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EXACT CONTROLLABILITY FOR MULTIDIMENSIONAL
SEMILINEAR HYPERBOLIC EQUATIONS∗

XIAOYU FU† , JIONGMIN YONG‡ , AND XU ZHANG§

Abstract. In this paper, we obtain a global exact controllability result for a class of multidi-
mensional semilinear hyperbolic equations with a superlinear nonlinearity and variable coefficients.
For this purpose, we establish an observability estimate for the linear hyperbolic equation with an
unbounded potential, in which the crucial observability constant is estimated explicitly by a function
of the norm of the potential. Such an estimate is obtained by a combination of a pointwise esti-
mate and a global Carleman estimate for the hyperbolic differential operators and analysis on the
regularity of the optimal solution to an auxiliary optimal control problem.

Key words. exact controllability, semilinear hyperbolic equation, superlinear growth, observ-
ability inequality, global Carleman estimate
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1. Introduction. Given T > 0 and a bounded domain Ω of R
n (n ∈ N) with C2

boundary Γ, put Q = (0, T )×Ω and Σ = (0, T )×Γ. Let ω be a proper open nonempty
subset of Ω and denote by χω the characteristic function of ω. For any set M ⊂ R

n and
δ > 0, we define Oδ(M) =

{
x ∈ R

n
∣∣ |x− x′| < δ for some x′ ∈ M

}
. Also, we denote∑n

i,j=1 and
∑n

i=1 simply by
∑

i,j and
∑

i , respectively. For simplicity, we will use the
notation yi = yxi

, where xi is the ith coordinate of a generic point x = (x1, . . . , xn)
in R

n. In a similar manner, we use the notation wi, vi, etc. for the partial derivatives
of w and v with respect to xi. On the other hand, for any domain M in R

n (even
without any regularity condition on its boundary ∂M), we refer to [1, Chap. 3] for the
definition and basic properties of the Sobolev spaces H1

0 (M), H−1(M), etc. (Hence,
H1

0 (Q) and H−1(Q) are particularly well defined in [1, Chap. 3].)
Let aij(·) ∈ C1(Ω) be fixed, satisfying

aij(x) = aji(x) ∀ x ∈ Ω, i, j = 1, 2, . . . , n,(1.1)

and for some constant β > 0,∑
i,j

aij(x)ξiξj ≥ β|ξ|2 ∀ (x, ξ) ∈ Ω × R
n,(1.2)

where ξ = (ξ1, . . . , ξn). In what follows, put A
�
= (aij)n×n. We define a differential
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EXACT CONTROLLABILITY 1579

operator P by

Py
�
= ytt −

∑
i,j

(
aij(x)yi

)
j
.(1.3)

Next, we fix a function f(·) ∈ C1(R), satisfying the following condition:

lim
s→∞

f(s)

s ln1/2 |s|
= 0.(1.4)

Note that f(·) in the above can have a superlinear growth. We consider the following
controlled semilinear hyperbolic equation with an internal local controller acting on
ω: ⎧⎨

⎩
Py = f(y) + χω(x)γ(t, x) in Q,
y = 0 on Σ,
y(0) = y0, yt(0) = y1 in Ω.

(1.5)

In (1.5), (y(t, ·), yt(t, ·)) is the state, and γ(t, ·) is the control which acts on the system
through the subset ω of Ω. In what follows, we choose the state space and the control
space of system (1.5) to be H1

0 (Ω)×L2(Ω) and L2((0, T )×ω), respectively. We point
out that some other choices of spaces are possible. But our choice is natural in the
context of the hyperbolic equations. The space H1

0 (Ω)×L2(Ω) is often referred to as
the finite energy space. For any (y0, y1) ∈ H1

0 (Ω) × L2(Ω) and γ ∈ L2((0, T ) × Ω),
using the method in [4] one can prove the global existence of a unique weak solution
y ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) for (1.5) under assumption (1.1)–(1.2), and
under (1.4) with f(·) ∈ C1(R).

The main purpose of this paper is to study the global exact controllability of (1.5),
by which we mean the following: For any given (y0, y1), (z0, z1) ∈ H1

0 (Ω) × L2(Ω),
find a control γ ∈ L2((0, T )×ω) such that the corresponding weak solution y of (1.5)
satisfies

y(T ) = z0, yt(T ) = z1 in Ω.(1.6)

Due to the finite propagation speed of solutions to hyperbolic equations, the “waiting
time” T has to be large enough. The estimate of T is also a part of the problem.

The problem of exact controllability for linear hyperbolic equations (for example,
f(·) is a linear function, or simply, f(·) ≡ 0 in (1.5)) has been studied by many
authors. We mention here some standard references, for example, [2, 29, 33].

The study of exact controllability problems for nonlinear hyperbolic equations
began in the 1960s. Early works, including [5, 6, 10] and so on, were mainly devoted to
the local controllability problem, by which we mean that the controllability property
was proved under some smallness assumptions on the initial data and/or the final
target. In [43], further local results were proved for the exact controllability of some
semilinear wave equations in the form of (1.5) with A = I, the identity matrix, and
under a very general assumption on the nonlinearity f(·) (which allows f(·) to be
local Lipschitz continuous). We refer to [27] and the references cited therein for some
recent local controllability results of certain quasi-linear hyperbolic systems.

A global boundary exact controllability result for semilinear wave equations, cor-
responding to (1.5), in the state spaces Hr

0 (Ω) ×Hr−1(Ω) (r ∈ (0, 1/2) ∪ (1/2, 1)) or

H
1/2
00 (Ω) × (H

1/2
00 (Ω))′, with Dirichlet boundary control, was given in [44] under the
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1580 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

assumption that A = I and that the nonlinearity f(·) is globally Lipschitz continuous,
i.e., f ′(·) ∈ L∞(R). In [23], this controllability result was improved to include the
critical points r = 0 and 1, and also extended to the abstract setting. Recent progress
in this respect can be found in [36] and [37]. In the case that f(·) is sublinear, we
refer to [34] for the global exact controllability of (1.5).

As for the case that f(·) grows superlinearly at infinity, very little is known for the
global exact controllability of the semilinear hyperbolic equation (1.5) except for the
one space dimension, i.e., n = 1. We refer to [3, 9, 30, 45] for related one-dimensional
results. To our best knowledge, in the superlinear setting, [26] is the only paper
that discussed the global exact controllability for multidimensional system (1.5) (we
refer to [42] for an updated survey on this problem). By assuming that A = I and
ω = Oδ(Γ)∩Ω for some δ > 0, [26] shows that system (1.5) with f(·) satisfying (1.4) is
exactly controllable. In this paper, based on a method which is different from [26], we
shall consider a more general case by using a smaller controller ω = Oδ(Γ+) ∩ Ω (see
(2.5) for Γ+) and allowing the coefficients matrix A to be nonconstant one. We refer
the reader to Condition 2.1 and the subsequent remarks, and especially Proposition
2.1, for assumptions on matrix A.

In order to obtain the exact controllability of (1.5), one needs to consider, by the
well-known duality argument (see [29], [28, Lemma 2.4, p. 282], and [39, Theorem 3.2,
p. 19], for example), the following dual system of the linearized system of (1.5):⎧⎨

⎩
Pw = qw in Q,
w = 0 on Σ,
(w(0), wt(0)) = (w0, w1) ∈ L2(Ω) ×H−1(Ω),

(1.7)

with a potential q in some space (larger than L∞(Q), in general). It follows from the
standard perturbation theorem in the semigroup theory [31] that for a suitable q, say
q ∈ L∞(0, T ;Ln(Ω)), (1.7) is well-posed in L2(Ω) ×H−1(Ω).

Similar to [45] and [26], the above controllability problem may be reduced to an
explicit observability estimate for system (1.7). Namely, we expect to find a constant
C(q) > 0 such that all weak solutions w of (1.7) satisfy

|(w0, w1)|L2(Ω)×H−1(Ω) ≤ C(q)|w|L2((0,T )×ω) ∀ (w0, w1) ∈ L2(Ω) ×H−1(Ω).(1.8)

The explicit estimate of C(q) in terms of a suitable norm of the potential q is an
indispensable part of the problem, which is actually the key novelty in this paper.
Similar problems for A = I and bounded potentials q were considered in [36, 37].
However, in the present case we cannot assume that q in (1.7) is bounded since we
do not assume that the nonlinearity f(·) in (1.5) is globally Lipschitz continuous. To
overcome this difficulty, we need, among other things, to combine some ideas found
in [18] and [37].

It is well known that the Carleman estimate is one of the major tools used in the
study of unique continuation, observability, and controllability problems for various
kinds of partial differential equations (PDEs). However, the “concrete” Carleman
estimate for these problems is actually quite different! Indeed, in principle, among
these problems unique continuation is the “easiest,” and one may develop an abstract
theory for the unique continuation property (usually, of local nature) for very general
partial differential operators, based on a pseudoconvexity condition, the Carleman es-
timate, and by means of the microlocal analysis technique [16, 17, 35]. Observability
is, however, a quantitative version of the global unique continuation, which is much
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EXACT CONTROLLABILITY 1581

more difficult to establish than the classical (qualitative) unique continuation. For ex-
ample, the unique continuation for the parabolic equations was known for a very long
time, but the observability for the same equation was not established until the 1990s
by means of a new Carleman estimate [11, 14]. Also, for the hyperbolic equations,
the work of [20, 21] applied Carleman estimates for the proofs of the observability
results. On the other hand, there are many equations (say, the hyperbolic-parabolic
coupled systems in [32]), for which one can easily establish its unique continuation,
but its observability is completely unknown for multidimensions (the analysis for the
one-dimensional problem [41] is highly nontrivial, and some atypical phenomenon
occurs). Finally, as for controllability problems, as mentioned before the classical
duality argument reduces the problem to obtaining a suitable observability estimate.
However, for the global controllability problems for semilinear PDEs with superlinear
growing nonlinearity, the key point is the explicit estimate of the observability con-
stant by a suitable function of the norm of the potential. For this purpose, one has
to proceed more carefully than one would for the usual observability when using the
Carleman estimate. Note also that the approach developed in this article seems to be
virtually complete. Our key estimate on the observability constant C(q) is presented
in (2.12) of Theorem 2.3. As suggested by [8, Theorem 1.2], it may well be that (2.12)
is sharp (see also our Remark 2.1). In this respect, it is worth mentioning that one can
also adopt the method developed in [20, 21, 22] to establish an explicit observability
estimate for some special case of system (1.7) (i.e., A = aI with a suitable positive
function a), as done in [36]. However, it seems that the estimate obtained in this way
is far from sharp. Indeed, the estimate on the observability constant C(q) obtained
in [36] (for bounded potential q) reads as C exp(exp(exp(Cr0))) with r0 = |q|L∞(Q),
which is much weaker than that in (2.12). It would be quite interesting to check
whether the method in [20, 21, 22] can be adopted to derive the same estimate as
that of (2.12) in Theorem 2.3. But this remains to be done.

The rest of this paper is organized as follows. In section 2, we shall state the main
results. Some preliminary results are collected in section 3. In section 4, we derive an
estimate for second order differential operators with symmetric coefficients that is of
independent interest. This estimate will play a key role when we establish in section
5 a global Carleman estimate for the hyperbolic differential operators in H1

0 (Q). The
latter estimate, in turn, is one of the crucial preliminary results we derive in section
7, i.e., a similar global Carleman estimate for the hyperbolic differential operators
in a larger space L2(Q). Another crucial preliminary we study, in section 6, is an
auxiliary optimal control problem, where the key point is to obtain some regularity
of the optimal solution. In sections 8–9, we will prove our main results. Finally,
Appendices A, B, and C are devoted to proving some technical results that are used
throughout the paper.

2. Statement of the main results. To begin, we introduce the following con-
dition.

Condition 2.1. There exists a function d(·) ∈ C2(Ω) satisfying the following:
(i) For some constant μ0 > 0, it holds that

∑
i,j

⎧⎨
⎩
∑
i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]⎫⎬
⎭ ξiξj ≥ μ0

∑
i,j

aijξiξj

∀ (x, ξ1, . . . , ξn) ∈ Ω × R
n.

