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Abstract. In recent years there has been growing interest in the descriptive analysis of
complex systems, permeating many aspects of daily life, obtaining considerable advances
in the description of their structural and dynamical properties. However, much less effort
has been devoted to studying the controllability of the dynamics taking place on them.
Concretely, for complex systems it is of interest to study the exact controllability; this
measure is defined as the minimum set of controls that are needed in order to steer the
whole system toward any desired state. In this paper, we focus the study on the obtention
of the set of all B making the system (A,B) exact controllable.
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1. Introduction

In these recent years, the study of the control of complex networks with linear

dynamics has gained importance in both science and engineering. Controllability

of a dynamical system has been largely studied by several authors and under many

different points of view, see [1], [2], [3], [5], [6], [4], [9] for example. Among different

aspects in which we can study the controllability we have the notion of structural

controllability that has been proposed by Lin [7] as a framework for studying the

controllability properties of directed complex networks where the dynamics of the

system is governed by a linear system: ẋ(t) = Ax(t)+Bu(t); usually the matrix A of

the system is linked to the adjacency matrix of the network, x(t) is a time dependent

vector of the state variables of the nodes, u(t) is the vector of input signals, and B

defines how the input signals are connected to the nodes of the network and is called

the input matrix. Structurally controllable means that there exists a matrix Ā which

is not allowed to contain a nonzero entry when the corresponding entry in A is zero
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such that the network can be driven from any initial state to any final state by

appropriately choosing the input signals u(t). Recent studies over the structural

controllability can be found in [8].

In this paper, we analyze the exact controllability concept that, following [11],

[10], is based on the maximum multiplicity, to identify the minimum set of driver

nodes required to achieve full control of networks with arbitrary structures and link-

weight distributions; we focus the study on the obtention of the set of all matrices

B making the system ẋ(t) = Ax(t) + Bu(t) exactly controllable. We have included

several examples in order to make the work easier readable and it is completed with

an example in the case of an undirected network.

2. Exact controllability

It is well known that many complex networks have linear dynamics and have

a state space representation for its description:

(2.1) ẋ(t) = Ax(t) +Bu(t).

For simplicity, from now on we will write the system (2.1) as the pair of matrices

(A,B).

There are many possible control matrices B in the system (2.1) that satisfy the

controllability condition. The goal is to find the set of all possible matrices B, having

the minimum number of columns corresponding to the minimum number nD(A) of

independent controllers required to control the whole network.

Definition 1. Let A be a matrix. The exact controllability nD(A) is the mini-

mum of the rank of all possible matrices B making the system 2.1 controllable:

nD(A) = min{rankB : ∀B ∈ Mn×i, 1 6 i 6 n, (A,B) controllable}.

If no confusion is possible we will write simply nD.

It is straightforward that nD is invariant under similarity, that is to say: for any

invertible matrix S we have nD(A) = nD(S−1AS). As a consequence, if necessary,

we can consider A in its canonical Jordan form.

E x am p l e 1. 1) If A = 0, nD = n.

2) If A = diag(λ1, . . . , λn) with λi 6= λj for all i 6= j, then nD = 1 (it suffices to

take B = (1 . . . 1)t).

3) Not every matrix B having nD columns makes the system controllable. For

example if A = diag(1, 2, 3) and B = (1, 0, 0)t, the system (A,B) is not controllable:

rank (B AB A2B ) = 1 < 3, or equivalently rank (A− λI B ) = 2 for λ = 2, 3.
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Proposition 1 ([11]). We have

nD = max
i

{µ(λi)},

where µ(λi) = dimKer(A− λiI) is the geometric multiplicity of the eigenvalue λi.

3. Constructing the controllability space

Given a matrix A, we will try to get all matrices B with the smallest possible size,

making the system (A,B) controllable. This study is of interest, because as we saw

in 1)–3) not every matrix B is useful for the system being controllable.

Following Proposition 1, the problem is linked to the eigenstructure of the ma-

trix A.

First of all we want to note that given a vector subspace F of a vector space E, if

we consider two projections Pi, i = 1, 2, onto any two complementary subspaces Gi,

i = 1, 2, along the subspace F we have that for all v ∈ E, P1(v) 6= 0 if and only if

P2(v) 6= 0. So, in the case where the required information is only whether a vector

is in F or not, we can define the projection P onto E \ F along F as the projection

over any complementary subspace G of F along F .

