Exact Controllability and Stabilization.
The Multiplier Method

Vilmos Komornik

Université Louis Pasteur, Strasbourg



A%
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PREFACE

This book grew out of a series of lectures given over the past four years in
France, Hungary and the USA.

In the first part exact boundary controllability problems are studied by
the Hilbert Uniqueness Method. This approach, introduced by Lions [3] in
1986, is based on uniqueness theorems leading to the construction of suitable
Hilbert spaces of the controllable spaces. It is closely related to a duality
theory of DoLEck1 AND RusseLL [1]. Following Ho [1] and LioNs [2], these
spaces may often be characterized by using the multiplier method. In chapters
2 to 4 we reproduce some results of Lions [4], [5] with certain changes :

— some compactness—uniqueness arguments are replaced by constructive
proofs;

— equations containing lower-order terms are also considered ;

— more general boundary conditions are used which in fact simplify the
theory.

The results of chapters 5 and 6 were obtained after the publication of Lions’
monography. In chapter 5 we develop a general and constructive approach to
improve the usual estimates of the exact controllability time. It was inspired
by a new estimation method of HARAUX [3]. Using this approach, in chapter
6 we improve most of the results obtained in chapters 3 and 4. We also give
elementary and constructive proofs for certain results of Zuazua [1], obtained
earlier by indirect arguments.

The second part of the book is devoted to stabilizability. In chapters 8 and 9
strong and uniform boundary stabilization theorems are proved. Our method
is a modified and simplified version of a Liapunov type approach introduced
in KoMORNIK AND Zuazua [1]. We also present here a classical principle of
RuUsSELL [2] connecting the exact controllability to the stabilizability, and
some recent results of CONRAD AND Rao [1].

For the sake of brevity in the first nine chapters we consider only the
wave equation, Maxwell’s equations and very simple plate models. In the
last chapter we consider the internal stabilization of the Korteweg—de Vries
equation : we prove a special case of a theorem in KOMORNIK, RUSSELL AND
ZHANG [2].

The multiplier method, applied systematically in this book, is remarkably
elementary and efficient. In the bibliography we have included some references
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which use other approaches : see in particular the work of Bardos et al.,
Littmann, Russell, Jo6 and their references. We have also included some
material concerning other equations.

I wish to express my gratitude to

— J.-L. Lions for his advice and numerous suggestions concerning the
subject of this book, for his valuable remarks on a preliminary version of
these notes and for his proposal to publish it in the collection RMA ;

— P. G. Ciarlet who also proposed the publication of this book in this
collection and who gave me useful advice concerning the presentation of the
material ;

— F. Conrad, A. Haraux, J. Lagnese, B. Rao, D. L. Russell and E. Zuazua
for many fruitful discussions;

— the Mathematical Departments of Virginia Tech, the Universities of
Strasbourg I, Nancy I, the E6tvos University of Budapest and the Institute
of Mathematics and its Applications at the University of Minnesota, where
my lectures were given and/or part of this book was written;

— the students and colleagues following my lectures, in particular S.
Kouémou-Patcheu who read the manuscript and made a number of useful
remarks.

Strasbourg, November 29, 1993
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Vibrating strings 1
0. Introduction. Vibrating strings
Let I = (a,b) be a bounded interval, 7" a positive number and consider

the following problem, modelling among other things the small transversal
vibrations of a string :

(uer — Ugg)(z,8) =0, (2,t) € I x (0,7), (1)
u(a,t) =v,(t) and w(b,t) =wvp(t), te][0,T], (2)
u(z,0) = u’(z) and w(z,0) =u'(x), =zl (3)

The problem (1)—(3) is said to be exactly controllable if for ”arbitrarily”
given initial "state” (u°,u!) there exist suitable ”control” functions v, and
vy such that the solution of (1)—(3) satisfies

u(x,T) =u(x, T)=0, ze€l. (4)

We say that the controls v, and v, drive the system to rest in time 7'.
Naturally, we have to specify the functional spaces of the initial states and
of the controls; the results depend on these choices.
The solution of (1)—(3) is by definition a function

w e C([0,T); H'(1)) N €\ ([0, T}; L*(1)) (5)

satisfying (1) in the distributional sense, the equalities (2) pointwise, and the
equalities (3) almost everywhere. (As for the usual properties of the Sobolev
spaces applied in this book we refer e.g. to L1oNs AND MAGENES [1].)

We have the following result :

THEOREM 0.1. — Let T = b — a and let (u®,u') € HY(I) x L3(I) be such
that

b
u’(a) + u®(b) + / u'(s) ds = 0. (6)

Then there is a unique choice of functions
Vg, Vb € H1(07T) (7)

such that the solution of (1)—(3) satisfies (4).
Moreover, v, and vy are given by the formulae

a+t
204 (t) = u’(a +t) + u’(a) +/ u'(s) ds, (8)
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b
2up(t) = u(b —t) +u’(b) + /b—t u'(s) ds 9)

and the solution u has the following supplementary property :

u(a,t) +u(b,t) + /b ut(s,t) ds =0, Vtel[0,T]. (10)

Proor. — Applying d’Alembert’s formula the solutions of (1) may be written
in the form

u(z,t) = f(x +t) + glx —t) (11)

with suitable functions f : (a,b+7T) — R and g : (a —T,b) — R. Using (2)
and (3) we obtain that

flat+t)+g(a—t) =va(t), te€(0,T), (12)
fo+t)+gb—1t)=wp(t), te(0,T), (13)
f(x) +g(x) =u’(z), zel, (14)
fl@) =g (@) =u'(x), el (15)

We deduce from (14), (15) that
2f(z) =ul(z) + UYz), z€l (16)

and

2g(z) = u’(z) — U z), =z€l, (17)

where U! is a suitable primitive of u!.
We conclude from (12) and (16) that

2g(a —t) = 2v,(t) —u’(a+1t) —U'(a+1t), 0<t<b-—a;
similarly, we conclude from (13) and (17) that

2f(b+1t) =2up(t) —ul(b—t) +U'(b—1t), 0<t<b-—a;
we can rewrite these relations in the following form :

2g(s) = 2vq(a —5) — (U +u®)(2a — 5), 2a—b<s<a, (18)

2f(s) = 2up(s —b) + (U' —u”)(2b —s), b<s<2b—a. (19)
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We deduce from (11), (18) and (19) that for

a<xr<b and max{r—ab—z}<t<b-—a (20)
we have
2u(z,t) = 2vg(a+t —z) + 2vp(z +t — b)
(21)
2b—x—t
—u0(2a—x+t)—u0(2b—a:—t)+/ u'(s) ds.
2a—x+t
We have in particular
u(z,b—a) =v,(b—2) +vp(x —a) —ulla+b—x), zel
and
ug(x,b—a) =v.(b—z)+vy(x —a) —u'(a+b—2x), xcl.
Thus the final conditions (4) are equivalent to

va(b—2) +vp(x —a)=u’(a+b—x), wel

and
—va(b—z) +wvp(x—a)=-Via+b-2), ze€l
with an arbitrary primitive V! of «! whence

20,(b—2) =W +V)(a+b—2), xel,

2up(r —a) = (u’ —VH(a+b—2), zecl,
or

w,(t) =W +VH(a+1t), 0<t<b-—a, (22)
(23)

2up(t) = (U’ —VH(b—1t), 0<t<b—a.

Let us introduce the subsets U, R, D, L of I x (0,T) ( the letters mean
"Up”, "Right”, "Down”, "Left”) defined by

U={(z,t) e Ix((0,T):t>x—a et t>b—ux},
R:={(z,t) e I x(0,T):b—x<t<x—a},
D:={(z,t) eI x(0,T):t<x—a et t<b—uzx},
L:={(z,t) e I x(0,T):x—a<t<b—zx}.
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One can easily deduce from (11), (16)—(19), (22) and (23) the following
formulae :

0, if (z,t) € U;

B (u —Vl)(x—t) if (z,t) € R;
2000 =Y W0 1)+ — 1)+ [Tl if (o,t) e D; Y

(u +VH(z +t) if (z,t) € L.

Comparing the limits of these formulae at t = v —a and t = b — = we
obtain that for any fixed 0 < t < T, t # T/2, the function z — u(z,t) is
continuous only if

Vi(a) =u’(a) and V!(b) = —u’(b). (25)

By hypothesis (6) u! has a unique primitive V! with this property. Choosing
V1 in this way, (22), (23) follow from (8), (9), and we deduce from (24) that

0, if (z,t) € U;
ul(x —t) +u®(b) +fw Lut(s) ds, if (z,t) € R;
2u(®,1) =\ 10z 4+ 1) + 1(a +f””+tuls it (0, e D; (20
u(z +t) +u’(a) —l—fo ul(s) ds, if (z,t) € L;
using these formulae one can directly verify (5) and (10).
REMARK 0.2. — The problem (1)—(3) is also exactly controllable if

T > b— a. Indeed, it is sufficient to drive the system to rest in time b — a and
then to extend the control functions v,, v, by zero for b —a <t < T. Since
Ve (b—a) =wvp(b—a) =0Dby (6), (8) and (9), the property (7) remains valid.

REMARK 0.3. — The problem (1)—(3) is not exactly controllable if T' < b—a.
Indeed, assume that the system may be driven to rest in time 7' from some
given initial data u°, u'. Extending the corresponding controls v,, vj by zero
for ' <t < b — a, we obtain that the system may be driven from the initial
state (u”, u') to rest in time b — a with controls v,, v, € L?(0,b— a) satisfying

Vg = vp =0 in some left neighbourhood of b — a. (27)

On the other hand, the proof of theorem 0.1 (see (22) and (23)) shows that

a+t
20a (t) +20p(t) = u®(a+1) +u(b—1t) -l-/ u'(s)ds, 0<t<b—a. (28)
b—t

But (27) and (28) are not satisfied simultaneously for all initial data
(u®,ul) € HY(I) x L*(I) satisfying (6).
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The following result improves theorem 0.1 by driving the system to general
final states :

THEOREM 0.4. — Let T = b —a, (u®ul), (u%,uk) € HY(I) x L*(I) and
assume that

b b
u’(a) +u’(b) + / u'(s)ds=0 and u¥(a)+uS(b)+ / up(s) ds = 0.

a

Then there exist unique functions vg, vy € H(0,T) such that the solution of
(1)—(3) satisfies

uw(z, T) = ur(z) and wy(z,T)=uh(z), z¢€l. (29)

Proor. — First we solve the problem

and then we choose (using theorem 0.1) v, and v, such that the solution of
the problem

(Yt — Ya)(2,t) =0, (z,t) € I x (0,T),
y(avt) - 'Ua<t)7 y(b7 t) = Ub(t)7 le (O7T)=
y(x,0) = u’(x) — 2(x,0) and y(x,0) = u'(z) — 2(x,0), w€l

satisfies

y(z,T) =y (x,T) =0, ze€l.

Then u := y + z is the solution of (1)—(3) and it satisfies (29). []

Let us return to theorem 0.1. From the point of view of applications
it would be useful to find controls v,, v, defined by some ”feedback law”
Ve = Fy(u), vy = Fp(u) with explicitly given functions Fy, Fj, : this would
realize an ”automatic” control of the system. For the problem (1)—(3) such
feedbacks can be found easily : let us consider the problem

(Ut — Uge)(x,t) =0, (x,t) € I x Ry, (30)
(ug —ur)(a,t) = (ug +ug)(b,t) =0, teRy, (31)
u(z,0) = u’(x) and wuy(x,0) =u'(z), =€l (32)
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By definition, a solution of this problem is a function
u € C([0, +oc); H'(I)) N C ([0, +oc); L*(I))

satisfying (30) in the distributional sense, (32) almost everywhere and (31) in
the following sense : in some neighbourhood of {a} x Ry u(x,t) is a function
of z + ¢ and in some neighbourhood of {b} x R it is a function of x — .

THEOREM 0.5. — Let (u®,u') € HY(I) x L?(I) be such that
b

u®(a) + u®(b) +/ u'(s) ds= 0. (33)

a

Then the solution of (30)—(32) satisfies

u(z,t) =0, VY(zx,t) €I x[b—a,+0). (34)

Proor. — Adapting the proof of theorem 0.1 we obtain that the solution of
(30)—(32) has again the form (11) with suitable functions f : (a,+00) — R et
g : (—00,b) — R satisfying (14), (15) and

ga—t)=0, teR,, (35)

Fb+t)=0, teR,. (36)

It follows that f, g satisfy (16), (17) with a suitable primitive U' of u!, and
that

9(s) =g(a), s<a, (37)

f(s)=f(b), s=b. (38)

Introducing the subsets U, R, D, L as before, but replacing T' by 400, we
deduce from (11), (16), (17), (37) and (38) the following formulae :

u®(a) + )+fa if (z,t) € U;

uP (@ —t) +ul(b) + f ) s, if (z,t) € R;
2u(e,t) = u(x+t)+ul(x —t)+ f‘rﬂ ul(s) if (z,t) € D; (39)

u(x+t) +ul(a) + fo (s) ds, if (z,t) € L.

These show in particular the uniqueness of the solution of (30)—(32).
One can verify by a direct computation that the function defined by (39)
is indeed a solution of (30)—(32). Finally, (34) follows from (33) and (39). []
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1. Linear evolutionary problems

The results of this chapter are standard ; see e.g. LioNs AND MAGENES [1]
for proof.

1.1. Thediagram VcH=H c V'

Let V be an infinite-dimensional, separable, real or complex Hilbert space
and introduce the duality mapping A : V' — V' defined by

(Au,v)yr vy = (u,v)y, u,v € V. (1)

By the Riesz-Fréchet representation theorem A is an isometric isomorphism
of V onto V.

Let H be another Hilbert space with a dense and compact imbedding
V C H. (The compactness means that every bounded subset of V is
precompact in H.) Then in addition H is of infinite dimension, separable,
and the imbedding H’ C V' is also dense and compact. Identifying H with
H’, we obtain the diagram

VCH=H cV'. (2)

We deduce from (1) that
(Au,v)g = (u,v)y, Yu € V. such that Aue H, Vv e V. (3)
Denoting by 7 the compact imbedding of V into V', the linear map

T :=A"10i:V — V is also compact. Moreover, it is selfadjoint. Indeed,
given u,v € V arbitrarily, we deduce from (3) that

(Tu,v)y = (A u,0)y = (u,v)g

and

(u, Tv)y = (u,A_lv)V = (u,v)q,

whence

(Tu,v)y = (u, Tv)y.
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Applying the spectral theorem to T = A~! 0 i we conclude that there exists
a sequence A1, Ag,...of distinct real numbers (the eigenvalues of A) and a
sequence Zp, Zs,...of subspaces of V' such that

|)‘k| — +00,
Az = A\pz, Yz € Zy, Yk > 1, (4)
dim Zj < 400, Vk > 1, (5)
ZkJ_Zl in V if k‘%l, (6)
and
the vector space Z generated by U Zj, is dense in V. (7)

It follows from (3) and (4) that the eigenvalues are positive. We may thus
assume that

0< A <A <--- and M\, — +o00. (8)

It follows from (6) and (7) that every v € V has a unique orthogonal
expansion

v:ka, vk € Zp, Yk > 1, (9)
converging in V' ; furthermore, we deduce from (6), (9), (3) and (4) that
ol = > ol = D Arllowll (10)
Now observe that
Zr L Z, in H andalsoin V' if k#IL. (11)
Indeed, the orthogonality in H follows from (3), (4), (6) and (8), while the

orthogonality in V"’ follows from (4) and (6), using the isometric property of
A:foru € Zy and v € Z;, k # [, we have

(u,v)vr = (A u, A7)y = A0 (w,v)v = 0.

Next we deduce from (9) and from the density of the imbeddings in (2) that
Z is also dense in H and in V'. Therefore every v € H (resp. every v € V')
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has a unique orthogonal expansion of the form (9), converging in H (resp. in
V'), and we have

lollF = llokllZ (12)
(resp.
oIS =D lloellyr =D Ay Hloel7). (13)

The last equality of (13) follows from (10) :
lorllyr = 1AT oellf = X2 low iR = AL okl

Let a € R and define a euclidean norm || - ||, on Z by putting

1/2
lolla := (3 A8 llonliy)

(here we use the expansion (9) of v). Completing Z with respect to this norm
we obtain a Hilbert space which will be denoted by D,,. It is easy to verify
the orthogonality relations

Zy L Z; dans D, si k#I.

It is clear that for a > 8 the norm || - ||, is stronger than || - [|. Thus we
may assume that

D, CDs if a>p,

with a dense and continuous imbedding. (One can readily verify that these
imbeddings are in fact compact.) Set

D_o :=U,D,.

For each fixed real number «a let us introduce a linear mapping
A® : D_o — D_4 in the following way : first, for v € Z given by (9)
we set

A% = Z)\gvk. (14)

Then for any given v € D_,, we choose 3 € R such that v € Dg and then we
choose a sequence (v;) in Z such that ||[v — v;||g — 0. One can readily verify
that A%v; is a Cauchy sequence in Dg_,, hence it converges to a certain
w € Dg_,. Furthermore, it is easy to show that the limit w is independent of
the particular choice of 3 and of the sequence v;. Define A%v := w. It is clear
that for v € Z this definition reduces to (14).
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The following properties are easy to verify :

Given a, 3 € R arbitrarily, the restriction of A% to Dg is an isometric
isomorphism of Dg onto Dg_.

We have A*AP = A*18 for all o, B € R.
We have
[olli2 = llvllv, llvllo=lvllaz  and  [lofl—1/2 = l|vl[v-
for every v € Z.

As a consequence, using also the density of Z in V, H and in V’, we may
identify D /o with V', Do with H and D_; /o with V’. Then Al is an extension
of A onto D_ . In the sequel we shall also denote this extension by A i.e. we
shall write A instead of A®.

1.2. The equationu” + Au=0

Let us first consider the homogeneous evolutionary problem
v+ Au=0 dans R, u(0)=u’etu'(0)=1u" (15)

with arbitrarily given initial data u®,u! € D_,,. We shall use the orthogonal
expansion of ©? and u! :

oo oo
uO:ZugandM:Zu}ﬁ, ul, up € Zp, k=1,2,... (16)
k=1 k=1

THEOREM 1.1. — Let o € R and (u’,u!) € D172 X Do. Then the problem
(15) has a unique solution such that

u € C(R;Dyr12) NCH(R; Do) N C*(R; Dy 1 /)3 (17)

it 1s given by the series

VK

The energy E,, : R — R of the solution, defined by

u(t) = i u? cos(r/Art) + up. M, teR. (18)
k=1

Ea(t) = 3llu®)l541/2 + 514" ®)ll2, (19)
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is in fact independent of t € R.
The linear mapping (u®,ul) — wu is continuous from Dyt1/2 X Do into

Cy(R; Dyyy1/2) N Cy (R; Do) N CP(R; Dy —1/2).

Since the energy is independent of ¢ € R, we shall often write E,(u)
instead of E,(u®,ul).

Let us recall that for a« = 0 we have Dyiq/0 = V, D, = H and
Do_1/2 = V’. In this case we shall write F instead of Ej.

REMARK 1.2. — The formula (18) shows that if v 1 Z; and u! L Zj,
then u(t) L Zp and u/(t) L Zj for all ¢ € R. Since the equation (15) is
autonomous, we conclude more generally that if w(T) L Z; and «/(T) L Z
for some T' € R, then necessarily u(t) L Zj and u/(t) L Zj for all t € R.

REMARK 1.3. — One can readily verify that if (u®, u') € Dgoy1/2 X Dy for
some o € R and if u is the corresponding solution of (15), then for any fixed
B € R, APy is the solution of (15) with (u”, u') replaced by

(AﬂuO,Aﬂul) S XDa—ﬁ+1/2 X Da_g.

1.3. The wave equation

Let ©Q be a bounded domain (that is, a non-empty open connected set)
of class C? in R"; we denote by v the outward unit normal vector to its
boundary T'. Let {TI'g,T'1} be a partition of T' (the cases T'o = () or I'y = ()
are not excluded) and let ¢ : 2 — R, a : 'y — R be two given nonnegative
functions.

We consider the problem

W' —Au+qu=0 in QxR, (20)
u=0 on IyxR, (21)
Ou+au=0 on I xR, (22)
u(0) =u® and u/(0) = u'. (23)

In order to avoid some difficulties (studied in detail by GRISVARD [1]), we
shall assume throughout this book that

ToNTy =10 (24)
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and that
q € L™(Q), acCHI). (25)

We introduce two real or complex Hilbert spaces H and V' by the formulae

H::{UELQ(Q):/vdx:O,

Q
(26)
V::{UEHl(Q):/UdX:O}
Q
ifTg=0,¢g=0and a =0, and
H:=L*Q) and V:=H' Q) (27)

otherwise; in both cases we define their norms by

ol = ([ 1o ax) " (29)

and

1/2
lofly = (/ Vol? + glof? dx +/ alvl? dr) " (29)
Q I
One can readily verify that the seminorm || - ||y is indeed a norm and that it
is equivalent to the norm induced by H!(Q). Applying Rellich’s theorem it
follows that the imbedding V' C H is dense and compact.
We introduce the corresponding linear map A and we define the solution
of (20)-(23) as the (unique) solution of the problem

v +Au=0 in R, u(0)=u’ «(0)=u (30)

in the sense of theorem 1.1. We justify this definition by showing that every
sufficiently smooth classical solution of (20)-(23) (for example of class C? on
Q x R) is also a solution of (30).

Fixing t € R and v € V arbitrarily, we have

0:/(u”—Au—|—qu)v dx

Q

:/u”v—l—Vqu+quv dx—/ayuv dr
Q r

= /(u” + qu)v + VuVo dx + / auv dT
Q Iy

= W’ v)v v+ (u,v)y = W + Au,v)yr v
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on R; hence u”(t) + Au(t) = 0 (as an element of V') for every ¢t € R.
Let us note that Au = —Au + qu for every u € V N H?(Q). Indeed, we
have for every v € V' the following equality :

/ (—Au + qu)v dx = / VuVv + quo dx — / Oyuv dI'
Q ) r
= / VuVv + quo dx +/ auv dI' = (Au,v)y' v.
) r,

We remark that for this choice of H, V' and A the energy of the solutions
of (30) is given by the formula

E(t) ::%/Q|u'(t)|2+|Vu(t)|2+q|u(t)|2 dx+%/r alu(t))* dr.  (31)

1

REMARK 1.4. — We recall from the elliptic regularity theory that under
conditions (24) and (25) for any given g € L?(Q) the solution v € V of the
problem

—Av4+qu=g in €,
v=0 on T},

O,v+av=0 on I}y

belongs to H?(€)) and that we have the estimate

[v]lr2(0) < cllgllzz(o)

with a constant ¢, independent of the choice of g. It follows that the
eigenfunctions of A belong to H2().

If u°,u! € Z, then it follows easily from formula (18) (which now reduces
to a finite sum) that the solution of (20)-(23) satisfies

u € C®(R; H*(Q)). (32)

1.4. A Petrovsky system

Let Q be a bounded domain in R™ having a boundary I' of class C* and
consider the problem

u' + A%u=0 in QxR, (33)
u=0,u=0 on I xR, (34)
u(0) =u" and 4/(0) =u'. (35)
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) endowed with
I'and ¢ = 0 we
) N HO( ))7 and

We choose H = L*(2) with its usual norm and V = HZ(Q
the norm ||v||v := [|Av||z2(q); using remark 1.4 with T’y =
conclude that this is indeed a norm on V (and even on H?(
that this norm is equivalent to the norm induced by H?(f2).

It follows from Rellich’s theorem that the imbedding V' C H is dense and
compact. Introducing the corresponding operator A we define the solution of
(33)-(35) as the solution of the problem

' +Au=0 in R, u0)=u’ (0)=u (36)

in the sense of theorem 1.1. To justify this definition we show that every
sufficiently smooth (for example of class C* on Q x R) classical solution of
(33)-(35) is also a solution of (36). The only nontrivial property is the equality

v +Au=0 in R. (37)

Fixing t € R and v € C2°(Q) arbitrarily, we deduce from (33)-(35) that

0= / (u” + Au)T dx = / u'v + AulAv dx
Q Q
- <UH, U)V’,V + (U, ’U)V = <’LLH -+ Au, U)V’,V-

Using the density of C2°(€2) in V hence (37) follows.
One can show similarly (as in the preceding section) that

Av =A%, Yo HY(Q)NV.

For this choice of H, V and A the energy of the solutions of (36) is given
by the formula

B(t) = %/Q]u'(t)P +Au(®)? dx. (38)

REMARK 1.5. — We recall from the elliptic regularity theory that for
g € L?(Q) the solution v € V of the problem

A%y =g dans Q,
v=0,v=0 sur I

belongs to H*(€) ; moreover, we have the estimate

vl ) < cllgllzzo)

with a constant ¢, independent of the choice of ¢g. In particular, the
eigenfunctions of A belong to H*(2).
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As in remark 1.4, hence we conclude that for u°,u! € Z the solution of
(33)-(35) satisfies

u € C°(R; HY(Q)). (39)

1.5. Another Petrovsky system

Let © be again a bounded domain in R™ having a boundary I' of class C*,
and consider the problem

u' + A*u=0 in QxR, (40)
u=Au=0 on I xR, (41)
u(0) =u® and u/(0) = u'. (42)

Set H = L*(Q), V = H*(Q) N H(Q) and |jv]|v := ||Av||12(q). It follows
from remark 1.4 that the latter norm is equivalent to the norm induced by
H?(Q) on V.

It follows from Rellich’s theorem that the imbedding V' C H is dense and

compact. Introducing the corresponding operator A we define the solution of
(40)-(42) as the solution of the problem

' +Au=0 in R, u0)=u’ o« (0)=u' (43)

in the sense of theorem 1.1. We justify this definition by showing that every
sufficiently smooth (say of class C?) classical solution of (40)—(42) is also a
solution of (43). The only nontrivial property is the equality

' +Au=0 in R. (44)

Fixing t € R and v € V arbitrarily, we deduce from (40)-(42) (using also the
relations Au =v =0 on I') that

0= / (u” + A%u)T dx = / u'v + AuAv dx
Q Q
= (W, v)v v + (u,0)v = W' + Au,v)v v,

proving (44).
One can show similarly that

Av =A%, Yve HYQ)NV.
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In this case the energy of the solutions of (44) is given by the formula
E(t) = L / (1) + |Au(®)? dx. (45)
Q

REMARK 1.6. — It follows from the elliptic regularity theory that for any
given g € L?(Q) the solution v € V of the problem

A>v=g¢ in Q,
v=Av=0 on T

belongs to H*(2) and that the estimate

vl za0) < cllgllz2 (o)

holds true with a constant ¢, independent of ¢. In particular, the
eigenfunctions of A belong to H*(Q).

Using formula (18) hence we conclude that if u®,u! € Z, then the solution
of (40)-(42) satisfies

u € C™(R; HY(Q)). (46)

We end this section with a technical result; it shows in particular that
the operator A'/? coincides with the operator A corresponding to the choice
H = L*(Q) and V = H}(Q) (the latter being the particular case Iy = T' of
the situation studied in section 1.3).

LEMwMA 1.7. — We have

Dy = Hy(Q), [olli/a = [V L2(0),
Dyy={we H Q) :v=200=0 on T}, |[v]su=|VA0|L2q)

and D_y /4 = H=Y(Q) with the corresponding dual norm. Moreover, we have
AV = —Av, Yue Z (47)

Proor. — Let us denote by Z],Z), ... the sequence of the eigenspaces of
—A in H}(Q), by (0 <)A; < A, < --- the sequence of the corresponding
eigenvalues and by Z’ the linear hull of UZ;. (This is the particular case
I'p =T of the situation studied in §1.3.) If v € Z;, for some k, then

(v,w)y = (Av, Aw)g = —/Q o(Aw) dx

=\ / (—Av)w dx = (M) (v,w)g, YweV
Q
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whence

Av=(N)%, WweZ, k=12... (48)

Thus the eigenfunctions of —A| Hl(o) are also eigenfunctions of A and
M = (M,)%. Since Z’ is dense in L?(92), A cannot have other eigenfunctions.
Therefore Z; = Zy, Vk and Z’ = Z. Then (47) follows from (48).

For any v = ) v, € Z we have

1/2
lol3a = 1D vkl e = D2 M 2 lowllze = D Mellowl = ol

hence Dy 4 = Hy(Q) because Z = Z' is dense in Hg (Q).

Since A'/? is an isometric isomorphism of Dy onto D_y,4 and —A is an
isometric isomorphism of H} () onto H (), using (47) hence we deduce
that H—1(Q) = D_y 4.

Using (47) we obtain also that Ds/, is the set of solutions of the problem

—Av=g in Q wv=0 on T
where g runs over Dy /4 = Hj(S2). It follows that
{ve H*(Q):v=Av=0 sur T} C Dyy;

the inverse inclusion follows from remark 1.4.
The norm equalities in the formulation of the lemma follow from the above
computations. []
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2. Hidden regularity. Weak solutions

The results of §§ 2.2-2.4 are due essentially to L1ONs [2]; see also LASIECKA
AND TRIGGIANT [1]. We consider the real case only : the complex case then
follows easily by considering separately the real and imaginary parts of the
solutions of the corresponding equations.

2.1. A special vector field

Let Q C R" be a bounded open domain of class C*, k > 1 and let {T'g,T'; }
be a partition of its boundary I' such that

ToNT; =0.

Thus, we have in particular Ty = I'y and T’y = T';.
We recall for the reader’s convenience the following standard construction :

LEMMA 2.1. — There exists a vector field h : @ — R™ of class C*~1 such
that

h=v on TI'y and h=0 on TI};.

PRrROOF. — Since € is of class C*, for every fixed 2° € Ty there is an open
neighbourhood V of 2% in R™ and a function ¢ : V' — R of class C* such that

Vo(x)#0, VYzeV

and

plr) =02z VnI.
Replacing ¢ by —¢ if needed, we may assume that
v(2°) - Vo(2°) > 0.
Choosing V sufficiently small we may assume also that
VT =10

and that

VNI is connected.
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Then the function v : V' — R" defined by v := Vi /|Vy| is of class C*~1
and ¥ =von VNIT.

