 independent of N for which

1/2

4
C
(5.26) [loaorat) = lsla
0

Furthermore, the bound is sharp in the sense that if y° = gn then the inequality in (5.26)
is reversible for some larger value of C.

PROOF: First note that (px) U (¢x) form and orthogonal system on H. In particular,

N
di|?
(5.21) Ple<c > el + D
k=—N,k#0 k

where C; is independent of N. By Proposition 5.5 and Lemma 5.6 there exists Cy > 0,
independent of N for which

4 N
(5.28) /Ivz(l,t)|2dt >0 Y el + Il
0 k=—N,k#0
Let Ay = min{é6?,62,...6%}. Since
N N Idk|2
(5.29) o el 2an Y lal+ g,
k=—N,k#0 k=—N,k#0 k

(5.26) follows from (5.6). To show the optimality, it is enough to see that all the inequalities
are reversible when y° = ¢qn. For (5.27) this is obvious, for (5.28) the reversibility follows
from Lemma 5.6, and for (5.29) we have equality for N sufficiently large by (5.6). Thus
the reverse inequality of (5.26) holds for all N by making C sufficiently large. |

REMARK 5.7: In the previous proof, the constants C; and C3 can be shown to be inde-
pendent of M for M € (1,00). Thus (5.29) shows that the constant C in the statement of
Proposition 5.7 is proportional to A%Z, ie., to M~! as M — oo. Thus for solutions of a
fixed energy level, if the mass is doubled, the frequencies one can observe above a certain
threshhold level are halved. As M — 0, the numbers Ay in (5.29) approach 1 for all N,
but not uniformly. Thus as M — 0, for fixed NV, we obtain the same observability constant
as with the string without a point mass.
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6. SOME RESULTS ON BOUNDARY STABILIZATION

In this section we examine the problem of stabilization by velocity feedback at one or
both ends. Thus we will be interested in the decay properties of solutions of the system

( P1Uge = O1Ugg, €, t>0
P2Vt = 02Uy, T €Ny, t>0
Mzy(t) + o1uL(0,t) — o2v.(0,1) =0, t>0
(6.1) < u(0,t) = v(0,t) = 2(¢), t>0
u(z,0) = u%(z), u(z,0) = ul(z), z €y
v(z,0) = v%(z), vy(z,0) = v(2), z €
L 2(0) = 2%, z(0) = 2!

under the following two types of boundary conditions:

62 { w(—1,8) = 0, t>0
‘ 020z(l2,t) + Yvi(€y,t) = 0, t>0
and
(6.3) { oruz(—Ly,t) — yu(—£1,t) = 0, t>0
) 0’2'0,;(£2,t) + ’)’vt(fg,t) = O, t> 0,

where v is positive.

In (6.2) we are introducing some damping on the system at the extreme-point z = £,
and in (6.3) at both extremes z = —¥¢;, 5.

The effect of the damping can be seen by noting that (formally) the energy of solutions
of (6.1)-(6.2) and (6.1),(6.3) satisfies

dEy

M (1) = —lou(ly, 1)

and

M (1) = {0, O + foulla, 1))

respectively.
Standard semigroup theory allows us to prove the following two facts:
(i) If y° = (u®, 0%, 2% u' 0!, 2')" and

{ vy’ € HY(Q) x H'(22) x R x L*(Qy) x L*(Q,) x R

(6.4) u%(0) = v°(0) = 2° (u%(—£1) = 0 in case of (6.2) )

then (6.1)-(6.2) and (6.1),(6.3) have a unique solution in the class

(6.5) { (u,v,2) € C([0,00); H' (1) x H'(Q22) x R)

(ug,ve,2¢) € C([0,00); LE(01) x LE(Q2) x R)
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and the following energy-identities hold

() Em(t2) — Bra(tr) = — J Joe(tn, )2t (for (6.1)-(6.2))
(6.6) “t2
() En(ts) — En(t1) = — [ fue( =Ly, O + Jvilla, O)2]dt  (For (6.1),(6.3)).