Proposition 2. Let A be a matrix having r eigenvalues λ1, . . . , λr with geometric

multiplicity one for each of them, and with algebraic multiplicities n1, . . . , nr. Then

nD = 1. Moreover, for i = 1, . . . , r let Pi be the projection onto Ker(A − λiI)
ni \

Ker(A− λiI)
ni−1 along

⊕

j 6=i

Ker(A− λiI)
nj ⊕Ker(A− λiI)

ni−1. Then, for an n× 1

matrix B, the pair (A,B) is controllable if and only if PiB 6= 0 for every i = 1, . . . , r.

P r o o f. We consider the equivalent Jordan form

J =













































λ1 0 . . . 0 0

1 λ1 . . . 0 0
. . .

. . .(n1)

0 0 . . . λ1 0

0 0 . . . 1 λ1

. . .

λr 0 . . . 0 0

1 λr . . . 0 0
. . .

. . .(nr)

0 0 . . . λr 0

0 0 . . . 1 λr













































,
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and the associated Jordan basis constructed as follows:

v1i ∈ Ker(A− λiI)
ni \Ker(A− λiI)

ni−1,

v2i = (A− λiI)v1i ,

...

vni
= (A− λiI)

ni−1v1i ,

for each i = 1, . . . , r.

Clearly,

rank(A− λI) = rank(J − λI) =

{

n for λ 6= λ1, . . . , λr,

n− 1 for λ = λ1, . . . , λr.

Then nD = 1.

For any u ∈ R
n we consider B = [u]. Then u =

∑

ji

αjivji and Piu = α1iv1i.

Finally, it is easy to compute

rank(A− λiI B) = n if and only if PiB 6= 0.

�

E x am p l e 2. Let

A =















2 3 4 5 6

0 2 3 4 5

0 0 2 3 4

0 0 0 3 4

0 0 0 0 3















be the matrix with eigenvalues λ1 = 2, λ2 = 3 and the respective multiplicities

n1 = 3 and n2 = 2.

Let v11 = (0,0,1,0,0) ∈ Ker(A−2I)3\Ker(A−2I)2 and v12 = (−139,−14,1,1,1) ∈

Ker(A−2I)2 \Ker(A−2I). The Jordan basis is v11 = (0,0,1,0,0), v21 = (4,3,0,0,0),

v31 = (9,0,0,0,0), v12 = (−139,−14,1,1,1), v22 = (112,26,6,2,0).

Then ImB = [u] with u = α11v11 +α21v21 +α31v31 +α12v12 +α22v22 is such that

rank(A− λI B) = 5 ∀λ 6= 2, 3,

rank(A− 2I B) = 5 if and only if α11v11 = P1B 6= 0,

rank(A− 3I B) = 5 if and only if α12v12 = P2B 6= 0.

In the previous results it can be observed that we cannot control the system

with a single control if the matrix A has more than one independent eigenvector
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corresponding to the same eigenvalue. Then we will try to write for this case all the

matrices B which control the system. As we can see in the following example, the

study is slightly more sensitive.

E x am p l e 3. Let

A =





























0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0





























be the matrix with a unique eigenvalue λ0 = 0. We have

rank(A) = 5 < 8.

Then nD = 3.

If we consider u1 = (1, 1, 1, 1, 1, 1, 1, 1), u2 = (2, 1, 1, 1, 1, 1, 1, 1) ∈ Ker(A−λ0I)
3 \

Ker(A− λ0I)
2 and u3 = (0, 1, 2, 0, 1, 1, 1, 1) ∈ Ker(A− λ0I)

2 \Ker(A− λ0I), then

B =





























1 2 0

1 1 1

1 1 2

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1





























, rank(B) = 3, rank(A− λ0I B) = 8.

But, if we consider v1 = (1, 1, 1, 1, 1, 1, 1, 1), v2 = (1, 2, 2, 1, 2, 2, 1, 2) ∈ Ker(A −

λ0I)
3 \Ker(A− λ0I)

2 and v3 = (0, 1, 2, 0, 1, 1, 1, 1) ∈ Ker(A− λ0I)
2 \Ker(A− λ0I),

then

B =





























1 1 0

1 2 1

1 2 2

1 1 0

1 2 1

1 2 1

1 1 1

1 2 1





























, rank(B) = 3, rank(A− λ0I B) = 7 < 8.

41



Therefore, we should specify a little more how to determine the matrix B.

Proposition 3. Let A be a matrix with a single eigenvalue λ0 with geometric

multiplicity δ and the orders of the Jordan blocks k1 > . . . > kδ. Then nD = δ.