(2.1)
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1582 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

(ii) There is no critical point of function d(·) in Ω, i.e.,

min
x∈Ω

|∇d(x)| > 0.(2.2)

Let us make some remarks on the above condition.
First, Condition 2.1 is really a restriction on the coefficient matrix A and the

domain Ω. Indeed, as we shall see later, Condition 2.1 at least leads to the exact
controllability of system (1.5) with f(·) ≡ 0 and ω = Oδ(Γ)

⋂
Ω for any given δ > 0

and sufficiently large “waiting time” T > 0, while it is shown in [2] that, in order
for the latter to hold, (T,Ω, ω) has to satisfy a geometric optics condition which is
characterized by the null bicharacteristic of operator P. But, for any T > 0, this
condition may fail to be true for some P (with special coefficients) and some (Ω, ω)
(see [2]). This condition is crucial in what follows, where we derive a Carleman
estimate for the hyperbolic operators (see (11.4)). Nevertheless, to the best of our
knowledge, there is no universal tractable Carleman estimates in the literature for
general hyperbolic operators. We shall give below some tractable examples. However,
a detailed analysis of Condition 2.1 is beyond the scope of this paper and will be
presented elsewhere.

Second, by (1.1)–(1.2), one can check that (2.1) is equivalent to the uniform
positivity of the following (symmetric) matrix:

A �
=

⎛
⎝∑

i′,j′

(
aij

′
ai

′jdi′j′ +
(aij

′
ai

′j
j′ + ajj

′
ai

′i
j′ − aijj′a

i′j′)di′

2

)⎞⎠
1≤i,j≤n

≡ AHdA +
1

2

⎛
⎝∑

i′,j′

(aij
′
ai

′j
j′ + ajj

′
ai

′i
j′ − aijj′a

i′j′)di′

⎞
⎠

1≤i,j≤n

,

(2.3)

where Hd is the Hessian matrix of d(·). Hence, if A is a constant matrix, then
A = AHdA, and (2.1) is reduced to the (uniformly) strict convexity of d(x). A little
further, for any uniformly strict convex function d(·) ∈ C2(Ω), one can show that the
matrix AHdA is uniformly positive definite. Therefore, if

max
1≤i,j,k≤n

sup
x∈Ω

|aijk (x)| is small enough,(2.4)

one concludes that A is uniformly positive definite. Consequently, if in addition, d(·)
satisfies (2.2), then Condition 2.1 holds for d(·).

Third, the above remark, especially (2.4), does not mean that Condition 2.1 can
hold only for coefficient matrices A which are close to constant matrices. To illustrate
this, let us state the following proposition, whose proof is presented in Appendix A.

Proposition 2.1. Let n = 2, and let A = diag [a1, a2] with a1 ∈ C2(Ω) and
a2 ∈ C1(Ω) being uniformly positive functions. Assume further that

(i) a1(x1, x2) ≡ a1(x1), i.e., it is independent of x2;
(ii) a1

1a
2
1 ≥ 0 in Ω; and

(iii) there is at most one point x0
1 ∈ G

�
= {x1 ∈ R

∣∣(x1, x2) ∈ Ω for some x2 ∈ R}
so that a1

1(x
0
1) = 0. Moreover, if such an x0

1 exists, it satisfies a1
11(x

0
1) < 0. Then

Condition 2.1 holds.
We emphasize that in the above, the derivatives a1

1(·), a2
1(·), and a2

2(·) are not
necessarily small. Therefore, the matrix A is not necessarily close to a constant matrix.
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EXACT CONTROLLABILITY 1583

As a more concrete case, let us look at the following situation: Let a(x1) ∈ C2(G) be
a uniformly positive and strictly concave function. One may check that if a1(x1, x2) ≡
a2(x1, x2) ≡ a(x1), then a1 and a2 satisfy the conditions in Proposition 2.1. What is
more interesting is that for this nonidentity matrix A = aI, if a1, the derivative of a
with respect to x1, changes sign, then one may further check that it does not satisfy
the geometric condition introduced in [22, Theorem 2.2.4] (which, in our notation,
reads 1

2 − (x − x0) · ∇a ≥ 0 in Ω, for some x0 ∈ R
n) unless the length of G, or the

positive part of a1 in G (i.e., maxx∈G a+
1 (x)), or the negative part of a1 in G (i.e.,

maxx∈G a−1 (x)), is assumed to be sufficiently small. Hence, we have found a class of
explicit and nontrivial examples satisfying our Condition 2.1. Also, we indicate that
it is possible to construct nontrivial examples of nondiagonal coefficient matrices that
satisfy Condition 2.1.

For the function d(·) satisfying Condition 2.1, we introduce the following set:

Γ+
�
=

⎧⎨
⎩x ∈ Γ

∣∣∣∣∣
∑
i,j

aijνidj > 0

⎫⎬
⎭ ,(2.5)

where ν = ν(x) = (ν1, ν2, . . . , νn) is the unit outward normal vector of Ω at x ∈ Γ.
Note that for the case A = I, by choosing d(x) = |x − x0|2 with any given

x0 ∈ R
n \Ω, we have Condition 2.1 with μ0 = 4, and (2.1) holds with an equality. In

this case,

Γ+ =
{
x ∈ Γ

∣∣∣ (x− x0) · ν(x) > 0
}
,

which coincides with the usual star-shaped part of the whole boundary of Ω [29].
On the other hand, it is easy to check that, if d(·) ∈ C2(Ω) satisfies (2.1), then

for any given constants a ≥ 1 and b ∈ R, the function

d̂ = d̂(x)
�
= ad(x) + b(2.6)

(scaling and translating d(x)) still satisfies Condition 2.1 with μ0 replaced by aμ0;
meanwhile, the scaling and translating d(x) do not change the set Γ+. Hence, by
scaling and translating d(x), if necessary, we may assume without loss of generality
that ⎧⎪⎪⎨

⎪⎪⎩
(2.1) holds with μ0 ≥ 4,

1

4

∑
i,j

aij(x)di(x)dj(x) ≥ max
x∈Ω

d(x) ≥ min
x∈Ω

d(x) > 0 ∀ x ∈ Ω.
(2.7)

In what follows, we let

R1
�
= max

x∈Ω

√
d(x) , T∗

�
= 2 inf

{
R1

∣∣∣ d(·) satisfies (2.7)
}
.(2.8)

Concerning the controller ω in (1.5), we need the following assumption.
Condition 2.2. There is a constant δ > 0 such that

ω = Oδ(Γ+)
⋂

Ω.(2.9)
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1584 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

Note that condition (2.9) can be replaced by

ω ⊇ Γ+,(2.10)

which looks much weaker. In fact, when (2.10) holds, one can find a δ > 0 such that

ω ⊇ Oδ(Γ+)
⋂

Ω.(2.11)

It is not hard to see that if we can prove the controllability for (1.5) with a smaller
controller ω satisfying (2.9), then we can do so for a larger controller ω satisfying
(2.11) (in particular, we can choose ω to be Oδ(Γ)

⋂
Ω, a neighborhood of the whole

boundary Γ). We assume an equality in (2.9) only for simplicity of presentation.
The main controllability result in this paper is stated as follows.
Theorem 2.2. Let aij(·) ∈ C1(Ω) satisfy (1.1)–(1.2), and let f(·) ∈ C1(R) satisfy

(1.4). Let Conditions 2.1–2.2 hold. Then for any T > T∗, system (1.5) is exactly
controllable in H1

0 (Ω) × L2(Ω) at time T by using some control γ ∈ L2((0, T ) × ω).
In what follows, we will use C to denote a generic positive constant which may

vary from line to line (unless otherwise stated). As we mentioned before, the proof of
Theorem 2.2 can be reduced to the following observability estimate result for system
(1.7).

Theorem 2.3. Let aij(·) ∈ C1(Ω) satisfy (1.1)–(1.2), q ∈ L∞(0, T ;Ln(Ω)), and
Conditions 2.1–2.2 hold. Then for any T > T∗, all weak solutions w of system (1.7)
satisfy estimate (1.8) with an observability constant C(q) > 0 of the form

C(q) = C exp(Cr2),(2.12)

where

r = |q|L∞(0,T ;Ln(Ω)).(2.13)

Several remarks are in order.
Remark 2.1. By adopting the approach developed in this paper, Theorem 2.3

is strengthened in [8] as follows (see [8, Theorem 2.2]): Replace the assumption on
q by q ∈ L∞(0, T ; Ls(Ω)) for any fixed s ∈ [n,∞] and let the other assumptions in
Theorem 2.3 remain unchanged. Then for any T > T∗, all weak solutions w of system
(1.7) satisfy estimate (1.8) with an observability constant C(q) > 0 of the form

C(q) = C exp

(
C|q|

1
3/2−n/s

L∞(0,T ;Ls(Ω))

)
.(2.14)

On the other hand, it is shown in [8, Theorem 1.2] that the exponent 2/3 in the

estimate |q|2/3L∞(0,T ;L∞(Ω)) (in (2.14) for the special case s = ∞) is sharp. Although

the problem of the optimality of the exponent 1
3/2−n/s in |q|

1
3/2−n/s

L∞(0,T ;Ls(Ω)) is unsolved

when s ∈ [n,∞), [8, Theorem 1.2] does support the idea that the exponent 2 of the
estimate r2 in (2.12) might be sharp.

Remark 2.2. The “minimal” waiting time T∗ in Theorems 2.2–2.3 is explicitly
constructed (by (2.8)) but not sharp. The sharp T∗, as suggested by the special case
A = I considered in [36, 37], should be given as follows:

T∗
�
= 2 inf

{
R1

∣∣∣ d(x) satisfies (2.1) with μ0 ≥ 4 and

1

4

∑
i,j

aij(x)di(x)dj(x) ≥ d(x) ≥ min
x∈Ω

d(x) > 0 ∀ x ∈ Ω

}
,
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i.e., one replaces the term maxx∈Ω d(x) in (2.7) by d(x). Unfortunately, we are unable
to obtain such a sharp waiting time at this moment. One will see that the inequality
involving

∑
i,j a

ij(x)di(x)dj(x) and maxx∈Ω d(x) in (2.7) plays a key role in (11.7).

Remark 2.3. Condition (1.4) on the nonlinearity f(·) in Theorem 2.2 is not sharp.
As suggested in [45] for the one-dimensional problem, it is reasonable to expect that
(1.4) may be relaxed to the following:

lim
s→∞

f(s)

s ln2 |s|
= 0.

But this remains unsolved for the time being.

Remark 2.4. Theorems 2.2–2.3 cover the main results in [26] except the minimal
waiting time T∗.

Remark 2.5. Theorems 2.2 can be extended to the case when the nonlinearity
f(y) in (1.5) is replaced by f(t, x, y), under suitable growth conditions on (t, x, y).
However, it seems to us that in the case when nonlinearity is f(y, yt,∇y), the technique
developed in this paper is not enough, and one might have to employ the Nash–
Moser–Hörmander iteration method [15] to overcome the difficulty due to the “loss of
derivatives.” The detailed study of this problem will be presented elsewhere. Note,
however, that for purely PDE problems (existence and uniqueness of solutions, etc.)
of the hyperbolic equations, the treatment on the nonlinearity f(y, yt,∇y) is almost
the same as the simpler one, f(y). This means that for the controllability problem of
nonlinear systems, there exist some extra difficulties.

3. Some preliminaries. Let us consider the following linear inhomogeneous
hyperbolic equation:

{
Pz = f in Q,
z = 0 on Σ.

(3.1)

In what follows, we call z ∈ L2(Q) a weak solution to (3.1) if

(z,Pη)L2(Q) =

∫ T

0

〈 f(t, ·), η(t, ·) 〉H−1(Ω),H1
0 (Ω)dt ∀ η ∈ C2

0 ((0, T );H2(Ω) ∩H1
0 (Ω)).

Note that in (3.1), no initial conditions are specified. Similarly to [40, Lemma 5.1],
one can prove the following regularity result for system (3.1).

Lemma 3.1. Let 0 < t1 < t2 < T , f ∈ L1(0, T ;H−1(Ω)), and g ∈ L2((t1, t2)×Ω)
be given. Assume that z ∈ L2(Q) is a weak solution to (3.1), and z = g in (t1, t2)×Ω.
Then z ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)), and there exists a constant C > 0,
depending only on T , t1, t2, Ω, and aij, such that

|z|C([0,T ];L2(Ω))∩C1([0,T ];H−1(Ω)) ≤ C
[
|f |L1(0,T ;H−1(Ω)) + |g|L2((t1,t2)×Ω)

]
.(3.2)

From the above, we see that g plays the role of initial value for the weak solution
z. Next, similarly to [36, Lemma 3.3] we have the following result.