ty
(ii) If the initial data satisfy the following further regularity and compatibility conditions:

( (uo,vo) € Hz(Ql) X H2(Qg); (ul,vl) c Hl(Ql) X Hl(Qz)
u1(0) = v1(0) = 21

(6.7) § o203(82) + vl (£2) = 0,

ul(—£4;) =0 (for (6.1)-(6.2))

{ o1ud(—£;) — yul(—£;) = 0 (for (6.1),(6.3))

then the solutions have the following added regularity

(u,v) € C([0, 00); H*(;) x H?(Qy,))
(6.8) (ug,v1) € C([0,00); H1(Q4) x HY(Q5))
z € C%([0,00); R)

In the sequel, solutions in the class (6.5) will be referred to as finite-energy solutions
and those in (6.8) as smooth solutions.

There is an important difference between boundary conditions (6.2) and (6.3). For solu-
tions of (6.1)—(6.2) the energy Ejps is coercive and thus the only equilibrium configuration
is the zero one. However in the system (6.1),(6.3) the energy is not coercive and for every
real constant k,(u,v, z) = (k, k, k) defines a solution.

In both systems we may expect the energy to decay to zero and this is the case. However,
in system (6.1)—(6.3) additional work is required to show that every solution converges to
an equilibrium.

There is another important difference between system (6.1)-(6.2) and (6.1),(6.3). In
(6.1),(6.3) we will prove a uniform exponential decay of the energy; however we will see
that this does not hold for the system (6.1)—(6.2) since the system possesses a sequence of
eigenfrequencies that approach the imaginary axis.

We have divided this section in three parts. In the first one we show that the energy
of solutions of (6.1)—(6.2) converges to zero. In the second one we prove the uniform
exponential decay of energy of solutions of (6.1), (6.3) and the fact that every trajectory
converges towards an equilibrium. In the last part we study the spectral properties of
system (6.1)-(6.2) and prove the non-uniform decay of energy.

6.1 Strong convergence to the equilibrium for (6.1)—(6.2). We have the following
result.
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THEOREM 6.1. Every trajectory associated with a finite-energy solution of (6.1)—(6.2)
converges strongly to zero in the finite-energy space (6.4).

PROOF: It is sufficient to prove that
(6.9) Ep(t) > 0ast — co.

First observe that due to the density of the data satisfying (6.7) in the finite-energy space
(6.4), the decreasing character of the energy (as in (6.6)) and the linearity of the system, if
(6.9) holds for all smooth solutions then it also holds for all finite-energy solutions. Thus
we will only need to consider smooth solutions.

Next we observe that (ug, v, 2¢, Ust, Vet, 2¢¢) 1 a solution (6.1)—(6.2) with the initial data
(ul, v, 2%, py toyud,, py toavl,, M1 (0202 — 01ul)) which satisfies the compatibility con-
dition u!'(0) = v'(0) = z'. Thus the trajectory (u¢,ve, ¢, Uss, Vit, 24¢) is a finite energy
solution and hence due to the fact that this energy is nonincreasing we deduce that

(s, ve, z¢) € L=(0, 00; H1(21) x H(s) x R)
(u”,vtt,ztt) c LOQ(O,OO;LZ(QI) X L2(Qg) X R)

and then by elliptic regularity that
(u,v) € L=(0,00; H*(£1) x H%(Q)).
This shows that trajectories

{(u(t)’ 'U(t), Z(t)’ ut(t)’ 'Ut(t), Zt(t))}tzo

are relatively compact in the finite-energy space. Let w be its w-limit set with respect to
the strong topology of the finite-energy space.