Moreover, for any n × δ matrix B = [u1, . . . , uδ], the pair (A,B) is controllable if

and only if Pjuij 6= 0 for all j = 1, . . . , δ ((i1, . . . , iδ) being some possible required

reordering of (1, . . . , δ)), where Pj is the projection onto Ker(A − λ0I)
kj \ Ker(A −

λ0I)
kj−1

⊕

l=1,...,j−1

[(A−λ0I)
kl−kjul] along (A−λ0I)

kj−1
⊕

l=1,...,j−1

[(A−λ0I)
kl−kjul].

P r o o f. The matrix A in the basis

u1 (A− λ0I)u1 . . . (A− λ0I)
k1−1u1

...

uδ (A− λI0)uδ . . . (A− λ0I)
kδ−1uδ

where ui are chosen in such a way that the collection of the vectors are linearly

independent, has the Jordan form

J(λ0) =



























λ0

1
. . .(k1)

1 λ0

. . .

λ0

1
. . .(kδ)

1 λ0



























.

Clearly rank(J − λ0I) = n− δ. Then nD = δ.

If Pjuij 6= 0 for all j = 1, . . . , δ, then

ui1 (A− λ0I)ui1 . . . (A− λ0I)
k1−1ui1

...

uiδ (A− λI0)uiδ . . . (A− λ0I)
kδ−1uiδ

is a Jordan basis and in this basis (A− λ0I B ) takes the form



























λ0 1 0 . . . 0

1
. . .(k1) 0

...
...

1 λ0

... 1 0
. . .

... 0 0

λ0 0 0 1

1
. . .(kδ)

...
...

...

1 λ0 0 0 . . . 0


























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whose rank is n and the pair (A,B) is controllable.

Conversely, let B =







α11 . . . αδ1

...
...

α1n
. . . αδn






be the matrix in the Jordan basis.

If

rank(A− λ0I B) = n,

then the minor ∆1 is

∆1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

α11 . . . αδ1

α1k1+1 αδk1+1

...
...

α1
∑δ−1

1
ki+1 α

δ
∑δ−1

1
ki+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

Let ui1 be such that αi1 6= 0 and ∆2 = ∆1
i1
6= 0. Then P1ui1 6= 0.

Taking into account that ∆2 6= 0, there is uj2 6= ui1 such that αjk1+1 6= 0 and

∆3 = ∆2
jk1+1 6= 0, so P2uj2 6= 0. Following this process, we show the result. �

E x am p l e 4. Following Example 3, we have that in the first case u2 ∈ Ker(A−

λ0I)
3 \Ker(A − λ0I)

2 ⊕ [u1] and P2u2 6= 0; and u3 = (0, 1, 2, 0, 1, 1, 1, 1) ∈ Ker(A −

λ0I)
2 \Ker(A− λ0I)⊕ [(A− λ0)u1]⊕ [(A− λ0)u2] and P3u3 6= 0.

Nevertheless, in the second case v2 ∈ Ker(A− λ0I)
2 ⊕ [v1] and P2v2 = 0.

Finally, we analyze the general case, where the matrix A has multiple eigenvalues

with multiple independent eigenvectors for some (or all) eigenvalues.

Proposition 4. Let A be a matrix having r eigenvalues λ1, . . . , λr with algebraic

multiplicities n1 > . . . > nr, geometric multiplicities δ1 > . . . > δr, respectively, and

order of Jordan blocks for each eigenvalue k11 > . . . > k1δ1 , . . . , kr1 > . . . > krδr .

Then nD(A) = δ1. Moreover, for any n× δ1 matrix B = [u1, . . . uδ1 ], the pair (A,B)

is controllable if and only if Pljuij 6= 0 for j 6 δl ((i1, . . . , iδl) being some possible

required reordering of (1, . . . , δl)), where Plj is the projection onto Ker(A−λlI)
klj \

Ker(A− λlI)
klj−1

⊕

νj=1,...,lj−1

[(A− λlI)
kνj−kljuν ]

⊕

µ6=l

Ker(A− λµI)
nµ .

P r o o f. Writing the pair (A,B) in a Jordan basis, we have

(J,B) =













J1
. . .

Jr






,







B1
...

Br












,

where Ji(λi) is as J(λ0) in Proposition 3 and Bi are blocks corresponding to the

block sizes Ji(λi) of J .

It is easy to observe that (J,B) is controllable if and only if (Ji(λi), Bi) is control-

lable. Then it suffices to apply Proposition 3. �
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E x am p l e 5. Let

A =





























































λ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 λ1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 λ1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 λ1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 λ1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 λ1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 λ1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 λ2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 λ2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 λ2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 λ2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λ2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 λ2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3





























































.