Since €2 is bounded, I'y is compact ; therefore it can be covered with a finite
number of neighbourhoods Vi,...,V,, of this type. Denoting by 91, ..., %,
the corresponding functions we have

FOCVlU...UVm,

(ViU...UV,)NTy =10
and
Yvi=v on V;NTg, i=1,...,m.
Then we fix an open set V; in R™ such that

QcVyn...NnV,,

VonTo =10,

and we define ¢ : Vj — R™ by ¢g(z) = 0, Va € V.
Let fo,...,0,, be a partition of unity of class C*, corresponding to the
covering Vj, ..., Vi, of ¢

0, cCH(V;) and 0<6; <1, i=0,...,m
and
Op+---+06,=1 on .

One can readily verify that the vector field h defined by

ho= (i 03t )l
1=0

has the desired properties. |[]

2.2. The wave equation. Multiplier method

We consider the problem

v —Au+qu=0 in QxR (1)

u=0 on IygxR (2)
Ou+au=0 on I't xR (3)
u(0) =u" and o/(0) =u! (4)
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introduced in § 1.3. We recall (see remark 1.4) that for arbitrarily given
u®, u' € Z the solution of (1)—(4) satisfies

u € C™(R; H*(Q)). (5)

In particular the normal derivative of the solution is well-defined.
The following result will permit us to define the normal derivative of less
regular solutions, too.

THEOREM 2.2. — Let T' > 0. There is a constant ¢ = ¢(T') > 0 such that for
every u®, ul € Z the solution of (1)—(4) satisfies the inequality

T
/ D ul?dl dt < e([[u’[[5 + [[ut[[7)- (6)
-7 J1g
Consequently, there is a unique continuous linear map

LV x H = L}, (R; L*(Ty))
such that
L(u®,u') = d,u, Y(u,u') € Z x Z.
For the proof we need the following identity :
LEMMA 2.3. — Let u € H? (R; H*(Q)) be a function satisfying (1) and let

h: Q — R™ be a vector field of class C*. Then for any fized —oo < S < T < oo
the following identity holds true :

/T/ 2Dy u)h - Vi + (h- v)(w)? — (h- )| Vul? dT dt
S I
- [/Q 2u'h - Vu dx] g (7)

T n
—|—/ /(div h)((u')? — |Vul?) + 2quh - Vu + Z 2(0;h;)(0u)(0ju)dx dt.
s Ja e
3,j=1
(The dot denotes the usual scalar product in R™.)

ProOF. — We multiply (1) by 2h - Vu = 2377, h;0;u and we integrate by
parts as follows :

T T
/ / —2quh - Vu dx dt = / / 2(u" — Au)h - Vu dx dt
s Ja s Ja

T T
= [/ 2u'h - Vu dx} + / / —2u'h - Vu' — 2(Au)h - Vu dx dt
Q S s Ja
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[/Quh Vudx / /28uh Vu dI' dt

/ / —h-V(W)?+2Vu - V(h-Vu) dx dt
:[/2uh Vudx / /28uh Vu+ (h-v)(u)? dT dt
/ / (div h)(u')* +2 Z d;ud;i(h;0ju) dx dt

[/ 2u'h - vudxi—/s /F28Vuh~Vu—|—(h~1/)(u’)2 dI" dt
//dwh 243" 204y Ouu) (D) + sy ((Or)?) die

i,j=1

[/ 2'h - Vudx / /2@ wh - Vu+ (h-v)((0)? — |Vul2) dT dt

/ / (div h)( — |Vul?) + Z 2(0h;) (9;u) (dyu) dx dt. [
i,j=1
ProoF oF THEOREM 2.2. — Applying theorem 1.1 we have
lu@IV + I’ )7 = a5 + 'l (8)

for every t € R. (The constant ¢; does not depend on the choice of u°, u! and

f)
Applying the identity (7) with S = —T and with the vector field h
constructed in lemma 2.1 the left-hand side of (7) becomes

T
/ |0, ul? dT dt.

T JTg

(Note that v/ = 0 and Vu = (J,u)v on I'g x R because of (2).)
Since h is of class C!, there exists a constant ¢; such that

|h(z)] < ¢ and Z |0ihj(x)| < e1, Vx € Q.
ij=1

Using (8) and these inequalities to majorize the right-hand side of (7) we
obtain easily the estimate (6) with a suitable constant c.

The last part of the theorem follows from the inequality (6), using the
density of Z x ZinV x H. []
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REMARK 2.4. — Teorem 2.2 justifies the notation d,u or du/dv instead
of L(u®,ut) for any (u,u') € V x H. Then we have the following trace
theorem :

(u,u') € V x H= d,uc L} (R; L*(Ty)). (9)

loc

This result does not follow from the usual trace theorems of the Sobolev
spaces : it is a "hidden reqularity” result. The corresponding inequality (6) is
often called a direct inequality.

Now we consider the following non-homogeneous problem :

v —Ay+qy=0 in QxR (10

y=v on Iy(xR (11
Oy+ay=0 on Iy xR (12
y(0) =y, y(0)=y" in Q. (13

— N N N

In order to find a reasonably general definition of the solution we begin
with a formal computation. Let us first assume that y is a sufficiently
smooth function (say of class C? in Q x R) satisfying (10)-(13). Fix
(u®,ut) € V x H arbitrarily and multiply the corresponding solution of
(1)-(4) by y. Integrating by parts we obtain for every fixed S € R the
equality

S s
O:/ /(u"—Au—i—qu)ydxdt:[/u’y—uy'dx]
0 Ja Q 0

S
_/ /(auu)y - u<81/y) dl’ dt
o Jr
s
+/ / u(y” — Ay + qy) dx dt
0 Ja
s
= / u' (9)y(S) — u(9)y' (S) + ulyt — u'y® dx — / / (Opu)v dI' dt.
Q 0o Jro
Putting
s
Lolu)i= [ [ (@ dl det ((~'0), 0w vosimy e
o Jro

we may rewrite this identity as

Ls(u®,u') = ((=y'(8), y(5)), (w(S), v (SN)v'xmv s (14)
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This leads to the following definition :

DerFiNITION. —  We say that (y,y’) is a solution of (10)—(13) if
(y,9y') € C(R;H x V') and if (14) is satisfied for every S € R and for
every (u’,u') € V x H.

This definition is justified by

THEOREM 2.5. — Given (y°,y') € H x V' and v € L% _(R;L*(Ty))
arbitrarily, the problem (10)—(13) has a unique solution.

Furthermore, the linear map (y°, y',v) — (y,y') is continuous with respect
to these topologies.

Proor. — It follows from theorem 2.2 that for every fixed S € R the linear
form Lg is bounded in V' x H. Furthermore, it follows from theorem 1.1 that
the linear map

(u(S),u'(8)) = (u°,u')
is an isomorphism of V' x H onto itself. Hence the linear form
(w(S),u'(8)) = Ls(u’,u')
is also bounded on V' x H. Therefore there is a unique pair (y(S),y’(S)) €

H x V' satisfying (14).
Next we show that the function

R > S ((S),y ()laxv

is bounded in every bounded interval. More precisely, for every bounded
interval I and for all S € I we have the estimate

1w (), s (SNllmsvr < e(D) (ol L2(rirz ey + 1°, ¥ xv) (15)

where ¢(I) is a constant independent of S,v,4° and y'. Indeed, choose
(u®,u') € V x H arbitrarily and write for brevity

Y = (_y/>y>7 V0 = (_ylay0)7 U= (ua u/)a Ul = (u07u1)'

Then, using theorems 1.1 and 2.2 we have the following estimate (we denote
by || - |7 the norm of L?(I; L?(Ty)) for brevity) :

S
‘(Y(S)7 U(S)>V’><H,V><H‘ - ‘/ / (ay’lL)’U dI' dt -+ <YO, UO>V’><H,V><H’
0 | )

< lovullrllvlls + IV llvesm U v xa < e(D)([ollr + 1Y lvocm) 1T v <



24 2. Hidden regularity. Weak solutions

Hence (15) follows.

Next we recall (cf. e.g. Lions AND MAGENES [1]) that if (y°,y') € V x H
and v € C°(R; H3/%(T)) are such that v(0) = 0, then (4)-(6) has a regular
solution

y € C(R; V)N CY(R; H);

we have in particular (y,y’) € C(R; H x V’). Since the set of these data
(y°,y*,v) is dense in H x V' x L} (R; L?(Ty)), using (15) hence we conclude

that (y,v’) € C(R; H x V') in the general case, too.
Finally, the continuous dependence of the solution on (y°, y!,v) also follows

from (15). []

2.3. The first Petrovsky system

Consider the problem introduced in § 1.4 :

u' 4+ A*u=0 in QxR (16)
u=0,u=0 on I'xR (17)
u(0) =u® and u'(0) = u'. (18)

We recall (see remark 1.5) that for every u’, u! € Z the solution of (16)—(18)
satisfies

u € C™(R; HY(Q)).

In particular, Au is well-defined on I" x R.
The following result shows that this trace may be defined for weaker
solutions as well.

THEOREM 2.6. — Given T > 0 arbitrarily, there exists a constant
c = ¢(T) > 0 such that for every (u°,u') € Z x Z the solution of (16)-
(18) satisfies the inequality

T
[ 18l ar at < (g + e ) (19)

Consequently, there is a unique continuous linear map

L Hg(Q) x L*(Q) — Li,(R; L*(T))
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such that
L(u®,u') = Au, Y(u°,u') € Z x Z.

We begin by establishing an identity analogous to that of lemma 2.3.

LEMMA 2.7. — Let u € HE (R;H*(Q)) be a function satisfying (16),
(17), and let h : Q@ — R™ be a vector field of class C?. Then for any fived
—00 < 8 < T < oo the following identity holds true :

' (h V)| Aulfdl dt = | [ 2u'h - Vu dx '
{ .
/ / (div h)(()? — | Aul?) (20)

+4 Z (8;) (Au) (8;0;u) + 22 AR (Au)dju dx dt.

i,j=1 i=1
Proor. — We multiply (16) by 2h - Vu = 2 27:1 h;0;u and we integrate by
parts :

T
0= / / 2(u” + A%u)h - Vu dx dt

S JQ

T T

= [/ 2u'h - Vu dx} + / / —2u'h - Vu' 4+ 2(A%u)h - Vu dx dt
Q S s Ja
T T
= [/ 2u'h - Vu dx] + 2/ /(8,,Au)h -Vu — (Au)d, (h - Vu) dI" dt
Q S s Jr

+/S /Q—h-V(u')Q +2(Au)A(h - Vu) dx dt.

Remark that

A(h - Vu) Z@Qhﬁu

i,5=1
=2 (8ihy)(3id5u) + Y (Ahy)(5u) + h;0;(Au)
i,j=1 j=1
whence
2(Au)A(h - Vu) = h - V(Au)?
+
23 "(Ahy)(0ju)(Au) + 4 Z d;h;)(0:0;u) (Au)
j=1

3,j=1
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and the above identity becomes
0= [/ 2u'h - vudx +2/ / Dy Au)h - Vu — (Aw)dy (h - Vi) dT dt
/ /h V(Aw)? = (u)?) +2 3" (Ahy)(05u) (Au)
j=1

+4 Z (9;h;)(9;0;u)(Au) dx dt

7,7=1

= [/QZU’h-Vu dx}z

+/T / 20y Aw)h - Vi — 2(Au)dy (h - Vi) + (- v)((Au)? — (u')2) dT d
S T

+ [ [ aihy)? - @ )+ 23 (8 (0,0 )

71=1

i,j=1

Comparing with (20) it remains to show that

/T/ 20y Aw)h - Vi — 2(Au)dy (h - Vi) + (h - ) (Au)? — (u)2) dT dt
S T

(21)
—/ST/F(h.y)(AuF drI’ dt.

For this we need the boundary conditions (17).
First, (17) implies that v’ = |[Vu| = 0 on T x R and therefore (21) reduces

to
/sT /F(h -v)(Au)? dl dt = /ST /F(A“)@v(h Vujdbds o (22)

To compute 9, (h - Vu) at a fixed point x € T, let us choose the coordinates
such that v(z) = (0,...,0,1). Since yu =--- = dpu =0 on I', we have

V(Qju) = (0,0;u)vsar I, j=1,...,n
In particular, we have

azaju(x):(), izl,...,n—l, jzl,...,n
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Since 0;0ju = 0;0;u, hence we conclude that
0;0ju(x) = 0 always, unless i = j = n. (23)

Using (23) and the property v(z) = (0,...,0,1) we obtain that

0,(h- Vu)(@) = (3 (0uhy) (D) + ;D) (@)
= Z h;jOn0;u(z) = hpOiu(z) = hyAu(x) = (h - v)Au(x).

Since x € I" was chosen arbitrarily, we conclude that 9, (h - Vu) = (h - v)Au
on I, proving (22). []

PROOF OF THEOREM 2.6. — As in § 2.2, it is sufficient to prove the
inequalities (19). Let us apply the identity (20) with S := —T and with
the vector field of lemma 2.1, corresponding to the case I'y = I'. Then the
left-hand side of (23) coincides with that of (22), while the right-hand side of
(23) is easily majorized by

01(||U||%([_T,T];H2(Q)) + ||u/||20([—T,T];L2(Q)))

where c; is a constant depending on ||A[|¢2(q) and T" only. Applying theorem
1.1 this last expression is majorized by the right-hand side of (19) for a
suitable constant c. []

REMARK 2.8. — In the sequel we shall write Au on I instead of L(u®, u') for
every (u®,u') € H3(Q) x L?(Q). Then we have the following trace theorem :

(u’,u') € H3(Q) x L*() = Au € L} (R; L*(T)).

loc

Now we consider the non-homogeneous boundary value problem

v+ A%’y =0 in QxR (24)
y=0 and d,y=v on I'xR (25)
y(0)=y° y'(0)=y" (26)

As usual, we begin with a formal computation. Let y € C*(Q x [0,T]) be
a function satisfying (24)—(26). Fix (u®ul, f) € V. x H = H3(Q) x L3(Q)
arbitrarily and multiply (16) by y. Using the boundary conditions (17) and
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(25) we obtain for every fixed S € R that

s
0:/ /(u”—i—A2u)ydxdt
0o Ja
T s
:[/ u’y—uy'dx] +/ /u(y"+A2y) dx dt
Q 0 o Ja

S
+ / / Dy Au)y — (Au)(By) + (Du)(Ay) — u(@,Ay) dT dt
0 T

S
= /Qu (S)y(S) —u(S)y'(S)+ vy —uy” dx — /0 /F(Au)v dr dt.

Introducing the linear form

s
Lg(u®,ut) := / /(Au)v dr dt —|—/ uly? —uly! dx
0 JT Q
we may rewrite this identity in the following form :

Ls(u®,u') = ((=y'(8), y(S)), (w(S), v (SN)v'xmv s (27)
(Note that V = HZ(Q), H=L?*(Q) and V' = H%(Q).)

DerFINITION. —  We say that (y,y’) is a solution of (24)-(26) if
(y,y') € C(R;H x V') and if (27) is satisfied for all S € R and for all
(u®,ul) €V x H.

To justify this definition we prove the

THEOREM 2.9. — Given (y°,y*) € L*(Q) x H%(Q) andv € L} (R; L*(T))
arbitrarily, the problem (24)—(26) has a unique solution.

Furthermore, the linear map (y°, y',v) — (y,y') is continuous with respect
to these topologies.

Proor. — It follows from theorem 2.6 that for every fixed S € R the linear
form Lg is bounded in V' x H. Furthermore, it follows from theorem 1.1 that
the linear map

(u(S), w'(9)) = (u’,u')
is an isomorphism of V' x H onto itself. Hence the linear form
(u(S), ' (S)) = Ls(u®,u')

is also bounded on V' x H. Therefore there is a unique pair (y(5),y’(S)) €
H x V' satisfying (27).
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The rest of the theorem may be proved exactly as the corresponding part
of theorem 2.5. []

2.4. The second Petrovsky system

Here we consider the problem introduced in § 1.5 :

u’ 4+ A*u=0 in QxR (28)
u=Au=0 on I'xR (29)
u(0) =u’ and u'(0) =u'. (30)

If u® € H2(Q) N HY(Q)(= V) and u € L?(Q)(= H), then by theorem 1.1
this problem has a unique solution satisfying

u € C(R; H*(Q) N Hy(Q)) N CHR; LA(R)).

In particular, 0,u is well-defined. The following result permits us to define
the normal derivative of weaker solutions, too.

THEOREM 2.10. — Given T > 0 arbitrarily, there exists a constant
c = ¢(T) > 0 such that for every (u®,ul') € Z x Z the solution of (28)—(30)
satisfies the inequality

T
D ul® dT dt < e([[u’][7 o) + [ut 7r-2(a))- (31)
—T7Jr 0
Consequently, there is a unique continuous linear map

L:H}Q) x H Q) — L} (R; L*(T))

loc

such that
L(u®,u') = d,u, Y(u’,u') € Z x Z.
REMARK 2.11. — Let us recall from lemma 1.7 that Hj(Q2) = D;,4 and

H=1(Q2) = D_y 4. Thus for any given (u°,u') € Hg(Q) x H1(Q2) (28)—(30)
has a unique solution such that

u € C(R; H ()N CHR; HH(Q)).
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(See remark 1.3.) Therefore, writing 9, u instead of L(u®, u') we will have the
following hidden regularity result :

(u®,u') € Hy(Q) x HY(Q) = d,u € L}, (R; L*(T)).

LEMMA 2.12. — Let u € HE (R; HY(Q)) be a function satisfying (28),

(29) and let h : Q — R™ be a vector field of class C%. Then for any given
—00 < 5 < T < o0 the following identity holds :

T
/ /hu )(|0,u' |2 + |0, Aul?) AT dt = [/2uh-VAudX}S
/ /dwh (V|2 = |VAuP) (32)

+2 Z (8;h) (9su") (D5u") + (D51 )(Di Au) (8;Au) + 22 (Ahy)u' 9 dx dt.

7,7=1 =1

Proor. — We multiply (28) by 2h - VAu and we integrate by parts. We
obtain

T
0= / / 2(u" + A%u)h - VAu dx dt
s Jo
T T
= [/ 2u'h - VAu dx} + / / —2u'h - VAU + 2(A%u)h - VA dx dt
Q s s Ja
T T
= [/ 2u'h - VAu dx} +2/ /(ayAu)h-VAu dr dt
Q S s Jr
T
—/ / 2u'h - VAU +2(VAu) - V(h - VAu) dx dt (33)
S
T T
- [/ 2u'h - VAu dx] +2/ /(h-y)\&,Au\Z dr dt
Q s s Jr
T
—/ / 2u'h - VAU + 2(VAu) - V(h - VAu) dx dt
s Ja

because

Au=0 on I'=VAu=(0,Au)r on T.

Furthermore, we have

/ —2u'h - VAU dx—Z/ 2uh882u’dx
Q

2,7=1
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= -2 Z /Fu’hiljj@@ju’ dr + 2 Z /Q(?ju'hi@i@ju’ + (ajhl)u’(alaju’) dx

i,j=1 i,j=1

= -2 Z /Fu'hiyjaiaju' dr' + /Q h - V‘VU/|2 +2 Z (8th)u’(818]u') dx

2,j=1 1,7=1

= -2 Z /Fu'hiujaﬁju' dr + /F(h V)|V |? dT

2,j=1

—/(divh)|Vu’|2 dx+2 ) /uj(ajhi)u’(aiu’) dr
Q r

=1

—2; /Q (D! 0y dx —2 Y /Q (9;h) (D) (D) dix.

t,j=1

Since the condition © = 0 on I" implies that v/ = 0 and Vu' = (9,u/)v on T,
the first and third integrals on I' vanish, and the second one is equal to

/(h -v)|0,u'|? dT.
r

Therefore we have

/ —2u'h - VAU dx = /(h -v)|0,u'[? dTN — / (divh)|Vu'|* dx
Q r Q

9 /Q S (Bhou (Gl + 3 (@5ha) @su )0’ .

4,j=1

Substituting into (33) we obtain that
T T
0= [/ 2u'h - VAu dx} + / / 2(h - )|0, Aul?* + (h - v)|0,u/|* AT dt
Q s s Jr

_ /5 /Q (divh) [V [2 +2 3 (8;h:) (05u") (9ut) (34)

i,j=1

+2) (AR (9) + 2V Au - V(h - VAu) dx dt.
i=1
Let us consider the last term of (34). We have

_ / 2VAU-V(h VAu)dx= 3 / (8, M), (hyd Au) dx
Q Q

1,j=1

S / —2(0; 1) (8, Au) (B M) — hidh] 0 Aul? dx
Q

4,5=1
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-y / (9,1 (9, Au) (8, Au) dx + / (divh)|[VAuf? dx
ij=17% Q

—/(h-y)lVAu|2 dr.
N

Since Au = 0 on I, in the last integral we may write |0, Au| instead of |V Aul.
Using this equality we deduce from (34) that

T T
02[/ 2u'h - VA d +/ / (h- )]0y Auf? + (h - 1)|d,u/|? dT dt
Q S S Jr
T
+/ /(divh)(WAuF— |Va/|?) dx dt
S Q

9 /S /Q 3 (@) (@) Out) + (03 8u)(0:5u) dx

i,j=1

T n
9 / / S u/(Ahy) (0') dx dt,
S
and (32) follows. []

THEOREM 2.13. — Given T > 0 arbitrarily, there exists a constant
c = c(T) > 0 such that for every (u’,u') € Z x Z the solution of (28)—(30)
satisfies the inequality

T

Proor. — Applying the identity (32) with S = —T and with the vector field
of lemma 2.1 corresponding to I'g = I', we obtain the estimate

T
| [0 P 10,80 T at < el () B rryrmoysmn (0

for some constant ¢;. Using lemma 1.7 and theorem 1.1 hence (35) follows. []

ProoF oF THEOREM 2.10. — It suffices to prove the inequalities (31).
Given (u®,u') € Z x Z arbitrarily, let us apply the estimate (35) of theorem
2.13 with

(A=1/240 A=1/21)
instead of (u%, u'). We obtain that (see also remark 1.3)
T
/ /\&,A_l/zu’|2+ 18, AA™Y/2y)? dT dt
-7 Jr

(37)
< C(||VAA_1/2UO||2L2(Q) + ||VA—1/2U1||2L2(Q)-
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Using lemma 1.7 we have

AA™V 2y = —y,

IVollLzo) = lvlli/a = [[vllm o

and

”VA_I/QUHL?(Q) = \|A_1/2UH1/4 = [vll—1/4 = [Vl z-1(0)

for every v € Z. Therefore we deduce from (37) that

T
[ 10,4750 4 o ar de < el o + o' 1)

Omitting the term |0, A~/2u/|? we find (31). []

Now let us apply theorem 2.10 for the study of the non-homogeneous
problem

y'+ A%y =0 in QxR (38)
y=0 and Ay=v on I'xR (39)
y(0)=y°, y'(0)=y". (40)

Let (u® ') € HY(Q) x H71(2) and consider the solution of (28)—(30).
If y € C*(Q x [0,7)) satisfies (38)-(40), then multiplying (28) by y and
integrating by parts we find for every fixed S € R that

s
0:/ /(u"+A2u)dedt
0o Ja

S
= [/Q u'y — uy' dx]5 —|—/0 /Qu(y" + A?%y) dx dt
s
—|—/ /(6,,Au)y — (Au)(0y) + (Opu)(Ay) — u(0,Ay) dI" dt
o Jr
_ ' — / Oyt —uly® d ’ 0 dI’ dt
= [ () @/ (8) + 'y~ uty axt [ [ @para

Setting

S
Lg(u®,u') := / /(Oyu)v dr’ dt —|—/ uly' —ulyl dx
o Jr Q
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and writing for brevity X := HJ(Q) x H~1(2) we may rewrite this identity
in the following form :

Ls(u’,u') = (4 (), —y(9)), (u(8), v/ (9))x.x, V(' u') € X (41)

DerFiNITION. —  We say that (y,y’) is a solution of (38)—(40) if
(y,y") € C(R; HE(2) x H~1(Q)) and if (41) is satisfied for all S € R.

Then we have

THEOREM 2.14. — Let (y°,y') € H}(Q) x H™Y(Q) and v € L? (R; L*(T))
be given arbitrarily. Then the problem (38)—(40) has a unique solution.
Furthermore, the linear map (y°, y',v) — (y,y') is continuous with respect

to these topologies.

Proor. — It follows from theorem 2.10 that for every fixed S € R the linear
form Lg is bounded in X = H () x H~ (). Furthermore, it follows from
theorem 1.1 that the linear map

(u(8),'(5)) = (u’,u')
is an isomorphism of X onto itself. Hence the linear form
(u(S), /' (S)) = Ls(u’,u')
is also bounded on X. Therefore there is a unique pair (y(S5),y'(S)) € X
satisfying (41).

The proof now can be completed as that of theorem 2.5 before; we omit
the details. []
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3. Uniqueness theorems

The results of this chapter will serve as a basis for the Hilbert Uniqueness
Method (HUM) of J.-L. Lions (see the following chapter). In control-theoretic
terminology, we shall here establish observability theorems; see remark 3.5
below. These will be obtained (following Ho [1]) by using a special multiplier.
The same multiplier has already been used by many authors for different
reasons : see e.g. RELLICH [1], PoHoZAEV [1], LAX, MORAWETZ AND PHILLIPS
[1], CHEN [1].

As in the preceding chapter, we consider the real case only : the complex
case then follows easily by applying the results to the real and imaginary
parts of the solutions.

We shall use the following notation : for any fixed z° € R™ we set

m(z) =z —2° (z€R"), (1)
R = R(2") := sup [m(@)], (2)
My ={zel:m-v>0} (3)

and we introduce on I" the (signed) surface measure
dl'y, == (m-v) dl; (4)

clearly, we have

|dT,,| < R dT.
Let us note the following obvious relations :
0;m; = d;; and divm = n. (5)
Here and in the rest of this book we shall always mean by an interval a
bounded interval of strictly positive length.

3.1. The wave equation. Dirichlet condition

Consider the problem of sections 1.3 and 2.2 with g =T and I';y = 0 :

W' —Au+qu=0 in QxR (6)
u=0 on I'xR (7)
u(0) =u" and 4/(0) =u'. (8)
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Recall (see theorems 1.1 and 2.2) that for every (u°, u') € H(Q2) x L?(Q)
this problem has a unique solution, whose energy

o %/Q\U'P + [ Vul? + gluf? dx ()

is conserved, and that for every interval I the following (so-called direct)
inequality holds true :

// |0, ul? dT" dt < cE. (10)
I1JT

The aim of this section is to establish, under some further hypotheses, the
tnverse inequality

// |0, ul* dT" dt > ¢'E. (11)
1JT

Fix 2° € R" arbitrarily and set Q := supg, ¢ and

0 __{2RQ/\//\_1, if n>2;
FTL2RQ/VAL 4+ QA ifn=1.

(We recall from §1.3 that the function ¢ is supposed to be nonnegative,
bounded and measurable.) Let us recall that A\; is the biggest constant such
that

/Q|Vv|2 + qlv]? dx > Ay /Q lv|? dx, Yv € Hg(Q). (12)

THEOREM 3.1. — Assume that
Q1 <1 (13)
and let I be an interval of length
Il >2R/(1 — Q). (14)
Then there is a constant ¢’ > 0 such that

/I/F|8,,u|2dFm dt > E, Y(u°,u') € Hy(Q) x L*(Q). (15)

Clearly the estimate (15) implies (11) (with ¢’/ R instead of ¢).

For ¢ = 0 this theorem was proved by Ho [1] under a stronger condition
on the length of I'; his condition was weakened by Lions [2], [3], using an
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indirect compactness-uniqueness argument. The following constructive proof,
based on lemma 3.2 below, was first given in KoMORNIK [1].

Proor. — It is sufficient to prove the estimate (15) for u°, u' € Z : the
general case then follows by a density argument, using theorem 2.2.

Let us write I = [S,T]. Applying lemma 2.3 with A = m and using (5) we
obtain the identity

/ /23 um -V + (m - v)((W)?2 — |Vul?) dT dt

T
2u’m - Vu dx (16)
S

/ / + (2 — n)|Vul? + 2qum - Vu dx dt.

Let us multiply the equation (6) by u; integrating by parts we obtain

T T
0:/ /u(u”—Au+qu)dxdt: [/uu’dx]
Q S
/ /ua udth+/ / )2+ |Vul? + qu? dx dt,
whence

T
/ /u&,u dr dt = [/ uu’ dX / / N4 Vaul? +qu? dx dt. (17)
s Jr

Putting
Mu:=2m-Vu+ (n—1)u
we deduce from (16) and (17) that

/ /8uMu+ m-v)((u)? — |Vul?) dT" dt

_ [/ W' Mu dX]T (18)
Q S
T
+/ /(u')2 + | Vul? + (n — 1)qu® 4 2qum - Vu dx dt.
S JQ
Using (9) we may rewrite (18) in the following form :
/ /3uMu+ m-v)((u)? — |Vul?) dT" dt
(19)

T T
= [/ ' Mu dx] +2|I|E+/ /(n—2)qu2+2qum-Vu dx dt.
Q S s Ja
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By the boundary conditions (7) we have v = v’ = 0 and Vu = (d,u)v on
I'; this permits to reduce the left-hand side of (19) to [, [ [0yu|? ATy, dt.