Since the energy Fjs is a Lyapunov function, by LaSalle’s invariance principle we deduce
that w is reduced to states for which the corresponding solution has constant energy for all
t > 0. It is easy to see that the only solution satisfying this property is the zero solution.
This shows that w = {0} and concludes the proof of the Theorem. §

6.2. Uniform exponential decay for (6.1),(6.3). We have the following result:

THEOREM 6.2. There exist C > 0 and wg > 0 such that
(6.10) En(t) < CEpm(0)e™ %, Vt>0

holds for every finite-energy solution of (6.1),(6.3).
Moreover,

1(u(58) = B)IF o,y + 15 1) = B)E g, + 12(8) — k[* < CEp(0)e™ "

6.11 0 2
( ) with k € R such that 2vk = [ uwldz + [vlde + Mz! + yu®(—£)) + v°(4,).
—~t 0
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PRrROOF: It is sufficient to prove the result for smooth solutions. Let us first prove (6.10).
We have
T
(6.12)  Enm(T)— Eni(0) = —y / [wd(—t1, ) + [ve(la, )2)dt, YT > 0.
0
Therefore it is sufficient to prove the existence of C' > 0 and T' > 0 such that

T
(6.13) Eu(T)< C / (oo =0, ) + [ve(Ca, 2) )t

for every smooth solution. Indeed from (6.12) and (6.13), (6.10) holds easily by using the
semigroup property.

On the other hand (6.13) can be proved exactly in the same way as we proved inequality
(3.7) in Proposition 3.3.

Let us now prove (6.11). By differentiating the quantity

0 £y
(6.14) I(t) = / prue(z,t)dz + /pgvt(a:,t)da: + Mz(t) + yu(—41,1) + yv(€2, 1)
e 0

and using (6.1),(6.3), one sees that I(t) remains constant in time.
Given a solution of (6.1),(6.3) we decompose it as follows:

(6.15) (u, v, z,us,v¢, 2¢) = (4,0, 2, u, v¢, 2¢) + (4,7, 2,0,0,0)
where

(6.16) u=v=z=kandu=u—%k, O=v—k Z=2z2z-k
with k a constant such that

(6.17) 2vk = I(0).

Clearly (u, v, Z) is a stationary solution of (6.1), (6.3). On the other hand, the quantity
I(t) associated to (%, 9, %, us, v, 2¢) is identically zero. It is easy to check that Eps(-) is
coercive over the subspace of the finite-energy space in which I = 0. From (6.10) we then
deduce that the component (&, 9, Z, uy, vy, 2¢) of our solutions decays exponentially to zero
in the energy space, i.e. (6.11) holds. I

6.3. Non-uniform energy decay. Let A be the differential operator in (2.1), however
on the space

(6.18) H =W x W,
where
(6.19) Wy = {(u,v,2) € H' (1) x H' () x R: u(—£;) =0, u(0) = v(0) = z}

with domain

(6.20) D(A) = {y € H:u € HX(Q),v € HX(Q,), (i4,9,2) € Wy : o3v,(£2) ++9(£2) = 0}.
We have the following result which describes the amount of damping in (6.1)—(6.2), in

terms of o(A).
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THEOREM 6.3. Let A be defined by (6.18)—(6.20), with v > 0. Then there exists a sequence
(sk)kez C o(A) for which

(i) I alﬁ—lmsk — 0 as |[k| = o0
p1 &
(ii) there exists ¢y, ca > 0 for which — —< > Re s; > _a Vk e Z.

k2 ||

If XA € 0(A) \ {(sk)} then there exists c3 > 0 for which Re A < —c;3.

REMARK 6.3: The second inequality of (ii) implies that the energy of solutions does not
decay uniformly to zero in bounded sets of H. But as a consequence of a general result
due to W. Littman and L. Markus [8], in view of the first inequality of (ii), one can obtain
uniform polynomial decay rates of energy for solutions with initial data belonging to a
bounded set of the domain of some power of A.

PROOF: We assume without loss of generality (by rescaling) that £; = £, = 1.
We seek nontrivial solutions of

(6.21) Ay = wy.

o o
a:‘/-—l, ﬂ=1/—2.
£1 P2

Using (6.21) and the boundary conditions, one can easily calculate

Let

u= asing(:c—%l)
a

(6.22) v="b(z); Yu(r)=— sm—(:c — 1)+ :¢Bcos —(z —1)
_ boa d?,bw( 0) - aal w
Z=3r3 - cos —

where a, b,w are to be determined. The boundary conditions in (6.19) imply
(6.23) asing = bip,(0) = 2.