Lemma 3.2. Let aij ∈ C1(Ω) satisfy (1.1), and let g
�
= (g1, . . . , gn) : Rt × R

n
x →
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R
n be a vector field of class C1. Then for any z ∈ C2(Rt × R

n
x), we have

−
∑
j

⎡
⎣2(g · ∇z)

∑
i

aijzi + gj

⎛
⎝z2

t −
∑
i,k

aikzizk

⎞
⎠
⎤
⎦
j

= 2

[
(Pz)g · ∇z − (ztg · ∇z)t + ztgt · ∇z −

∑
i,j,k

aijzizk
∂gk

∂xj

]

− (∇ · g)z2
t +

∑
i,j

zizj∇ · (aijg).

(3.3)

Next, we denote the energy of system (1.7) by

E(t)
�
=

1

2

[
|wt(t, ·)|2H−1(Ω) + |w(t, ·)|2L2(Ω)

]
.(3.4)

Using the usual energy method, one obtains the following result.
Lemma 3.3. Let T > 0, q ∈ L∞(0, T ;Ln(Ω)), w0 ∈ L2(Ω), and w1 ∈ H−1(Ω).

Then the weak solution w(·) ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) of (1.7) satisfies
(recall (2.13) for r)

E(t) ≤ CE(s)eCr ∀ t, s ∈ [0, T ].(3.5)

Further, proceeding as in [36, Lemma 3.4], we conclude the following.
Lemma 3.4. Let 0 ≤ S1 < S2 < T2 < T1 ≤ T and q ∈ L∞(0, T ;Ln(Ω)). Then

the weak solution w(·) ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) of (1.7) satisfies∫ T2

S2

E(t)dt ≤ C(1 + r)

∫ T1

S1

|w(t, ·)|2L2(Ω)dt.(3.6)

Finally, the following proposition will be useful.
Proposition 3.5. For any h > 0, m = 2, 3, . . ., and qim, wi

m ∈ C (i = 0, 1, . . . ,m)
with q0

m = qmm = 0, one has

−
m−1∑
i=1

qim
(wi+1

m − 2wi
m + wi−1

m )

h2
=

m−1∑
i=0

(qi+1
m − qim)

h

(wi+1
m − wi

m)

h

=

m∑
i=1

(qim − qi−1
m )

h

(wi
m − wi−1

m )

h
.

(3.7)

Proof.

−
m−1∑
i=1

qim
(wi+1

m − 2wi
m + wi−1

m )

h2
= −

m−1∑
i=1

qim
(wi+1

m − wi
m)

h2
+

m−1∑
i=1

qim
(wi

m − wi−1
m )

h2

=

m−1∑
i=1

(qi+1
m − qim)

h

(wi+1
m − wi

m)

h
−

m−1∑
i=1

qi+1
m

h

(wi+1
m − wi

m)

h
+

m−2∑
i=0

qi+1
m

h

(wi+1
m − wi

m)

h

=

m−1∑
i=1

(qi+1
m − qim)

h

(wi+1
m − wi

m)

h
+

q1
m

h

(w1
m − w0

m)

h

=
m−1∑
i=0

(qi+1
m − qim)

h

(wi+1
m − wi

m)

h
,

which gives the desired equality.
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4. Second order differential operators with symmetric coefficients. In
this section, we consider second order differential operators with symmetric coeffi-
cients. Our hyperbolic differential operator P is of such a type. We will establish a
pointwise equality and a couple of inequalities for such differential operators, which
will play important roles. First, we have the following identity.

Theorem 4.1. Let m ∈ N,

bij = bji ∈ C1(Rm), i, j = 1, 2, . . . ,m,(4.1)

and u, �, Ψ ∈ C2(Rm). Set θ = e� and v = θu. Then

θ2

∣∣∣∣∣∣
∑
i,j

(bijui)j

∣∣∣∣∣∣
2

+ 2
∑
j

{
2
∑
i,i′,j′

bijbi
′j′�i′vivj′ −

∑
i,i′,j′

bijbi
′j′�ivi′vj′

+ Ψ
∑
i

bijviv −
∑
i

bij
[
(Λ + Ψ)�i +

Ψi

2

]
v2

}
j

= 2
∑
i,j

⎧⎨
⎩
∑
i′,j′

[
2bij

′
(
bi

′j�i′
)
j′
−
(
bijbi

′j′�i′
)
j′

]
+ Ψbij

⎫⎬
⎭ vivj + Bv2

+

∣∣∣∣∣∣
∑
i,j

(bijvi)j − Λv

∣∣∣∣∣∣
2

+ 4

∣∣∣∣∣∣
∑
i,j

bij�ivj

∣∣∣∣∣∣
2

,

(4.2)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Λ
�
= −

∑
i,j

(bij�i�j − bijj �i − bij�ij) − Ψ,

B
�
= 2

⎡
⎣ΛΨ −

∑
i,j

(
(Λ + Ψ)bij�i

)
j

⎤
⎦+ Ψ2 −

∑
i,j

(bijΨj)i.

(4.3)

We see that only the symmetry condition (4.1) is assumed in the above. Hence,
Theorem 4.1 is applicable to hyperbolic and ultrahyperbolic operators.

Theorem 4.1 looks similar to [25, Lemma 1, p. 124](which is devoted to a similar
problem for a class of ultrahyperbolic operators). The main difference is that we
leave the function v on the right-hand side of (4.2) without returning to u, unlike
the result of [25] mentioned above, which has only the variable u on both sides.
Our result greatly simplifies the computation. Also, a similar idea played a key
role in establishing the observability estimate for the wave equations with Neumann
boundary conditions in [24] (which should be compared with [19]). We refer the reader
to [12, 13] for further application of Theorem 4.1 and its generalization, and to [7] for
related work.

Proof of Theorem 4.1. The proof is divided into several steps.
Step 1. Recalling θ = e� and v = θu, one has ui = θ−1(vi − �iv) (i = 1, 2, . . . ,m).

By the symmetry condition (4.1), it is easy to see that

∑
i,j

bij(�ivj + �jvi) = 2
∑
i,j

bij�ivj .
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Thus, we obtain∑
i,j

(bijui)j =
∑
i,j

[θ−1bij(vi − �iv)]j(4.4)

= θ−1
∑
i,j

[bij(vi − �iv)]j − θ−1
∑
i,j

bij(vi − �iv)�j

= θ−1
∑
i,j

[
(bijvi)j − bij(�ivj + �jvi) + (bij�i�j − bijj �i − bij�ij)v

]

= θ−1
∑
i,j

[
(bijvi)j − 2bij�ivj + (bij�i�j − bijj �i − bij�ij)v

]

≡ −θ−1(I1 + I2 + I3),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1
�
= −

∑
i,j

[
(bijvi)j + (bij�i�j − bijj �i − bij�ij)v

]
− Ψv

= −
∑
i,j

(bijvi)j + Λv,

I2
�
= 2

∑
i,j

bij�ivj , I3
�
= Ψv.

(4.5)

Then, by (4.4) and (4.5), we get

θ2
∣∣∣∑

i,j

(bijui)j

∣∣∣2 = |I1|2 + |I2|2 + |I3|2 + 2(I1I2 + I2I3 + I1I3).(4.6)

Step 2. Let us compute I1I2. Using (4.1) again, and noting

∑
i,j,i′,j′

(
bijbi

′j′�i′vivj

)
j′

=
∑

i,j,i′,j′

(
bijbi

′j′�ivi′vj′
)
j
,

we get

2
∑

i,j,i′,j′

bijbi
′j′�i′vivjj′

=
∑

i,j,i′,j′

bijbi
′j′�i′(vivjj′ + vjvij′) =

∑
i,j,i′,j′

bijbi
′j′�i′(vivj)j′

=
∑

i,j,i′,j′

(
bijbi

′j′�i′vivj

)
j′
−
∑

i,j,i′,j′

(
bijbi

′j′�i′
)
j′
vivj

=
∑

i,j,i′,j′

(
bijbi

′j′�ivi′vj′
)
j
−
∑

i,j,i′,j′

(
bijbi

′j′�i′
)
j′
vivj .

(4.7)

Hence, by (4.5) and (4.7), and noting

∑
i,j,i′,j′

bij
(
bi

′j′�i′
)
j
vivj′ =

∑
i,j,i′,j′

bij
′
(
bi

′j�i′
)
j′
vivj ,
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we get

I1I2 = 2
∑
i,j

bij�ivj

[
−
∑
i,j

(bijvi)j + Λv

]

= −2
∑

i,j,i′,j′

(bijbi
′j′�i′vivj′)j + 2

∑
i,j,i′,j′

bij(bi
′j′�i′)jvivj′

+2
∑

i,j,i′,j′

bijbi
′j′�i′vivj′j + Λ

∑
i,j

bij�i(v
2)j

= −
∑
j

(
2
∑
i,i′,j′

bijbi
′j′�i′vivj′ −

∑
i,i′,j′

bijbi
′j′�ivi′vj′ − Λ

∑
i

bij�iv
2

)
j

+
∑

i,j,i′,j′

[
2bij

′
(bi

′j�i′)j′ − (bijbi
′j′�i′)j′

]
vivj −

∑
i,j

(Λbij�i)jv
2.

(4.8)

Step 3. Let us compute I2I3 and I1I3. By (4.5), we see that

I2I3 = 2Ψv
∑
i,j

bij�ivj = Ψ
∑
i,j

bij�i(v
2)j

=
∑
i,j

(
Ψbij�iv

2
)
j
−
∑
i,j

(
Ψbij�i

)
j
v2.

(4.9)

Similarly, by (4.5), we get

2I1I3 = 2Ψv

[
−
∑
i,j

(bijvi)j + Λv

]

= −2
∑
i,j

(
Ψbijvvi

)
j
+ 2Ψ

∑
i,j

bijvivj +
∑
i,j

bijΨj(v
2)i + 2ΛΨv2

= −
∑
i,j

(
2Ψbijvvi − bijΨiv

2
)
j
+ 2Ψ

∑
i,j

bijvivj +

[
−
∑
i,j

(bijΨj)i + 2ΛΨ

]
v2.

(4.10)
Step 4. Finally, combining (4.6), (4.8), (4.9), and (4.10), we immediately conclude

with the desired equality (4.2). This completes the proof of Theorem 4.1.
As a consequence of Theorem 4.1, we have the following.
Corollary 4.2. Let aij ∈ C1(Ω) satisfy (1.1), and let u, �,Ψ ∈ C2(R1+n). Let

θ = e� and v = θu. Then

θ2|Pu|2(4.11)

+ 2

[
�t

(
v2
t +

∑
i,j

aijvivj

)
− 2

∑
i,j

aij�ivjvt − Ψvvt +

(
(Λ + Ψ)�t +

Ψt

2

)
v2

]
t

+ 2
∑
j

{
2
∑
i,i′,j′

aijai
′j′�i′vivj′ −

∑
i,i′,j′

aijai
′j′�ivi′vj′ + Ψv

∑
i

aijvi

− 2�tvt
∑
i

aijvi +
∑
i

aij�iv
2
t −

∑
i

aij
[
(Λ + Ψ)�i +

Ψi

2

]
v2

}
j

≥ 2

(
�tt +

∑
i,j

(aij�i)j − Ψ

)
v2
t − 8

∑
i,j

aij�jtvivt

+ 2
∑
i,j

{
aij�tt +

∑
i′,j′

[
2aij

′
(ai

′j�i′)j′ − (aijai
′j′�i′)j′

]
+ Ψaij

}
vivj + Bv2,
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ = (�2t − �tt) −
∑
i,j

(aij�i�j − aijj �i − aij�ij) − Ψ,

B = 2

⎡
⎣ΛΨ +

(
(Λ + Ψ)�t

)
t
−
∑
i,j

(
(Λ + Ψ)aij�i

)
j

⎤
⎦

+ Ψ2 + Ψtt −
∑
i,j

(aijΨj)i.