On the other hand, using (12) the last integral in (19) is minorized by
—2|I1Q1 E. Indeed, the case ¢ = 0 is trivial. If ¢ # 0 and n > 2, then we have

/ (n — 2)qu® + 2qum - Vu dx > —2RQ||ul|r2(o) || Vul £2()
Q
> —Q1/ IVul? 4+ qu? dx > —2Q, E.
Q

If ¢ # 0 and n = 1, then we have

/ (n — 2)qu2 + 2qum - Vu dx > / —Qu? 4 2qum - Vu dx;
Q Q
repeating the above computation and using the definition of @)1 for n = 1,

this integral is again minorized by —2Q1 E.
Thus we arrive at the following inequality :

/I/F 19, ul? dTpdt > 2|1|(1 — Q1)E + [/Q W' Mu dx]:. (20)

To minorize the last term of (20) we need the

LEMMA 3.2. — The solution of (6)—(8) satisfies the estimate
‘ / ' Mu d:r‘ < 2RE, Vt € R. (21)
Q

Proor. — First we show that
[Mul|z2() < [[2m - Vul|p2 ). (22)
Indeed, the application of Green’s formula gives

||MUH%Z(Q) — [|2m - vU||2L2(Q) = [[2m - Vu+ (n— 1)““%2(9) — [|2m - v“||2L2(Q)

:/ 12m-Vu+ (n—1)ul*—|2m-Vu|? dxz/(n—1)2u2+4(n—1)um-Vu dx
Q Q

= /(n —1)%u® +2(n— 1)m - V(u?) dx
)

=2(n-1) /F(m -v)u? dT + /Q(n —1)%u? — 2(n — 1)(div m)u? dx

:2(n—1)/r(m-y)u2dr+(1—n2)/9u2dx:(1—n2)/u2dx§0.

Q
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(We used here (5) and (7).)
It follows from (22) and from the definition of the energy that

]/ o M dx| < o (e | M 2 0y
Q
1
<[/ |2 12m - Vull L2y < Rllw/ (1720 + EHW - Vu72(q)

::/1wﬂ2+R*m%Vdeng/ﬁwF+ﬁmFdxngﬂ
Q Q

proving (21). []
Applying the lemma with ¢ = S and ¢t = T we deduce from (20) that

// |8,,u\2 dl,, dt > 2|I|(1 — Q1)E — 4RE,
1Jr
and the theorem follows with

¢ =211 — Q1) — 4R. []

REMARK 3.3. — Let k an arbitrary positive integer. Let us replace A1 by
Ak in the definition of @)1 and let us denote by Q) the corresponding quantity.
Assume that the conditions (13), (14) are fulfilled with Q) instead of @Q;. (If I
is an arbitrary interval of length |I| > 2R, then (13) and (14) are satisfied for
a sufficiently large k, but not necessarily for k = 1.) Then the estimate (15)
is valid (with some constant ¢’ depending on k) for every couple (u’,u!) in
H}(Q) x L?(Q) satisfying the orthogonality conditions u®, u* L Z; for every
j < k. To see this it suffices to repeat the proof of the theorem and to use for
v := u(t) instead of (12) the inequality

/ |Vo|? + qlv]? dx > )\k;/ lv|? dx,
Q Q

which is valid for every v € H}(Q2) such that v L Z; for every j < k. (This
estimate follows easily from the identity (1.10).) Let us recall from remark
1.2 that u(t) satisfies these orthogonality relations.

REMARK 3.4. — Theorem 3.1 implies the following uniqueness result :
If the solution of (6)—(8) satisfies the condition O,u = 0 on I'y x I with I
satisfying (13) and (14), then in fact u® = u' = 0 and hence u =0 on Q x R.

REMARK 3.5. — Theorem 3.1 shows that the ”observation” of 0,u = 0 on
'y x I permits one to distinguish the initial data provided I is sufficiently
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long. (Take the difference of two solutions corresponding to different initial
data and apply the preceding remark.)

REMARK 3.6. — The optimality of condition (14) in theorem 3.1 and
analogous questions are studied by microlocal analysis in BARDOS, LEBEAU
AND Raucwh [1], [2]; it is related to the finite propagation speed for the
wave equation. In some cases the optimality of this condition can be shown
easily. Consider for example the special case where {2 is an open ball of
radious R, centered at the origin, and assume for simplicity that ¢ = 0
and that I = (R +¢,R — ¢) for some ¢ > 0. Fix smooth initial data
(u®,ul) € H}(Q) x L?(Q) and (following CAZENAVE [1]) set

P(t) ;:/ () + |Vu?) (t,2) dx, € 1.
e+|t|<|z|<R

Then F > 0 and F' has a global maximum at ¢ = 0. Indeed, for almost every
t > 0 we have

F(t) =2 / (wtd +Vu- Vo) (£, z) dx— / (u)>+|Vul?) (t, 2) dx
ett<|z|<R et+t=|z|
_ / (20/0yu — ()2 — [Vul?) () dx < 0
et+t=|z|
because |0, u| < |Vu|. For ¢t < 0 we obtain similarly that

F'(t) = / (2u'0,u+ (u')? + |Vul?) (¢, z) dx > 0.
e—t=|z|

Now choose non-zero initial data (u°,u!) supported by the ball {|z| < }.
Then F(0) = 0 and therefore F' = 0 in I. It follows that d,u =0 on I' x I
and therefore the estimate (15) of theorem 3.1 does not hold.

3.2. The first Petrovsky system

Consider the homogeneous problem

u' + A%u=0 in QxR (23)
u=0,u=0 on I'xR (24)
u(0) =u’ and o/(0) = u (25)

already studied in sections 1.4 and 2.3. Let us recall the theorem 2.6 :
for every interval I there exists a constant ¢ > 0 such that for every
(u®,ult) € HZ(Q) x L*(2) the solution of (23)—(25) satisfies

// |Au|? dT" dt < cE, (26)
I1JT
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where the energy E of the solution is defined by
E = %/Q |Aul? 4 |u'|? dx. (27)

We are going to prove the following inverse inequality :

THEOREM 3.7. — Let 1 denote the first eigenvalue of the problem
A?v = —pAv, v e HZ(Q),
and let I be an interval satisfying
11| >2Ru;™? if n=1 and |I|>Ru;"? if n>2. (28

Then there is a constant ¢’ > 0 such that
/ / (AuPdT,, dt > ¢B, Y, ul) € H2(Q) x LX(Q).  (29)
1Jr

REMARK 3.8. — To be more precise, p1 is the smallest eigenvalue of the
operator A associated to the spaces H = Hj(Q), ||[vl|lg = [|Vv||r2(q) and
V = H;(Q), |[v]lv = [|Av||L2(q) in the sense of section 1.1. In particular, we
have

1
Vo < ——||Av , Yo e H3(Q 30
[Vv[[2(0) < \/M_lH z2(0) 0 (£2) (30)

(see (1.10)).

Teorem 3.7 was proved by Lions [3], [4] under a stronger condition on the
length of I. His assumption was later weakened in KoMORNIK [1].

PROOF OF THEOREM 3.7. — It suffices to prove (29) for u°,u! € Z.
Write I = [S,T] and apply lemma 2.7 with A = m. Using (5) we obtain

that
T T
/ / |Au|? dT,, dt = [/ 2u'm - Vu dx
s Jr Q S

T
—I—/ / n(u)? 4 (4 — n)|Aul? dx dt.
s Jao

(31)

If n = 1, then the last integral is minorized by 2|I|F, while using (30) and
(27) we obtain for every t € R that

2R 2R
2u'm - Vu dx‘ < || r2on |AV| 7200y < — E.
/ I el Avle <
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Using the conservation of energy hence we conclude that

4R
2

>
//|Au| dr,, dt <2|I| Ml)E,

and (29) follows with ¢ = 2|I| — 4R/ /111
Henceforth we assume that n > 2. We multiply the equation (23) by u and
we integrate by parts :

T T
0= / / u(u” 4+ A?u) dx dt = [/ uu’ dx}
s Ja Q S

+/T/Fu(6VAu)—(6yu)(Au) dr dt+/T/Q—(u’)2+\AU\2 dx dt

S
= [/ uu’ dx / / 2+ |Aul? dx dt.

(We used the boundary conditions (24).) Multiplying this identity by n — 2
and adding the result to (31) we obtain, putting

Mu:=2m-Vu+ (n—2)u

for brevity, that

T T
/ / Aul2dT,, dt = 4|1|E + [/ o/ Mud] (32)
s Jr Q 5

LEMmMA 3.9. — Ifn > 2, then we have

2
(/uMudx < —RE Vt € R. (33)
VHT

Proor. — We have (compare with lemma 3.2)

||MUH%Z(Q) — [|2m - vU||2L2(Q) = [[2m-Vu+ (n— 2)““%2(9) — [|2m - v“||2L2(Q)

:/ 12m-Vu+ (n—2)u|® —|2m-Vu|? dxz/(n—2)2u2+4(n—2)um-Vu dx
Q Q
= /Q(n —2)%u® +2(n — 2)m - V(u?) dx
=2(n—-2) /F(m -v)u? dT + /Q(n —2)%u? — 2(n — 2)(div m)u? dx

:2(n—2)/r(m-1/)u2 dF+(4—n2)/Qu2 dX:(4—n2)/Qu2 dx < 0.
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Using (27) and (30) hence we deduce that

’/ u’Mu dX‘ < HUIHLZ(Q)”MUHLQ(Q) < HU/HLQ(Q)”Qm . VU”LZ(Q)
Q

< 2R|[u 2o IVl zao) < Z_/iil”ulHLz(Q)HAUHL?(Q) < —2R1 E. []

Vi
We conclude from (32) and (33) that

T
4
/ /|Au|2 dr,, dt > <4|I| - —R)E (34)
s Jr VH1
and (29) follows with ¢ = 4|I| —4R/\/p1. []

REMARK 3.10. — Theorem 3.7 implies the following uniqueness result :
If the solution of (23)—(25) satisfies the condition Au =0 on I' x I for some
interval I satisfying (28), then in fact u® = u' = 0 and hence u =0 on Q x R.

REMARK 3.11. — Theorem 3.7 shows that the ”observation” of Au =0
on I' x I permits one to distinguish the initial data provided I is sufficiently
long.

In connection with the inequality (30) let us note the following result :

LEMMA 3.12. — Let k be an arbitrary positive integer. If v € Z andv L Z;
for every j < k, then

IVoll 22y < Ap 1AV 220 (35)

(Here the eigenvalues A; and the eigenspaces Z; are those associated with
H=1L?Q)and V = H3(Q).)

Proor. — Integrating by parts we obtain that

Vol = = [ 0o dx < oll2(oy| Aol e

The hypothesis on v implies that (we apply (1.10) with H and V as above)

—1/2 —1/2
lollz2ay < Ap 2 l0ll a2 (= Mg 2180 L2 ey)-

Hence

Vol ) < A V2 I1AV]2 20

and (35) follows. []
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REMARK 3.13. — Let k be a positive integer and assume that condition
(28) is fulfilled with )\,:1/ * instead of ,ul_l/ . (Observe that every interval,
of arbitrarily small length, satisfies this condition for a sufficiently large k.)
Then the estimate (29) holds (with some constant ¢’ depending on k) for
every couple (u?, ut) in HZ(Q) x L?(Q) satisfying the orthogonality conditions
u,ut L Z; for every j < k. Indeed, it is sufficient to repeat the proof of
theorem 3.7 and to apply for v := u(t) the inequality (35) instead of (30).
(We recall from remark 1.2 that u(t) satisfies these orthogonality relations.)

3.3. The second Petrovsky system

We consider here the problem

u' + A%u=0 in QxR (36)
u=Au=0 on I'xR (37)
u(0) =u’ and o/'(0) = u' (38)

studied earlier in sections 1.5 and 2.4. We recall from theorem 2.13 the
following direct inequality :

// 10,0 [* + 0, Au|? dT dt < cE} 4 (39)
1JT

it is valid for every interval I and for every solution of (36)—(38) corresponding
to the initial data

uOED3/4:{vEH3(Q):v:AU:0 on I}
and
u' € Dyy = Hy ().
(The constant ¢ does not depend on 1.)
Let us recall that the "increased” energy FE /4 of the solution is defined by

Eyyq = gllullss + 5l 1134 (= %/Q VAU +[Vi/[* dx).  (40)

In order to formulate an inverse result let us fix a point ° € R™ arbitrarily.

THEOREM 3.14. — Let \; denote the first eigenvalue of —A in H} () and
let I be an interval of length

1] > (41)

R
VA
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Then there exists a constant ¢’ > 0 such that
/IV/F |(9,,u/|2 + ’8VAU’2dFm dt > C/E1/4, V('LLO,'LLl) S D3/4 X D1/4. (42)

REMARK 3.15. — Here \; is the smallest eigenvalue of the operator A
associated to H := L?(Q2) and V := H}(2); we have

]| z2(0) < \/—HVUHL?(Q)a Yo € Hy(9). (43)

Theorem 3.14 was first proved, under a stronger condition on |I|, by LioNs
[3], [4]. His condition was later weakened in KOMORNIK [1].

PROOF OF THEOREM 3.14. — It is sufficient to consider u°,u! € Z. Let us
apply lemma 2.12 with h = m where I = [S, T]. We obtain

T T
/ / o, |2 + |0, Aul? AT, dt = — [/ 2u'm - VAu dx
s Jr Q S
(44)

T
+/ /(2+n)|vu'\2+(2_n)yvm\2 dx dt.
S Q

On the other hand, multiplying the equation (36) by Au we obtain that

T
0:/ /Au(u”—f—Agu) dx dt
:[/uAudx / /Au )(0,Au) dT" dt

/ / —u'Av/ — |VAu|? dx dt
- [/ u' Au dx} +/ /|vu’|2—|VAu\2 dx dt
Q S s Ja

+ /S ' / (Aw) (9, Au) — o/ (9,0') dT dt

= [/uAu dx} —I—/ /|Vu > — |VAu|? dx dt
Q

because v/ = Au=0onI' x R by (37). Using the notation

Mu :=2m - VAu 4+ nAu,
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combining with (44) and using (40) we find that
T T
/ / 0,4/ + 0, Al dT,, dt = 4/1|E; 4 — {/ W/Muds] . (45)
s Jr Q S

LEMmwMA 3.16. — We have

2R
‘M d‘<—E . VteR. 46
’/Qu UX_\/)\_l 1/4 ( )

Proor. — We proceed as in lemmas 3.2 and 3.9. First, we have
HMuHLz(Q) < HQmVAuHLz(Q) (47)
because
= / 12m - VAu + nAul® — |2m - VAu|? dx
Q
= / n?(Au)? + 4n(Au)m - VAu dx = / n?(Au)? + 2nm - V(Au)? dx
Q Q
= 2n/(m V) (Au)? dI' + / (n? — 2ndiv m)(Au)? dx
r Q

= —n? / (Au)? dx < 0.
Q

Consequently, using (40) and (43) we obtain that

‘/ ’LL/MU dx‘ § HU,HLZ(Q)HMUHLZ(Q)

Q

S ||u'HL2(Q)H2m . VAUHL2(Q) S QRHUIHL2(Q)HVAUHLQ(Q)
< 2R/VM)|IVY || 2@y IV Aull L2y < QR/VA)Erys. [

We deduce from (45) and (46) the inequality

T
4R
o> +10,Aul? dT,, dt > 4|I|Ey /g — —— E /4,
[ [1oarp+10.a Eys = = Bua
and the theorem follows with ¢’ = 4|I| —4R/\/A1. []
REMARK 3.17. — Let k be a positive integer and assume that condition

(41) is satisfied with Ay instead of A;. (Observe that every interval, arbitrarily
small, satisfies this condition for a sufficiently large k.) Then the estimate
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(42) holds (with a constant ¢’ depending on k) for every couple (u’,u!)
satisfying the orthogonality conditions u”, u' L Z; for all j < k. Indeed, it is
sufficient to repeat the proof of the theorem and to apply for v := u(t) the

inequality

1

S IVv|lL2), Yv€H)Q), vl Z;, Vi<k  (48)
k

V]| 220y <

instead of (43). (Compare with remarks 3.3 and 3.13.)

REMARK 3.18. — As before, theorem 3.15 yields some uniqueness and
observability results.

3.4. The wave equation. Mixed boundary conditions

Here we consider the problem of section 1.3 with I'y # () :

v —Au+qu=0 in QxR, (49)
u=0 on IyxR, (50)
Ou+au=0 on I xR, (51)
u(0) =u’ and u'(0) =u'. (52)

In order to avoid some difficulites we shall assume that
m-v<0 on I'y, m-v>0 on Iy, (53)

and that a has the form

a=(m-v)b, beCYTy), b>0onTly. (54)

We recall that for every couple (u®,u') € V' x H the problem (49)-(52) has
a unique solution whose energy

E .= %/Q lu'|2 4 |Vul? + glu|? dx + %/F alul? AT (55)

1
is conserved.

REMARK 3.19. — The conditions (53) and ToNT'; = ) (see (1.25)) together
impose a very restrictive geometrical property on (). It is satisfied if Q2 is
star-shaped with respect to 20 or if  has the form Q;\Q with two open sets
Q; and o, both star-shaped with respect to z° and such that Qy, C Q;. In
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this case we may choose for I'y, I'; the boundaries of 2y and {21, respectively.
We shall return to this point later in remark 3.25.

Let us denote by R; the smallest positive constant such that

4R2/ Vo2 dx+(2n—2)/ (m - v)|v]?2 dT
Q r

(56)
< 4R? (/ Vo2 + glv|? dx+/ alv|? dF), Vv e V.
Q Iy
REMARK 3.20. — If
n—1
b Z W sur Fl, (57)
then we may choose R; := R.
We define @) := supq, ¢ and
S,
O = 2RQ /v Ak, S%n:2, (58)
2RQ/\/)\k + Q/)\k, sin=1

for k = 1,2,..., as in section 3.1. Let us recall that \x is here the biggest
constant such that

/ Vol? + qlo]? dx+/ alv|? dT > )\k/ o2 dx (59)
Q I Q

for every v € V satisfying the orthogonality conditions v L Z;, Vj < k.
We are going to prove the

PRrROPOSITION 3.21. — Assume that

Q1 <1 (60)

and let I be an interval of length
[I| > 2R1/(1 — Q). (61)
Then there exists a constant ¢’ > 0 such that

// il + [/ ATy dt > ¢, ¥(uu!) € Dy x Dyjs. (62)
IJ14

Let us recall that Dy o =V C H'(Q) and that D; C H?(Q)NV by remark
1.4.
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Proor. — It is sufficient to consider the case (u°,u') € Z x Z. Then the
following computations are justified by remark 1.4.
We recall from the proof of theorem 3.1 the identity (18) :

//auMu—i-my)(() IVu[?) dT dt

= [/ u Mu dX + / / (u')? + |Vul? + (n — 1)qu? + 2qum - Vu dx dt
Q 5 s Ja
where
Mu=2m-Vu-+ (n—1)u;

using (55) hence we deduce that

/ /8uMu+ m-v)((u)? - \Vu\)dth+/Alau dr’ dt

= [/ u' Mu dx] —|—2|I|E—|—/ /(n—?)qu2—|—2qum-Vu dx dt.
Q S s Ja

Using (50), (51) and (54) we obtain

// (u')? — |Vul* = 2bu(m - Vu) + (2 — n)bu? dT,, dt
rJr,

+ /1 /F (O,u)? dT,, dt (63)

T T
= [/ u' Mu dx] +2|I|E+/ /(n—2)qu2—|—2qum-Vu dx dt.
Q S s Ja
By (53) the second integral is < 0. Using the inequality
—2bu(m - Vu) < 2R|bu||Vu| < |[Vu|* + R*b*u?

we may majorize the first integral (and therefore the left-hand side of (63))

by
// + (R%b + 2 — n)bu? dT,,, dt.
'y

Using (59) and (55) the last integral in (63) is minorized (as in section 3.1)
by —2|I|Q1E. Thus we deduce from (63) the estimate

// + (R%b + 2 — n)bu? dT,, dt
I

> 211 QuE+ | [

T
u' Mu dx} .
Q S
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LEMMA 3.22. — We have the estimate
‘ / W' Mu d:z:‘ <2R\E, VteR. (65)
9

Proor. — We have

/ |Mul|? dx
Q

= / 12m - Vu + (n — 1)ul? dx
Q
= / 12m - Vul® + (n — 1)%u? + 4(n — 1)um - Vu dx
Q
= / 12m - Vul? + (n — 1)%u® + (2n — 2)m - V(u?) dx
Q

= / 12m - Vul? + (n — 1)*u? —n(2n — 2)u? dx + (2n — 2) /(m -v)u? dI'
) r

:/ 12m - Vul? + (1 — n?)u? dx+(2n—2)/ (m - v)u? dT'
Q

'y

< 4R2/ |Vu|? dx + (2n — 2)/ (m - v)u® dl
Q

I

< 4R%(/ |Vul? + qv? dx+/ (m - v)bu? dI')
Q

r

/ |u' Mu| dx

§R1/( ")? dx+4R /|Vu|2—|—qu dx+/ (m-v)bu? dF)zZRlE. []
Q 1 r,

whence

Applying lemma 3.22 with t = S and ¢ = T' we conclude from (64) that
// + (R?b+2 — n)bu® dT,, dt > 2|I|(1 — Q1)E — 4R, E.  (66)
I

Let ¢; > 1 be a majorant of R?b* + (2 — n)b on I'1, then (62) follows from
(66) with

C/ = (2’I|<1—Q1)—4R1)/Cl I:I
REMARK 3.23. — If

R*?*+(2-n)b<0 on Ty, (67)
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then we may deduce from (66) the stronger estimate
/ W' [2dT,, dt > E,  V(u’,u') € Dy x Dy o (68)
1Jr,

with
d:=2I|(1 - Q1) — 4R;.

REMARK 3.24. — Let us denote by Ry (k= 1,2...) the smallest positive
constant such that

4R2/ |Vo|? dx+(2n—2)/ (m - v)|v|? dT
Q 'y

< 4R? (/ Vo[ + q|v]? dx + / b(m - v)|v|? dF)
Q r,

for every v € V satisfying the orthogonality conditions v L Z;, Vj < k. Let
k be a positive integer and assume that the conditions (60) and (61) are
satisfied with Q, Ry instead of @1, R;. (One can readily verify that for
every interval I of length > 2R the conditions (60) and (61) are satified with
a sufficiently large k.) Then (62) is valid (with a constant ¢’ depending on k)
for every couple (u,u') satisfying the orthogonality conditions u°, u* L Z;,
Vj < k. Indeed, it suffices to repeat the above proof and to observe that (by
remark 1.2) we may replace @Q1, R; in the estimates by Q, Ry.

REMARK 3.25. — GRISVARD [1] proved by a delicate analysis of singularities
that in dimension n < 3 the inequality (62) remains valid without the
hypothesis Ty N\T'; = (). The difficulty comes from the fact that the identity of
lemma 2.3 and the identity (18) do not hold any more even if (u®,u!) € Zx Z.
(The solutions are not sufficiently smooth to justify the integrations by parts.)
We only have inequalities instead of these identities; fortunately, these are
still sufficient for the proof of the desired estimates.

THEOREM 3.26. — Assume that
Q1 < 1, (69)

R**+(2-n)b<0 on Ty, (70)
and let I be an interval of length

Il >2R;/(1 — Q1). (71)
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Then there is a constant ¢’ > 0 such that
/ u|?dly, dt > E_y 9, V(u®u') €V x H.
1Jr,

We recall that

E_1/0= %HUOH%( + %Hulﬂ%/,

The case ¢ = 0 and b = 0 of this result is a weakened version of a theorem
of L1ons [4, p. 200]. We shall prove a stronger result later (see theorem 6.15).

Proor. — It suffices to consider u°,u! € Z. Set 20 := —A~1u!, 21 := u°,
and apply the estimate (68) to the solution z of (49)—(52) corresponding to
the initial data (2%, z!) instead of (u°,u!). We obtain that

2 [ [ 2 ardez I+ 1)
1JT,
= (A7 + ) = By + 1) = ¢ Boa ()

it remains to verify that 2’ = u or, by the uniqueness of the solutions, that 2z’
satisfies (49)—(52). First, (49)—(51) are easily obtained by differentiating with
respect to t the analogous equations for z; the differentiation is permitted
because z € C°(R; H2(2)). Finally, (52) may be verified directly :

Z0)=2z'=u’ and (2)(0) = (Az —q2)(0) = —A2° =u!'. ]
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4. Exact controllability. Hilbert Uniqueness
Method

We present here the Hilbert Uniqueness Method (HUM), introduced by
Lions [3], [4], [5]. As in the preceding chapter, for any fixed 20 € R™ we shall
use the notation

0

m(x) =z —2°, z€R" (1)
R = R(2%) := sup{|z — 2°| : 2 € Q}, (2)
dl'y, == (m-v) dl, (3)
Iy :={zel:m(x) v(z)> 0} (4)
and we set
I'_:={z el :mx)- v(x) <0} (5)

As usual, we consider the real case only ; the complex case then follows easily.

4.1. The wave equation. Dirichlet control

Fix T' > 0 and consider the problem

yY'—Ay+qy=0 in Qx(0,7), (6)
y=v on I'x(0,7T), (7)
y(0)=y° and ¥'(0) =y (8)

It follows from theorem 2.5 that for any given 3° € L3(Q), y' € H~1(Q)
and v € L?(0,T;L?*(T)) the problem (6)—(8) has a unique solution
(y,y') € C([0,T]); L3(Q) x H~1(Q)). (Observe that here I'y = I' whence
V = H Q).

DEFINITION. — The problem (6)—(8) is exactly controllable if for any given
(%, yY), (y2,y%) € L2(Q) x H~1(Q) there exists v € L%(0,T; L*(T)) such
that the solution of (6)—(8) satisfies

y(T)=yp and y'(T)=yp. (9)

As in section 3.1, fix 29 € R™ arbitrarily and set Q := supq, q,

0 ,_{QRQ/\/AT, if n > 2;
YT 2RQ/VA 4+ Q/ A, ifn=1.
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THEOREM 4.1. — Assume that

Q1 <1, (10)
and let
T >2R/(1— Q). (11)

Then for any given (y°,y'), (y%,y%) € L*(Q) x H Y(Q) there exists
v € L?(0,T; L*(T)) such that

v=0 ae on I'_x(0,T) (12)

and the solution of (6)—(8) satisfies

y(T) =y and o' (T)=yp. (13)

This result shows that if € is contained in a ball of center z° and diameter
< T, then the problem (6)—(8) is exactly controllable, even if we act on I';
only.

Theorem 4.1 is due (for ¢ = 0) to Lions [4], [5].

REMARK 4.2. — As for the choice of T and I'; very precise conditions
were given in BARDOS, LEBEAU AND RaucH [1], using microlocal analysis.
See also CAZENAVE [1], GRAHAM AND RusseLL [1], Joo [1] and KOMORNIK
[11] for estimates of T'.

Let us consider the solution of the problem

vl —Ayr+qy1 =0 in Qx(0,7)
yy=0 on T x(0,7)
yi(T) =y} and yi(T)=yr

and assume that there exists a unique function v € L?(0,7T; L*(T")) satisfying
(12) and such that the solution of the problem

Yy —Aya +qy2 =0 n Qx(0,7)
y2=v on I'x(0,7)
y2(0) = y” —31(0) and  y5(0) = y' —41(0)
satisfies yo(T) = y4(T) = 0. Then y := y; + y2 is a/the solution of (6)—(8)

and it satisfies (13). In view of this remark it is sufficient to prove theorem
4.1 in the special case where y% = yt. = 0.
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Henceforth we shall assume that y% = y+ = 0.

The first idea of HUM is to seek a control v in the special form v = d,u
where u is the solution of the homogeneous problem

v —Au+qu=0 in Qx(0,7) (14)
u=0 on I x(0,7) (15)
u(0) =u® and o/(0) = u (16)

for a suitable choice of (u°,u') € H}(Q) x L?(Q). Let us recall (see theorems

1.1 and 2.2) that for any given (u°,u') € H}(Q) x L*(Q2) the problem (14)-

(16) has a unique solution, that d,u € L*(0,T; L*(T')), and that the linear

map (u®,u') — d,u is continuous from H}(Q) x L?(Q) into L?(0,T; L*(T)).
Using theorem 2.5 hence we deduce that the second problem

v —Ay+qu=0 in Qx(0,7) (17)
y=0,u on I'y x(0,7T) (18)
y=0 on T_x(0,7) (19)
y(T) =y (T) =0 (20)

has a unique solution satisfying (y(0),4'(0)) € L?(Q) x H~1(Q) and that the
linear map (u’,u') — (y(0),4'(0)) is continuous from HJ () x L?(Q) into
L?(Q) x H7Y(Q).

If (u% ut) is such that (y(0),4'(0)) = (v°,y'), then the control v := d,u
on I'y and v = 0 on I'_ drives the system (6)—(8) in rest. Thus theorem 4.1
will be proved if we show the surjectivity of the map

HY(Q) % LA(Q) 5 (u®,u") > (5(0),5/(0)) € LA(Q) x HH(Q).

For some technical reasons it is more convenient to study the surjectivity of
the map

A HYQ) x L2(Q) — H Q) x L*(Q)
defined by
A’ ut) = (y'(0), —y(0)).

Clearly, the two maps are surjective at the same time.
In fact, we shall prove a stronger result :

LEmMA 4.3. — Assume (10) and (11). Then A is an isomorphism of
HY(Q) x L*(Q2) onto H1(Q) x L*().
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Proor. — Clearly A is a bounded linear map. Applying the Lax-Milgram
theorem (see BrEzis [2]), it suffices to show the existence of a constant ¢ > 0
such that, putting for brevity

F:= Hj(Q) x L*(Q)
we have
(Aw®,u'), (W, u'))prop > el (uf,u) || % (21)

for every (u®,u') € F. Since A : F — F’ is continuous and Z x Z is dense in
F, it is sufficient to prove this inequality for u°,u! € Z.