The possibility that z = 0 leads to only trivial solutions. Thus we may set a = ,(0),
b = sinw/a and obtain from (6.23)

02 d’/’w
wpo(0) dz

oy cosw/a

(6.24) Mw = h(w) —

h(w) = ——(0).

. ¥
asinw/a
Now there are three separate cases to consider:

Y < /P202, ¥ =/P202, Y > \/P202.
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In each case the result is the same, and the idea is the same. Thus let us consider only the
first case v < /p203.
Let K denote the roots of ¥,(0) = 0. A simple calculation shows

1 7
(6.25) K= {ﬂ (k7r +5+ itanh™ ﬂp2> }kez .

For § C C, define
Ns(S) ={A € C:dist(A,5) < 6}.

From (6.25) it follows that Ns,(K)NNs,(anZ) = § for §y small enough. Furthermore, since
h(w) and cot w/a are periodic and analytic outside N, (K) and respectively N5, (anZ), h(w)
is uniformly bounded in Ns,(anZ) and cot w/a is uniformly bounded in Ng,(K). It follows
that for any € > 0, only finitely many eigenvalues lie outside N.(anZ)U N.(K) in order
that the moduli of both sides of (6.24) match. Rouché’s theorem can be used to show that
for any € > 0 if |w]| is sufficiently large, there is a unique root of (6.24) in each component
of N.(arZ) and N.(K). (See [8] for an example of this calculation.)

A simple calculation shows that Im h(w) < —a < 0 for all w € R. Since h(w) is periodic
and analytic in a neighborhood of the real axis, we may assume there exist positive numbers

ao and [ for which
(6.26) Im h(w) < —ap VweC:|Imw| <L

Let akw + s + i7 denote a root of (6.24) in N.(awZ). By setting equal the imaginary
parts of (6.24) and then utilizing (6.26) we find that for € sufficiently small (and hence |k|
sufficiently large) we have

2 2

01 2 g1
2 —— —.
(6.27) ('r 2a0) +s° < 122

Thus for |w| sufficiently large, these roots lie in disks of radii o;/2a tangent to the real
axis at the points in {akZ}.

Due to the upperbound on |h(w)| in Ns,(anZ), in order that the moduli of both sides
of (6.24) agree, for |w| sufficiently large we must have

M
(6.28) | < |2 cot 2| < 2M|w).
2 o o

Since cotw/a is periodic and has a first order pole at 0, (6.28) implies there exists ¢;,
¢y > 0 and k € 7 for which

‘1
Jwl le’

Intersecting the sets described by (6.26) and (6.29) and recalling (6.21), we obtain (i) and
(ii). For any other roots of (6.24), either w € N5 (K) or w is one of the finitely many
outside of both Ng,(K) and N.(akZ). In either case, by (6.25) and the dissipativity of A
we have Im w >const> 0. Thus Re A = Re 1w < —c3 < 0. §

(6.29) < |lw— aknw| < |w| sufficiently large.
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7. EXTENSIONS

In this final section we discuss two important generalizations of the results in the previous
sections. First we consider a string with n point masses and describe the manner in which
the previous results extend to this case. Second we analyze again the one-mass problem,
but this time with a string having spatially varying coefficients.

7.1. n masses. All the regularity results carry over to strings with n masses due to the
local nature of these results. In particular Proposition 2.5 and the remark which follows it
imply that the degree of regularity of a travelling wave solution increases exactly one order
as it crosses each mass. (Of course, part of the wave is reflected at each mass point with no
increase in regularity.) Furthermore, the method used to prove controllability (Theorem
4.1) relies only upon the regularity result (Proposition 2.7) and the use of characteristics
(as in construction of the energy functions e; and e; in (3.7) and (3.9)) and hence applies
equally well to strings with n masses. As such, analogous controllability and observability
results hold for strings with n masses. For example, if we consider the problem of Dirichlet
control of the right-most end of the string, which has n — 1 masses (and n intervals), the
control space one obtains is the same on the first (farthest right) interval as in Theorem 4.1.
For each successive interval the regularity increases one order, i.e., on the kth interval I;
(from the right), the position of the string (resp. velocity) is in H¥~1(I;) (resp. H¥~2(I})).
In addition, boundary conditions and compatibility conditions up to the proper order for
that interval must be imposed to obtain a well-posed system. A detailed examination of
this problem however is beyond the scope of this paper.