(4.12)

In particular, if

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ = φ(t, x)
�
= d(x) − c(t− T/2)2,

Ψ
�
= λ

⎡
⎣∑

i,j

(aijdi)j − 2c− 1 + k

⎤
⎦ ,

�
�
= λφ, v

�
= θu, θ

�
= e�,

(4.13)

with λ, T > 0, c ∈ (0, 1), and k ∈ R, then

(left-hand side of (4.11)) ≥ 2λ(1 − k)v2
t

+ 2λ
∑
i,j

⎧⎨
⎩(k − 1 − 4c)aij +

∑
i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]⎫⎬
⎭ vivj + Bv2,

(4.14)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ = λ2

⎡
⎣4c2(t− T/2)2 −

∑
i,j

aijdidj

⎤
⎦+ λ(4c + 1 − k),

B = 2λ3

[
(4c + 1 − k)

∑
i,j

aijdidj +
∑
i,j

aijdi

⎛
⎝∑

i′,j′

ai
′j′di′dj′

⎞
⎠

j

−4(8c + 1 − k)c2(t− T/2)2

]
+ O(λ2).

(4.15)

Proof. Using Theorem 4.1 with m = 1 + n, and

(bij)m×m =

(
−1 0
0 A

)
,

by a direct calculation, we obtain (4.11). The inequality occurs because we have
dropped the last two nonnegative terms (see (4.2)). Next, by the choice of (4.13), we
can obtain (4.14).
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5. Global Carleman estimate for the hyperbolic operators in H1
0(Q).

Recall (2.8) for the definitions of R1 and T∗. Let T > T∗ be given. We may assume
that

T > 2R1.(5.1)

By (5.1), one may choose a constant c ∈ (0, 1) so that(
2R1

T

)2

< c <
2R1

T
.(5.2)

Henceforth, we choose φ(t, x) as in (4.13) with T and c satisfying, respectively, (5.1)
and (5.2).

Remark 5.1. The function φ constructed above, together with Condition 2.1, will
play a similar role in establishing the Carleman estimate for the hyperbolic operators
to that of the function ψ in [18, Condition 1.1], both of which are pseudoconvex in the
sense of [17, Definition 28.3.1]. We refer to the classical monographs [16, 17] for more
extensive treatment of the Carleman estimate for general partial differential operators,
based on pseudoconvex assumptions. Note, however, that our more concrete and
explicit choice of φ has the following advantages:

(1) It avoids the complicated verification of the pseudoconvex assumption, say,
Condition 1.1 in [18]. Indeed, we need only check the “convexity” condi-
tion (2.1) and the nonvanishing condition (2.2) (see Proposition 2.1 for an
example).

(2) Our φ is more natural. In this respect, we note that the time variable t
and spatial variables x are separate, which matches the very fact that for
the principal operator P, the time derivative ∂tt and the spatial derivatives
−
∑

i,j ∂j(a
ij(x)∂i

)
have a similar separation property.

(3) The explicit form of φ(·) or d(·) is useful in the definition of the “con-
trolled/observed” subboundary Γ+ in (2.5). Also, it plays a key role by
scaling and translating d(x) as in (2.6) to achieve (2.7).

(4) What is more important, as mentioned before, is that with our assumption
of Condition 2.1, we can give an explicit formula for the waiting time T∗,
but this seems to be impossible in the setting of [18] and in that of [16, 17].
Meanwhile, as we shall see later (in the proof of Theorem 2.3), the explicit
form of φ(·) will play a crucial role in deducing the key estimate (2.12) on the
observability constant C(q).

The following Carleman estimate will play a crucial role in section 7.
Theorem 5.1. Let aij ∈ C1(Ω) satisfy (1.1)–(1.2), and let Conditions 2.1–2.2

hold. Then there exists a λ0 > 1 such that for all λ ≥ λ0 and all u ∈ H1
0 (Q) with

Pu ∈ L2(Q), it holds that

λ

∫
Q

(λ2u2 + u2
t + |∇u|2)e2λφdxdt

≤ C

[
|eλφPu|2L2(Q) + λ2

∫ T

0

∫
ω

(λ2u2 + u2
t )e

2λφdxdt

]
.

(5.3)

For the reader’s convenience, in Appendix B we will give a proof of Theorem 5.1
which is close to the spirit of [24].

Remark 5.2. In the above theorem, the main element, which enables one to
integrate over the entire cylinder Q instead of the “conventional” case of its subdomain
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bounded by a level surface of the function φ, is that u(0, x) = u(T, x) = 0 in Ω. From
the proof of Theorem 5.1, one can see that this point is achieved via (11.10). In the
cases A = I, and more generally A = a(x)I, with a quite restrictive positive function
a(x), inequality (11.10) actually follows from [22, equation (2.2.51)] if we introduce
(in this paper) a new variable τ = t− T/2 instead of the time variable t.

6. An auxiliary optimal control problem. In this section, we will present
an auxiliary optimal control problem which will be useful later. Although some ideas
are taken from [18, pp. 190–199], our presentation seems to be easier to understand.

Throughout this section, we fix φ as in (4.13), a parameter λ > 0, and a function
u ∈ C([0, T ];L2(Ω)) satisfying u(0, x) = u(T, x) = 0 for x ∈ Ω. For any K > 1, we
choose a function � ≡ �K(x) ∈ C2(Ω) with minx∈Ω �(x) = 1 so that (recall Condition
2.2 for ω)

�(x) =

{
1 for x ∈ ω,

K for dist (x, ω) ≥ 1
lnK .

(6.1)

Next, fix any integer m ≥ 3. Let h = T
m . Define

ui
m ≡ ui

m(x) = u(ih, x), φi
m ≡ φi

m(x) = φ(ih, x), i = 0, 1, . . . ,m.(6.2)

Let {(zim, ri1m, ri2m, rim)}mi=0 ∈ (H1
0 (Ω) × (L2(Ω))3)m+1 satisfy the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi+1
m − 2zim + zi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

zim)

=
ri+1
1m − ri1m

h
+ ri2m + λui

me2λφi
m + rim, (1 ≤ i ≤ m− 1) in Ω,

zim = 0, (0 ≤ i ≤ m) on Γ,

z0
m = zmm = r0

2m = rm2m = r0
m = rmm = 0, r0

1m = r1
1m in Ω.

(6.3)

Note that we do not assume r0
1m and rm1m vanish; instead we assume r0

1m = r1
1m. In

system (6.3), (ri1m, ri2m, rim) ∈ (L2(Ω))3 (i = 0, 1, . . . ,m) can be regarded as controls.
The set of admissible sequences for (6.3) is defined as

Aad
�
=
{
{(zim, ri1m, ri2m, rim)}mi=0 ∈ (H1

0 (Ω) × (L2(Ω))3)m+1
∣∣∣

{(zim, ri1m, ri2m, rim)}mi=0 satisfy (6.3)
}
.

Since {(0, 0, 0,−λui
me2λφi

m)}mi=0 ∈ Aad, one sees that Aad �= ∅.
Next, let us introduce the cost functional

J({(zim, ri1m, ri2m, rim)}mi=0)

=
h

2

∫
Ω

�
|rm1m|2
λ2

e−2λφm
mdx

+
h

2

m−1∑
i=1

[∫
Ω

|zim|2e−2λφi
mdx +

∫
Ω

�

(
|ri1m|2
λ2

+
|ri2m|2
λ4

)
e−2λφi

mdx + K

∫
Ω

|rim|2dx
]
.

(6.4)
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We pose the following optimal control problem: Find a {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 ∈ Aad

such that

J({(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0)

= min
{(zi

m,ri1m,ri2m,rim)}m
i=0∈Aad

J({(zim, ri1m, ri2m, rim)}mi=0).
(6.5)

Note that for any {(zim, ri1m, ri2m, rim)}mi=0 ∈ Aad, by standard regularity results of
elliptic equations, one has that zim ∈ H2(Ω) ∩H1

0 (Ω). The following technical result
will play a crucial role in section 7.

Proposition 6.1. For any K > 1 and m ≥ 3, problem (6.5) admits a unique
solution {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 ∈ Aad (which depends on K). Furthermore, for

pim ≡ pim(x)
�
= Kr̂im(x), 0 ≤ i ≤ m,(6.6)

one has

ẑ0
m = ẑmm = p0

m = pmm = 0 in Ω, ẑim, pim ∈ H2(Ω) ∩H1
0 (Ω) for 1 ≤ i ≤ m− 1,(6.7)

and the following optimality conditions hold:⎧⎪⎪⎨
⎪⎪⎩

pim − pi−1
m

h
+ �

r̂i1m
λ2

e−2λφi
m = 0 in Ω,

pim − �
r̂i2m
λ4

e−2λφi
m = 0 in Ω,

1 ≤ i ≤ m,(6.8)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pi+1
m − 2pim + pi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

pim) + ẑime−2λφi
m = 0 in Ω,

pim = 0 on Γ,

1 ≤ i ≤ m− 1.

(6.9)

Moreover, there is a constant C = C(K,λ) > 0, independent of m, such that

h
m−1∑
i=1

∫
Ω

[
|ẑim|2 + |r̂i1m|2 + |r̂i2m|2 + K|r̂im|2

]
dx + h

∫
Ω

|r̂m1m|2dx ≤ C,(6.10)

and

h
m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)2

h2
+

(r̂i+1
1m − r̂i1m)2

h2
+

(r̂i+1
2m − r̂i2m)2

h2

+K
(r̂i+1

m − r̂im)2

h2

]
dx ≤ C.

(6.11)

We refer to Appendix C for a proof of this proposition.

7. Global Carleman estimate for hyperbolic operators in L2(Q). In or-
der to prove Theorem 2.3, we need the following result.
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Theorem 7.1. Let aij ∈ C1(Ω) satisfy (1.1)–(1.2). Let Conditions 2.1–2.2 hold.
Then for any λ ≥ λ0 ≥ 1, and any u ∈ C([0, T ];L2(Ω)) satisfying u(0, x) = u(T, x) =
0 for x ∈ Ω, Pu ∈ H−1(Q), and

(u,Pη)L2(Q) = 〈 Pu, η 〉H−1(Q),H1
0 (Q) ∀ η ∈ H1

0 (Q) with Pη ∈ L2(Q),(7.1)

it holds that

λ

∫
Q

u2e2λφdxdt ≤ C

(
|eλφPu|2H−1(Q) + λ2

∫ T

0

∫
ω

u2e2λφdxdt

)
,(7.2)

where φ is the same as in Theorem 5.1.

Proof. The proof is close to that of [18, Theorem 1.1]. However, for the reader’s
convenience, we give the details here.

The main idea is to apply (7.1) to some special η with Pη = · · ·+ λue2λφ, which
yields the desired term λ

∫
Q
u2e2λφdxdt and reduces the estimate to that for |η|H1

0 (Q).
We shall employ Proposition 6.1 to provide the desired η. The proof is divided into
several steps.

Step 1. First, recall the functions {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 in Proposition 6.1. We
define

z̃m(t, x) =
1

h

m−1∑
i=0

[
(t− ih)ẑi+1

m (x) −
(
t− (i + 1)h

)
ẑim(x)

]
χ(ih,(i+1)h](t),

r̃m1 (t, x) = r̂0
1m(x)χ{0}(t)

+
1

h

m−1∑
i=0

[
(t− ih)r̂i+1

1m (x) −
(
t− (i + 1)h

)
r̂i1m(x)

]
χ(ih,(i+1)h](t),

r̃m2 (t, x) =
1

h

m−1∑
i=0

[
(t− ih)r̂i+1

2m (x) −
(
t− (i + 1)h

)
r̂i2m(x)

]
χ(ih,(i+1)h](t),

r̃m(t, x) =
1

h

m−1∑
i=0

[
(t− ih)r̂i+1

m (x) −
(
t− (i + 1)h

)
r̂im(x)

]
χ(ih,(i+1)h](t).

By (6.10)–(6.11), one can find a subsequence of (z̃m, r̃m1 , r̃m2 , r̃m), which converges
weakly to some (z̃, r̃1, r̃2, r̃) ∈ (H1(0, T ;L2(Ω)))4, as m → ∞.

For any constant K > 1, put

p̃
�
= Kr̃.