Multiplying the equation (17) by u and integrating by parts we obtain

T

T
0:/ /u(y”—Ay—i—qy)dxdt:[/uy'—u/ydx
0o Ja Q 0
T T
+/ / (v — Au + qu)y dx dt + / / —udyy + yo,u dI' dt
0o Jo o Jr
T
= / —u%y(0) + u'y(0) dx-l—/ / |0, ul? AT dt
Q o Jry
whence
T
(A(u®,uh), (W u' )y pr p = / / |0, ul? dT dt.
o Jry
By (10) and (11) we may apply theorem 3.1. We obtain the estimate
<A(u0’ u1)7 (uov u1)>F’,F >cE
with a positive constant ¢’ = ¢/(T). Using the definition (3.5) of the energy

hence we deduce (21) with ¢ :=¢/2. []

REMARK 4.4. — HUM is based on the idea that the observability of the
homogeneous problem (14)—(16) is sufficient for the exact controllability
of the non-homogeneous problem (6)—(8). It is useful to observe that
the observability is also a mnecessary condition. Indeed, assume that
the problem (14)—(16) is not observable and fix non-zero initial data
(u® ul) € HE(Q) x L?(Q) such that d,u = 0 on T x (0,7). Choose
(y°,y*) € L*(Q) x H~(Q) such that

/ ulyt —uly® dx # 0.
Q
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Then there is no control v € L?(0,T; L*(T')) such that the solution of (6)—
(8) satisfies y(T') = v'(T) = 0 on Q. To show this, fix v € L?(0,T; L*(T))

arbitrarily and multiply (6) by the solution of (14)—(16). Integrating by parts
and using (14), (15) and the property d,u =0 on I' x (0,7"), we obtain that

T
0:/ /u(y”—Ay-i—qy) dx dt
0o Jo

T T
= [/ wy' —u'y dx} — / / udyy — (Oyu)y dT' dt
Q 0 o Jr

T
+/ / (u” — Au + qu)y dx dt
0o Jo

T
= [/ uy'—u’ydx] .
Q 0

Hence

[Ty (@)~ (D) ax= [ atyt -ty dx £ 0
Q

Q

and therefore we cannot have y(T") = y'(T") = 0 on .
4.2. The first Petrovsky system

Fix T' > 0 and consider the problem

y' + A% =0 in Qx(0,7) (22)
y=0 and dyy=v on I'x(0,7) (23)
y(0)=3° and ¢'(0) =y" (24)

It follows from theorem 2.9 that for every (y°,y',v) € L?(Q) x H™2(Q) x
L?(0,T; L*(T")) the problem (22)—(24) has a unique solution (y,y') €
C((0,7]; 12(©) x H-2(2)

DEeFINITION. — The problem (22)—(24) is exactly controllable if for any
given (y°,y1) and (y2, y1) € L*(Q) x H%(Q) there exists v € L?(0,T; L*(T))
such that the solution of (22)—(24) satisfies

y(T)=yr and y'(T)=yr.
Let us denote by p1 the first eigenvalue of the problem

A?v = —pAv, v e HZ ().
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Fix 2° € R™ arbitrarily.
THEOREM 4.5. — If T > 2R/\/ii1, then for any given (y°,y') and
(%, yh) € L2(Q) x H=%(Q) there exists v € L*(0,T; L*(T")) such that

v=0 ae on I'_x(0,T) (25)

and that the solution of (22)—(24) satisfies

y(T)=y% and o (T) = yr.

In particular, if € is contained in some ball of diameter < T', /1, then the
problem (22)—(24) is exactly controllable.

Theorem 4.5 was first proved by Lions [4], [5] under a stronger assumption
on T'; this assumption was weakened in KOMORNIK [1].

Using an indirect compactness-uniqueness argument, Zuazua [1] later
proved that these results remain valid in fact for arbitrarily small 7' > 0. We
shall prove his results in a constructive way in chapter 6 (see theorem 6.8).

PrROOF OF THEOREM 4.5. — Using the same argument as in the preceding
section, we may assume that y% = y+ = 0.

Fix (u®,u') € HZ(Q) x L?(Q) arbitrarily. Solve the problem
u +A*u=0 in Qx(0,7T),
u=0,u=0 on I x(0,7),
u(0) =u® and u/(0) = u',

and then the problem
y'+ A% =0 in Qx(0,7T),
y=0 and J,y=Au on I'y x(0,7),

y=0,y=0 on I'_x(0,T),
y(T) =y (T) =0.

It follows from theorems 1.1, 2.6 and 2.9 that the formula
Au®,ut) == (y'(0), —y(0))

defines a linear and continuous map of F':= HZ(Q) x L?(Q) into F'. It is
sufficient to prove that A is surjective. We establish a stronger result :

LEmMA 4.6. — IfT > 2R/ /1, Then A is an isomorphism of F onto F’.
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Proor. — Applying the Lax-Milgram theorem, using the continuity of A and
the density of Z x Z in F it suffices to prove the estimate

(A, ul), (W u))prop > cf (W uh) |5 (26)

for every (u%,u') € Z x Z, with a suitable positive constant c.
First we observe that the right-hand side of (26) is equal to 2cE.
Furthermore, the left-hand side of (26) equals fOT ff+ |Au|? dT" dt. Indeed,

we have

T
0= / / u(y” + A?y) dx dt
0o Ja
T T
— / /(u” + A%u)y dx dt + [/ uy' —u'y dx]
0o Jo Q 0

T
4 / / w(@yAy) — (B,u)(Ay) + (Aw)(D,y) — (B, Au)y dT dt
0 T

T
= / —u%(0) + u'y(0) dx+/ / (Au)? dI" dt
whence

uoul uoul F'F = ' ’LL2 .
(A0, ), (0, ul)) /O/F+(A) ar dt

It remains to prove the estimate

T
/ / (Au)? dT" dt > 2¢E, (27)
0 JT4

and this follows from theorem 3.7 and from the hypothesis T > 2R/\/u1. []
4.3. The wave equation. Neumann or Robin control

Consider the problem

y' —Ay+qy=0 in QxR, (28)
=0 on Iy xR, (29)
Oy+ay=v on I'i xR, (30)
y(0)=y° and y'(0)=y' in Q (31)

with Ty # 0.
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We begin by defininig the solution of (28)—(31). Now we do not have
suitable hidden regularity results leading to optimal existence and uniqueness
results expressed in terms of the usual Sobolev spaces; therefore the
transposition (or duality) method will provide less precise existence results
for the weak solutions.

As usual, we begin with a formal computation. Fix (u°,u') € V x H
arbitrarily, solve the problem (cf. section 1.3)

v —Au+qu=0 in QxR, (32)
u=0 on I'yxR, (33)
ou+au=0 on I'i xR, (34)
u(0) =v’ and /(0)=u' in Q (35)

Y

and multiply (32) by the solution of (28)—(31). We obtain for every fixed
S € R the equality

S
O—/ /u —Au+qu) ydx dt = [/uy—uy dx]
/ /8u —u(0,y) dth-l—/ / u(y” — Ay + qy) dx dt

:/Qu (S)(S) = u(S)y'(S) + uy" — u'y dx+/ /Fluvdl“dt

Putting

S
:/ / wv AU dt + ((y*, —°), (W, u' Vv v vsE
o Jr,

we may rewrite this identity as

Ls(u”,u') = ((y'(8), =y(9)), (w(S), v (S))vixmvxm, V(' u') €V XI6)

This leads to the following definition :

DerFiNITION. —  We say that (y,y’) is a solution of (28)—(31) if
(y,v') € C(R; H x V') and if (36) is satisfied for every S € R.

We have the
THEOREM 4.7. — Given (y°,y') € H x V' and v € L} _(R;L*(T))

0
arbitrarily, the problem (28)—(31) has a unique solution (y,y’') € C(R; Hx V).
Furthermore, the linear map (y°, y',v) — (y,y') is continuous with respect
to these topologies.
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Proor. — We may easily adapt the proof of theorem 2.5 with one
modification : to show the continuity of the linear form Lg now we apply the
standard trace theorem (V C)H(Q) — L*(T). []

Now assume, as in section 3.4, that there exists z° € R™ such that
m-v<0 on Ty, m-vr>0 on Iy, (37)
that a has the form
a=(m-v)b, beC' (), b>0 on Ty, (38)
and that
R+ (2-n)b<0 on TI;. (39)

Let us introduce the constants Ry and ()1 as in section 3.4 and assume that
Q1< 1. (40)

THEOREM 4.8. — Assume (37)—(40) and let

T>2R1/(1—Q1). (41)

Then for any given (y°,y'), (y>,yx) € V x H there exists a control
v € L?(0,T; L?(T1)) such that (extending v by zero outside (0,T)) the solution
of (28)—(31) satisfies

y(T) =y} and o(T) = yr.

For 'y # () and ¢ = 0 we obtain a weakened version of a theorem of LioNs
[4; p. 203] : he proved this result (using indirect compactness—uniqueness
arguments) with R; replaced by R in (41). Theorem 4.8 will be improved
later (see theorems 6.20 and 8.10).

PrROOF. — As usual, we may assume that y9 = yi. = 0. We apply HUM.
Consider on Z x Z the seminorm defined by
1(u® uh) e =l 20,2200

where u is the solution of (32)—(35). By theorem 3.26 it is a norm.

Completing Z x Z with respect to this norm we obtain a Hilbert space F'
and we deduce from the trace theorem V — L?(T') and from theorem 3.26
the algebraical and topological inclusions

VxHCFCHxV'. (42)
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Given (u°,u') € F arbitrarily, we solve (32)—(35), then we solve

y' —Ay+qy=0 in QxR, (43)
y=0 on IyxR, (44)
Oyy—+ay=—u on I'y xR, (45)
y(T) = o/ (T) =0 (46)

and we set

A’ u') = ('(0), —y(0))-
By the definition of F' and by theorem 4.7 A is a bounded linear map of F
into H x V'. The proof will be completed if we show that I’ is contained in
the range of A. Indeed, then we will conclude from (42) that H x V C F'. In
fact, the following stronger result holds true :

LEMMA 4.9. — A is an isomorphism of F onto F'.

Proor. — Compute

<A(u07 ul)a (Uov U1)>V’><H,V><H
for (u®,ut), (v°,v!) € Z x Z. Denoting by u, v the corresponding solutions of
(

(32)-

35) and considering the corresponding solution y of (43)—(46), we have

T
O—/ /y — Ay +qy)v dx dt = [/yv—yv dx}
/ / ,,yv—y@vdfdt-i—/ / v — Av + qu) dx dt

_ / y/ (T)o(T) — y(T)/(T) — o/ (0)w(0) + dx+/ / wo dT dt
Q I
= / —y'(0)v(0) 4+ y(0)v'(0) dx+/ / uv dT dt
Q 0 Iy
whence
<A(UO,U1), (UO,UI)>V’><H,V><H = (u, U)L2(0,T;L2(P1)),
le.
<A(u07u1)7 (U07'U1)>V’><H,V><H = ((uoaul)u (UO7'U1))F- (47)
We conclude from (47) that A(u®,u') € F’ and that
1A, u)l[Fr = [I(u®, ul) ] F.

Consequently, A is a bounded linear map of F' into F’. By (47) we may apply
the Lax-Milgram theorem and the proof is completed. []

REMARK 4.10. — Let us recall from remark 3.20 that in certain cases we
have Ry < R.
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5. Norm inequalities

The aim of this chapter is to introduce a general method, which will permit
us in the following chapter to improve and complete the uniqueness and exact
controllability results obtained earlier, by weakening the hypotheses on the
length of the intervals of uniqueness and on the sufficient time of exact
controllability.

This method is closely related to an estimation method set out by HArRAUX
[3]. In section 5.4 we shall also apply an idea of LEBEAU [1].

Throughout this chapter all spaces are assumed to be complex.

In section 5.1 we outline the main ideas in the case of the first Petrovsky
system. The precise results will be formulated and proved in sections 5.2-5.4.

5.1. Riesz sequences

Let (wj);>1 be a sequence of distinct real numbers and consider the
functions of the form

t) :szei“’jt, teR (1)
j=1

with complex scalar coefficients z;. We say that (e“"j t) -~ Is a Riesz sequence
on (0,T) if there exist two positive constants ¢1(T") and c3(T) such that

DYl < [ OF dt< e Y )

for every function u of the form (1).

It is clear that if (™ ) ~, is a Riesz sequence on (0,T), then for
every k > 1 the subsequence (_ei“’jt) ~, 1s also a Riesz sequence on (0,7).
Conversely, the following standard result holds true (see e.g. BALL AND
SLEMROD [1] or HARAUX [3]) :

Let k > 1 and assume that the subsequence ( iw; ) 15 a Riesz sequence on

j>k
some interval (0, Ty). Then the entire sequence ( iw; ) 18 a Riesz sequence
on (0,T) for allT > Ty, arbitrarily close to T}.
Now consider the problem
u' + A%u=0 in QxR (3)
u=0,u=0 on I'xR (4)

u(0) =u" and 4/(0) =u'; (5)
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the energy E of the solution is defined by
E = %/Q |Aul? 4 |u'|? dx. (6)

Given T > 2R)\1_1/ 4 arbitrarily, by the results of sections 2.3 and 3.2 (see
theorems 2.6, 3.6 and remark 3.12) there exist two constants c¢;1(7), co(T)
such that for every u’, u! € Z the solution of (3)—(5) satisfies the estimates

e/ (TVE < /OT/F (Aul? dT dt < cs(T)E. 1)

Let us recall from section 4.2 that the first inequality in (7) implies the exact
controllability of the first Petrovsky system in time 7.

In fact, the estimates (7) hold for arbitrarily small 7" > 0. To convince
ourselves, set

woj—1 = /Aj, waj = —/Aj, sz—l = Z2j =Zj, 5=>1,

and introduce in Z the norm

Jolli= ([ 1aof? )

and the semi-norm

lv| := (/F | Av|? dx>1/2.
+

Then the solution of (3)-(5) may be written in the form (1) (see theorem 1.3)
with vector coefficients z; € Z;, and one can readily verify that

E=Y I5)* ®

Consequently, we may rewrite the estimates (7) in a form analogous to (2) :
T
|
0

)l < [P de < ealT) 3 ) )

By analogy with the scalar case, let us say that (ei“’ﬂ't, EJ) o, 18 a vector
71
Riesz sequence on (0,T) if the estimates (9) are satisfied.
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Now fix T" > 0 arbitrarily. Choose k£ > 1 such that T > 2R>\,;1/ 4

and then
choose T}, such that T > Tk~> ZRA;U 4 By theorems 2.6, 3.6 and remark
3.12 the subsequence (e™i?, Z;)

observe that

j>on_1 18 a vector Riesz sequence on (0,7}) :

zl:---:ZQk_2=0<:>UO,U1J—Zlf"aZk—l- (10)

Applying a generalization of the above mentioned scalar result, hence we
will conclude that the entire sequence (ei“’j t)j>1, (
sequence on (0,7") (see theorem 5.2 below) ; in other words, the estimates (7)
hold for arbitrarily small T" > 0.

Zj)j>1 is a vector Riesz

5.2. Formulation of the results

Let A be a linear operator in an infinite-dimensional complex Hilbert space
‘H. Assume that A has an infinite sequence of purely imaginary eigenvalues
iwj (wj €R, 7 =1,2,...) satisfying

lwj| = 400 as j— 400 (11)

and a corresponding sequence of finite-dimensional, pairwise orthogonal
eigenspaces Z; whose linear hull Z is dense in H. Then for any given UY € Z
the initial value problem

U =AU in R, U((0)=U" (12)

has a unique solution U € C*°(R;H) and this solution has a unique expansion
of the form

Ut)y=> Uje™', U; e 2 (13)
J

where finitely many coefficients U; are different from zero only. It follows that
U@l = 1Ulln, VteR. (14)

(Our hypotheses mean that A has a skew-adjoint extension (i.e. iA4 is
self-adjoint) in H, having a compact resolvent.)

ExamMpPLE 5.1. — Consider the abstract problem

u +Au=0 in R, u(0)=u’ ' (0)=u' (15)
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introduced in section 1.2. We can rewrite it in the form (12) by setting
A(u,v) = (v, —Au), U = (u,), and U°= (u°,u').
Introducing the Hilbert space H = V' x H and the sequences (w;), (Z;) by
wak—1 = VM, Zoko1= {(v,iwgp—1v) : v € Zi}
and
war = =/ Aoy Zop = {(v,iwarv) 1 v € Zip}

for £ = 1,2,..., the above mentioned conditions can be easily verified.
Furthermore, the energy of the solutions of (15) is closely related to the norm
of the "energy space” H :

10012 = [1(u®, ul) |l = 2.

Let us observe that for any fixed U® = (u°,u!) € Z and for any positive
integer n the following properties are equivalent :

U1 Z; inHfor j=1,...,2n—2,
uwu' 1 Z; inH (orin V) for j=1,...,n— 1.

Indeed, writing

U = (u,u') = (vp, iwap—10x) + (wy, iwapwy), v, wy € Zg,
k
for every fixed m > 1 we have the following equivalences :
uo,ulJ_Zm<:>vm—|—wm:vm—wm:()<:>vm:wm:0,

U 1 Zom_1, Zom < Uy = Wy, = 0.

Now let p be a semi-norm in Z. The following theorem will play a crucial
role in the following chapter.

THEOREM 5.2. — Assume that p is a norm in each of the eigenspaces Z; :
UeZ; and pU)=0=U=0 (j=1,2,...). (16)

Assume that there exist an integer k > 1, two intervals Iy, I and two positive
constants ¢y, co such that the solutions of (12) satisfy the inequalities

/I p(U(0)? dt > U2 (17)
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and

/I p(U(6)? dt < || U°)12 (18)

whenever

UYL Zy,..., 21 (19)

Then for every interval I of length |I| > |I1| there exist two positive constants
c3 and ¢y such that

esl|U°I3, < /Ip(U(lﬁ))2 dt < eq[U°]7, (20)

forallU° € Z.

In fact, we shall prove the following more general result :

THEOREM 5.3. — Assume that there exist an integer k > 1, two intervals
I, I>, a semi-norm q in Z and three positive constants cy, c1, co such that

UeZ, and qU)=0=U=0 (j=1,2,...), (21)

q<cop in Z (22)

and that the solutions of (12) satisfy the inequalities

| pw) ac o (23)
and
| awie? ae < el (24)
)
whenever
UYL Z1,..., 26 1. (25)

Then for every interval I of length |I| > |I1| there exists a positive constant
c3 such that

/I p(U(1)? dt > e5| U013 (26)

and for every interval I there exists a positive constant c4 such that

/I qU(1)? dt < ey |U°)2, (27)
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for allU° € Z.

For ¢ = p this theorem reduces to theorem 5.2.

REMARK 5.4. — The following remark is often useful to verify the condition
(21) or (16). Assume that for some given j there is an interval I’ and a positive
constant ¢’ such that

[ awioy ae= o, (28)

for all U° € Z;. Then ¢ is a norm in Z;. Indeed, if U° € Z; then the
corresponding solution of (12) is

U(t) — UOeiwjt

and therefore

P10 = | a@e)? av= Ul

Hence U° # 0 implies q(U") # 0.

Sometimes we shall find I’ and ¢ satisfying (28) for all UY € H. However,
the interval I’ will be much longer than I; in theorems 5.2 and 5.3, hence it
will not replace (17) or (23).

We shall also prove a euclidean version of theorem 5.3. Let p be a euclidean

semi-norm in Z (i.e. defined by a positive semi-definite hermitian bilinear
form p(-,-) in Z such that p(U) = p(U,U)Y/? for all U € Z) and assume that
there exist two positive constants o and c,, such that

p(U) < calw;|*|Ulln, VU € Z5, Vw; #0. (29)

We also need the following assumption on the spectrum of A : there is a
positive constant d satisfying

D lwj| 7 < +oo. (30)
j=1

Let us denote by Z, (resp. by Z_) the linear hull of the eigenspaces Z;
corresponding to the eigenvalues iw; with w; > 0 (resp. w; < 0). Clearly we
have

Z,1Z and Z=2Z2,+2Z_. (31)
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THEOREM 5.5. — Assume (30) and let p be a euclidean semi-norm in Z
satisfying (29). Assume that there exist an integer ! > 1, two intervals I}, I,
a semi-norm q in Z and three positive constants cy, ¢} and ¢ satisfying (21),
(22) and such that the solutions of (12) satisfy the inequalities

| po a= e (32
and
/I qU())? dt < | U°)2, (33)
whenever
UL 2Z,...,2 4 (34)
and
either U%c 2, or U%c Z_. (35)

Then for every interval I of length |I| > |I1| there exist two positive constants
c3 and ¢y such that

/, p(U(1)? dt > e5|U°2, (36)
and
/I qU(1)? dt < e4|JU°)2 (37)

forallU° € Z.

The rest of this chapter is devoted to the proof of theorems 5.3 and 5.5.

5.3. Proof of theorem 5.3

First of all, we may assume by an obvious induction argument that k = 2.
Furthermore, we may assume that w; = 0. To see this let us consider the
initial value problem

V'=(A—-iwnI)V in R, V(0)=U" (38)
The solutions of (12) and (38) are clearly connected by the relation

V(t) = U(t)e ™,



70 5. Norm inequalities

Since

p(V(1)) =pU(t)) and ¢(V(t)) =q(U(1))
the inequalities (23), (24), (26), (27) of theorem 5.3 are the same for U(¢) and
for V(t). Furthermore, the eigenvalues of A — iw;Z are those of A shifted by

—iws7 ; in particular the eigenvalue iw; of A corresponds to the zero eigenvalue
of A —iwZ.

STEP 1. — First we establish a weakened version of inequality (26) : there
is a positive constant ¢’ such that

ﬂMUWP&zdwﬂ—mﬁt (39)

for all UY € Z where U; denotes the orthogonal projection of U° onto Z;.
(Since wy; = 0, Uy is also the orthogonal projection of U(t) onto Z; for every
t € R. In other words, U; is the constant part of U(t), cf. (13).)

Let us first note that inequality (23) remains true (with the same constant
1) for every translate I; + 7 of I. Indeed, set

V(t):=U(t+71), teR, (40)
then V is the solution of (12) with U replaced by U (7). Using (23) and (14)

we have

/1 p(U(#))* dt = /I p(V($)? dt > a1l [V(0)[17, = c1lU ()17, = c1|[U°|I3,-
1+7 1
Since [ is longer than I;, we may therefore assume that I contains the

closure of I; in its interior, say
I =(a,b) and (a—e,b+e)CI, e>0. (41)
Now fix U° € Z arbitrarily, solve (12) and (following HARAUX [3]) set

V(t)::U(t)—%/E U(t+s)ds, teR. (42)
Observe that
[ averac<a [ e a (43)
I I
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for every t € R, whence, using (41) and the Fubini theorem,

/Il p(V ()2 dt < 2/11 p(U(t))? dt + % /1 /_ p(U(t+s))* ds dt
b+e
2 N\ 2 ’ 2
< 2/11 p(U(#) dt+2/H p(UE))? db < 4/p(U(t)) dt.

1

Using the expansion (13) of U(t) one computes easily that

V({t)=> Vit Ve 2
J

with

S W;&

Vi=0 and Vj:<1— )Uj if > 1. (44)

sz

Hence V' is the solution of (12) with U° replaced by V° := 37, Vj, which
satisfies the orthogonality condition (25). Applying (23) we obtain that

[pwmfﬁqu%% (45)

Since w;j # 0(= wy) for j # 1 and since |w;| — +o00 as j — 400 (cf. (11)),
there exists a positive constant « such that

S W; &

>a, VYj>2. (46)
W€

Using the orthogonality of the eigenspaces Z; we deduce from (44) and (46)

that

VO3 > al|U° — Uy || (47)

and (39) follows from (43), (45) and (47) with ¢’ := a?c; /4.

STEP 2. — Next we prove the (easy) estimate (27) for an arbitrary interval I.
(Its length does not play any role here.) Let us first note that the estimate (24)
remains true (with another constant) without the orthogonality assumption
(25). Indeed, since the square root of the left hand side of (24) defines a
semi-norm of UY and since this semi-norm is obviously majorized by the
norm of H on the finite-dimensional vector space Z1, there exists a positive
constant ¢}, such that

/ q(U1)2 dt < C/2||U1||r2,_(, VU1 € Zl.

I
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We may assume that cj > co. Now, given U® € Z arbitrarily, the (constant)
solution Uy of (12) with the initial value U; (cf. (13)) satisfies the above
estimate while the solution U(¢) — U; of (12) with the initial value U° — U;
satisfies the estimate (24) by assumption. Hence, using the triangle inequality
and then the orthogonality of the eigenspaces, we have

/ q(U(t))? dt < 2/ q(U1)? dt + 2/ qU#) —Uy)? dt

12 I Iy
< 26h||UL I3, + 2¢2||U° — Un |13, < 264 1U° 3,

Therefore (24) is satisfied for all U? € Z if we replace ¢y by 2ch.
If I is a translate of Iy, say I = Iy + 7, then (27) is true with ¢4 = cs.
Indeed, set

V(t)=U({t+71), tekR,

then V is the solution of (12) with UY replaced by U (7). Using (24) and (14)
we have

/Iq(U(t))2 dt = /1 g(V(1)* dt < 2| V(0) 3 = e2[| U717, = 2| U° 3,

In the general case let us cover I with a finite number of translates of I,
say

Then we have

/ QU@ A< / qU®)? dt < 3 eal|U°)2, = mea | U°),
I k=1"1T2+7k k=1

i.e. (27) is satisfied with ¢4 = mes.
STteP 3. — Now we establish the estimate (26). Since Z; is finite-
dimensional, by assumption (21) there exists a positive constant ¢ satisfying

1AL / G(U1)? dt(= clTlg(Th)?), VU, € Zi.
I
Using this inequality we have for any given U? € Z the following estimate :
10012, = T2, + T0° — U2 < e / G(U1)? i+ [U° — U312

<2 / q(U(1))? db + 2¢ / a(U(t) = Ur)? dt + [U° — U3 I3,
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Using (22), (27) and (39) to majorize the right-hand side of this estimate we
obtain (26) :

U012, < 262 / p(U(6)? b+ (1 + 2¢e2)[U° — UL |2,

< (2ccf + (1 + 2cea) /) /Ip(U(t))Q dt. []

5.4. Proof of theorem 5.5

Let us fix an interval I; containing the closure of I] in its interior and such
that |I]| < |I1|. In view of theorem 5.3 it is sufficient to prove that conditions
(23), (24) of theorem 5.3 are satisfied with a suitable integer k& and with
suitable constants ¢y, co. Let us fix an integer k > [, to be chosen later.

Condition (24) follows easily from (33). Indeed, given U° € Z satisfying
(25), let us denote by U? (resp. by U?) its orthogonal projection onto Z.
(resp. onto Z_). Then U? and UY satisfy (34) and (35). Observing that the
corresponding solutions U, U_ of (12) satisfy U = U, + U_ and applying
inequality (33) for Uy, U_ we obtain easily the estimate (24) with ¢y = 2}, :

[awopase [ quiwpare [ go-@p

Is Iz 1>
< 25 (IIUY 113, + 1U2113,) = 265[1U°|[3,-

Turning to the proof of (23) let us choose , following LEBEAU [1], an even
function ¢ : R — R of class C'*°, satisfying the following conditions :

0<e<1 in R, p=1 in I, p=0 in R\I[;. (48)

Then ¢ € S(R) and its Fourier transform
00 ]
() = / p(D)e™ dt, 7 € R

is also an even function belonging to S(R). Hence there is a constant c¢5 > 0
such that

[@(2)] = ¢(=2)| < eslz[ 727, Vo € R\{0}. (49)
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Now given U° € Z satisfying (25), let us introduce Uy, U_, U, (¢) and
U_(t) as above. Using (48), (32) and (29) we have

+oo
/1 p(U(H))? dt > / P(Op(U(1))? dt

— o0

+o0 +oo
= [ ptopwe 7 aer [ ptpv- o)

+oo - _-fooo
[ e, de+ [ epU- o).V (o) dt
> UL+ AU+ D0 Y lws —wi) (p(U5 U) + (UL, U))

w; >0 w;<0

> U~ D0 D [elws — @)l (p(U3)? + p(U:)?)

> Q0B -2 Y S Ioles - i) | (Jeos T3 113, + e P2 U113, )
w;j>0w;<0
yielding
[ pw©2 ar= 3 (¢ - sl 3 lelw; - w101
I w; >0 w; <0
(50)
+ 3 (e - Al D 1p(w; — wi)l) 1T
w; <0 w; >0
Using (49) we have
Wil D 1plwy — wi)l
w; <0,i>k
<eslwiP* Y (lwil + lwil) T < e Y Jwi| T
w;i <0,i>k i>k
whenever w; > 0 and analogously
wil® Y [@lwy —wi)l S es Y fws| T
w;>0,i>k i>k
whenever w; < 0. Substituting these inequalities into (50) we find that
/I pU®)? dt = (= cles 3 g T ) JU°M = ctllU® . (51)
! Jj2k

By (30) the coefficient ¢; in (51) is positive if we choose a sufficiently large
integer k. Then (23) follows from (51). []
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6. 1New uniqueness and exact controllability re-
sults

The aim of this chapter is to complete and improve the results of chapters
3 and 4 by applying the theorems of the preceding chapter. In particular,
we give simple and constructive proofs of certain theorems of Lions [4] and
Zuazvua [1], originally proved by applying compactness arguments combined
with Holmgren type unique continuation theorems. Our approach is general
and may be applied in cases where Holmgren type theorems are not available,
e.g. for equations with non-analytic coefficients. In other cases we only
need elliptic unique continuation theorems but not deeper ones concerning
evolutionary problems.

6.1. A unique continuation theorem

We begin by recalling the following standard result of CARLEMAN [1] :

THEOREM 6.1. — Let G be an open domain inR"™, V € L*>°(G), u € H*(G),
and assume that

—Au+Vu=0 in G. (1)

Assume that u = 0 in some neighbourhood of a point x' € G. Then u =0 in

G.

See e.g. GAROFALO ET LiN [1], [2] for a short proof based on the multiplier
method.