7.2. Variable coeflicients. All the results of the previous sections remain valid for
strings with spatially variable coefficients. To see this, let us consider the following system.

[ p(z)wi(z,t) — a%(a(:c)wz(m,t)) =0 t€Q, t>0
Mzu(t) = o(0)w,(0F,1) — o(07 )w, (07, 1) t>0
w(07,t) = w(0%,t) = 2(t) t>0
(7-1) < w(—1,t) =0, w(l,t)=q(?) t>0
w(z,0) = w'(z), w(z,0)=w!(z) €N
L 2(0) = 2%, 2(0) = 2,

where = (—1,0) U (0,1) and the notation 0%, 0~ refers to right and left-hand limits at
0

We have the following result:

THEOREM 7.1. Suppose that p,o € H?*((—1,0) U (0,1)) and that both functions are
bounded below by a positive constant. Then, if

roa [ (40) "

the conclusion of Theorem 4.1 holds.
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SKETCH OF PROOF: Let us introduce the following change of variables:

z

s = /p(7)1/20('r)_1/2dr

Q= (=£1,00U(0,£); & =—s(—1), £y =s(1)

b(s) = p(z)™" d%, Ve(2)o(2) |,_u)

w(s,t) = exp (/ b(r)/2dr | w(z(s),t)

a= \/p(0+)a(0+)b((;+) — p(O—)a(O—)@.

Then (7.1), in the absence of control (¢ = 0) becomes

(7.2)

(e — [0, — (L2 + E2) 0] = 0 s€f, t>0
Mz4u(t) + az(t) = +/p(0F)a(0F)@,(0%,t) — /p(0~)o(0~ ), (0~,2) ¢t>0
®(07,1) = w(0t,t) = 2(t) t>0

| B(—Ly,t) =0 = w(Ly, ) t>0
( b(r)/2dr jb(r)/2 dr _
w(s,0) = e° w?(z(s)), we(s,0)=e° w!(z(s)) seN

[ 2(0) = 2%, 2(0) = 2%

Therefore, it is sufficient to prove the controllability of this system at time T' > 2(¢; +¢€2)
with a control at the right end = = £,.

First let us examine the system (7.2), but without the potential term. This is equivalent
to

(Wi — Wz =0 xE(NZ,t>0
Mz4(t) + az(t) = yw (01, ¢) — w,(07,¢) t>0
(13) ) w(07,t) = w(0F,t) = 2(t) t>0
w(—4y,t) =0 = w(ly,1) t>0
w(z,0) = w(z), wiz,0)=w!(z) z €
z(0) = 2%, 2(0) = 2.

We assume M,~,¥;,£, to be arbitrary positive numbers, and a is only assumed to be
real. One can check that the proof of Proposition 2.5 remains valid for the system (7.3);
when Mz + az replaces Mz in (2.14) one still obtains (2.18). It hence follows that all
regularity results, in particular Proposition 2.7 remain valid for (7.3).

Finally, the assumptions on the coeflicients imply the potential (ﬂgﬁl + %ﬁ) remains

in Lz(ﬁ). We can thus write the solution of (7.2) in terms of an integral equation given by
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the variation of constants formula for (7.3) and for small enough t determine a fixed point
having the same regularity as the solution of (7.3) with initial data as in the hypothesis
of Proposition 2.7. The remaining parts of the proof of Theorem 4.1 rely only upon the
use of characteristics, and hence can be done directly for the variable coeflicient problem

(7.1). W
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