In what follows, we shall choose K to be sufficiently large (see (7.19)). By (6.3),
(6.8)–(6.11), and noting Lemma 3.1, we see that

z̃, p̃ ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω))
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EXACT CONTROLLABILITY 1595

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P z̃ = r̃1,t + r̃2 + λue2λφ + r̃ in Q,

P p̃ + z̃e−2λφ = 0 in Q,

p̃ = z̃ = 0 on Σ,

p̃(0) = p̃(T ) = z̃(0) = z̃(T ) = 0 in Ω,

p̃t + �
r̃1
λ2

e−2λφ = 0 in Q,

p̃− �
r̃2
λ4

e−2λφ = 0 in Q.

(7.3)

Step 2. Applying Theorem 5.1 to p̃ in (7.3), one gets

λ

∫
Q

(λ2p̃2 + p̃2
t + |∇p̃|2)e2λφdxdt

≤ C

[∫
Q

z̃2e−2λφdxdt + λ2

∫ T

0

∫
ω

(λ2p̃2 + p̃2
t )e

2λφdxdt

]

≤ C

[∫
Q

z̃2e−2λφdxdt +

∫ T

0

∫
ω

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt

]
.

(7.4)

Here and henceforth, C is a constant, independent of K and λ.
By (7.3) again, one finds that p̃t satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P p̃t + (z̃e−2λφ)t = 0 in Q,

p̃t = 0 on Σ,

p̃tt +
�

λ

( r̃1,t
λ

− 2φtr̃1

)
e−2λφ = 0 in Q,

p̃t −
�

λ2

( r̃2,t
λ2

− 2

λ
φtr̃2

)
e−2λφ = 0 in Q.

(7.5)

Applying Theorem 5.1 to p̃t and noting (7.5), we obtain

λ

∫
Q

(
λ2p̃2

t + p̃2
tt + |∇p̃t|2

)
e2λφdxdt

≤ C

[
|eλφ(e−2λφz̃)t|2L2(Q) + λ2

∫ T

0

∫
ω

(
λ2p̃2

t + p̃2
tt

)
e2λφdxdt

]

≤ C

[∫
Q

(z̃2
t + λ2z̃2)e−2λφdxdt +

∫ T

0

∫
ω

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
+ r̃2

1 +
r̃2
2

λ2

)
e−2λφdxdt

]
.

(7.6)
Step 3. From (7.3), and noting that

−
∫
Q

(r̃1,t+r̃2)p̃dxdt =

∫
Q

(
r̃1p̃t−r̃2p̃

)
dxdt = −

∫
Q

�

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt,

(7.7)
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and recalling p̃ = Kr̃, we get

0 = (P z̃ − r̃1,t − r̃2 − λue2λφ − r̃, p̃)L2(Q)

= −
∫
Q

z̃2e−2λφdxdt−
∫
Q

�

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt

−λ

∫
Q

up̃e2λφdxdt−K

∫
Q

r̃2dxdt.

(7.8)

Hence ∫
Q

z̃2e−2λφdxdt +

∫
Q

�

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt + K

∫
Q

r̃2dxdt

= −λ

∫
Q

up̃e2λφdxdt.

(7.9)

Combining (7.4) and (7.9), we arrive at

∫
Q

z̃2e−2λφdxdt +

∫
Q

�

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt + K

∫
Q

r̃2dxdt

≤ C

λ

∫
Q

u2e2λφdxdt.

(7.10)

Step 4. Using (7.3) and (7.5) again, and noting p̃tt(0) = p̃tt(T ) = 0 in Ω, we get

0 = (P z̃ − r̃1,t − r̃2 − λue2λφ − r̃, p̃tt)L2(Q)

= −
∫
Q

z̃(e−2λφz̃)ttdxdt−
∫
Q

(r̃1,t + r̃2)p̃ttdxdt

−λ

∫
Q

up̃tte
2λφdxdt−

∫
Q

r̃p̃ttdxdt.

(7.11)

Note

−
∫
Q

z̃(e−2λφz̃)ttdxdt =

∫
Q

(
z̃2
t e

−2λφ − z̃2

2
(e−2λφ)tt

)
dxdt

=

∫
Q

(z̃2
t + λφttz̃

2 − 2λ2φ2
t z̃

2)e−2λφdxdt.

(7.12)

Further, in view of the third and fourth equalities in (7.5), one has

−
∫
Q

(r̃1,t + r̃2)p̃ttdxdt = −
∫
Q

(r̃1,tp̃tt − r̃2,tp̃t)dxdt

=

∫
Q

r̃1,t
�

λ

(
r̃1,t
λ

− 2φtr̃1

)
e−2λφdxdt +

∫
Q

r̃2,t
�

λ2

(
r̃2,t
λ2

− 2

λ
φtr̃2

)
e−2λφdxdt

=

∫
Q

�

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
− 2

λ
φtr̃1r̃1,t −

2

λ3
φtr̃2r̃2,t

)
e−2λφdxdt.

(7.13)
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Moreover, by p̃
�
= Kr̃ and integration by parts, one gets

−
∫
Q

r̃p̃ttdxdt = K

∫
Q

r̃2
t dxdt.(7.14)

Combining (7.11)–(7.14), we end up with∫
Q

�

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
− 2

λ
φtr̃1r̃1,t −

2

λ3
φtr̃2r̃2,t

)
e−2λφdxdt + K

∫
Q

r̃2
t dxdt

+

∫
Q

(z̃2
t + λφttz̃

2 − 2λ2φ2
t z̃

2)e−2λφdxdt = λ

∫
Q

up̃tte
2λφdxdt.

(7.15)

Now, by (7.15)+Cλ2·(7.10) (with a sufficiently large C > 0), using the Cauchy–
Schwarz inequality and noting (7.6), we obtain∫

Q

(
z̃2
t + λ2z̃2

)
e−2λφdxdt +

∫
Q

�

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
+ r̃2

1 +
r̃2
2

λ2

)
e−2λφdxdt

≤ Cλ

∫
Q

u2e2λφdxdt.

(7.16)

Step 5. By (7.3), we have

(r̃1,t + r̃2 + λue2λφ + r̃, z̃e−2λφ)L2(Q) = (P z̃, z̃e−2λφ)L2(Q)

= −
∫
Q

z̃t(z̃e
−2λφ)tdxdt +

∑
i,j

∫
Q

aij z̃i(z̃e
−2λφ)jdxdt

= −
∫
Q

(z̃2
t + λφttz̃

2 − 2λ2φ2
t z̃

2)e−2λφdxdt +
∑
i,j

∫
Q

aij z̃iz̃je
−2λφdxdt

− 2λ
∑
i,j

∫
Q

aij z̃iz̃φje
−2λφdxdt.

(7.17)

This, combined with (1.2), yields (recall λ ≥ λ0 > 1)∫
Q

|∇z̃|2e−2λφdxdt

≤ C

∫
Q

[
|r̃1,t + r̃2 + r̃||z̃|e−2λφ + λ|uz̃| + (z̃2

t + λ2z̃2)e−2λφ
]
dxdt

≤ C

∫
Q

[
u2e2λφ +

(
r̃2
1,t

λ2
+

r̃2
2

λ2
+ r̃2 + z̃2

t + λ2z̃2

)
e−2λφ

]
dxdt.

(7.18)

Combining (7.10), (7.16), and (7.18); choosing the constant K in (7.10) so that

K ≥ Ce2λmax(t,x)∈Q |φ|(7.19)

(to absorb the term C
∫
Q
r̃2e−2λφdxdt in the right-hand side of (7.18)); and noting

that �(x) ≥ 1 in Ω, we deduce that∫
Q

(|∇z̃|2 + z̃2
t + λ2z̃2)e−2λφdxdt +

∫
Q

�

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
+ r̃2

1 +
r̃2
2

λ2

)
e−2λφdxdt

≤ Cλ

∫
Q

u2e2λφdxdt.

(7.20)D
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1598 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

Step 6. Recall that (z̃, r̃1, r̃2, r̃) depend on K. We now fix λ and let K → ∞. By
(7.10) and (7.20), we conclude that there exists a subsequence of (z̃, r̃1, r̃2, r̃) which
converges weakly to some (ž, ř1, ř2, 0) in H1

0 (Q) × (H1(0, T ;L2(Ω)))2 × L2(Q), with
supp ři ⊂ (0, T ) × ω (i = 1, 2) since �(x) ≡ �K(x) → ∞ for any x /∈ ω, as K → ∞.
By (7.3), we deduce that (ž, ř1, ř2) satisfies{

P ž = ř1,t + ř2 + λue2λφ in Q,

ž = 0 on ∂Q.
(7.21)

Using (7.20) again, we find

|že−λφ|2H1
0 (Q) +

1

λ2

∫ T

0

∫
ω

(ř2
1,t + ř2

2)e
−2λφdxdt ≤ Cλ

∫
Q

u2e2λφdxdt.(7.22)

Now, by (7.1) with η replaced by the above ž, one gets(
u, ř1,t + ř2 + λue2λφ

)
L2(Q)

= 〈 Pu, ž 〉H−1(Q),H1
0 (Q).

Hence, noting supp ři ⊂ (0, T ) × ω (i = 1, 2), we conclude that for any ε > 0, it holds
that

λ

∫
Q

u2e2λφdxdt = 〈 Pu, ž 〉H−1(Q),H1
0 (Q) − (u, ř1,t + ř2)L2((0,T )×ω)

≤ C

{
1

ε

[
|eλφPu|2H−1(Q) + λ2

∫ T

0

∫
ω

u2e2λφdxdt

]

+ ε

[
|že−λφ|2H1

0 (Q) +
1

λ2

∫ T

0

∫
ω

(ř2
1,t + ř2

2)e
−2λφdxdt

]}
.

(7.23)

Finally, choosing ε in (7.23) sufficiently small and noting (7.22), we arrive at the
desired estimate (7.2). This completes the proof of Theorem 7.1.

8. Proof of Theorem 2.3. The main idea is to use the Carleman estimate in
Theorem 7.1. Note, however, that our w satisfying (1.7) does not necessarily vanish
at t = 0, T . Therefore we need to introduce a suitable cutoff function. To this end,
set ⎧⎪⎨

⎪⎩
Ti

�
= T/2 − εiT, T ′

i
�
= T/2 + εiT,

R0
�
= min

x∈Ω

√
d(x) (> 0),

(8.1)

where i = 0, 1; 0 < ε0 < ε1 < 1/2 will be given below.
From (5.2) and (4.13), it is easy to see that

φ(0, x) = φ(T, x) < R2
1 − cT 2/4 < 0 ∀ x ∈ Ω.(8.2)

Therefore there exists an ε1 ∈ (0, 1/2) close to 1/2 such that

φ(t, x) ≤ R2
1/2 − cT 2/8 < 0 ∀ (t, x) ∈

(
(0, T1)

⋃
(T ′

1, T )
)
× Ω(8.3)
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with T1 and T ′
1 given by (8.1). Further, by (4.13), we see that

φ(T/2, x) = d(x) ≥ R2
0 ∀ x ∈ Ω.

Hence, one can find an ε0 ∈ (0, 1/2), close to 0, such that

φ(t, x) ≥ R2
0/2 ∀ (t, x) ∈ (T0, T

′
0) × Ω,(8.4)

with T0 and T ′
0 given by (8.1). We now choose a nonnegative function ξ ∈ C∞

0 (0, T )
so that

ξ(t) ≡ 1 in (T1, T
′
1).(8.5)

Clearly, ξw vanishes at t = 0, T . Hence, by Theorem 7.1, for any λ ≥ λ0, we have

λ

∫
Q

(ξw)2e2λφdxdt ≤ C

(
|eλφP(ξw)|2H−1(Q) + λ2

∫ T

0

∫
ω

w2e2λφdxdt

)
.(8.6)

By (1.7), we have

|eλφP(ξw)|H−1(Q) = |eλφ(ξPw + 2ξtwt + wξtt|H−1(Q)

= |eλφ(ξqw + 2ξtwt + wξtt)|H−1(Q)

= sup
|f |

H1
0(Q)

=1

〈 eλφ(ξqw + 2ξtwt + wξtt), f 〉H−1(Q),H1
0 (Q)

≤ sup
|f |

H1
0(Q)

=1

∫
Q

eλφξqwfdxdt

+ sup
|f |

H1
0(Q)

=1

〈 eλφ(2ξtwt + wξtt), f 〉H−1(Q),H1
0 (Q).