COROLLARY 6.2. — Let €2 be a bounded open domain in R™ with a boundary
' of class C? and let B be an (arbitrarily small) open ball such that

I'nB#0. (2)
Let V € L*(Q), u € H*(Q) and assume that
—Au+Vu=0 in Q

and

u=0,u=0 on I'NB. (3)

Then u =0 in ).
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Proor. — Set G := QU B and define V(z) = u(z) = 0 for z € B\Q2. Clearly,
we have V € L>°(G); it is sufficient to verify that u € H?(G). Indeed, the we
can conclude by applying theorem 6.1 with an arbitrary point 2’ € B\Q.
Let us denote by g;, g;; the extensions by zero to G of the functions 0;u,
0;0ju, i,j =1,...,n. Then g;, g;; € L?(G) and it suffices the show that

[ wor)ax= [ grpax veeD(E)
G G
and
[ @0 ax=— [ gyeax. voe D),
G G
These are obtained easily by integration by parts and by using the following

properties : 9;u = 0 and 9;0;u = 0 outside of Q, ¢ = 0 on I'\(I'N B)(C 9G),
and u = 0;u=0onI'N B (by (3)). We have

/G w(Dy0) dx = /Q w(Dy0) dx = /F wpv; dT" — /Q (9;u)p dx
- /MB wpv; dT' — /Q(aju)gp dx = — /Q@ju)gp dx = — /nggo dx
and
/G (95) (9;0) dx = /Q (05) (9;0) dx = /F (Ou)pv; dT' — /Q (9;0u)p dx
= [ @aen; ar= [ @0 ax= = [ @omp == [ guedx T

COROLLARY 6.3. — Let ) be a bounded open domain with a boundary I' of
class C? and let V € L>(Q). Fiz 2° € R™ arbitrarily and set

'y . ={zel:mx) v(z)>0}
as usual. Let u € H?(Q) and assume that
—Au+Vu=0 in Q
and
u=0,u=0 on I;.

Then v =0 in ).

Proor. — In view of the preceding corollary it is sufficient to find a ball B
satisfying ' N B C I';..
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By the compactness of I' there exists a point ! € I" such that

|

— 2! = max 2" — z|.

r
It is clear that m(z!) - v(x') > 0. Since Q is of class C? (in fact of class C?),
there exists an open ball B of center 2! such that I' N B is connected. If we

choose the radious of B sufficiently small, then we also have m - v > 0 on
I'NBwhencel’'NBCTly. []

6.2. The wave equation. Dirichlet condition

Let us return to the probem studied in section 3.1. First we shall apply
theorem 5.2 in order to obtain a variant of the uniqueness theorem 3.1
concerning the problem

W —Au+qu=0 in QxR, (4)
u=0 on I xR, (5)
u(0) =u® and u'(0) =u'. (6)

Fix 2° € R™ arbitrarily.

THEOREM 6.4. — Let I be an interval of length |I| > 2R. There exists a
constant ¢’ > 0 such that the solution of (4)—(6) satisfies

// 10, ul? dT,, dt > B, V(u®,u') € Hj(Q) x L*(). (7)
1Jry

If 'y #T, then the estimate (7) is slightly weaker than the inequality

// |0, ul?dl,, dt > ¢'E
1Jr

of theorem 3.1, because dI',,, < 0 on I'_ ; nevertheless, this weaker estimate is
still sufficient to prove the exact controllability of the corresponding problem :
see theorem 6.5 below. On the other hand, and this is the key point, the
condition |I| > 2R is weaker than the condition (1 — Q1)|I| > 2R of theorem
3.1.

Proor. — We are going to apply theorem 5.2 with

1/2
H=1I*Q), V=HQ) and p(°,0}) := (/ 19,02 de> :
Iy
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cf. example 5.1. Condition (5.18) of theorem 5.2 is fulfilled by theorem 2.2,
regardless of the choice of k and for every interval I, even if U° does not
satisfy any orthogonality condition of the type (5.19).

Now fix [ > 1 such that

Q<1 and |I|>2R/(1-Q) (8)

and set £k = 2] — 1; then we have

{wi,. . wp—1} = {EVA, . BV N )

We deduce from theorem 3.1 and remark 3.3 that condition (5.17) is fulfilled
for every interval I; of length

11| > 2R/(1 = Q).

By (8) we may choose I such that |I;| < |I|.
If @1 < 1, then we conclude from theorem 3.1 that condition (5.28) (for
q = p) is fulfilled for every interval I’ of length

|II'| > 2R/(1 — Q1).

This implies (5.16). If @, > 1, then we verify (5.16) directly. Let
U = (v,+iv v) be an eigenvector of A satisfying p(U) = 0. Then we
deduce from the definition of A that

—Av+qu=>X v in

v=0 on I
and
ov=0 on I,.
Applying corollary 6.3 we conclude that v = 0 and therefore U = 0.

Since the estimate (7) is equivalent to the first inequality in (5.20), we
conclude by applying theorem 5.2. []

Theorem 6.4 leads to a strong improvement of theorem 4.1 concerning the
exact controllability of the problem

y' —Ay+qy=0 in Qx(0,7),
y=v on ['x(0,7),
y(0)=y" and ¢'(0) =y’

—~
=~
S ©
~— ~—

—~
—_
—_

~—
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by eliminating the condition (4.10) on ¢ and by weakening the condition
(4.11) on T :

THEOREM 6.5. — Let T > 2R. Given (y°,y'), (y%,y+) € L2(Q) x H~1(Q)
arbitrarily, there exists v € L*(0,T; L*(T")) such that

v=0 ae on T'_x(0,T)
and the solution of (9)—(11) satisfies

y(T) =y} and o(T) = yr.

Proor. — We may repeat the proof of theorem 4.1 by applying theorem 6.4
instead of theorem 3.1. []

REMARK 6.6. — It is easy to give a formal recipe leading to the condition
T > 2R in theorem 6.5. Assume for simplicity that n > 2. Then the
corresponding condition (4.11) of theorem 4.1 may be written explicitly as

2R

T> .
1—2RQA,V?

Letting Ay — +00 we obtain the weaker condition 7" > 2R.

6.3. The first Petrovsky system

Now consider the problem

v+ A*u=0 in QxR, (12)
u=0,u=0 on I xR, (13)
u(0) =u® and u'(0) =u'. (14)

We begin by establishing a variant of the uniqueness theorem 3.7 by
eliminating hypothesis (3.28) on the length of the interval I.

THEOREM 6.7. — For every interval I there exists a constant ¢ > 0 such
that

// Aul dT,, dt > ¢'B, V(uO,ul) € H2(Q) x I2(Q).  (15)
r1Jr,

Proor. — Fix an interval I arbitrarily. We are going to apply theorem 5.2
with

H=1I*9Q), V=H2Q) and p(°,v) := (/

1/2
|Av°|? dI‘m)
Iy
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(see example 5.1). Since (15) is equivalent to the first inequality in (5.20), it
is sufficient to verify the properties (5.17), (5.18) and (5.28) (for ¢ = p) with
a suitable integer k > 1 and three intervals Iy, I, I’ such that |I1| < |I].

By theorem 2.6 condition (5.18) is satisfied with any integer £ > 1 and
with any interval I5, even without the orthogonality assumption (5.19).

To prove (5.17) and (5.28) choose [ > 1 such that

1] > 2RA M

and put k = 2] — 1; then

{wi,. . wp—1} ={EVA, . BV N )

It follows from theorem 3.7 and remark 3.13 that (5.17) and (5.28) are
satisfied if

1/4

L] > 2RA Y and  |I'] > 2Rp; 2.

Thus we may choose |I1| such that |I1]| < |I| and we may conclude by applying
theorem 5.2. []

Let us apply this result to the exact controllability problem

y' '+ A% =0 in Qx(0,7T), (16)
y=0 and 9d,y=v on I x(0,7), (17)
y(0)=4" and y'(0)=y". (18)

Repeating the proof of theorem 4.5 by using theorem 6.7 instead of theorem
3.7 at the end, we obtain the

THEOREM 6.8. — Fiz T > 0 arbitrarily (arbitrarily small). Given (y°,y'),
(v, y+h) € L2(Q) x H=%(Q) arbitrarily, there exists v € L?(0,T; L*(T)) such
that

v=0 ae on I'_x(0,7)

and the solution of (16)—(18) satisfies
y(T)=yp and y'(T)=yr.
Theorems 6.7 and 6.8 are due to Zuazua [1]. He proved them by using an

indirect compactness—uniqueness argument.

REMARK 6.9. — We may formally obtain the condition 7" > 0 from the
stronger condition T' > 2R\, /4 of theorem 4.5 and remark 3.13 by letting
A1 — +o0.
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6.4. The second Petrovsky system. Uniqueness theorems

We consider here the problem (cf. section 3.3)

u' + A*u=0 in QxR, (19)
u=Au=0 on I xR, (20)
uw(0) =2’ and o/(0) =u'. (21)

In the following variant of the uniqueness theorem 3.14 we do not need any
hypothesis on the length of the interval I. If 'y =T, then the left-hand sides
of (22) and (23) below are majorized by the left-hand side of (3.42).

THEOREM 6.10. — For every interval I there exists a constant ¢ > 0 such
that
// 0,0/ [2dT dt > ' Ey g, V(u®,u') € D3jq X Dyyy (22)
1Jr;
and
// |8,,AU’2dF dt > C/E1/4, \V/(UO,Ul) S D3/4 X D1/4. (23)
1Jr,

Proor. — It is sufficient to prove the inequalities (22), (23) for u°,u! € Z;
the general case then follows by density, using theorem 2.13.
We are going to apply theorem 5.5 with

H = Dy4(= Hy (),
V= D3/4(: {ve HS(Q) cv=Av=0 on TI}),
p(v°,vh) = ||8l,vl||L2(p+) for (22),
p(vo,vl) = ||8VAUO||L2(F+) for (23)

and with ¢ = p.

It is clear that (22), (23) are equivalent to (5.36). Therefore it suffices to
verify (5.28), (5.29), (5.30), (5.32) and (5.33) with a suitable integer | > 1
and with suitable intervals I’, I], I such that |I{| < |I]. (Recall that (5.28)
implies (5.21) and note that (5.22) is obvious here.)

It follows from the standard trace theorems that condition (5.29) is fulfilled
with any a > 1.

Condition (5.30) means that in some sense the eigenvalues Ay tend to +oo
sufficiently quickly. y a well-known theorem of H. Weyl, see e.g. AaMoN [1],
in the present case we the estimate

Ao = (c+ o))k, &k — +o0



82 6. New uniqueness and E. C. results

holds, which implies (5.30) for every d > n/2.

It follows from theorem 2.13 that inequality (5.33) is fulfilled for all U? € Z
(even in the absence of conditions (5.34) and (5.35)), for every interval Is.

It remains to prove (5.28) and (5.32). These will be deduced from (the
apparently weaker) theorem 3.14 and remark 3.17 by using a small ”trick”.

Observe that (by the special boundary conditions (20)) for (u°, ul) € Z4
the solution of (19)—(21) is also solution of the problem

W +iAu=0 in Q xR, (24)
u=0 on I xR, (25)
u(0) = u®. (26)

Since the solutions of (24)—(26) clearly satisfy
|0,u'| =10,Au] on T xR, (27)

(3.42) reduces to

/
// |o,u'|? dT" dt:// |0, Au|* dI" dt > C—E1/4
JJTy JJT 2

/
[ s ac= S0,

i.e. to

if |J| > R/+/A1. Hence (5.28) is satisfied if we choose the interval I’ such that
1I'| > R/VAr
The proof of (5.32) is similar. First we choose k > 1 such that [I| > R/
and then we choose an interval I satisfying |I| > |I| > R/\/Ax. Using again
(27), (5.32) follows from (3.42) and from remark 3.17 if we choose [ = 2k — 1.
We may apply theorem 5.5 and the proof is completed. []

Next we deduce from theorem 6.10 the inverse inequality of the direct
inequality obtained in theorem 2.10.

THEOREM 6.11. — For every interval I there exists a constant ¢ > 0 such
that the solution of (19)—(21) satisfies

[ 10Par vz ¢ iy + -1 o) (28)
+

for every (u®,u') € H}(Q) x H1(Q).

Proor. — (Compare with that of theorem 2.10.) Using a density argument
based on theorem 2.10, it is sufficient to prove (28) for v°,u! € Z.
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Applying the inequality (23) for (A=1/2u% A=/24") instead of (u®,u') we
obtain

_ c _
| oaamt i ar anz GOAT RO+ A7 )
+
o2 142 < o2 192
= E(HU H1/4 + flu H_1/4) = 5(”“ HH&(Q) + [Ju HH—l(Q))-
Since AA~Y/2y = —u, (28) hence follows (with ¢’/2 instead of ¢). []

6.5. The second Petrovsky system. Exact controllability

Theorems 2.10 and 6.11 permit us to study the exact controllability of the
problem

y'+ A% =0 in Qx(0,7), (29)
y=0 and Ay=v on I x(0,7), (30)
y(0)=14° ¢ (0)=y". (31)

It follows from theorem 2.14 that for any given (y°, y') € H}(Q) x H=1(Q)
and v € L%(0,T;L?()) this problem has a unique solution satisfying
(y(T),y'(T)) € Hy () x H~(Q).

DEFINITION. — We say that the problem (29)—(31) is exactly controllable
if for any given (y° y'), (y%,yt) € HY(Q) x H71(Q) there exists v €
L?(0,T; L*(T)) such that the solution of (29)—(31) satisfies y(T) = y% and
y'(T) = yr-

THEOREM 6.12. — The problem (29)—(31) is exactly controllable for every
T > 0 (arbitrarily small). Moreover, there exist controls v satisfying

v=0 a.e on T_x(0,7T). (32)

Proor. — We apply HUM as in chapter 4. Fixing v € H}(Q) and
ul € H=Y(Q arbitrarily, we solve (29)—(31), then we solve the problem

y'+ A%y =0 in Qx(0,7), (
y=0 and Ay=-0,u on I'yx(0,7), (
y=Ay=0 on I'_x(0,T), (32
y(T) =y'(T) =0, (
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and we set
A(u®,u') == (y/(0), —y(0)).

It follows from theorems 2.10 and 2.14 that A is a bounded linear map from
F:=H}Q) x H Q) into F' = H™Y(Q) x H}(Q); it suffices to show that
it is surjective. Using the Lax-Milgram theorem it is sufficient to prove the
inequality

A, ub), (WO, ut) )Y g g > | (u, ut)]?
) F

with a constant ¢ > 0, independent of (u’,u') € H}(Q) x H~1(Q2). By
theorem 6.11 it is sufficient to show that

(A(u®,ub), (WO u'))pr p > c// |0, u|? dT dt. (37)
1Jry

As usual, we may restrict ourselves to the real case and we may asume
that (u°,u!) € Z x Z. Multiplying the equation (33) by u and integrating by
parts we obtain that

T
0= / / u(y’ + A?y) dx dt =
0 Q

T T
/ /(u” + A?u)y dx dt + [/ uy' — u'y dx}
0o Jo Q 0

[ [ @8 - @(d0) + (B)@u) - (@, A0y dr dt
0 I
T
= [ ! —u¥y/ X )2 )
_/Q y(0) — u%/(0) d +/0 /M(a 2 dT d

Hence (37) follows. []

REMARK 6.13. — Improving a former result of Lions [5; p. 310], Zuazua
[1] earlier obtained (with an indirect method) a theorem analogous to theorem
6.12, by using two controls. See also LASIECKA [1] for another result analogous
to theorem 6.12.

Now it is easy to study the exact controllability of the problem by acting
in the other boundary condition :

2+ A%2=0 in Qx(0,7), (
z=v et Az=0 on T x(0,7), (
2(0)=2" and 2/(0) =z'.

—~
=~ W W
S ©
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We have the following result (we recall from lemma 1.7 that D_, /4 =
H=Y(9) € D_g4).
THEOREM 6.14. — Fiz T > 0 arbitrarily. Given

(22, 2Y), (2%, 2+) € D_1/4xD_g4

arbitrarily, there exists w € L*(0,T; D_y,4) such that

w(t) =0 on T_ for almost every t e (0,T)
and the solution of (38)—(40) satisfies 2(T) = 2%, 2/(T) = z+.
REMARK 6.15. — We define the solution of (38)—(40) in the following way :
we solve (29)-(32) with (y0,y!) = (A7Y220,A71221) € Dy )y x D_y)y =
H}(Q) x H~Y(Q) and w := —v, and then we set z := AY/2y. To justify this
definition we observe that if y is a sufficiently smooth solution of (29)—(32),
then z := AY2y is given in fact by z = —Ay and therefore (38)(40) is
satisfied in the usual sense :

2+ A=A +Ay)=0 in Qx(0,T),

z=-Ay=-—v=w and Az=-A%=9y"=0 on I x(0,7),
2(0) = —Ay® = —AAY20 = 20,
Z(0) = —Ay'(0) = —AAY2t = 21

ProOOF OF THEOREM 6.14. — The theorem follows at once from theorem 6.13
and from remark 6.15. []

6.6. The wave equation. Neumann or Robin condition

Let us return to the problem (cf. §§3.4 and 4.3)

W —Au+qu=0 in QxR, (41)
u=0 on I'yxR, (42)
Ou+au=0 on I'i xR, (43)
u(0) =u’ and u/(0) =u'. (44)
Assume that

m-v<0 on I'sy, m-v>0 on Iy, (45)

and that a has the form
a=(m-v)b, beCYTy), b>0onTly. (46)

First we improve proposition 3.21 by eliminating hypothesis (3.60) on ¢ and
by weakening hypothesis (3.61) on the length of I :
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PROPOSITION 6.16. — Assume (45), (46) and let I be an interval of length
> 2R. Then there exists a constant ¢’ > 0 such that

/1 . lul> +|u'[? ATy, dt > (B, Y(u®,u') € Dy x Dy s (47)

Proor. — It suffices to show (47) for (u®,u') € Z x Z; the general case then
follows by density. We are going to apply theorem 5.3 with V and H defined
as in section 1.4 (cf. example 5.1) and with

0,1y . 012 1,112 1/2 0 1y, 012 1/2
pv ,v7) = W+ ot [T dl ), (v v) = [ "dly )
Iy

'y

Then (47) is equivalent to (5.26), and (5.22), (5.24) are obviously satisfied.
To prove (5.23) fix [ > 1 such that

Ql<17

and

\I| >2R;/(1 —@Qy)

(this is possible because the right-hand side tends to 2R as | — 400, see
remark 3.24), choose an interval I; such that

[I| > |I] > 2Ry /(1 — @Qp).

Then putting & = 2] — 1 property (5.23) follows from proposition 3.21 and
remark 3.24.

It remains to verify (5.21). If @1 < 1, then we can show easily that the
stronger condition (5.28) is also satisfied for every interval I’ of length

1I' > 2R, /(1 — Q1).
Indeed, given j > 1 and U° € Z; arbitrarily, the solution of (5.12) satisfies
p(U(1)* = (1 +wi)a(U(t))*
using proposition 3.21 hence (5.28) follows.
If @1 > 1, then we verify (5.21) directly. It is sufficient to show that if an

eigenfunction v € Z satisfies

—Av+qu=>Av in £,
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v=0 on Iy,
and
v=0,v+av=0 on Iy

with some real number A, then in fact v = 0. And this follows from corollary
6.3. []

We are going to improve proposition 6.16 by eliminating the term |u|?
from (47). We need a lemma. Fix an interval I of length > 2R and denote
by X = X (I) the completion of the vector space of the solutions of (41)—(44)
corresponding to the initial data (u®,u!) € Dy x D, /o, with respect to the

1/2
- (/ uf? + o[> AT, dt)
I1J1T

By the preceding proposition X is a Hilbert space and we have

norm

// lu|? + |u/|? AT, dt > E, Yue X (48)
1J1,

by density.

LEMMA 6.17. — Let |I| be an interval of length > 2R and let uw € X = X (I)
be such that

W=0 on TyxI. (49)

Then
u=0. (50)

Then U € X, and applying (48) for U we obtain that U = 0. Hence v’ = 0
and therefore u does not depend on ¢t € R : u(t) = u° for all t € R. It remains
to show that u" = 0. Since v’ = 0, we deduce from (41)—(43) that u° belongs
to the kernel of the operator A. Since A is injective, the lemma follows. [].

PRrOPOSITION 6.18. — Assume (45), (46) and let I be an interval of length
> 2R. Then there exists a constant ¢’ > 0 such that

/ W/ [2dT,, dt > ¢'E, V(u’,u') € Dy x Dy 5. (52)
1Jr,
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Proor. — By proposition 6.16 it is sufficient to show the existence of a
constant ¢ such that

// lu|?dl’,, dt < c// [W'[*dLy, dt, V(u®,u') € Dy x Dy s.
I Fl 1 I‘ll

Assume on the contrary that there is a sequence (u), u,,) in Dy x Dy 9 such

nr n
that the corresponding solutions satisfy

/ U |?dT,, dt =1, Vn (53)
1JT,

and

/ |l |2dT,, dt — 0. (54)
1JT

Then the sequence (u,,) is bounded in X . Extracting a subsequence if needed,
we may assume that

U, —u (weakly)in X
for some u € X. By (54) we have
w=0 on I'yxI,

therefore u = 0 by lemma 6.17.
On the other hand, since (u,,) is bounded in X, we deduce from (48) that
it is bounded in

L®(R; H' (Q)) N WH>(R; L*(2))

and hence also in

L*(I; H' (Q)) N H'(I; L(2)).

Consequently, using an Ascoli type result (see Lions [1; theorem 1.5.1]) the
sequence is precompact in L?(I; H=¢(Q2)) for all € > 0 and therefore its trace
is precompact in L?(T" x I). Thus we deduce from (53) that

/ lu|?dl,, dt =1
1JT,

contradicting u = 0. []

Now we may improve theorem 3.26 by eliminating the hypotheses on ¢, b,
and by weakening the hypothesis on the length of I :
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THEOREM 6.19. — Assume (45), (46) and let I be an interval of length
> 2R. Then there exists a constant ¢’ > 0 such that

/ jul> ATy, dt > E_y /9, Y(u’,u') € V x H.
1JT,

Proor. — We repeat the proof of theorem 3.26, using proposition 6.18
instead of the estimate (3.68) in remark 3.23. []

Finally, we can strongly improve theorem 4.8 on the exact controllability

of the problem

y' —Ay+qy=0 in Qx(0,7),
y=0 on Tyx(0,7),
Oy+ay=v on I x(0,7),
y(0)=¢" and 3'(0)=9y' on Q.

THEOREM 6.20. — Assume (45), (46) and let T > 2R. Then, given

°,yY), (W%, yr) eV x H

arbitrarily, there exists a control v € L?(0,T;L?(T1)) such that the solution
of (55)—(58) satisfies

y(T)=yy and ' (T)=yr on .

For ¢ = 0 this theorem is due to Lions [5; p. 203]. He used unique
continuation theorems for the wave equation. Let us note that the above
proof does not use any unique continuation theorem if ¢ = 0.

Proor. — We repeat the proof of theorem 4.8, using the preceding theorem
instead of theorem 3.26. []
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7. Dissipative evolutionary problems

In this chapter we introduce some dissipative systems governed by the
wave equation or by a plate equation; their stabilization properties will be
studied in the following chapters. In order to simplify the notation we limit
ourselves to the real case.

7.1. Maximal monotone operators

In this section we recall some existence and perturbation results concerning
the evolutionary problem

U+AU =0 in Ry :=1[0,+00), U(0)=U" (1)

where A : D(A) C H — H is an operator, non necessarily linear, in a real
Hilbert space H. We refer e.g. to BARBU [1] or BrEzis [1] for proof.
We say that A is maximal monotone if the following two properties are

fulfilled :

A is monotone: (AU — AV, U —V)y >0, VU,V e D(A), (2)
I+ A s surjective: R(I+ A)="H. (3)

THEOREM 7.1. — Let A be a maximal monotone operator in a Hilbert space

H. Then for every U € D(A) the problem (1) has a unique solution

U e C(Ry;H) (4)

(defined in some suitable sense). If V® € D(A) and if V is the corresponding
solution of (1), then the function

t—||U@l) =V (t)|[n is non-increasing in R,. (5)
IfU° € D(A), then the solution is more regular :
UeWh(Ry; H) (6)
and the function

t— [JAU ()|l is defined everywhere and is non-increasing in  Ry. (7)
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REMARK 7.2. — One can show that D(A) is always convex. Moreover, if

A is linear, then D(A) = H. In the linear case the conclusion of the theorem
is also stronger : for U° € D(A) the solution satisfies

UecC'R;H)

instead of (6). We note that theorem 7.1 also remains valid for multivalued
maximal monotone operators.

Let us also recall the following perturbation theorem (see e.g. BARBU [1;
proposition 4.2.1 and theorem 4.2.1]).

THEOREM 7.3. — Let A and A (k = 1,2,,...) be mazximal monotone
operators in a Hilbert space H and assume that

(I+A)™'W - I+ AW in H
for every W € H, as k — +o0. Choose U°, UP € H such that
Ul —U" in H.
Then the corresponding solutions of (1) and
Ui+ AU, =0 in Ry, Uy(0)=U

satisfy
Uk(t) — U(t) in H

for everyt € Ry.

7.2. The wave equation

Let Q be a bounded domain of class C? in R™ and let {I'g,T'1} be a
partition of its boundary I'. Fix three nonnegative functions ¢ : 2 — R,
a,l : 1 — R and let g : R — R be a continuous, non-decreasing function
such that g(0) = 0. Consider the problem

v —Au+qu=0 in QxRy, (8)
u=0 on TgxRy, 9)
dyu+au+lglu’)=0 on Iy xRy, (10)
u(0) =u" and «/(0)=u' on Q. (11)
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The particular case [ = 0 corresponds to the conservative system of section
1.3.
Assume that

q € L®(Q), a,lcCHTy). (12)

Furthermore, in order to avoid some extra difficulties we shall always assume
that

ToNT, =0, (13)
Tg#QorqgZ0oraz0, (14)
n>3, (15)

and that there exists a constant ¢ > 0 such that
l9(z)| <1+ clz|”™?, vz eR. (16)

(See KOMORNIK AND Zuazua [1], BARucQ aAND HaNOUZET [1], KOMORNIK
[10] and TcuEUGOUE [1] for the study of the problem if one of conditions
(13)—(16) is not satisfied.)

Set

V=H{ (Q):={veH(Q):v=0o0nTy},

ol = / Vol + qu? dx + / av? dT'

By hypothesis (14) the last expression defines a norm on V', which is equivalent
to the norm induced by H'(Q); consequently, V = Hp, (2) is a Hilbert space.
We shall prove the

THEOREM 7.4. — Assume (12)-(16). Given (u°,u') € H} (Q) x L*(Q)
arbitrarily, the problem (8)—(11) has a unique solution satisfying

u € C(Ry; Hy, (Q)) N CH(Ry; L2 (). (17)

The energy E : Ry — R of the solution, defined by
E =E(u) := %/ [u'|? + |Vul? 4+ qu? dx + %/ au? dT' (18)
Q r

is nmon-increasing. Moreover, if w and v are two solutions (corresponding
to different initial data), then the function E(u — v) is non-increasing; in
particular,

[E(u = v)|[Loemy) < E(u—)(0). (19)
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Under a stronger growth assumption on g we have a simple characterization

of D(A) :

THEOREM 7.5. — Assume (12)—(15) and assume that g is globally Lipschitz
continuous : there exists a constant ¢ > 0 such that

lg(z1) — g(x2)| < |21 — 22, V1, 2 €R. (20)
Then D(A) consists of the couples
(u’,u') € (H*(Q) N Hy, () x HE (Q) (21)
which satisfy
Opu’ +au® +1g(u') =0 on Ty. (22)
Hence for (u®,u') € D(A) the solution of (8)—(11) satisfies
u€ L¥(Ry; H*(Q)), ' € L™(Ry; Hy, () (23)
and
u” € L°(Ry; L2(Q)). (24)

The rest of this section is devoted to the proof of these theorems. Set

= 2@, [olfy = [ o dx

then V' and H are separable Hilbert spaces with a dense and compact
inclusion V' C H. As usual, we introduce the duality mapping A : V — V'’
and we identify H with H’.

By hypothesis (16) the formula

(Bz,v)yry = / lg(z)vdl';, z,veV
r

defines a map B : V — V' (not linear in general). Indeed, using (16) and the
trace and imbedding theorems

V c HY(Q) — HY?(y) c LE=2/(=2) (1)) (25)

we have, using for brevity the notation || - [[s := || - [|zs(ry),
[ 19630 ar| < clo@lan-amlollenzyn-a
1

n/(n—2 n/(n—2
< (L 1215 o) [0l anmsy a2y < (1 + 121 ) lolly < +oc.
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Hence Bz € V' for every z € V.

In order to find a reasonable definition of the (weak) solution of the
problem (8)—(11) we multiply the equation (8) by v € V' and we integrate by
parts. Using the boundary conditions (9), (10) we obtain that

0:/(u”—Au+qu)v dx

Q

:/u”v+Vu-Vv+quv dx—/(ayu)v dr
Q T

= /Qu”v + Vu - Vo + quu dx + /F auv + lg(u')v dT
= (u" + Au + B/, U>i//7v,
whence
v+ Au+Bu' =0 on Ry. (26)
Putting
U= (U,Us) :=(u,u’) and AU := (-U,, AU; + BUs)
we may write (26), (11) in the form
U+AU =0 in Ry, UO) =’ u). (27)
If u is a (sufficiently smooth) solution of (8)—(11), then
U), AU(t)eV x H, VteR,.
This leads us to set
H:=V xH, D) :={UecVxV:AU +BU, € H}, (28

and to define the solution of (8)—(11) as that of (27). The definition is justified
by

ProposiTION 7.6. — A is a mazximal monotone operator in H.

Proor. — The monotonicity of A follows from the nonnegativity of [ and
from the non-decreasingness of g. Indeed, given U,V € D(A) arbitrarily, we
have

(AU — AV, U = V)3,
= (Vo = Uy, Uy —V1)y + (AU, — AVy + BUy — BVa, Uy — Vo)
= (Vo= Uz, Uy —V1)y + (AU, — AV + BUy — BV3, Uy — Va)vr v

— (BU ~ BVa,Uz = Valvry = [ 1(g(U) ~ g(Va)(Uz ~ Va) T 20,

Iy
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It remains to show that for W = (W3, Ws) € H =V x H given arbitrarily,
there exists U = (U1,Usz) € D(A) such that (I + A)U = W. It is sufficient
to show that the map I + A+ B : V — V' is onto. Indeed, then there exists
Uy € V satistying

(I+ A+ B)Uy =Wy — AW;.

Choosing Us in this way and setting U; = Us+ W7 we clearly have U € V XV,
AUy 4+ BUy =Wy — U € H (hence U € D(A)) and (I + A)U =W.

To prove the surjectivity of the map I+ A+ B :V — V' fix f e V’
arbitrarily, set

and consider the map F': V' — R defined by

F(u) = uly + Hul? + / G(u) dT — (f,u)yry.

Using the growth assumption (16) one may readily verify that the map F' is
well-defined, continuously differentiable and that

Fluv={(I+A+Bu- f,o)vyv, Yu veV.

Furthermore, the monotonicity of g implies the convexity of F. Finally, F' is
coercive : F'(v) — —+o0 if ||v]|y — 400. This follows at once from the obvious
inequality

F(v) = (zllvllv = Ifllvo) lvllv-.

It follows that the infimum of F' is attained at some point u € V. Then
F'(uy=0ie. [+A+Bu=f. []

Now set
Do:={U cVxV:U € H*Q), 0,U +aUi+lg(Us)=0 on I} (29)

and

D:={UeV xH}Q):U, € H(Q) and 0,U; +al; =0 on T}. (30)

LEMMA 7.7. — We have D C Dy C D(A), and D is dense in H.
Consequently, D(A) is dense in H.

PrOOF. — It is clear that D C Do and that D is dense in H = Hp, () x L*(9Q).
It remains to show that Dy C D(A).
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Fix (U1, Usy) € Dy arbitrarily ; it suffices to prove the estimate

}<AU1 + BUQ,U>V/’V’ S C”UHH, VU < Vv (31)

with a suitable constant c. Using the definition of A and B we have

(AU +BUy,v)yr v = / VU, -Vv+qUyv dX—l—/ aUyv+1g(Usz)v dI'. (32)
Q IS
Since (Uy,Us) € Dy implies U; € H?(2), we may apply Green’s formula to
the right-hand side. We obtain that

(AU, + BUs,v)yr v
:/(—AU1+qU1)v dX—i—/(&,Ul)v dF+/ aUyv + lg(Ug)v dT°
Q

r I

It follows from the definition of Dy that the boundary integrals vanish. Hence

<AU1 + BUQ,'U>VI’V = /(—AUl + QUl)U dx.
Q

Since —AU; + qU; € L*(Q2) = H, hence (31) follows. []

Proor oF THEOREM 7.4. — Theorem 7.4 is an immediate consequence of
theorem 7.1, proposition 7.6 and lemma 7.7 : observe that

E(u) = 3[|U(#)|3 and E(u —v) = 3[|U(t) = V(#)l3. [
For the proof of theorem 7.5 we need another lemma.
LEMMA 7.8. — Let g be globally Lipschitz continuous. Then
D(A) C Dy. (33)

Proor. — Fix (U;,Us) € D(A) arbitrarily and set f := AU; + BUs,
h := —aU; —lg(Us). We will show that U; is the weak solution of the problem

U1 =0 on Fo, (35)
d,Uy=h on T (36)

This will imply at once the boundary condition in the definition of Dy.
Let us recall that by definition U; € V' is the weak solution of (34)—(36) if

/ VU, - Vv +qUiv dx = (f,v)vr v +/ hv dI’
Q

'y
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for all v € V. We may rewrite this equation in the form

(AU, + BUy,v)yr v = / VU, - Vv + qUyv dx —|—/ aUyv + lg(Usg)v dT,
Q r

1

and (as we have seen in the proof of the preceding lemma, cf. (32)) this is a
direct consequence of the definitions of A and B.

It remains to prove that U; € H?(2); applying the elliptic regularity
theory to the problem (34)—(36), it is sufficient to establish that

feL*Q) and he HY(Q). (37)

The first relation in (37) follows from the definition of D(A).
For the second relation it suffices to show that

g(Uz) € L*(Q) and Vg(Uy) € L*(Q). (38)

Both properties are obvious because the global Lipschitz continuity implies
the inequality

lg(x)]| <14clz|, VreR: (39)

we have
/ |g(U2)|2 dx < c/ 1+ |U2|2 dx < c(l + HUQH%/) < +00
Q Q
and

/ Vg(U)P dx = / 19/ (U2) VU2 dx
Q Q

gg/wwﬁﬁgwm@<+m.u
Q

PROOF OF THEOREM 7.5. — We apply the second half of theorem 7.1 and we
use lemmas 7.7 and 7.8. []

7.3. Kirchhoff plates

Let © be a bounded domain of class C* in R? and let {I'g,I'1} be a
partition of its boundary I' such that

I'o#0 and TonT; =0. (40)
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Fix a number u € (0, 1) and a nonnegative function/ € C*(I';). Let g : R — R
be a non-decreasing, continuous function such that g(0) = 0 and consider the

problem
u' +A%u=0 in QxRy, (41)
u=u,=0 on TyxR4, (42)
Upy + prr =0 on Ty x Ry, (43)
Uppy + (2 — Wtrry =lg(u') on Ty xRy, (44)
u(0) =u® and o/(0)=u' on . (45)

This models the small transversal vibrations of a thin plate whose Poisson
coefficient is equal to 1 ; see e.g. LAGNESE AND LioNs [1] or LAGNESE [2]. Here
and in the sequel the subscripts v and 7 stand for the normal and tangential
derivatives; the unit normal and tangential vectors are given by v = (v, 1)
and 7 := (—va, 1), respectively. We shall use the notation Vu = (u,, u,) for
the gradient of u, and we introduce the quadratic form

Q(u) = u, + uy + 2pgatiyy + 2(1 — p)ul,. (46)

We shall write dX := dx dy.
Setting

HZ (Q):={veH* () :v=0v,=0 on Ty}, (47)

we have the following result :

THEOREM 7.9. — Given (u°,u') € HE () x L*(Q) arbitrarily, the problem
(41)—(45) has a unique solution satisfying

u € C(Ry; HE (Q)) N CH(R4; L*(9)). (48)

The energy E : Ry — R of the solution, defined by

E=Bu) = %/Q(u’)2 +Q(u) dX, (49)

is non-increasing. Moreover, if u and v are two solutions (corresponding
to different initial data), then the function E(u — v) is non-increasing; in
particular,

[E(u = v)|| Lo (ry) < E(u—v)(0). (50)
If g is globally Lipschitz and if

(u’,u') € (H*(Q) N HE (Q)) x HE (Q) (51)
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and

ud, +pul =0 andul,, + (2 — pwul_, =lgu') surTy xRy, (52)

144%

then the solution is more reqular :
we L®RyHYQ), o € L¥(Rys HE (Q)) (53)

and

u” € L°(Ry; L2(Q)). (54)
We begin by defining the solution of (41)—(45). Set
V:=H{ () and H:=L*Q)

with

lolly = (/QQ(U) dX>1/2 and  [[ollg = (/Qv2 dX>1/2;

by hypothesis T'g # 0 they are separable Hilbert spaces with a dense and
compact imbedding V' € H. We introduce the duality mapping A : V. — V'
and we identify H with H’.

By the continuity of g and to the Sobolev imbedding H?(Q2) C C(Q) the
formula

(Bz,v)yry = / lg(z)vdl';, z,veV
I

defines a (non-linear) map B : V — V’. As in the preceding section for the
wave equation, one can readily verify that B is monotone and hemicontinuous.
Next we need two lemmas.

LEMMA 7.10. — Givenv € H3(Q) andw € H?(Q) arbitrarily, the following
tdentity holds true :

/ VgpaWyy + VyyWag — 2UgyWsyy dX = / VrrW,, — Vyrwy dI. (55)
Q r

Ifv e HYQ), then we also have

/ VpaWyy + VyyWag — 2UgyWey dX = / VrrWy + UVyrrw dI. (56)
Q r
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Proor. — We apply Green’s formula as follows :

/ VgpWyy dX = —/ VgpyWy dX + / Vg VoWy dI’
Q Q r

= / Vg Wy AX + / Wy (V2Ugy — V104y) dT
Q r
= / VgyWay dX — / Vgrw, dI'.
Q r
Using the obvious differential relations

Uy = VU, — Volly, Uy = VoUy, + V1Us (57)

hence we deduce that

/vawyy — UgyWyy dX = — /F(Vlvw — VU ) (ow, + 1w, ) dl. (58)
Analogously, we have

/vaywm — Uy Wy dX = /F(ngw + 110, ) (1w, — vow, ) dT. (59)

Adding (58) to (59) we find (55).
If v € H*(Q), then (56) follows from (55) by integration by parts. []

Let us introduce the notation (compare with (46))
Q(U, V) = UggVgz + UyyVyy + Uz Vyy + UyyVze) + 2(1 — ) UzyVgy.  (60)

LEMMA 7.11. — Givenv € H*(Q) andw € H?(Q) arbitrarily, the following
tdentity holds true :

[ (@200 =Qo.w) aX = [ (vut (2= p)ver )= (st v, AT (61
Proor. — We use (56) and (60) in the following way :
/Q(A%)w—Q(v,w) dX = /QAvAw—Q(v,w) dX—i—/F(Av),,w— (Av)w, dT'
=(1-p) /Q Vg Wyy + VyyWay — 205y Wey dX
+ /F(vyw + Vrrp)W — (Vyy + Vrr)w, AT’

= (]- - ,u) / VrrWy + VyrrW dr + /(Uuyu + UTTV)w - ('Uyu + 'U7'7'>wu dr
T T

- /(Uuw/ + (2 - ,U/)/UTTI/)/LU - ('Uw/ + ,u'UTT)wV dr. |:|
I
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Let v € V and multiply the equation (41) by v. Integrating on €2, applying
the preceding lemma and using the boundary conditions (42)—(44) we obtain
by a formal computation that

0= / (v + A2u)v dX = / v+ Q(u,v) dX
Q Q
+ / (uW + (2 - ,u)uTT)VU — (uW + uuTT)vl, dr
r
= (u" + Au,v)y: v + / lg(u')v dT°
r
= (u" + Au+ Bu',v)y/ v

whence

v'+Au+ Bu' =0 on R,.
Putting
U= (U,Us) := (u,u') and AU := (U, AU, + BU3) (62)
we may rewrite this equation as
U+AU =0 on R,.

Taking into account the boundary and initial conditions it is natural to define
H and D(A) by

H:=V x H(= Hf (Q) x L*(Q)), (63)
D(A):={U eV xV: AU, + BUs; € H}, (64)
and to define the solution of (41)—(45) as that of

U+AU =0 on Ry, U()=(u’uh). (65)
ProprosiTioN 7.12. — A is a maximal monotone operator in 'H.

Proor. — We may repeat word by word the proof of proposition 7.6 in the
preceding section. []

Set

Dy :={UcVxV:U € HYQ), Ui, +plUi+=0
(66)
and Ul,l/w/ + (2 - IU/)UI,TTV = lg(UZ) on Fl}
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and
D:={UcV x HZQ):U; € H(Q) and
(67)
Ul,w/ + ,UUl,TT = Ul,uw/ + (2 - ,U’)U].,TTI/ =0on I‘1}
LEmMMA 7.13. — We have D C Dy = D(A) and D is dense in H.

Consequently, D(A) is dense in H.

Proor. — Observe that for U € V' x V the equality AU; + BU; = f means
that U; is the weak solution of the problem

AUy =f in Q, (
Uy =Ui,=0 on Iy, (

Ui + Ui - =0 on I, (70
Urvw + (2 —p)Uy 7y =1g(Uz) on Ty (

Indeed, if AU; 4+ BU; = f, then for every fixed v € V' we have, using lemma
7.11,

<f, U>V’,V = / Q(Ul,v) dX+/ lg(Ug)v dF, YoeV
Q 'y
and this is the usual definition of the weak solution U; € V of (68)—(71). (It
is easy to show, using lemma 7.11, that every regular solution is also a weak
solution : adapt the formal computation leading to (65).)

Using this observation one can readily verify that D C Dy C D(A) and
that D is dense in H. To show the inclusion D(A) C Dy we verify that
U € D(A) implies g(Uz) € H'(€); indeed, then U; € H*(2) by the elliptic
regularity theory applied to the problem (68)—(71).

Since Uy € V. C H%(Q) C L*(Q) and g,g" are locally bounded, we
have g(Us) € L™®(Q) and ¢'(Us) € L*(Q); in particular, g(Us) € L*(9).
It remains to show that Vg(Us) € L?(Q). This follows from the equality
Vg(Us) = ¢'(U2)VUs because ¢'(Us) € L>(Q) and VU; € H'(Q) C L*(Q).
1l

PrROOF OF THEOREM 7.9. — We apply theorem 7.1 and we use proposition
7.12 and lemma 7.13. []
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8. Linear stabilization

The aim of this chapter is to prove the exponential energy decay of the
solutions of the wave equation under suitable linear boundary feedbacks (i.e.
g(xz) = x). We shall also apply a principle of RUSSELL [2] relating the problem
of stabilization to that of exact controllability. In the last section we shall
study Maxwell’s equations, which are closely related to the wave equation.

As usual, for a given point 2 € R™ we shall use the notation

m(z) =z —2°, x€R",
R = R(2°) = sup{|z — 2°| : z € Q},
Iy ={z el :m(x) v(x) >0},
dl'y, = (m-v) dl.

As in §7.2, we restrict ourselves for brevity to the case of dimension n > 3.
We shall consider the real case only; the generalization to the complex case
is obvious.

8.1. An integral inequality

In this section we recall the following simple result (used e.g. in HARAUX
[2] and LAGNESE [2]); it will play an important role in this chapter.

THEOREM 8.1. — Let £ : Ry — Ry (Ry :=[0,+00)) be a non-increasing
function and assume that there exists a constant T > 0 such that

/OOE(S) ds <TE(t), VteR,. (1)

Then
E(t) < E(0) e YT, vt >T. (2)

Observe that the inequality (2) is also satisfied for 0 < ¢t < T : indeed,
then it is weaker than the trivial inequality E(t) < E(0).

PROOF OF THE THEOREM. — Define

f(z):=e/7 /OO E(s)ds, =z €Ry;
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then f is locally absolutely continuous and it is also non-increasing by (1) :

flz)=T""e/T (/:O E(s) ds — TE(x)) <0

almost everywhere in R, . Hence, using (1) again,

fa) < 10 = [ B s <TEO), VeeR.,
/OO E(s)ds < TE(0)e /T, VzeR,. (3)

Since F is nonnegative and non-increasing, we have

[e ] z+T
/ B(s) ds 2/ E(s) ds > TE(z + T).
Substituting into (3) we obtain that
E(x+T)< E0) e T, VreRy;

setting t := x + T hence we conclude (2). []

REMARK 8.2. — The theorem is optimal in the following sense : given 7" > 0
and t' > T arbitrarily, there exists a non-increasing function £ : Ry — R4,
non identically zero, satisfying (1) and such that

E(t') = B(0)e' /T

see the limit @ — 0 of the example given by formula (9.5) in the next chapter.

REMARK 8.3. — If the function FE is also continuous, then the inequalities
(2) are strict; in particular, E(T) < E(0). This result is also optimal, see
KoMmORNIK [12].

8.2. Uniform stabilization of the wave equation I

Consider the linear case of the problem introduced in section 7.2 :

v —Au+qu=0 in QxRy, (4)
u=0 on TgxRy, (5)
du+au+lu'=0 on Ti xRy, (6)
(7)

u(0) =u’ and '(0)=u' sur Q
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where we assume (7.12)—(7.15).
Recall the definition of the energy :

E(t) = 1 /Q (W () + [Va() + qlu(t)® dx + 1 / a(u()? AT, (8)

Iy
The following result shows in particular that the energy is non-increasing.

LemMA 8.4. — Given (u®,ul) € D(A) arbitrarily, the solution of (4)—(7)
satisfies the energy equalities

E(S) - B(T) = /ST/F (W (t))2dl, 0< S <T < 0. 9)

Indeed, by the nonnegativity of I the right-hand side of (9) is nonnegative
whence E(S) > E(T).

Proor. — We multiply equation (4) by u' and we integrate by parts in
Q x (S,T). Using (5) and (6) we obtain that

0—/ / (v — Au+ qu) dx dt
= [%/@/)2 +|Vul? + qu’ dx . —/ /u’a,,u dr dt
Q
= [% / (u')? + |Vul|* + qu? dx + %/ au® dI' dt / / 24U dt
Q r, -

and (9) follows from the definition of the energy. |:|

REMARK 8.5. — Lemma 8.4 permits us to define v/’ by density as an
element of L*(Ry; L*(T'1)), for every (u°,u') € Hf (Q) x L*(Q). Then we
have in particular

' € L*(Ry; LA(TY)). (10)

The purpose of this section is to show that a particular choice of the
feedback (i.e. of [ and a) leads to fast energy decay.
Assume that there is a point z° € R™ such that

m-v<0 on Iy and m-vr>0 on IYj. (11)
We define )1 > 0 as in section 3.4 :
Q1 := 2R)\1_1/2 sup q (12)
Q

where )\ is the biggest constant such that

/ |Vl + qu? dx+/ av? dI' > )\1/ v? dx
Q T Q

for every v € Hp, ().
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THEOREM 8.6. — Assume (7.12)—(7.15), (11),

Q1 <1, (13)
and choose
l:==(m-v)/R and a:=(n—1)(m-v)/(2R?). (14)

Then for every given (u°,u') € Hp () x L*(Q) the solution of (4)~(7)
satisfies the following estimate :

E(t) < E(0)exp(1 — (1 —Q1)t/2R), VteR;. (15)

Theorem 8.6 generalizes a former result in KoMORNIK [4] which improved
earlier theorems of SLEMROD [1], QUINN AND RussiLL [1], RussiLL [1], CHEN
[1], [2], LaaNESE [1], TricGIANI [1], KOMORNIK AND ZUAZUA [1]. As for the
case n = 2 we refer to TCHEUGOUE [1].

REMARK 8.7. — More general feedbacks will be considered later in section
8.4 (but the decay estimates will be weaker).

The proof of the theorem will be based on the following identity where we
set

k:=1/R, b:=(n-1)/(2R*) and Mu:=2m -Vu+(n—1)u

for brevity.

LEMMA 8.8. — Given (u,u') € D(A) and 0 < S < T < oo arbitrarily, the
solution of (4)—(7) satisfies the following identity :

T s
2/ E dt= [/u’MudX}
S Q T
T T
—/ / (n — 2)qu® + 2qum - Vu dx dt + / / |0, ul* dT,,, dt  (16)
s Ja s Jro
T
+/ / (u")? — |Vul|? + bu? — (kv + bu)Mu dT, dt.
s Jry

Proor. — Recall the identity (3.18) which was proved for every sufficiently
smooth function u satisfying (4) :

/s /F(auu)Mu + (m - y)((u’)2 _ |VU\2)dI‘ dt

T T
= [/ ' Mu dx] + / /(u')2 + [Vul® + (n — 1)qu® 4 2qum - Vu dx dt.
Q s s Ja
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Using (8) hence we deduce that

/S /F(auU)M’LH— (m - v)((v)? — |[Vul?) dT" dt

:[/u/MudX}Z+2/TEdt (17)

Q S
T T
—1—/ / (n — 2)qu? + 2qum - Vu dx dt — / / bu? dI',, dt.
S JQ S JI'y

Using the boundary conditions (5) et (6) we may replace the left-hand side
of (17) by

T T
/ / |0, ul?* dT,,, dt +/ / (u')? — |Vul|* — (ku' 4 bu)Mu dT,, dt,
S To S Iy

and (16) follows. []

PrOOF OF THEOREM 8.6. — Introduce R; as in section 3.4, then Ry = R by
the particular choice of b and by remark 3.20.

Let us first fix (u°,u!) € D(A) arbitrarily. Using lemma 3.22 (it remains
valid for every t € Ry) the first term on the right-hand side of (16) is
majorized by 2RE(S) + 2RE(T). Using the definition of @ and E, the

T

second term is majorized by 2Q1/ E dt. By (11) the third term is < 0.
s
Thus we deduce from (16) the following inequality :

T

2(1 — Ql)/ E dt < 2RE(S) + 2RE(T)
S

(18)

T
+/ / (u")? — |Vul|* + bu? — (ku' + bu)Mu dT, dt.
S 4

In order to majorize the last term of this inequality we note that, by the
particular choice (cf. (14)) of the coefficients k and b we have

(u')? — |Vul|* + bu® — (ku' + bu)Mu
< (u)? — |Vul? + bu® — 2(ku’ + bu)m - Vu + (1 — n)u(ku' + bu)
< (W)? 4+ bu? + R*(ku' + bu)? + (1 — n)u(ku’ + bu)
= (u)? +b(2 —n+ R*)u? + R*E*(u))? 4+ (1 — n + 2R?*b) ku/
=2(u)? + ((3 — n)/2)bu’.
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In view of condition (8) we conclude from (18) that

T
2(1 — Ql)/ E dt < 2RE(S) + 2RE(T)

—|—2// 2dr,, dt—l——//budF dt.
Fl Fl

Applying lemma 8.4 and using the definition of k we conclude that

21— Q1) / E dt < ARE(S _"/ /Fbu ATy, dt.  (19)

Since n > 3, the last term is < 0. Therefore we deduce from (19) that

21— Q) /STE dt < 4RE(S).

Letting T' — 400 we obtain for every fixed S € R, the estimate

2(1 — Q1) /SOOE dt < 4RE(S).

Using (13) and applying theorem 8.1 hence (15) follows for every (u’,u!) €
D(A).

Now fix (u”,u') € H = Hp, () x L*(2) arbitrarily. Choose (using lemma
7.7) a sequence of initial data (uj,uj) € D(A) converging to (u® u!) in H

and apply the estimate (15) for each (u,u}) :

E;(t) < E;(0)exp(1- (1= Q)t/(2R)), ¥t € Ry

It follows from property (7.19) in theorem 7.4 we have E;(t) — E(t) as
j — oo, for each fixed t € R,. Passing to the limit in the above estimates
hence (15) follows. []

REMARK 8.9. — We observed in remarks 3.19 and 3.25 that hypotheses
(7.13) and (11) together are very restrictive. It was shown in KOMORNIK AND
ZuAzUA [1] that in dimension n < 3 hypothesis (8) is not necessary. For n > 3
its necessity remains an interesting open problem.

8.3. Application to the exact controllability. Russell’s
principle

By a general principle of RUSSELL [2] the stabilizability of a linear reversible
system implies its exact controllability. We apply here the corresponding
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construction to deduce from theorem 8.6 the following generalization (for
n > 3) of theorem 4.8 on the exact controllability of the problem

y' —Ay+qy=0 in Qx(0,7), (20)
y=0 on Tyx(0,7), (21)
Oy+ay=v on Ty x(0,7), (22)
y(0)=y" and y'(0)=y' on Q (23)
where we eliminate hypotheses (4.39) and (4.40) sur a.
THEOREM 8.10. — Assume (11), (13) and let
T>2R/(1— Q). (24)

Then for every given

W, y"), (Wr.yr) € Hi (Q) x L*(Q)
there exists a controlv € L?(0,T; L?(T1)) such that the solution of (20)—(23)
satisfies

y(T)=yy and y(T)=y; on S (25)

(Compare with theorem 6.20.)

PROOF. — As in chapter 4, we may assume that y% = yt = 0. First consider
the case

a=(n—1)(m-v)/(2R?)

and set [ := (m - v)/R for brevity.
Given (u%,u') € H = H} (Q) x L?*(£2) arbitrarily, first solve the problem

v —Au+qu=0 in QxR
u=0 on I'pxR4,
out+au+lu'=0 on T xRy,

u(0) =u’ and u/'(0)=u' on €,
then the problem
2 —Az+qz=0 in QxRy,
z=0 on I'op xRy,

O,z+az+12'=0 on T'y xR,
2(0) = —u(T) and 2'(0)=4(T) on £,
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and define
y(t) :=u(t) +2(T"—t), te]l0,T],
v(t) == —l((W'(t) + 2 (T —t)), tel0,T).

Then v € L?(0,T; L*(T'1)) by remark 8.5 and y satisfies (20), (21), (22),
(25) and

y(0) =u’ + 2(T) and ¢'(0)=u'—2'(T) on Q.

Therefore it is sufficient to show that for any given (y°,y') € H there exists
(u®,u') € H such that

V0 =u’4+2(T) and y'=u'—2(T) on Q.
In other words, it suffices to show that the linear map
L:H—H

defined by
L(u®,u') := (u® + 2(T),u' — 2/(T))

is onto. Since L = I — K where the linear map
K:H—H

is defined by
K(uovul) = (_Z(T)> Z/(T))a

it is sufficient to verify that | K || < 1. Indeed, then L is invertible with
L '=T+K+K*+K3+-..
Now a twofold application of theorem 8.6 gives
1/2
15 (u®, uh)[| < exp(1 = (1= Q1)T/2R)) "~ [l(~u(T), ' (T))|

< exp(l— (1= Qu)T/2R))[I(u’,ul)l| =: yll(u”,u')]

and the result follows because v < 1 by hypothesis (24).
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Now consider the general case. Using the above special case, for arbitrarily
given

W% y"), (yr,yr) € HE, () x L2 ()

there exists v € L?(0,7T; L?(T'1)) such that the solution of problem (20)—(23),
with a replaced by a’ := (n — 1)(m - v)/(2R?), satisfies (25). It follows by an
obvious algebraic manipulation that the solution of the original problem also
has this property if we apply the control v + (a — a’)y instead of v. Since this
new control also belongs to L?(0, T; L?(T'1)) by the regularity of the solutions
of (20)—(23) (cf. theorem 7.4), the proof is completed. []

8.4. Uniform stabilization of the wave equation II

Let us return to the dissipative problem of sections 7.2 and 8.2 :

v —Au+qu=0 in QxR,y, (26)
u=0 on I'yxRy, (27)
du+au+lu'=0 on T1 xR, (28)
uw(0) =u" and /(0)=u' on Q. (29)
Assume that there is a point 2z° € R™ such that
m-v<0 on Ty and nllinm~1/>0 (30)
1
and assume that
mina > 0 (31)
r
and
rr%inl > 0. (32)
Furthermore, we continue to assume that
Q1 < 1. (33)
THEOREM 8.11. — Assume (30)—(33). Then there exist two positive

constants C,w such that for any given (u®,u') € Hf () x L*(Q) the solution
of (26)—(29) satisfies the estimate

E(t) < CE(0)e ', VteR,. (34)
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Proor. — Repeating the density argument of the proof of theorem 8.6 we
may assume that (u°,ul) € D(A).

By (30)—(32) we may write a = (m - v)b and [ = (m - v)k with suitable
positive functions b,k € C°°(I';). Then lemmas 8.4 and 8.8 remain valid.
Applying lemma 3.22 we deduce from identity (16) the inequality

T
2(1 — Ql)/s E dt < 2R, B(S) + 2R, E(T)

(35)
T
+/ / (u)? — |Vul® + bu® — (kv + bu) Mu dT,,, dt
s Jr,
(Compare with (18).) Since
2(ku' + bu)(m - Vu) < |Vul* + 2R*E?*(u/)? + R*b?u?
and
2(ku’ + bu)u < k2|[u/|? 4+ (b + 1)|ul?,
hence we deduce that
T
2(1 — Ql)/ E dt < ¢E(S) + cE(T)
S
(36)

T
+c1 / / (u')? + 2 dT dt;
s Jr,

here and in the sequel we shall denote by ¢ diverse constants, independent of
the initial data and of S, T.
By (9) and (32) we have E(T) < E(S) and

/ST /Fl(u’)2 dr dt < cE(S).

Therefore we deduce from (36) that
T T
2(1 — Ql)/ E dt < cE(S) + cl/ / w? dI dt. (37)
S s Jr,

We shall eliminate the term u? on the right-hand side by using a method
of CONRAD AND Rao [1] :
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LEMMA 8.12. — There exists a constant ¢ > 0 such that for every e € (0,1)
the solutions of (26)—(29) satisfy the inequality

T T
/ / w? dT dt < EE(S)+5/ E dt. (38)
s Jry € s
Proor. — We define (for each fixed t € R} ) z = z(t) by

Az=0 in Q and z=u(t) on T (39)

then we have the estimates

/Zdegc/uzngcE (40)
Q r

by the elliptic regularity theory. Since

/Vz V(u—z) dx /Q(Az)(u—z>dx+/(ayz)(u—z) dr =0

T

by (39), we have
/ Vz-Vudx = / |Vz|? dx > 0. (41)
Since 2z’ satisfies (46) with u replaced by u’, we also have

/|z 2 dx</|u 2dr<— (42)

(Here we use (30), (32) and lemma 8.4.)
Now we have
T
0= / / z(u" — Au) dx dt

T
:[/zu dX / / ’+Vz-Vudxdt—/ /zayudth
= [/ 2’ dx / / -2 +Vz- Vudxdt+/ / au+lu dI’ dt.
ry

Using (40)— (42 ) hence we deduce that

T
//aquthg[/zu'dx // dxdt—//zuudrdt
S Fl Q Fl

< |z e llw’ (e + 12(D) e llw’ (T)]]

T
+/ 12Ol () o dt+c/ / /| dT dt
S S JI'y

T T
(—ENY2EY? dt + c/ luw!| AT dt.