(8.7)

Using the Sobolev embedding theorem and the Hölder inequality, and recalling

r
�
= |q|L∞(0,T ;Ln(Ω)), we get

sup
|f |

H1
0(Q)

=1

∫
Q

eλφξqwfdxdt ≤ Cr|eλφw|L2(Q).(8.8)

On the other hand, by (8.3) and (8.5), we have

sup
|f |

H1
0(Q)

=1

〈 eλφ(2ξtwt + wξtt), f 〉H−1(Q),H1
0 (Q)

= sup
|f |

H1
0(Q)

=1

∫
Q

eλφw(−ξttf − 2ξtft − 2λφtξtf)dxdt

≤ Ce(R2
1/2−cT 2/8)λ(1 + λ)(|w|L2((0,T1)×Ω) + |w|L2((T ′

1,T )×Ω)).

(8.9)
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Further, by (8.3) and (8.5), we have∫
Q

(ξw)2e2λφdxdt =

∫
Q

w2e2λφdxdt−
∫
Q

(1 − ξ2)w2e2λφdxdt

=

∫
Q

w2e2λφdxdt−
∫ T1

0

∫
Ω

(1 − ξ2)w2e2λφdxdt

−
∫ T

T ′
1

∫
Ω

(1 − ξ2)w2e2λφdxdt

≥
∫
Q

w2e2λφdxdt− Ce(R2
1−cT 2/4)λ(|w|2L2((0,T1)×Ω) + |w|2L2((T ′

1,T )×Ω)).

(8.10)

Combining (8.6)–(8.10), we arrive at

λ

∫
Q

w2e2λφdxdt

≤ C1

[
r2

∫
Q

w2e2λφdxdt + λ2

∫ T

0

∫
ω

w2e2λφdxdt

+ e(R2
1−cT 2/4)λ(1 + λ2)(|w|2L2((0,T1)×Ω) + |w|2L2((T ′

1,T )×Ω))

]
,

(8.11)

for a constant C1 > 0, independent of λ and r. Since R2
1 − cT 2/4 < 0, one may find

a λ1 ≥ λ0 such that e(R2
1−cT 2/4)λ(1 + λ2) < 1 for all λ ≥ λ1. Now, taking

λ ≥ 2C1(λ1 + r2),(8.12)

it follows from (8.11) that

λ

∫
Q

w2e2λφdxdt

≤ C

(
λ2

∫ T

0

∫
ω

w2e2λφdxdt + |w|2L2((0,T1)×Ω) + |w|2L2((T ′
1,T )×Ω)

)
.

(8.13)

From (8.4), we see that

∫
Q

w2e2λφdxdt ≥ eR
2
0λ

∫ T ′
0

T0

∫
Ω

w2dxdt.(8.14)

For any S0 ∈ (T0, T/2) and S′
0 ∈ (T/2, T ′

0), by Lemma 3.4, we obtain (recall (3.4) for
E(t))

∫ S′
0

S0

E(t)dt ≤ C(1 + r)

∫ T ′
0

T0

∫
Ω

w2dxdt.(8.15)

On the other hand, by Lemma 3.3, we have

|w|2L2((0,T1)×Ω) + |w|2L2((T ′
1,T )×Ω) ≤ CE(0)eCr(8.16)
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EXACT CONTROLLABILITY 1601

and ∫ S′
0

S0

E(t)dt ≥ CE(0)eCr.(8.17)

Combining (8.13)–(8.17), we end up with

(
C2λe

R2
0λ+C2r − C3(1 + r)eC3r

)
E(0) ≤ Cλ2(1 + r)eCλ

∫ T

0

∫
ω

w2dxdt,(8.18)

for two constants C2 > 0 and C3 > 0, independent of λ and r. We now choose λ so
that

C2λ ≥ C3(1 + r), R2
0λ + C2r ≥ C3r.(8.19)

Then, from (8.18), we obtain

E(0) ≤ C(q)|w|2L2((0,T )×ω).(8.20)

Finally, noting (8.12) and (8.19), we conclude (2.12). This completes the proof of
Theorem 2.3.

9. Proof of Theorem 2.2. The proof is very close to that of [26, Theorem 3.1]
and [38, Theorem 2.1]. However, for the reader’s convenience, we give some details
here.

Define a function h(·) ∈ C(R) by

h(s)
�
=

{
[f(s) − f(0)]/s if s �= 0,
f ′(0) if s = 0.

(9.1)

Let the initial and final data (y0, y1), (z0, z1) ∈ H1
0 (Ω) × L2(Ω) be given. For any

given z(·) ∈ L∞(0, T ;L2(Ω)), we look for a control γ = γ(z(·)) ∈ L2((0, T ) × ω) such
that the solution y = y(·; z(·)) of⎧⎨

⎩
Py = h(z(·))y + f(0) + χω(x)γ(t, x) in Q,
y = 0 on Σ,
y(0) = y0, yt(0) = y1 in Ω

(9.2)

satisfies

y(T ) = z0, yt(T ) = z1 in Ω.(9.3)

For this purpose, we use the classical duality argument [29, 28, 39]. First, we
solve ⎧⎪⎪⎨

⎪⎪⎩
Pv = h(z(·))v + f(0) in Q,

v = 0 on Σ,

v(T ) = z0, vt(T ) = z1 in Ω,

(9.4)

which admits a unique weak solution v = v(·; z(·)) ∈ C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω)).

Next, put X
�
= L2(Ω) ×H−1(Ω). For any (w0, w1) ∈ X, we solve⎧⎪⎪⎨

⎪⎪⎩
Pw = h(z(·))w in Q,

w = 0 on Σ,

w(0) = w0, wt(0) = w1 in Ω

(9.5)D
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1602 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

and ⎧⎪⎪⎨
⎪⎪⎩

Pη = h(z(·))η + χω(x)w(t, x) in Q,

η = 0 on Σ,

η(T ) = ηt(T ) = 0 in Ω.

(9.6)

Now, we define a linear and continuous operator Λ : X → X ′, the dual space of
X, by

Λ(w0, w1)
�
= (−ηt(0), η(0)),(9.7)

where η ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) is the weak solution of (9.6).

Let us show the existence of some (w0, w1) ∈ X such that

Λ(w0, w1) = (−y1 + vt(0), y0 − v(0)).(9.8)

For this purpose, we observe that, by multiplying the first equation in (9.6) by w;
integrating it in Q; using integration by parts; and noting (9.5), η(T ) = ηt(T ) = 0 in
Ω, and (9.7), it follows that

〈Λ(w0, w1), (w0, w1) 〉X′,X =

∫ T

0

∫
ω

w2dxdt.(9.9)

However, by Theorem 2.3 and (9.9), we have

〈Λ(w0, w1), (w0, w1) 〉X′,X ≥ 1

C(h(z(·))) |(w0, w1)|2X ∀ (w0, w1) ∈ X,(9.10)

where C(·) is the constant given in (2.12). By the Lax–Milgram theorem, (9.8) admits
a unique solution (w0, w1) ∈ X. It is easy to check that

γ = w(9.11)

is the desired control such that the weak solution y ≡ v + η of (9.2) satisfies (9.3).
Further, proceeding as in the proof of [38, Theorem 2.1], by (9.10) we end up with

|w|C([0,T ];L2(Ω))

≤ C(h(z(·)))(|f(0)| + |(y0, y1)|H1
0 (Ω)×L2(Ω) + |(z0, z1)|H1

0 (Ω)×L2(Ω)).
(9.12)

Next, similarly to the proof of [26, Theorem 3.1] by applying the classical energy
method to (9.2), noting (9.11)–(9.12), and recalling assumption (1.4), one concludes
that there is a constant C > 0 such that, for any ε ∈ (0, 4], it holds that

|y|C([0,T ];H1
0 (Ω))∩C1([0,T ];L2(Ω))

≤ C[|f(0)| + |(y0, y1)|H1
0 (Ω)×L2(Ω)

+ |(z0, z1)|H1
0 (Ω)×L2(Ω)]

(
1 + |z|4/(1+ε)

L∞(0,T ;L2(Ω))

)
.

(9.13)

Consequently if we take ε = 4 in (9.13), the desired exact controllability result follows
from the fixed point technique. This completes the proof of Theorem 2.2.
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10. Appendix A. Proof of Proposition 2.1. Consider first the case when
A = diag [a1, . . . , an] with ai ∈ C1(Ω) (i = 1, . . . , n). In this case, the matrix A
(defined in (2.3)) reads

A =

(
aiajdij +

aiajidj + ajaijdi

2

)
1≤i,j≤n

− 1

2
diag

[∑
k

aka1
kdk, . . . ,

∑
k

akankdk

]
.

In particular, when n = 2 and a1 is independent of x2 (hence a1
2 ≡ 0), the above A is

specialized as

A =

⎛
⎝ (a1)2d11 +

a1a1
1d1−a2a1

2d2

2 a1a2d12 +
a1a2

1d2+a2a1
2d1

2

a1a2d12 +
a1a2

1d2+a2a1
2d1

2 (a2)2d22 +
a2a2

2d2−a1a2
1d1

2

⎞
⎠

=

⎛
⎝ (a1)2d11 +

a1a1
1d1

2 a1a2d12 +
a1a2

1d2

2

a1a2d12 +
a1a2

1d2

2 (a2)2d22 +
a2a2

2d2−a1a2
1d1

2

⎞
⎠

≡
(

â11 â12

â12 â22

)
.

(10.1)

Put L = 2diam Ω. For any parameters τ > 0 and μ > 0, we now choose d to be
of the form

d(x1, x2) = e−τa1(x1) + e−μ(L+x2).

Then,

d1 = −τa1
1e

−τa1

, d11 = τ(τ |a1
1|2 − a1

11)e
−τa1

,

d12 = 0, d2 = −μe−μ(L+x2), d22 = μ2e−μ(L+x2).
(10.2)

We consider only the case when there is an x0 ∈ G such that a1
1(x

0
1) = 0, a1

11(x
0
1) <

0, |a1
1| �= 0 in G \ {x0

1} (the case when a1
1(x1) �= 0 for any x1 ∈ G is easier to analyze).

By (10.1), (10.2), and noting that a1 is uniformly positive in Ω, one may choose a
sufficiently large τ such that

â11 = (a1)2d11 +
a1a1

1d1

2

= τ

[(
τ(a1)2 − a1

2

)
|a1

1|2 − a1
11(a

1)2
]
e−τa1

> 0

(10.3)

uniformly in Ω.
Further, by (10.1) and (10.2), by noting that a1

1a
2
1 ≥ 0, and by noting that a2 is

uniformly positive in Ω, one may choose a sufficiently large μ such that

â22 = (a2)2d22 +
a2a2

2d2 − a1a2
1d1

2

=

[
(a2)2μ2 − a2a2

2μ

2

]
e−μ(L+x2) +

a1a1
1a

2
1τ

2
e−τa1

> 0

(10.4)

uniformly in Ω.
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1604 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

Further, we have

â12 = a1a2d12 +
a1a2

1d2

2
= −a1a2

1μ

2
e−μ(L+x2).

Now, fixing the parameter τ , it is easy to see that

â11â22 − (â12)2 > 0 uniformly in Ω,(10.5)

provided that μ is large enough (because (â12)2 is an infinitesimal of higher order,
compared to â11â12, with respect to large μ). By (10.3)–(10.5), we deduce that the
matrix A in (10.1) is uniformly positive definite in Ω.

It is clear that minx∈Ω |∇d(x)| > 0. Therefore, Condition 2.1 holds for the above
constructed function d.