< cE(S)+cE(T) -I-c/ s e

S
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Fix a > 0 such that a > 2a on I'; (cf. (31)). Since the energy is non-
increasing, using (9), (32) we obtain that

T T
2a/ / w2 AU dt < / / au® dT dt
Fl 1—‘1

< cE(S) +/

aeE——E’dt—i—/ / au? —|— 2dr dt
S I

Cc

< E(S)-l—as/ Edt+a/ /u dr’ dt
€ S I

which implies (38). []
We conclude from (37) and (38) that

T
2(1-@1—015)/ Bdi< CB(S), W0<85<T < oo
S

for every 0 < & < 1. By hypothesis (33) we may choose ¢ such that
1 — Q1 — € > 0. Then the estimate (34) follows by applying theorem 8.1. []

8.5. Strong stabilization. LaSalle’s principle

We consider in this section the problem

W' —Au+qu=0 in QxR, (43)
u=0 on IyxR, (44)
Ou+au+iu'=0 on T; xR, (45)
u(0) =u’ and «'(0)=u' on (46)

under weaker hypotheses as before. Assume that there is a point 2° € R”
such that

m-v<0 on I, m-vr>0 on I}y, (47)

and that
[>0 on T,. (48)

THEOREM 8.13. — Assume (47) and (48). Then the solution of (43)—(46)
satisfies

E(t) =0, V(u’u')e Hp () x L*(Q). (49)
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The hypotheses of this theorem are much weaker than those of theorem
8.11, but the conclusion is also weaker : in general there is no exponential
energy decay.

Note that there is no hypothesis involving ).

The theorem remains valid (with a simple modification of the proof) for
the nonlinear problem (7.8)—(7.11) if the function g is locally Lipschitz and if
it satisfies the following two conditions :

g(z) # 0if x #0;

3 >0: ¢ (@) <1+ )22 vz eR.

(For this we need a nonlinear generalization of lemma 8.4; cf. lemma 9.7 in
the following chapter.)

More general results are obtained in CHEN AND WaNG [1], LasiEcka [1],
3], Zuazua [6].

ProoF. — Using the density of D(A) in H and the inequality (7.19) we may
assume that

(u®,u') € D(A).
Fix (u’,u') € D(A) arbitrarily. Then the set

{(u(t),u'(t)) : t € Ry}

is bounded in H%(Q)) x H'(Q) by theorem 7.5 and therefore it is precompact
in ‘H by Rellich’s theorem. In order to prove the relation E(t) — 0
it suffices to show that if for some increasing sequence ¢, — oo the

sequence U(t,) = (u(t,),u'(t,)) converges in H to some point (z°,z1),
then 2% = 2! = 0.
Set

zn(t) = u(t, +t), teRy, n=12,...,

then z,, is the solution of (43)—(46) with (u°,u!) replaced by (u(t,), v’ (t,)).
It follows from inequality (7.19) of theorem 7.4 that the sequence (z, z),)
is precompact in L*°(R,;H). Extracting a subsequence if needed, we may
assume that

(zn,20) — (2,2) in L®(Ry;H).

Clearly, 2 satisfies (43)—(46) with (u°, u!) replaced by (2%, z!). We are going
to show that z = 0.
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Observe that E(z) is constant. Indeed, we have

E(z;t) = lim E(z,;t) = lim E(u;t, +t) = lim E(u;s), VteRy;
the last limit exists by the non-increasingness of the energy and it is
independent of t. Using (9) and (48) hence we deduce that

=0 on T xR,. (50)

Now we may apply lemma 6.16 from chapter 6. Indeed, it follows from (50)
that 2 satisfies (6.41)—(6.44) with (u®, u!) replaced by (2°, 21), and condition
(6.49) is satisfied with any interval J. Applying the lemma we obtain z = 0
and hence 2° = 21 =0. []

The method of the above proof is due to LASALLE [1]; also see HARAUX
[5] for various applications of this method to nonlinear partial differential
equations.

REMARK 8.14. — Alternatively, theorem 8.12 could have been obtained by
applying a general theorem of BENcHIMOL [1], based on the decomposition
theory of semigroups developed by Sz.-Nacy anp Foias [1] and FoGueL [1].
This theorem permits one to reduce the problem, in the linear case, to the
study of the eigenvalues of A. Generalizing some standard finite-dimensional
results, it is sufficient to prove that A does not have purely imaginary
eigenvalues. (Since A is monotone, it is already known that no eigenvalue
may have negative real part.) See e.g. LAGNESE [2] for the application of
Benchimol’s theorem to the stabilization of some plate models.

8.6. Uniform stabilization of the wave equation I11

We shall improve here theorem 8.10 of section 8.4 concerning the problem

W' —Au+qu=0 in QxRy, (51)
u=0 on IyxRy, (52)
Oou+au+lu'=0 on Ty xRy, (53)
u(0) =u’ and 4/ (0)=u' on Q, (54)

by applying the strong stabilization result obtained in the preceding section;
we shall eliminate hypothesis (33) on (7. The method of proof, introduced
in KoMORNIK AND RAO [1], plays a similar role in stabilization problems to
the method of chapter 5 in exact controllability problems.
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Assume that there is a point 2° € R™ such that

m-v<0 on Ty, n%inm~y>0, (55)
1
and assume that
mina >0, min/ > 0. (56)
T I
THEOREM 8.15. — Assume (55), (56). There exist two positive constants

C,w such that for every given (u°,u') € Hp () x L*() the solution of
(51)—(54) satisfies the estimate

E(t) < CE(0)e ™", VteR,. (57)

The proof, given in KoMORNIK AND Rao [1], is based on the following
useful general result of GiBson [1] which is admitted here without proof.

THEOREM 8.16. — Let A be a maximal monotone linear operator in a
Hilbert space H and assume that the solutions of the problem

U+AU =0 in Ry, U0)=U" (58)
are strongly stable :
Ul — 0 ast — +oo, YU° € H. (59)

Assume that there exists a compact linear operator B in H such that the
solutions of the problem

VI+AV+BV =0 in Ry, V(0)=V" (60)

are uniformly exponentially stable : there exist two positive constants C1,wq
such that

V()3 < CLVO e ", VteR,, VV°eH. (61)

Then the solutions of (58) are also uniformly exponentially stable : there exist
two positive constants C,w such that

IU@&)|l3 < CIU ||pe™", VteRy, YU°eH. (62)

Gibson’s theorem generalized an earlier theorem of RusseLL [1].
Note that the operator A + B is not necessarily maximal monotone;
nevertheless, the problem (60) has a unique solution V' € C(R; H) for every
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V0 € H. Indeed, the following more general holds true (see e.g. Brizis [1]) : if
A is a (not necessarily linear) maximal monotone operator in a Hilbert space
‘H and if B is a (non necessarily linear) Lipschitz continuous operator in H,

then problem (60) has a unique solution V€ C(R; H) for every V9 € D(A).

Proor orF THEOREM 8.15. — By hypotheses (55), (56) the conditions (47),
(48) of theorem 8.13 are satisfied. Consequently, the solutions of problem
(51)—(54) (i.e. of (58)) are strongly stable.

Furthermore, the formula

BV :=(0,—q¢V1), V=MW,W)eH

defines a compact linear operator in H (because of the compactness of the
imbedding H'(Q) C L?(Q)). The solutions of the corresponding problem (60)
are uniformly exponentially stable. Indeed, (60) coincides with the problem
(26)—(29) where we replace ¢ by zero and therefore we may apply theorem
8.11 : conditions (30)—(32) follow from hypotheses (55), (56), and (33) is
satisfied because Q1 = 0.

We conclude by applying theorem 8.16. []

8.7. Uniform stabilization of Maxwell’s equations

We consider here the problem

E' —cwl H=H +cul E in QxR4 (
divE=divH=0 in QxR (64
vx (Exv+H)=0 on I'xRy (

E(0)=E° and H(0)=H° in Q (

where Q is a bounded open domain in R3 having a boundary I' of class C!
and v denotes the outward unit normal vector to I'.
Let us introduce the Hilbert space

H:={(E,H) € L*(Q)° | div E = div H = 0in Q},

1/2
1B )l = (3 [ 18R+ 18 ax)
and let us define in H a linear operator by setting

D(A):={(E,H) c HH(Q)°NH |v*x (Exv+H)=0onT}
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and
A(E,H) := (—curl H,curl E).
Then we can rewrite the problem (63)—(66) in the following form :
(E7H)/+A<E7H):O in R—i—? (E7H)(0):(E07H0)

It was proved by BARUCQ AND HANOUZET [2] that the operator A is maximal
monotone in H. We admit this result here. Applying the Hille-Yosida theorem
it follows that for every given (E°, H®) € H the problem (63)—(66) has a
unique (mild) solution

(B, H) € C(Ry; H);
moreover, for (EY, H®) € D(A) we have
(E,H) € C(Ry; D(A)) N CH (R4 H),
whence in particular
(E,H) € C(Ry; H'(Q)°) N CH(R15 L*(9)°). (67)
We define the energy of the solutions by

Et) = %/Q|E(t)|2+ H(H)2 dx, tER,. (68)

Now assume that € is strictly star-shaped with respect to the origin :

z-v(x) >0forallz el (69)
and set
R :=sup |z|, (70)
€N

) 2 2
Ry = max (- v(x))” + ||

z€l 2z - v(x) (1)

Considering a point = € I with |x| = R one can readily verifiy that Ry > R.
If Q2 is a ball centered at the origin, then R is equal to its radious and Ry = R.
We shall prove the

THEOREM 8.17. — Assume (69). Then for any given (E°, H) € 'H the
solution of the problem (63)-(66) satisfies the energy estimates

E(t) < E(0)e!~ W/ (F+E)) -y > . (72)
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Applying Russell’s principle one can deduce from theorem 8.17 an exact
controllability result which improves some earlier theorems of RUSSELL [3]
and LAGNESE [3]. Moreover, one can show that in the special case of the ball
Q = {z € R?*||z| < R} (then Ty = 2R) these results are optimal. We refer to
Kowmornik [13] for the proof of these results.

Turning to the proof of the theorem first we note that it suffices to prove
the estimates (72) for the case of smooth initial data (E°, H%) € D(A) : the
general case then follows easily by density. Henceforth we only consider such
solutions; in this case the regularity (67) of the solution is sufficient to justify
the computations of this section.

We need some lemmas. The first shows in particular that the energy is
non-increasing.

LEMMA 8.18. — The solution of the problem (63)—(66) satisfies the energy
equalities

E(S)—E(T):/ST/F\ETFdF dt:/ST/F|HT|2dF dt (73)

forall0 < S < T < +oo, where E., H, denote the tangential components
of £, T.

ProOOF. — Applying Green’s formula we deduce easily from (63) and (68)
that

£t) = — / (B(t) x H(t))-vdl, &> 0. (74)
r
It remains to show that
(Ex H) -v=|E|"=|H|? (75)

at every fixed point x € I'. Let us choose the system of coordinates such that
v =(0,0,1) at this point. Then

I/X(EXV+H):(E1—H2,E2+H1,0). (76)
Using (65) hence we conclude that £y = Hy, Es = —H; and therefore
(ExH) v=FEHy— EyH, = E? + E5 = H + H3,

which is just another form of (73). []

REMARK 8.19. — The formula (76) expresses the geometric meaning of
the boundary condition (65) : H is obtained from E. by a rotation of angle
/2 in the positive direction in the tangent plane.
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The main tool in our proof of theorem 8.17 is the following identity. In
what follows we shall denote by m the identity mapping m(z) = x, € R3.

LEMMA 8.20. — The solution of (63)—(66) satisfies the identity

T T
/ /|E|2+|H|2dxdt:[2/(E><H)-mdx]
s Ja Q S

T
+/S /F(my)(|E| + |H]| )—2(m-E)(V-E)—2(m-H)(V-H) dI" dt

(77)

forall0 < S <T < 4o0.

Proor. — The identity (77) will be obtained by the multiplier method.
Let us write the equations (63) explicitly. Putting E = (FEi, Es, E3),
H = (H,, Hy, H3) and writing for brevity f; = 0, f we have

E| =Hys—Hsy in x(0,400), (78)
Ey=H, 3 Hs, in Qx(0,4+00), (79)
Ei=Hy; —Hyio in Qx(0,+00), (80)
H| = Es3— Ezo in Qx (0, +00), (81)
H,=F3;—FE;3 in Qx(0,+00), (82)
H,=F15—FEy; in Qx(0,+00). (83)

Using (78) and (82) we have

2(Ev Homg) = 2(Hs 2 — Ho 3)Homs + 2E1(E3 1 — Ey 3)ms
= 2H3,2H2m3 — mg(HQQ)g —|— 2E1E3,1m3 — TTL3(E12)3

Analogously, using (79) and (81) we have

2(ExHyms) = 2(Hy 3 — H31)Himg + 2E2(Es 3 — E32)ms
= mg(H%)g — 2H371H1m3 + mg(Eg)g — 2E2E372m3.

Integrating by parts their difference in Q2 x (S, T) and writing v = (v, V2, v3)
we obtain

T
[2/ E1H2m3 — E2H1m3 dx} s
Q

T
— / / <H12 + H22 + E% + E;) — 2m3H3(H1,1 -+ HQ’Q)
S Q
—2m3E3(E171 + Egyg) dx dt
T
/ / —TTL3V3(H12+H22+E%+E§) —|—2m3V2(H2H3+E2E3)
S T

—|—2m3V1(H1H3 -+ E1E3) dI’ dt.
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Next we observe that using (64) we have

/ —2m3H3(H1,1 + H272) dx = / 2m3H3H3,3 dx
Q Q

:/7713([{3?)3 dX:/mglngg dF—/Hg dx,
Q r Q

and analogously

/—ngEg(E171+E272) dx=/m3y3E§ dF—/ E3 dx.
Q T Q

Using these equalities the above identity may be rewritten as
T T
[2/ By Hymy — B Hyms dx}s - / / H2+ H2—H2+E?+E2— E2 dx dt
Q s Jo

T
+/ /—m3V3(|E|2—|— |H|?) + 2m3H;3(v - H) 4+ 2m3Es(v - E) dT dt.
S r

Two analogous identities may be obtained by cyclical permutation of the
indices 1,2, 3. Summing the three identities we obtain that

T T
[2/(E><H)~mdx] :/ /\E|2+|H|2dxdt
Q S s Ja

+/T/—(m-u)(\Ey2+yH|2)+2(m.H)(u-H)+2(m-E)(u-E) dr dt
S T

and this is equivalent to the identity (77). []

Observe that we did not use the boundary condition (65) in the proof
of the preceding lemma. Thus the identity (77) remains valid for every
function (F, H) satisfying (63), (64) and (67). Now we shall use the boundary
condition (65) in order to majorize the boundary integral in (77).

LEMmwMA 8.21. — We have

(m-v)(|E[* + [H|*) = 2(m - E)(v - E) = 2(m - H)(v - H)
(84)
S R1(|£ZI7'|2 + |HT|2)

onI.
Proor. — Putting for brevity F, := E -v and H, := H - v we have

E=E.+Ew, H=H +Hyv
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and the left-hand side of (2.15) may be written as
(m-v)(|E-|* + |H.|* — E. — H,) — 2(m, - E.)E, — 2(m, - H,)H,,.
Since we have obviously

. E_)?
—2(m, - E;)E, < (m-v)E%+ (m. - E-)”
m-v
and
T'HT 2
—2(m, - H)H, < (m-v)H? + u,

m-v

the left-hand side of (84) is less than or equal to

) 4 (m - ET)2 + (m - H‘F)2 .

. ET2 H7'2
(m ) (|B-J? + || Bt

(85)

It follows from remark 8.19 that E,., H, are orthogonal and they have the

same length. Therefore the expression (85) is equal to
° (m - v)? + |mf?

2m - v

((m-v)+ [

2 2y _
2m.1/>(|ET| +|H7'| )_

(18- + [ H ).

Using (71) hence (84) follows. []

Now we are ready to complete the proof of the theorem. Using (73) and
(84) the last integral in the identity (77) is less than or equal to

2R, (E(5) — &€(T)).
Furthermore, we have obviously
]2/ E-(mx H) dx’ < 2/ m||E||H| dx < 2RE.
Q Q

Therefore we deduce from (77) the following inequality :

/T E(t) dt < R(E(S) + E(T)) + Ri(£(S) — E(T)).
S

Since Ry > R, the right-hand side is less than or equal to (R + R1)E(S).
Letting T' — 400 we obtain that

/+OO E(t) dt < (R+ R1)E(S), VS >0. (86)
S

Applying theorem 8.1 hence the estimate (72) follows. []
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9. Nonlinear stabilization

The aim of this chapter is to obtain polynomial energy decay estimates for
the solutions of the wave equation and of a plate model by the application of
suitable boundary feedbacks.

As before, we shall use for any given z° € R” the notation

m(z) =z —2°, x€R",

R = R(z%) = sup{|z — 2°| : © € Q},
dl'y, = (m - v)dI.

9.1. A nonlinear integral inequality

In this section we give a nonlinear generalization of theorem 8.1, which
improves some earlier results of HARAUX [2] and LAGNESE [1].

THEOREM 9.1. — Let E : Ry — Ry (Ry :=[0,+00)) be a non-increasing
function and assume that there are two constants a > 0 and T > 0 such that

/ E*tl(s) ds < TE(0)*E(t), VteR,. (1)
t
Then we have
T+t e
E(t) < E(O)(T . aT) . V> T (2)

Note that inequality (2) is also satisfied for 0 < t < T : then it follows
from the obvious inequality E(t) < E(0).
Observe that letting @ — 0 in this theorem we obtain theorem 8.1.

Proor. — If E(0) =0, then E = 0 and there is nothing to prove. Otherwise,
replacing the function E by the function E/FE(0) we may assume that
E(0) =1 and we have to prove the following estimation holds :

-1/
Vi T. (3)

20 < (7 or)

Introduce the function

F:R, - R,, F(t):/ E*Tlds.
t
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It is non-increasing and locally absolutely continuous. Differentiating and
using (1) we find that

—F' >T 7 'Fetl aein (0, +00),
whence
(F~)Y >aT %' ae.in (0,B), B:=sup{t: E(t)>0}.

(Observe that F~“(t) is defined for ¢ < B.) Integrating in [0, s] we obtain
that

(F(s)™™ = F(0)™*) > aT > s forevery sc|0,B),
whence
F(s) < (F(0)™® +aT~*1s)"V/* forevery se0,B). (4)

Since F'(s) = 0 if s > B, this inequality holds in fact for every s € R,.. Since
F(0) < TE(0)**! =T by (1), the right-hand side of (4) is less than equal to

(T—a +aT—a—18)—1/a _ T(OH_l)/a(T—f—aS)—l/a.

On the other hand, E being nonnegative and non-increasing, the left-hand
side of (4) may be estimated as follows :

400 T+ (a+1)s
F(s) = / BTl dt > / E*Tdt > (T+as)E(T+ (a+1)s)*T
Therefore we deduce from (4) the estimate

(T + as)E(T + (o + 1)s)*+t < pletD/er 4 gg)~1/e,

whence

-1/
E(T—F(a—l—l)s)é(l—l—?) , Vs>0.

Choosing t := T + (a + 1)s hence the inequality (3) follows. []

REMARK 9.2. — The theorem is optimal in the following sense : given
a>0,T >0,C >0and t' > T arbitrarily, there exists a non-increasing
function E : Ry — R, satisfying (1) and such that

-1/

T—l—at’>

E(0)=C and E()= E(0) (T —
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We leave to the reader to verify that the following example has these
properties :

-1/«

C(l+aC~t/T) 7, if0<t<t”
E(t) =1 c(1+a)/*(1+ac—t)T) " iter<i<y )
0, ift >t

where t” = (t' = TC?%)/(a+1). Let us also note that for t < T we cannot state
more than the trivial estimate E(t) < E(0). Indeed, for any given a > 0,
T >0,C >0andt <T the function

C, if0<t<T
E@)_{Q ift>T (6)

satisfies (1) and E(t') = E(0) = C.

REMARK 9.3. — Assume that E is also continuous. Then the inequalities
(3) are strict; in particular, E(T) < E(0). See KomorNiIk [9], [12] for this
result, for a detailed study of integral inequalities of type (1) (also for a < 0)
and for the study of closely related differential inequalities.

9.2. Uniform stabilization of the wave equation I

Fix a point 2° € R™ and consider the nonlinear problem

v —Au=0 in QxRy, (7)
u=0 on TgxRy, (8)
du+(m-v)glu')=0 on Ty xRy, (9)
u(0) =u’ and u/'(0)=u' on €, (10)

a particular case of the problem in section 7.2.
We assume that ¢ : R — R is a non-decreasing, continuous function
satisfying g(0) = 0 and we assume that

n =3, (11)
Iog#0 and ToNT; =0, (12)
m-v<0 on I'y and m-r>0 on IYj. (13)

(More general situations are considered in Zuazua [5], CONRAD AND Rao [1]
and in KomornNIk [10].)
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We recall that the energy is defined by
E = %/ W% + |Vu|? dx.
Q

In this section we prove the

THEOREM 9.4. — Assume (11)—(13). Assume that there exist p > 1 and
four constants cy1, ca, c3,c4 > 0 such that

ala? < |g(x)| < eala|Pif o] <1 (14)

and

cale] < lg(@)] < calz| if 2] > 1. (15)

Then for any given (ug,uy) € Hp, () x L*(Q) the solution of (7)-(10) satisfies
the estimates

E(t) < Ct¥(=P) vt >0 (16)

with a constant C' only depending on the initial energy E(0) (and in a
continuous way).

Theorem 9.4 improves some earlier results of Zuazua [5] and CONRAD AND
Rao [1]. Let us note that the dependence of the constant C on E(0) was
studied in detail by CArp10 [1] and later by SoupLET [1] and Koutmou [1].

REMARK 9.5. — A similar result holds for p = 1 : then (16) is replaced by
E(t) < CE(0)e !, Vt >0

with two positive constants C,w, independent of the initial data. Thus we
may recover certain results of the preceding chapter.

First we shall prove the theorem under the additional hypothesis that

g is globally Lipschitz continuous.

This assumption will be removed at the end of this section.

By lemma 7.7 and by the inequality (7.19) in theorem 7.4 it is sufficient to
prove the estimate (16) for smooth initial data (ug,u;) € D(A) : the general
case then follows by an obvious density argument.

In this case by theorem 7.5 the solution of (7)—(10) is sufficiently smooth
to justify all computations that follow.

We begin by generalizing lemma 8.4 :
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LEMMA 9.6. — The function E : Ry — Ry is non-increasing, locally
absolutely continuous and

E = —/ (m-v)u'g(u')dl’ a.e.in R, (17)
I

Proor. — Given 0 < § < T < oo arbitrarily, we have

T
O:/ /u'(u”—Au) dx dt
T
:/ / w'u” + Vu - V! dxdt—/ / w'O,u dI' dt
s

T
:/ / w'u" + Vu- V' dxdt+/ (m-v)u'g(u') dT dt
S I

whence
E(S)—-E(T) = / g (m-v)u'g(u') dT dt. (18)

Since m-v > 0onI'; and zg(z) > 0, Vz € R, the right-hand side of (18) is
nonnegative; hence E is non-increasing. Furthermore, (18) implies that E is
locally absolutely continuous and that (17) is satisfied. []

Next we generalize the identity of lemma 8.8 :

LEMMA 9.7. — Putting for brevity
Mu :=2m-Vu+ (n—1)u, (19)

for any fited 0 < S < T < oo we have

T T
2/ E<p+1>/2dt—/ E@—l)/?/ (9,u)*dl,, dt
S To

[E(p 1)/2/uMudX] + _/ EP- 3>/2E’/ u' Mudx dt (20)
Q

/ B 1)/2/ ()2 — [Vul? — g(u')MudT,, dt.
ry
Proor. — We have

T
0 :/ E(p_l)/Q/(Mu)(u" — Au) dx dt
S Q
T i T
- [E<p—1>/2/ w' Mu dx] _p=d E<P—3>/2E'/ o' Mu dx dt (21)
Q S 2 Js Q

T
—/ E(p_l)/Q/ u' Mu' + (Mu)(Au) dx dt.
S Q
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Integrating by parts and using the relation div m = n we transform the
interior integral in the last term as follows :

/ ' Mu' + (Mu)(Au) dx

= / m-V(u')? + (n—1)(v)? - Vu - V(Mu) dx + /(Mu)(%u dr
Q r

= / m-V(u')?+ (n—1))? - 2|Vu]® —m- V|Vu|?
Q

—(n —1)|Vu|* dx + /(Mu)é?yu dr

r

=— / (u')? + |Vul? dx + /(m ) (W) — | Vul?) + (Mu)d,u dT
Q r

=— / (u')? + |Vul? dx+/ —(m - v)|Vu|* + (2m - Vu)d,u dT
Q To

+/ (u')? — |Vul? — (Mu)g(u') dT,,.
Iy
Since (8) implies that Vu = vd,u on I'g, hence we conclude that
/ u Mu' + (Mu)(Au) dx = —2F —|—/ (O,u)? dT,,
Q 1)
+ [ @) = [Vul - (Mu)g(u) T
I

Substituting into (21) we obtain (20). []

The following lemma is an immediate consequence of the definition of the
energy and of the hypothesis I'y # (). Here and in the sequel ¢ will denote
diverse positive constants only depending on E(0).

LEMmMA 9.8. — We have
‘/ uw Mu d:v‘ <cE. [] (22)
Q

We deduce from lemma 9.8 and from the non-increasingness of the energy
that

)E@—l)/?/ o Mu dx‘ < cE@t/2 < |
Q

and

‘E(p—fi)/?E// ' Mu dx‘ < —cEP-V2E < _C(E(p+1)/2>';
Q
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hence the first and second terms on the right-hand side of the identity (20)
are majorized by cE(S). Since the second integral on the left-hand side of
(20) is < by (12), we deduce from (20) that

T T
2/ B0/ g < CE(S)+/ E<p1>/2/ (W)’ = |Vl —g(u/) Mu dT,, dt:
S S Iy

Using the definition of Mw and the relation |m| < R, we obtain for any fixed
€ > 0 the inequality

T
2 / EWPTD/2 4t < cE(S)
S

12
(=17 2 ar,, at.

T
+/ E(p_l)/Q/ (u')? + R*g(u')? + eu® +
s r, 4e

Choosing € = ¢(£2) such that

6/ w? dI,, < %/ Vul? dx (< E),
I' Q

hence we conclude that

T T
/ E(p+1)/2dt S CE(S) + C/ E(p_l)/2 / (u/)2 —+ g(UI)Q dFm dt. (23)
S S I

We are going to majorize the last integral in (23). Set
Iy={zxel:|u(x)] <1} and T3={zel;:|[d(x)]>1}. (24)
(Note that I'y and I's depend on ¢ € Ry .) Using (15) and (17) we obtain that
T
/ E(p_l)/Q/ (UI)Q + g(u/)Q drm dt
S Ty
(25)

T
< —c / EP=U2E 4t < cEPHD/2(8) < cE(S).
S

Furthermore, using (14) we also have

/1“ (u')? + g(u')? dTy, < c/F (u'g(u’))Q/(pH) dr,,
2 2

2/(p+1)
< C</ u'g(u) dFm> 3 < o(—E)Y ot
I's
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hence, using the Young inequality we obtain for every € > 0 the estimate

T
/ E(p—l)/Q/ (u/>2+g(ul>2 dFm dt

S Ty
T
< / Be-D/2(_ )2/ e+ g (26)
S
T T
< / eEPTD/2 _(e)E' dt < e / EPHD/2 4t 4 ¢(e)E(S).
S S
Combining (23), (25) and (26) we find that
T T
/ EPTD/2 4t < ¢(e)E(S) + ec / E@+D/2 gy,
S S

Choosing ¢ such that ec < 1, hence we conclude that

/S ! EPHD/2 4t < cE(S). (27)
Letting 7' — 400 we obtain that
/SOO EPTU/2 4t < ¢cE(S), VS >0,
and we conclude by applying theorem 9.1 with o« = (p—1)/2 and

T =cE(0)™“.

Thus the proof of the theorem is completed in the case of globally Lipschitz
continuous functions g. Turning to the general case, let us admit for a moment
the following

LEMMA 9.9. — Let g : R — R be a non-decreasing, continuous function
satisfying the inequalities (14) and (15) for some p > 1 and for some positive
constants c;. Then there exists a sequence of non-decreasing, globally Lipschitz
continuous functions g : R — R satisfying the inequalities

claf” < lgr(z)] < cylaVPif ol <1 (28)

and

cslz| < lgn(@)| < cyla| if [z > 1. (29)
with suitable positive constants ¢, independent of k, and such that

gk (2)] < g()], Ve eR, k=12,..., (30)
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and

gk (x) — g(x), VreR, (31)

If we replace the function ¢ in the equation (9) by one of the functions
gk, the already proved part of the theorem applies. Using theorem 7.3 the
general case of the theorem will follow if we prove that

I+A)™ "W —=T+A'W in H, YWeH (32)

where Ay, denotes the generator of the semigroup associated with the problem
(7)—(10) where g is replaced by gi. Putting f = Wy — AW, and denoting by
u, uy the solutions of

(I+A4+Bu=f and (I+ A+ Bpup=f

where we use the same notations as in the proof of proposition 7.6 (and By
denotes the operator analogous to B but corresponding to the function gx),
it is sufficient to prove that uy — v in H as k — +oo.

We have

(I4+A+Bp)ur — I+ A+ Bru,up, —u)yrv = (B — Bi)u,up, —u)y v

whence

lur = ullyy < 1(B = Br)ullv|lux — ully

and therefore

lur = ully < llg(w) = gr(u)llLen-2/n(r,)-

By (28) and (29) the expression on the right-hand side tends to zero by
Lebesgue’s dominated convergence theorem. Hence uy — win V and therefore
also in H. Since

(I 4+ Ap)'W = (up + Wy,ug) and (I 4+ A)7'W = (u+ Wi,u),

hence (32) follows.

PRroOF OoF LEMMA 9.9. — Set

gr(T) = g((idR + kilg)*l(x)), r€eER, k=1,2,....

One may readily verify that the functions gy are well-defined, continuous,
non-decreasing and that properties (30), (31) are satisfied. It follows from
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(14), (15) and (30) that the right-hand side inequalities in (28), (29) are
satisfied with ¢, = co and ¢} = ¢4.
To prove their Lipschitz continuity choose x1, x2 € R arbitrarily and set

yi = (idg + & 'g) " H(zs), i=1,2.