11. Appendix B. Proof of Theorem 5.1. The proof is long and we divide it
into several steps.

Step 1. Applying Corollary 4.2 to our present u and d, we conclude that for any
constants λ > 0 and k ∈ (0, 1), it holds that

θ2|Pu|2 + Mt

+ 2
∑
j

{
2
∑
i,i′,j′

aijai
′j′�i′vivj′ −

∑
i,i′,j′

aijai
′j′�ivi′vj′ + Ψv

∑
i

aijvi

−2�tvt
∑
i

aijvi +
∑
i

aij�iv
2
t −

∑
i

aij
[
(Λ + Ψ)�i +

Ψi

2

]
v2

}
j

≥ 2λ(1 − k)v2
t + Bv2

+2λ
∑
i,j

⎧⎨
⎩(k − 1 − 4c)aij +

∑
i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]⎫⎬
⎭ vivj ,

(11.1)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
�
= 2

[
�t

(
v2
t +

∑
i,j

aijvivj

)
− 2

∑
i,j

aij�ivjvt

−Ψvvt +

(
(Λ + Ψ)�t +

Ψt

2

)
v2

]
,

Ψ
�
= λ

⎡
⎣∑

i,j

(aijdi)j − 2c− 1 + k

⎤
⎦ , �

�
= λφ, v

�
= θu, θ

�
= e�,

Λ = λ2

⎡
⎣4c2(t− T/2)2 −

∑
i,j

aijdidj

⎤
⎦+ λ(4c + 1 − k),

B = 2λ3

[
(4c + 1 − k)

∑
i′,j′

ai
′j′di′dj′ +

∑
i,j

aijdi

(∑
i′,j′

ai
′j′di′dj′

)
j

−4(8c + 1 − k)c2(t− T/2)2

]
+ O(λ2).

(11.2)
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EXACT CONTROLLABILITY 1605

Next, fix a k with 4c− 3 < k < 1. Hence

1 − k > 0.(11.3)

On the other hand, by Condition 2.1 and noting (2.1) with μ0 ≥ 4, we get

∑
i,j

⎧⎨
⎩(k − 1 − 4c)aij +

∑
i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]⎫⎬
⎭ vivj

≥ (k − 4c− 1 + μ0)
∑
i,j

aijvivj

= μ
∑
i,j

aijvivj ∀ x ∈ Ω,

(11.4)

where

μ = μ0 − 1 + k − 4c ≥ 3 + k − 4c > 0.(11.5)

Recalling that d satisfies (2.1), and noting ai
′j′ = aj

′i′ , we find

μ0

∑
i,j

aijdidj ≤
∑

i,j,i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]
didj

=
∑

i,j,i′,j′

[
2aij

′
ai

′j
j′ di′didj + 2aij

′
ai

′jdi′j′didj − aijj′a
i′j′di′didj

]

=
∑

i,j,i′,j′

[
aij

′
ai

′j
j′ di′didj + 2aij

′
ai

′jdi′j′didj

]

=
∑

i,j,i′,j′

[
aijai

′j′

j di′didj′ + 2aijai
′j′di′jdidj′

]

=
∑

i,j,i′,j′

[
aijai

′j′

j di′didj′ + aijai
′j′di′jdidj′ + aijaj

′i′dj′jdidi′
]

=
∑
i,j

aijdi

⎛
⎝∑

i′,j′

ai
′j′di′dj′

⎞
⎠

j

.

(11.6)

Hence, recalling, respectively, (2.8) and (11.2) for R1 and B, by (11.6) and using the
third inequality in (2.7), and noting that A is positive definite and 4c+ 1− k + μ0 >
8c + 1 − k, we arrive at

B ≥ 2λ3

⎧⎨
⎩(4c + 1 − k + μ0)

∑
i,j

aijdidj − 4(8c + 1 − k)c2(t− T/2)2

⎫⎬
⎭+ O(λ2)

≥ 2λ3(8c + 1 − k)

⎡
⎣∑

i,j

aijdidj − 4c2(t− T/2)2

⎤
⎦+ O(λ2)

≥ 16c(4R2
1 − c2T 2)λ3 + O(λ2).

(11.7)
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1606 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

Note that, by (5.2), the constant 16c(4R2
1 − c2T 2) in (11.7) is positive. Hence, by

choosing a suitable λ0 > 1, for any λ ≥ λ0, we have

B ≥ 8c(4R2
1 − c2T 2)λ3.(11.8)

Step 2. Integrating (11.1) on Q, using integration by parts, recalling (11.3)–(11.5)
and (11.8), and noting that vi = ∂v

∂ν νi on Σ (which follows from v|Σ = 0), we arrive
at (recall (11.2) for M = M(t, x))

λ

∫
Q

⎛
⎝λ2v2 + v2

t +
∑
i,j

aijvivj

⎞
⎠ dxdt

≤ C

[∫
Q

θ2|Pu|2dxdt +

∫
Ω

M(T, x)dx−
∫

Ω

M(0, x)dx

+λ

∫
Σ

(∑
i,j

aijνiνj

)(∑
i′,j′

ai
′j′di′νj′

)∣∣∣∂v
∂ν

∣∣∣2dxdt
]

∀ λ ≥ λ0.

(11.9)

By (4.13) and (11.2), and noting that u(0, x) = u(T, x) ≡ 0, we get

M(0, x) = 2�t(0, x)[θ(0, x)ut(0, x)]2 = 2cTλ[θ(0, x)ut(0, x)]2 > 0,

M(T, x) = 2�t(T, x)[θ(T, x)ut(T, x)]2 = −2cTλ[θ(T, x)ut(T, x)]2 < 0.
(11.10)

Combining (11.9) and (11.10), and noting the definition of Γ+ in (2.5), we obtain

λ

∫
Q

⎛
⎝λ2v2 + v2

t +
∑
i,j

aijvivj

⎞
⎠ dxdt

≤ C

[∫
Q

θ2|Pu|2dxdt

+λ

∫ T

0

∫
Γ+

(∑
i,j

aijνiνj

)(∑
i′,j′

ai
′j′di′νj′

)∣∣∣∂v
∂ν

∣∣∣2dxdt
]
.

(11.11)

Recalling u = θ−1v and θ = e�, noting (4.13) and (11.11), and noting (1.2) and
u|Σ = 0, we get

λ

∫
Q

θ2(λ2u2 + u2
t + |∇u|2)dxdt

≤ C

(∫
Q

θ2|Pu|2dxdt + λ

∫ T

0

∫
Γ+

θ2
∣∣∣∂u
∂ν

∣∣∣2dxdt
)
.

(11.12)

Step 3. Let us estimate ∫ T

0

∫
Γ+

θ2
∣∣∣∂u
∂ν

∣∣∣2dxdt.
We choose a g0 ∈ C1(Ω; Rn) such that g0 = ν on Γ, and a ρ ∈ C2(Ω; [0, 1]) such that
(recall Condition 2.2 for δ){

ρ(x) ≡ 1, x ∈ Oδ/3(Γ+) ∩ Ω,
ρ(x) ≡ 0, x ∈ Ω \ Oδ/2(Γ+).

(11.13)
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EXACT CONTROLLABILITY 1607

Put

g = g0ρθ
2.(11.14)

Integrating (3.3) (in Lemma 3.2) in Q, with g defined by (11.14) and z replaced by
u; using integration by parts; and noting (11.13), ui = ∂u

∂ν νi on Σ (which follows from
u|Σ = 0), and u(0, x) = u(T, x) ≡ 0, we get

∫
Σ

⎛
⎝∑

i,j

aijνiνj

⎞
⎠ ρθ2

∣∣∣∂u
∂ν

∣∣∣2dxdt

=

∫
Q

∑
j

⎡
⎣2(g · ∇u)

∑
i

aijui + gj

⎛
⎝u2

t −
∑
i,k

aikuiuk

⎞
⎠
⎤
⎦
j

dxdt

= −
∫
Q

{
2

[
(Pu)g · ∇u− (utg · ∇u)t + utgt · ∇u−

∑
i,j,k

aijuiuk
∂gk

∂xj

]

−(∇ · g)
(
u2
t −

∑
i,j

aijuiuj

)}
dxdt

= −
∫
Q

{
2

[
(Pu)g · ∇u + utg · ∇u + utgt · ∇u−

∑
i,j,k

aijuiuk
∂gk

∂xj

]

−(∇ · g)
(
u2
t −

∑
i,j

aijuiuj

)}
dxdt

≤ C

[
1

λ
|θPu|2L2(Q) + λ

∫ T

0

∫
Oδ/2(Γ+)∩Ω

θ2(u2
t + |∇u|2)dxdt

]
.

(11.15)

Step 4. Let us estimate ∫ T

0

∫
Oδ/2(Γ+)∩Ω

θ2|∇u|2dxdt.

Put

η = η(t, x)
�
= ρ2

1θ
2,(11.16)

where ρ1 ∈ C2(Ω; [0, 1]) satisfies{
ρ1(x) ≡ 1, x ∈ Oδ/2(Γ+) ∩ Ω,
ρ1(x) ≡ 0, x ∈ Ω \ ω.(11.17)

By (1.3), we obtain

∫
Q

ηuPudxdt =

∫
Q

ηu

⎛
⎝utt −

∑
i,j

(aijui)j

⎞
⎠ dxdt

= −
∫
Q

[
ut(ηtu + ηut)

]
dxdt +

∫
Q

η
∑
i,j

aijuiujdxdt +

∫
Q

u
∑
i,j

aijuiηjdxdt.

(11.18)

D
ow

nl
oa

de
d 

08
/1

3/
19

 to
 1

32
.1

70
.2

7.
11

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1608 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

Hence, by (1.2) and (11.16)–(11.18), we find

∫ T

0

∫
Oδ/2(Γ+)∩Ω

θ2|∇u|2dxdt

≤ C

[
1

λ2
|θPu|2L2(Q) +

∫ T

0

∫
ω

θ2(λ2u2 + u2
t )dxdt

]
.

(11.19)

Finally, combining (11.12), (11.15), and (11.19), and noting (11.13), we get the
desired estimate (5.3).

12. Appendix C. Proof of Proposition 6.1. We borrow some ideas from
[18]. The proof is split into several steps.

Step 1. Let {{(zi,jm , ri,j1m, ri,j2m, ri,jm )}mi=0}∞j=1 ⊂ Aad be a minimizing sequence of

J(·). Because of the coercivity of the cost functional and noting that zi,jm solves an
elliptic equation, it can be shown that {{(zi,jm , ri,j1m, ri,j2m, ri,jm )}mi=0}∞j=1 is bounded in

Aad. Therefore, there exists a subsequence of {{(zi,jm , ri,j1m, ri,j2m, ri,jm )}mi=0}∞j=1 converg-

ing weakly in (H1
0 (Ω) × (L2(Ω))3)m+1 to some {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 ∈ Aad. Since

the function J is strictly convex, this element is the unique solution of (6.5). By (6.6)
and the definition of Aad, it is obvious that ẑ0

m = ẑmm = p0
m = pmm = 0 in Ω.

Step 2. Fix any δi0m ∈ H2(Ω) ∩ H1
0 (Ω), δi1m ∈ L2(Ω), and δi2m ∈ L2(Ω) (i =

0, 1, 2, . . . ,m) with δ0
0m = δm0m = δ0

2m = δm2m ≡ 0 and δ0
1m = δ1

1m in Ω. For
(λ0, λ1, λ2) ∈ R

3, put

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rim
�
=

ẑi+1
m − 2ẑim + ẑi−1

m

h2
+

δi+1
0m − 2δi0m + δi−1

0m

h2
λ0

−
n∑

j1,j2=1

∂xj2

(
aj1j2∂xj1

(ẑim + λ0δ
i
0m)
)

− r̂i+1
1m − r̂i1m

h
− δi+1

1m − δi1m
h

λ1 − r̂i2m − λ2δ
i
2m − λui

me2λφi
m , 1 ≤ i ≤ m− 1;

r0
m = rmm = 0.

Then {(ẑim + λ0δ
i
0m, r̂i1m + λ1δ

i
1m, r̂i2m + λ2δ

i
2m, rim)}mi=0 ∈ Aad. Define a function in

R
3 by

g(λ0, λ1, λ2) = J
(
{(ẑim + λ0δ

i
0m, r̂i1m + λ1δ

i
1m, r̂i2m + λ2δ

i
2m, rim)}mi=0

)
.