Then we have g (z;) = g(y;) and therefore

T — 22 = (Y1 —y2) + k_l(gk(l’l) - gk(l’z))-

Using the monotonicity of g hence we conclude that

lgk (1) — gr(x2)| < klz1 — 2.

To prove the first inequality in (28) fix 0 < = < 1 arbitrarily (the case
—1 < x <0 is similar) and set y := (idg + k7 1g) "' (x). Then y +k~tg(y) =
and 0 <y <z Ify > z/2, then

gx(x) = g(y) > g9(z/2) > c1(x/2)".

If y < /2, then k~g(y) > /2 and therefore

gr(x) = g(y) =2 z/2 = (z/2)".

Hence the first inequality in (28) is satisfied with ¢} := 27?7 min{¢, 1}.

To prove the first inequality in (29) let us choose a number 0 < ¢ < 1/2
such that € + g(¢) < 1 and —e + g(—¢) > —1. Observe that (14) and (15)
imply the existence of a positive constant ¢4 such that

l9(W)| > Slyl if |yl >e.

Now fix > 1 arbitrarily (the case x < —1 is analogous) and set
y:= (idg + k~1g)~1(x) as above. We have y + k~lg(y) =z and e < y < z. If
y > x/2, then

gr(@) = g(y) = g(2/2) = (c5/2)x
because z/2 > 1/2 > e. If y < x/2, then k~'g(y) > /2 and therefore
gr(x) = 9(y) = /2.

Hence the first inequality in (29) is satisfied with ¢j := 27! min{cj,1}. []
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9.3. Uniform stabilization of the wave equation I1

The theorem 9.4 proved in the preceding section has a serious drawback :
it never applies for bounded functions g (because of ¢3 > 0 in (15)). The
purpose of this section is to obtain a variant of this theorem for bounded
feedback functions.

THEOREM 9.10. — Assume (11)—(13) and assume that the function g is
bounded, globally Lipschitz continuous and that the inequalities (14) are
satisfied with some positive constants ¢y, co and with a number p satisfying

p>n—1. (30)
Then for every
(u®,ul) € (H*(Q) N HE () x HE () (31)
satisfying
%_“UO +(m-v)glu') =0 on T4, (32)

the solution of (7)-(10) satisfies the estimates
E(t) < Ct¥1=P) vt > 0 (33)
with a constant C' depending on the initial data.

REMARK 9.11. — Observe that if the condition (30) is not satisfied initially,
it will be satisfied if we replace p by n — 1; at the same time (14) continues
to hold with the same constants c¢q, cs.

Proor. — Repeating the proof of the preceding theorem, except that part
where the first inequality of (15) involving cs is applied, now we obtain the
following inequality :

T T
/ E@HD/2 4t < cE(S) + c/ E@—l)/?/ (u)? dT'y, dt.  (34)
S S T's

It remains to establish the estimate

E(p_l)/Q/ (u)? dTy, < eEWTD/2 —¢(e)E (35)
I's
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for every € > 0. Then the theorem will follow. Indeed, choosing a sufficiently
small e, (34)—(35) imply (27) and the proof may be completed by applying
theorem 9.1 as in the preceding section.

For brevity we shall denote the norm of L?(T') by || || 5. Set
s:=2/(p+1) and a:=(2-135)/(1-ys);

we have 0 < s < 1 and o = 2p/(p — 1) > 2. We establish for every ¢ > 0 the
inequality

E(p—1>/2/ (u)? Al < eBPHD2 ||| — c(e) B, (36)
I's
Indeed, we have

E(p—l)/2/l; (ul)Z dFm < CE(p—l)/Z : ‘u/|2—3(u/g(u/))s dFm
3 3

< cEPV210 270 s | (@ g(w)* | s
= cEP 2|1/ |9 ' g () |15
_ CE(p_l)/2||U/H((11_S)a(—E/)S < 8E(P_1)/(2(1_5)) ”u’Hg — C(E)El
= cEPHO2)10/||& — e(e)E'.

Using the trace theorem
HY(Q) — L#/=(1) = L¥(T)

(following from (30)) and the regularity property (7.24) we deduce from (36)
that

E-1)/2 / (u')2 dT,, < csEPTV/2 _ ¢(e)E;
I's

hence (35) follows (with another €). []

9.4. Uniform stabilization of Kirchhoff plates

Consider the problem of section 7.3 :

u' +APu=0 in QxR (37)
u=wu,=0 on TgxRy, (38)

Upy + s =0 on T'y x Ry, (39)

Uy + (2 = p)Urry = (m-v)g(u') on  T1 xRy, (40)
u(0) =u’ and /(0)=u' on K. (41)
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Assume that there is a point X° € R? such that
m-v>0onl'y and m-v<0on Iy (42)

We shall prove the

THEOREM 9.12. — Assume (42) and assume that there exist two numbers
p,q > 1 and two positive constants cy1,co such that

cilzP < [g(x)| < calzMP if |z <1 (43)

and

cilz] <g(x)| < eofxl? dif  |x[ > 1. (44)

Then for any given (u°,u') € HE x L*() the solution of (37)~(40) satisfies
the estimates

E(t) < Ct¥1=P) vt >0 (45)

with a constant C' only depending on the initial energy E(0) (and in a
continuous way). |[]

REMARK 9.13. — A similar result holds for p = 1 : then the estimate (45)
is replaced by

Et)<Ce ™ Vvt>0

with two positive constants C, w which do not depend on the initial data.

REMARK 9.14. — Theorem 9.12 improves some earlier results of LAGNESE
[2] (whose method is followed here) and of Rao [1] by weakening their growth
assumptions and by using one feedback only. Also see Komornik [11] for a
more general result.

There are many other theorems concerning the strong or uniform
stabilization of different plate and beam models; see e.g. BARTOLOMEO
AND Tricaiant [1], Horn [1], HorN AND I. LasteckA [1], LAGNESE [2],
LAcNESE AND LEUGERING [1], I Lasiecka [1], [2], LasiEcka AND TATARU
[1], LasiEcKA AND TRIGGIANI [3], LEBEAU [1], W. LITTMANN AND L. MARKUS
[1], LitTtMANN AND TAYLOR [1], PUEL AND TucsNAK [1], TATARU [1].

The rest of this section is devoted to the proof of theorem 9.12. Using
lemma 9.9 and the argument following it in section 9.2 we may assume
without loss of generality that g is globally Lipschitz. Furthermore, using
theorem 7.9 and a density argument we may assume that the solutions verify
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the regularity conditions (7.53) and (7.54) ; then all computations that follow
are justified.

LEMmMA 9.15. — The function E : Ry — Ry is non-increasing, locally
absolutely continuous and

E' = —/ w'gu')dl,, a.e.on Ry. (46)
Iy

ProOOF. — Given 0 < § < T < +o0 arbitrarily, we apply lemma 7.12; we
obtain that

o_// (u” + A?u) dX dt = //u’ "+ Q(u,u’) dX dt

/ / Upy + (2 — ) Urr )’ — (Uyy + pur)ul, AU dt

/ (m - v)u'g(u’) dT dt
ry

=[2/Q< W)+ Qu
B/Q( )+ Q / | lmevpglal) dr

i.e.

T
B(S) — B(T) = /S /F W g(u) dT,, dt. (47)

This implies that F is locally absolutely continuous; differentiating (47) we
find (46). Finally, E' is non-increasing because the right-hand side of (47) is
nonnegative by the increasingness of g and by hypothesis (42). []

LEMMA 9.16. — Given v € H3(Q) arbitrarily, the following identity holds
true :

/Q(v,m-Vu) dxX = / Qv) dX+ %/Q(v) ar,,. (48)
Q Q r
Proor. — Integrating by parts we obtain the following five simple identities :

2
/ Vg (mlvw + mZUy)xx dX = / vax + M1VgxVrax + m2vxxvxxy dX
Q Q

= /Q%ix + %m . V(vfm) dX,

. 2
/ Uyy (M1vg + Mavy )y, dX = / 205, + M1V Vyye + MoVyyVyyy dX
Q Q

= /Q 21}3y + %m . V(vfly) dX,
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/ Vg (M1Vg + Moy )y, dX = / 2032 Vyy + M1 Vg Vsyy + M2VzeVyyy dX,
Q Q

/vay(mlvx + Mavy )z dX = /Q2vmvyy + MUy Vpza + MoVyyVyze dX,

/ Vgy (M1 V5 + Mavy) gy dX = / 2vgy + MUy Vpgy + M2VgyUgyy dX
Q Q
= / 21}5?} +im- V(viy) dX.
Q

Combining these identities, using the definitions of Q(v), Q(u,v) and
finally applying the divergence theorem we obtain that

/Qv m-Vv) dX = / 2Q(v) +im-VQ(v) d —/(2——d1vm)Q(v) dX
+§/( ) dl = /Q )dX 4+ 2 /Q

Now we prove our basic identity :

LEMMA 9.17. — Given 0 < S < T < +oo arbitrarily, the following identity
holds true :

T T
4/ E@+D/2 g4 _/ E<p1>/2/ (Au)? dTy, dt
S S To

S
= [E(p_l)/Q/ 2u'm - Vu dX}
Q T
(49)

T
+(p— 1)/ E<P—3>/2E'/ u'm - Vu dX dt
S Q
T
+/ E(”l)/Q/ (w')? = Q(u) — 2(m - Vu)g(u') ATy, dt.
S Iy

ProOF. — We multiply the equation (39) by 2E(®~1)/2m.Vu and we integrate
by parts in 2 x (S, 7). Using lemmas 7.12 and 9.16 we obtain that

T
0= / E=1)/2 / 2m - Vu(u” + A?u) dX dt
S Q

T T
= [E(p_l)/g/ 2u'm - Vu dX} —(p— 1)/ E(p_3)/2E’/ u'm - VudX dt
Q s s Q
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T
+/ E(p—1>/2/ —2u'm - V' + 2Q(u, m - Vu) dX dt
S Q

T
+2/ E®-1/2 /(uw + (2= wurr)ym-Vu— (uyy + purr)(m-Vu), dI' dt
s r
T T
= [E(p_l)/Q/ 2u'm - Vu dX} —(p— 1)/ E(p_S)/QE’/ u'm - Vu dX dt
Q S S Q

T
+/ E<p_1>/2/ —m - V() 4 2Q(u) dX dt
g Q

T
+ /S B2 /F (m - 1)QW) + 2t + (2 — @)urs)om - Vu

—2(Upy + prr)(m - Vu), dI" dt
T T
- [E(p_l)/Q/ 2u'm - Vu dx}s —(p— 1)/ E<P—3>/2E’/ w'm - Vu dX dt
Q S Q

T
+2/ E<P—1>/2/(u')2+cz(u) dX dt
Q

S

[0 [ n (@) = () + 2 + (2= wur)m -V
—2(uyy + ptrr)(m - Vu), dI dt.

Recalling the definition of the energy we conclude that

T
4/ E@+D/2 4t
S

S T
= [E(p_l)/Q/ 2u'm - Vu dX} + (p — 1)/ E(p_3)/2E’/ uw'm - Vu dX dt
Q T S Q
T
4 [ B2 [ ) (@) - Q) — 2y + (2= W)V
s r
+2(upy + purs)(m - Vu), dI' dt.

It remains to show that

(m-v)(@)® — Q(u)) — 2Auys, + (2 purs)ym - Vu
2ty + e )(m - V), = (m - ){ () = Q(u) — 2(m - V) (au + g(u'))}

onI'; and

(m - V)((u/)z = Q(u)) = 2(upy + (2 — ptrr)ym - Vu
+2(tyy + ity ) (m - V), = (Au)? (50)

on Fo.
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The first equality follows at once from the boundary conditions (39) and
(40).

For the proof of (50) first observe that the boundary conditions (38) imply
u = uy = uy = 0 on I'g. Consequently, the vectors Vu, = (uyg, Usy) and
Vuy = (Ugy, uyy) are orthogonal to I'g and therefore they are parallel. Hence
Uggllyy = uZ, and Q(u) = (Au)? on T'yg. Furthermore, m - Vu = (m-v)u, and

(m-Vu), = (miug + maoty)y = (M- v)uy, + (M- T)uyr = (M- V)uy,

on I'g because u, = 0 on I'y.
Combining these relations we conclude that the left-hand side of (50) is
equal to

—(m - v)(Au)? + 2(m - v)u2,,.
Since the boundary conditions (38) imply that u,, = 0 on I'g, we have
—(m - v)(Auw)? +2(m - v)uZ, = (m-v)(Au)?.

This completes the proof of (50) and that of the lemma. []
In order to majorize the right-hand side of (49) we need the
LEMMA 9.18. — The semi-norm p : H*(Q) — R defined by

1/2
o) i= ([ 202, + of, aX) (51)
Q
is equivalent to the norm || ||gr2(q) on the subspace HE (€2).

ProOF. — First we show that p is a norm on Hf (). Indeed, let v € HE (Q)
such that p(v) = 0. Then the second derivative of v vanishes. Since Q is
connexe, hence we conclude that v is affine. Since 'y # 0 and v = v, = v, =0
on I'y by hypotheses T'y # () and (40), it follows that v = 0.

The estimate

p < d| |[m2e@) (52)

is obvious. Assume that the inverse inequality is false. Then there exists a
sequence v* in HZ (£2) such that

10"l 2y =1, k=1,2,... (53)

and

p(vk) — 0. (54)
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By the compactness of the imbedding H?(Q) C H!(Q) we may assume, by
extracting a subsequence if needed, that

P — v in HY(Q)

for some v € H!(Q). Using (51) and (54) we conclude that
v — v in H*(Q);

consequently, using (52) and (54) we obtain that v = 0 and hence
P =0 in H*(Q).

But this contradicts (53). []

In what follows ¢ will denote diverse positive constants depending on F(0)
only.

COROLLARY 9.19. — We have

‘/ u'm - Vu dX’ < cE. (55)
Q
Proor. — Using the trivial inequality

]/Q u'm - Vu dX| < e(|[o/|Baa + ol @)
and the definition of the energy, (55) follows from the preceding lemma and
from the hypothesis 0 < u < 1. []
LEMMA 9.20. — Given 0 < § < T < +oo arbitrarily, we have

T
/ E®PtD/2 gt < CE(p+1)/2(S)
S

T
+c/ E<P—1>/2/ ()2 + |Vl [g(u')] ATy, dt.
S I

ProoF. — Since m - v < 0 on 'y, the left-hand side of (49) is minorized by
its first term. Applying corollary 9.19 and using the non-increasingness of E
we may estimate the first and second term on the right-hand side of (49) as
follows :

S T
[E@—W/ 2u'm - Vu dx] +(p— 1)/ E<P—3>/2E'/ u'm - Vu dX dt
Q T s Q
T
< CE(p+1)/2(S) + CE(p+1)/2(T) — c/ EP-D/2E gt < cE(p+1)/2(S).
s
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Furthermore, using hypothesis 0 < @ < 1 we have

and therefore we deduce from (49) that

T
4/ E@D/2 gt < cpEH/2(g)
S

T
+/ E<p—1>/2/ ()2 — 2(m - Va)g(u') dT',, dt
S r,
which implies (56). []
Now we introduce the notation
Io={zrel;:|u ()] <1} and Ts3={zel;:|[d(x)>1}.

LEMMA 9.21. — Given 0 < § < T < +o0o arbitrarily, we have

T
/ EWHD/2 gt < cEPHD/2(g)
S

T
—|—c/ E(p_l)/Z/ (u")? + |g(u')|? ATy, dt
s r>
T —1
—I—c/ E(p_l)/Q/ (u)? + |g(u/)|* T dT,, dt.
s T's

Proor. — For any fixed € > 0 we deduce from (56) that

T
/ E@/2 gy < cE@/2(g)
S

T
+c/ E<p1>/2/ (u')? + €| Vul? + ¢(e)|g(u')|? dT,, dt
S r

S
Using the Sobolev inequality

ullw i) < cE'V?, Wy >1

with v = 2 and v = 1 + ¢, we conclude from (58) that

T T
/ E0HD/2 4t < cEHD/2(8) 4 ce / E+D/2 g4
S S

T
e / Elr-1/2 / ()2 + o(e)g(u')? T, dt
S I's

T
-I-c/ E(p_l)/Q/ (u')? + c(e)|g(u))|*Te  dTy, dt.
s T

(58)

T
—|—c/ E(p_l)/Q/ ()2 + e|Vul? + £ Vu|' 9 + c(e)[g(u)|' e dT, dt.
T2
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The lemma follows if we choose € > 0 such that ce < 1. []

Now we are ready to complete the proof of the theorem. Applying (43)
and (44) we have

() + (u)? dT < ¢ / (ug(u))? ®+1) T
Fz 1—‘2

2/(p+1)
< C(/ u/g(ul) dF> p < C(_E/)Z/(IH-U
T'>

and

g+ 4 ()2 dT < ¢ / W gy dT < —cE'.

F3 F3

Substituting into (57) we obtain for every € > 0 the estimate

T
/ EPTD/2 4t < cEPTY/2(8)
S

T T
+C/ Be=D/2(_ g2/ D) g — c/ Eo-D/2 g
S S

T
< cEWPHD/2(g) +/ eEPTV/2 _ ¢(e)E' dt
S

T
< c(e)E(S) + 6/ E@+D/2 gy,
S

Choosing € < 1 we conclude that F satisfies an inequality of the form

T
/ EPHD/2 4t < AE(S) forevery 0< S <T < 400
S

with a suitable positive constant A. We may conclude by applying theorem
9.1. []
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10. Stabilization of the Korteweg—de Vries equa-
tion

In this chapter we shall study, following KoOMORNIK, RUSSELL AND ZHANG
[1], [2] the stabilizability of the non-linear Korteweg—de Vries equation by
linear distributed feedbacks. The proof is based on a remarkable property
of this equation : the existence of an infinite sequence of conservation laws
corresponding to an infinite sequence of useful multipliers.

10.1. Formulation of the results

Let Q = (0,1), £ > 0 and consider the problem

U+ Uty + Upre = —k(u—[u]) in Q xRy, (1)
u(0,t) = u(l,t), VteRy, (2)

uz(0,t) = ug(1,t), Vte Ry, (3)

e (0,8) = a1, 1), VEE Ry, @)
u(0) =4’ on Q (5)

where [u] denotes the mean-value of u defined by

[M:Aum. (6)

For k = 0 the equation (1) is a good model of shallow water : u(x,t)
denotes the depth of water at a point z at time ¢; see M1uraA [1], TEMAM [1].
The periodic boundary conditions correspond to a circular movement. In this
model [u] denotes the total volume of water.

For k > 0 the action of the ”feedback” —k(u — [u]) consists in balancing
the level of water, conserving at the same time its total volume. Indeed, the
latter property follows, at least formally, from (1), (2) and (5) :

[u]’:/gu' dx:—/(luux—kuxm—i—k‘(u—[u])dx

:—/Q(u2/2+um)m dx+k[u]—k/udx

Q

— —/(u2/2+um)m dx = [u2/2+um](1) =0
Q
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whence

[w(t)] = [u"], VteR,. (7)

The following formal computation shows that u(t) converges exponentially
to the constant M := [u®] = [u] in L?(Q) as t — +o0 :

([t ax) = 200 dp ax
= /—Z(U — M) (utty + Ugge + k(u — M)) dx

—2u”uy + 2Muny, — 2utpy, — 2k(u — M)? dx

—

= [-(2/3)u® + Mu® — 2uu,, + ui]é — Qk/(u — M)? dx
= —2]{:/(u—]\4)2 dx
whence
u(t) — 1Yz = 1 — Wllz@ye™, vt >0, ®)
Let us introduce the Hilbert spaces

H) :={we H"(Q):w(0) =w/(1), j=0,...,m—1}, m=1,2,...

0._ 72 —1._ (gt
H):=L*(Q) and H, :=(H,)"
Identifying (L2(2)) with L?*(2) we obtain the algebraical and topological
inclusions
---CH}CH)CH)CH,"
The problem (1)—(5) is well-posed in the following sense :
THEOREM 10.1. — Let m > 2 and u® € H]". Then the problem (1)~(5) has
a unique solution
ue CRy; HY)NCH(Ry; HY 2. (9)

Furthermore, the mapping u

H™ x H™ 3,

— (u,u’) is continuous from H)' into

The solution u(t) converges quickly to the constant [u°] as t — +o0 :
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THEOREM 10.2. — Let m > 2 and u° € H]'. Then for every fized k' €]0, k|
there exists a constant C = C(u®, k') such that the solution of (1)—(5) satisfies
the estimate

() = [ (D) e ps < Ce™, WEER,. (10)

Theorems 10.1 et 10.2 were proved in KOMORNIK, RUSSELL AND ZHANG
[2]. Here we admit theorem 10.1 without proof and we only prove theorem
10.2 in the particular case m = 2.

10.2. Uniform stabilization by linear feedbacks

We shall often use the equality (7) and therefore we shall write [u] instead
of [u°]. For brevity we shall write [ instead of [,

Applying a usual density argument it is sufficient to prove the estimates
(10) for u® € Hy. According to theorem 10.1 thus we may assume that

u€ CRy; H)NCHRy; HY). (11)

This regularity property is sufficient to justify all computations which follow.
It is convenient to introduce the notations

M=, vi=u—M, v°:=u— M; (12)

then we deduce from (1), (5), (7) and (11) that
v E O(R+’H;5))7 (

v e 01(R+;H§), (

[v(t)] =0, Vt € Ry, (1

(

(

V' +vvg + Mg +Vppe +hkv =0 in QxR
v(0) =v" on Q,

ot
~— — — ~— ~—

and the estimates (10) take the following form :

1), o' D)l gz g < Ce™*, Vit € Ry (18)
LEMMA 10.3. — The function

Fs /v(t)2 dx, teR, (19)
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1s continuously differentiable and

(/ V2 dx)l - —2k/v2 dx. (20)

Proor. — Since H} is a Banach algebra, it follows from (14) that the
2 is continuously differentiable. Hence the function (19), being the
composition of two function of class C?, is also continuously differentiable.

Using (16) and the periodicity of v (cf. (13)) we easily obtain the identity
(20) :

function v

/
(/ v? dx) = /21}1}’ dx = / —20(vvg + Mg + Uz + kv) dx

= /—21}2% — 2Mvvy — 20040, — 2kv? dx

= [-(2/3)v® — Mv® — 2vv,, + vi]é - 2k/v2 dx = —2k/v2 dx. []
LEMmMA 10.4. — The function

tl—>/vw (/30312 dx, tER, (21)

is continuously differentiable and
( / e ()2 — (1/3)03 (1) dx)' = ok / ve()? = (1/2)03(1)2 dx.  (22)

Proor. — It follows easily from (14) that the function (21) is continuously
differentiable. Using (16) and the periodicity of v hence the identity (22)

follows :
(/ v? — (1/3)0° dx>/ = /2113311; — %’ dx
— [21)931/}(1)—1—/ —0 (2Uge +0?) dx = /(vvx + My + Vs + k) (200 +0?) dx
= /(vz)mvm + (Mv2 + 02, + (1/4)v* + (M/3)v3)gC + 020400 — 2kv2 + k03 dx
= [V?vpp + M0 + 02, + (1/4)v* + (M/3)v3}(1) + / —2kv? + kv® dx

= —2k/—(1/2)v3 dx. []
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LEMMA 10.5. — The function

t /vm(t)2 — (5/3)v2v(t)* + (5/36)v(t)* dx, t€ Ry (23)

18 continuously differentiable and

( / V2, — (5/3)0%0 + (5/36)0" dx)'
(24)
= —Qk/vfm — (5/2)v2v + (5/18)v* dx.

Proor. — By (14) the function (23) is continuously differentiable. To show
the identity (24) first we deduce from (16), using the periodicity of v, the
following identity :

( / v — (5/3)020 + (5/36)0" dx)'
= /QUxxU;m — (10/3)vzviv — (5/3)v20" + (5/9)v3v’ dx

= [20320], — 20350 — (10/3)1}%@']3

n / V' (0sz0s + (3/3)02 + (10/3)00zs + (5/9)0°) dx
= / V' (2040 + (5/3)02 4 (10/3) 00,5 + (5/9)0°) dx
= — /(vvx + Mg + Vggp + k) (205500 + (5/3)v2 + (10/3)vvs + (5/9)0°) dx
=—k / QWVgaae + (5/3)002 + (10/3)v% 0,0 + (5/9)0* dx
—M / QWaVpzae + (5/3)03 + (10/3) 00,04 + (5/9)v30v, dx

— / 200 Vpaaz + (5/3)002 + (10/3)020,000 + (5/9)0 0, + 20200 Vszwe

+(5/3)U§Umm + (10/3)v022Vz00 + (5/9)1)3%“; dx
= —k[l — MIQ — Ig.

It suffices to show that

I = /2113“ — 5002 + (5/9)v* dx and I, = I3 =0.
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We have
1
I = 20040, — 20,V50 + (10/3)1}2040
+ / 202+ (5/3)vv? — (20/3)vv2 + (5/9)v* dx = /21’32:95 —5vv2 + (5/9)v? dx
and
1
Iy = [20g00 02, + (5/3)00 + (5/36)" ]+ / (5/3)68 — (5/3)° dx = 0.

Finally, we have

Is = /2111)951),139633954—(5/3)1)1)5;—i—(5/3)1)9261);,;9@—l—(10/3)1}21)33vm+(10/3)1)1)33;,51);,3,,5m
+(5/9)v 0, + (5/9)0% V000 + 2Vs0eVezrs dx
= [QUvamm + (1/9)0°]§ + / —202Vppn — 2V030Vp0s + (5/3)002
+(5/3)02 000 + (10/3)0% 0,020 + (10/3) 00200220 + (5/9)03 Vs dx
= / —202 V00 — 20030Ve0a + (5/3)002 + (5/3)02 0400 + (10/3)02 0,000
+(10/3)0032V00e + (5/9)03Vpas + (5/9)03 V4, dx
= [—21)926%33 — v, + (5/3)vv2 + (5/3)vv2 1§ + /4%1}% + vg02,
+(5/3)vv3 — (10/3)v,v2, + (10/3)0% 0,00 — (5/3) 0,02, — (5/3)0% V04 dx
= /(5/3)1}1}2 + (5/3)0%000 dx = 0. []
In order to simplify the notation we shall write || - ||, for the norm of LP(£2),

1 < p < o0. Since 2 is the unit interval, the Holder inequality is particularly
simple :

[oll, < lvllg, Vv e LU (€), 1<p<qg<oo. (25)
We shall also use the Poincaré-Wirtinger inequality :
|v]|oo < lJvzlli, if ve HY(Q) and [v] =0. (26)

The proof is simple : since v is continuous, there exists a € {2 such that
v(a) = 0. Then for any y € Q we have

Yy
/ ” dx‘g/ 0| dx = [|vg]]1.
a Q

[(y)| = lv(y) —v(a)| =
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Noe that lemma 10.3 implies that

lo(®)llz = 0°ll2e™, vt € R, (27)

Now let us show that for each fixed k' € (0,k) there exists a positive
constant C’ such that

lva(t)]|l2 = C'e™ ¥t vt >0. (28)
Using (25)—(27) we have
[0 (O)[l < lo@3 @l < loa@NIFlv@l2 < [loa (I3[0 ]|2¢*;

consequently, for any fixed € > 0 (to be chosen later) there exists 77 > 0 such
that

/v?’(t) dx < 6/1}5 dx, Vi>T'. (29)

If £ <2, then we deduce from (29) the inequalities

/(vg ~(1/3)0) (1) dx > (1/3) /vg(t) dx>0, Ve>T.  (30)

If ¢ is sufficiently small, then we also deduce from (29) that

—Qk/(vg — (1/2)v°)(¢) dx < —2k’/(u§ — (1/3)0°)(t) dx, Vt>T'. (31)
(It suffices to choose € < (6k — 6k’)/(3k — 2K').)

Thus, choosing a sufficiently small £ we deduce from (21), (30) and (31)
that

(1/3)/v§(t) dx < /(vg — (1/3)v*)(t) dx
< /(Ui — (1/3)v*)(0) dxe F =T —. e Kt Wi > T
which implies (28) for all ¢ > T". The left-hand side of (28) being continuous,
the estimate (28) remains valid for all ¢ > 0 with some bigger constant C".
Next we show similarly that for any fixed &' < k there exists a positive

constant C” such that

Va2 = Clle_k/t7 vt > 0. (32)
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Using (25)—(28) we have
@)l < To@IZNv@13 < Toa 131013 < llvea (OI3]0°3e >
and
| [ @200) x| < [ OB o0 < oal) < [ual B

It follows that for any fixed € > 0 (to be chosen later) there exists 7" > 0
such that

/‘(Uiv)(t)‘ +o(t)* dx < 6/vm(t)2 dx, Vt>T". (32)

Choosing ¢ > 0 sufficiently small we conclude from (32) that

/ (02, — (5/3)0%0 + (5/36)0%) (t) dx > (1/3) / (2 dx >0 (33)
and
—2k/(v§m — (5/2)v2v + (5/18)v") (t) dx
(34)
< oK / (02, — (5/3)0%0 + (5/36)0") (t) dx

for all t > T". We deduce from (23), (33) and (34) that

(1/3) /Umm(t)Q dx < /(U?m — (5/3)1,5@ + (5/36)04)@) dx
< /(U?ca: - (5/3)7&%@ + (5/36)04)(0) dxe 2k (t=T") _. (01)26—21415,

proving (32) for all ¢ > T”. The left-hand side of (32) being continuous, the
estimate (32) remains valid for every ¢t > 0 if we choose some larger constant
c”.

Now we may easily complete the proof of the theorem. By (27), (28) and
(32) for every fixed k' < k there exists a positive constant C; > 0 such that

()2 < Cre™™*, vt >0. (35)
Using the equation (16) hence we conclude easily that
[/ (D) g1 < Cae™F, Wt >0 (36)

with some constant Cy > 0. The estimate (18) follows from (35) and (36). []
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