Obviously g has a minimum at (0, 0, 0). Hence, ∇g(0, 0, 0) = 0. By ∂g(0,0,0)
∂λ1

=
∂g(0,0,0)

∂λ2
= 0, and noting that {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 satisfy the first equation in

(6.3), one gets

−K

m−1∑
i=1

∫
Ω

r̂im
δi+1
1m − δi1m

h
dx +

m∑
i=1

∫
Ω

�
r̂i1mδi1m

λ2
e−2λφi

mdx = 0,

−K

m−1∑
i=1

∫
Ω

r̂imδi2mdx +

m−1∑
i=1

∫
Ω

�
r̂i2mδi2m

λ4
e−2λφi

mdx = 0,
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EXACT CONTROLLABILITY 1609

which, combined with (6.6) and p0
m = pmm = r̂m2m = 0 in Ω, gives (6.8). From ∂g(0,0,0)

∂λ0
=

0, we obtain

m−1∑
i=1

∫
Ω

{
Kr̂im

[
δi+1
0m − 2δi0m + δi−1

0m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

δi0m)

]

+ẑimδi0me−2λφi
m

}
dx = 0,

(12.1)

which, combined with p0
m = pmm = δ0

0m = δm0m = 0 in Ω, implies that pim = Kr̂im is
a weak solution of (6.9). By means of the regularity theory for elliptic equations of
second order, one sees that ẑim, pim ∈ H2(Ω) ∩H1

0 (Ω) for 1 ≤ i ≤ m− 1.
Step 3. Recalling that {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 satisfy (6.3), and noting (6.7)–(6.9)

and pim = Kr̂im, one gets

0 =

m−1∑
i=1

∫
Ω

(
ẑi+1
m − 2ẑim + ẑi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

ẑim)

− r̂i+1
1m − r̂i1m

h
− r̂i2m − λui

me2λφi
m − r̂im

)
pimdx

=
m−1∑
i=1

∫
Ω

⎛
⎝pi+1

m − 2pim + pi−1
m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

pim)

⎞
⎠ ẑimdx

+
m∑
i=1

∫
Ω

pim − pi−1
m

h
r̂i1mdx−

m−1∑
i=1

∫
Ω

(
r̂i2m + λui

me2λφi
m + r̂im

)
pimdx

= −
m−1∑
i=1

[∫
Ω

|ẑim|2e−2λφi
mdx +

∫
Ω

�

(
|r̂i1m|2
λ2

+
|r̂i2m|2
λ4

)
e−2λφi

mdx

+K

∫
Ω

|r̂im|2dx
]
−
∫

Ω

�
|r̂m1m|2
λ2

e−2λφm
mdx− λ

m−1∑
i=1

∫
Ω

ui
me2λφi

mpimdx.

(12.2)
Using the Hölder inequality, by (12.2) and (6.8) we conclude that there is a constant
C = C(K,λ) > 0, independent of m, such that

m−1∑
i=1

[∫
Ω

|ẑim|2e−2λφi
mdx +

∫
Ω

�

(
|r̂i1m|2
λ2

+
|r̂i2m|2
λ4

)
e−2λφi

mdx + K

∫
Ω

|r̂im|2dx
]

+

∫
Ω

�
|r̂m1m|2
λ2

e−2λφm
mdx

≤ C
m−1∑
i=1

∫
Ω

|ui
m|2e2λφi

mdx.

This yields (6.10).
Step 4. Noting that (6.9) holds for i = 1, 2, . . . ,m− 1, and that p0

m = ẑ0
m = pmm =

ẑmm = 0, one gets
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p3
m − 4p2

m + 5p1
m

h4
−

n∑
j1,j2=1

∂xj2

(
aj1j2∂xj1

(p2
m − 2p1

m − p0
m)

h2

)

+
ẑ2
me−2λφ2

m − 2ẑ1
me−2λφ1

m + ẑ0
me−2λφ0

m

h2
= 0 in Ω,

5pm−1
m − 4pm−2

m + pm−3
m

h4
−

n∑
j1,j2=1

∂xj2

(
aj1j2∂xj1

(pmm − 2pm−1
m + pm−2

m )

h2

)

+
ẑmme−2λφm

m − 2ẑm−1
m e−2λφm−1

m + ẑm−2
m e−2λφm−2

m

h2
= 0 in Ω,

(12.3)

and for i = 2, . . . ,m− 2,

pi+2
m − 4pi+1

m + 6pim − 4pi−1
m + pi−2

m

h4

−
n∑

j1,j2=1

∂xj2

(
aj1j2∂xj1

(pi+1
m − 2pim + pi−1

m )

h2

)

+
ẑi+1
m e−2λφi+1

m − 2ẑime−2λφi
m + ẑi−1

m e−2λφi−1
m

h2
= 0 in Ω.

(12.4)

By (6.3), we find

0 =

m−1∑
i=1

∫
Ω

(
ẑi+1
m − 2ẑim + ẑi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

ẑim)

− r̂i+1
1m − r̂i1m

h
− r̂i2m − λui

me2λφi
m − r̂im

)
(pi+1

m − 2pim + pi−1
m )

h2
dx.

(12.5)

Noting ẑ0
m = ẑmm = p0

m = pmm = 0 again, and using (12.3)–(12.4), we arrive at

m−1∑
i=1

∫
Ω

(ẑi+1
m − 2ẑim + ẑi−1

m )

h2

(pi+1
m − 2pim + pi−1

m )

h2
dx

=

m−1∑
i=2

∫
Ω

ẑim
(pim − 2pi−1

m + pi−2
m )

h4
dx− 2

m−1∑
i=1

∫
Ω

ẑim
(pi+1

m − 2pim + pi−1
m )

h4
dx

+

m−2∑
i=1

∫
Ω

ẑim
(pi+2

m − 2pi+1
m + pim)

h4
dx

=

∫
Ω

ẑ1
m

(p3
m − 4p2

m + 5p1
m)

h4
dx +

∫
Ω

ẑm−1
m

(5pm−1
m − 4pm−2

m + pm−3
m )

h4
dx

+
m−2∑
i=2

∫
Ω

ẑim
(pi+2

m − 4pi+1
m + 6pim − 4pi−1

m + pi−2
m )

h4
dx

=

m−1∑
i=1

∫
Ω

ẑim

{
n∑

j1,j2=1

∂xj2

[
aj1j2∂xj1

(pi+1
m − 2pim + pi−1

m )

h2

]

− ẑi+1
m e−2λφi+1

m − 2ẑime−2λφi
m + ẑi−1

m e−2λφi−1
m

h2

}
dx.

(12.6)
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Next, noting zim|Γ = pim|Γ = 0, for 0 ≤ i ≤ m, one has

m−1∑
i=1

∫
Ω

⎛
⎝ n∑

j1,j2=1

∂xj2
(aj1j2∂xj1

ẑim)

⎞
⎠ (pi+1

m − 2pim + pi−1
m )

h2
dx

=
m−1∑
i=1

∫
Ω

ẑim

n∑
j1,j2=1

∂xj2

(
aj1j2∂xj1

(pi+1
m − 2pim + pi−1

m )

h2

)
dx.

(12.7)

Combining (12.5)–(12.7), we obtain

0 = −
m−1∑
i=1

∫
Ω

[
ẑim

(ẑi+1
m e−2λφi+1

m − 2ẑime−2λφi
m + ẑi−1

m e−2λφi−1
m )

h2

+

(
r̂i+1
1m − r̂i1m

h
+ r̂i2m + λui

me2λφi
m + r̂im

)
(pi+1

m − 2pim + pi−1
m )

h2

]
dx.

(12.8)

By Proposition 3.5 and noting pim = Kr̂im, one has

−
m−1∑
i=1

∫
Ω

[
ẑim

(ẑi+1
m e−2λφi+1

m − 2ẑime−2λφi
m + ẑi−1

m e−2λφi−1
m )

h2

+ r̂im
(pi+1

m − 2pim + pi−1
m )

h2

]
dx

=
m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)

h

(ẑi+1
m e−2λφi+1

m − ẑime−2λφi
m)

h
+ K

(r̂i+1
m − r̂im)2

h2

]
dx

=

m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)2

h2
e−2λφi

m +
(ẑi+1

m − ẑim)

h

(e−2λφi+1
m − e−2λφi

m)

h
ẑi+1
m

+K
(r̂i+1

m − r̂im)2

h2

]
dx.

(12.9)

Further, by (6.8), and using Proposition 3.5 again, we find

−
m−1∑
i=1

∫
Ω

(
r̂i+1
1m − r̂i1m

h
+ r̂i2m + λui

me2λφi
m

)
(pi+1

m − 2pim + pi−1
m )

h2
dx(12.10)

= −
m−1∑
i=1

∫
Ω

(
r̂i+1
1m − r̂i1m

h
+ λui

me2λφi
m

)
1

h

(
pi+1
m − pim

h
− pim − pi−1

m

h

)
dx

+

m−1∑
i=0

∫
Ω

(r̂i+1
2m − r̂i2m)

h

(pi+1
m − pim)

h
dx

=
m−1∑
i=1

∫
Ω

�

λ2

(
r̂i+1
1m − r̂i1m

h
+ λui

me2λφi
m

)
(r̂i+1

1m e−2λφi+1
m − r̂i1me−2λφi

m)

h
dx

+

m−1∑
i=0

∫
Ω

�

λ4

(r̂i+1
2m − r̂i2m)

h

(r̂i+1
2m e−2λφi+1

m − r̂i2me−2λφi
m)

h
dx

=

m−1∑
i=1

∫
Ω

�

λ2

[
(r̂i+1

1m − r̂i1m)2

h2
e−2λφi

m

+
(r̂i+1

1m − r̂i1m)

h

(e−2λφi+1
m − e−2λφi

m)

h
r̂i+1
1m

]
dx
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+λ

m−1∑
i=1

∫
Ω

�

λ2
ui
m

[
(r̂i+1

1m − r̂i1m)

h
e−2λφi

m +
(e−2λφi+1

m − e−2λφi
m)

h
r̂i+1
1m

]
dx

+

m−1∑
i=0

∫
Ω

�

λ4

[
(r̂i+1

2m − r̂i2m)2

h2
e−2λφi

m

+
(r̂i+1

2m − r̂i2m)

h

(e−2λφi+1
m − e−2λφi

m)

h
r̂i+1
2m

]
dx.

Combining (12.8)–(12.10), and noting that r̂1
1m = r̂0

1m, u0
m = 0, we end up with

m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)2

h2
e−2λφi

m +
�

λ2

(r̂i+1
1m − r̂i1m)2

h2
e−2λφi

m

+
�

λ4

(r̂i+1
2m − r̂i2m)2

h2
e−2λφi

m + K
(r̂i+1

m − r̂im)2

h2

]
dx

= −
m−1∑
i=0

∫
Ω

(ẑi+1
m − ẑim)

h

(e−2λφi+1
m − e−2λφi

m)

h
ẑi+1
m dx

−
m−1∑
i=1

∫
Ω

�

λ2

(r̂i+1
1m − r̂i1m)

h

(e−2λφi+1
m − e−2λφi

m)

h
r̂i+1
1m dx

−λ

m−1∑
i=1

∫
Ω

�

λ2
ui
m

[
(r̂i+1

1m − r̂i1m)

h
e−2λφi

m +
(e−2λφi+1

m − e−2λφi
m)

h
r̂i+1
1m

]
dx

−
m−1∑
i=0

∫
Ω

�

λ4

(r̂i+1
2m − r̂i2m)

h

(e−2λφi+1
m − e−2λφi

m)

h
r̂i+1
2m dx.

(12.11)

Using the Hölder inequality and noting that φ is a smooth function, from (12.11) we
conclude that there is a positive constant C = C(K,λ), independent of m, such that

m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)2

h2
e−2λφi

m +
�

λ2

(r̂i+1
1m − r̂i1m)2

h2
e−2λφi

m

+
�

λ4

(r̂i+1
2m − r̂i2m)2

h2
e−2λφi

m + K
(r̂i+1

m − r̂im)2

h2

]
dx

≤ C

[
m−1∑
i=1

∫
Ω

(
|ẑim|2 + |r̂i1m|2 + |r̂i2m|2 + K|r̂im|2 + |ui

m|2
)
dx

+

∫
Ω

|r̂m1m|2dx
]
.

(12.12)

Finally, combining (12.12) and (6.10), and recalling that u ∈ C([0, T ];L2(Ω)),
we establish the desired estimate (6.11). This completes the proof of Proposition
6.1.

Acknowledgments. The authors acknowledge the anonymous referees for their
comments which led to this improved version. The third author also thanks Professor
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