Taking ImB = [u1, u2] with u1 = (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1) and u2 =

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0), it is easy to observe that rank (A− λI B ) = 15

for all λ.

4. Example of description of the set of drivers

for an undirected network

We illustrate the work applying it to a simple example of an undirected graph

represented in Figure 1.

The adjacency matrix of the graph is

A =



















0 1 1 1 1 1

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0



















whose eigenvalues are λ1 = −2.0861, λ2 = −1.0000, λ3 = 0.0000, λ4 = 0.0000,

λ5 = 0.5720, λ6 = 2.5141, and dimKerA = 2. Then nD = 2.
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2

3

4

5

6

1

Figure 1. Example of an undirected graph.

The corresponding eigenvectors are

u1 = (0.7256,−0.2351,−0.2351,−0.3478,−0.3478,−0.3478),

u2 = (0,−0.7071, 0.7071, 0.0000,−0.0000, 0),

u3 = (−0.0000, 0.0000, 0.0000,−0.6643,−0.0790, 0.7433),

u4 = (0.0000,−0.0000,−0.0000, 0.4747,−0.8127, 0.3379),

u5 = (−0.2178, 0.5088, 0.5088,−0.3807,−0.3807,−0.3807),

u6 = (0.6527, 0.4311, 0.4311, 0.2596, 0.2596, 0.2596).

The set of matrices B having minimal number of columns making the system

(A,B) controllable is

B = (α1u1 + α2u2 + α3u3 + α5u5 + α6u6 α4u4 )

with αi 6= 0 for all i = 1, . . . , 6.

The controllability matrix C is

columns 1 and 2


















0.7256α1 − 0.2178α5 + 0.6527α6 0

0.5088α5 − 0.7071α2 − 0.2351α1 + 0.4311α6 0

0.7071α2 − 0.2351α1 + 0.5088α5 + 0.4311α6 0

0.2596α6 − 0.6643α3 − 0.3807α5 − 0.3478α1 0.4747α4

0.2596α6 − 0.079α3 − 0.3807α5 − 0.3478α1 −0.8127α4

0.7433α3 − 0.3478α1 − 0.3807α5 + 0.2596α6 0.3379α4

columns 3 and 4
1.641α6 − 0.1245α5 − 1.5136α1 −0.0001α4

0.4905α1 + 0.7071α2 + 0.291α5 + 1.0838α6 0

0.4905α1 − 0.7071α2 + 0.291α5 + 1.0838α6 0

0.7256α1 − 0.2178α5 + 0.6527α6 0

0.7256α1 − 0.2178α5 + 0.6527α6 0

0.7256α1 − 0.2178α5 + 0.6527α6 0
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columns 5 and 6
3.1578α1 − 0.0714α5 + 4.1257α6 0

0.1665α5 − 0.7071α2 − 1.0231α1 + 2.7248α6 −0.0001α4

0.7071α2 − 1.0231α1 + 0.1665α5 + 2.7248α6 −0.0001α4

0.1641α6 − 0.1245α5 − 1.5136α1 −0.0001α4

1.641α6 − 0.1245α5 − 1.5136α1 −0.0001α4

1.641α6 − 0.1245α5 − 1.5136α1 −0.0001α4

columns 7 and 8
10.3726α6 − 0.0405α5 − 6.587α1 −0.0005α4

2.1347α1 + 0.7071α2 + 0.0951α5 + 6.8505α6 −0.0001α4

2.1347α1 − 0.7071α2 + 0.0951α5 + 6.8505α6 −0.0001α4

3.1578α1 − 0.0714α5 + 4.1257α6 0

3.1578α1 − 0.0714α5 + 4.1257α6 0

3.1578α1 − 0.0714α5 + 4.1257α6 0

columns 9 and 10
13.7428α1 − 0.0240α5 + 26.0781α6 −0.0002α4

0.0546α5 − 0.7071α2 − 4.4523α1 + 17.2231α6 −0.0006α4

0.7071α2 − 4.4523α1 + 0.0546α5 + 17.2231α6 −0.0006α4

10.3726α6 − 0.0405α5 − 6.587α1 −0.0005α4

10.3726α6 − 0.0405α5 − 6.587α1 −0.0005α4

10.3726α6 − 0.0405α5 − 6.587α1 −0.0005α4



















with rank(C) if and only if αi = 6 for all i = 1, . . . , 6.

In particular, for αi = 1 for all i = 1, . . . , 6 the controllability matrix is

C =



















1.1605 0 0.0029 −0.0001 7.2121 0 3.7451 −0.0005 39.7969 −0.0002

−0.0023 0 2.5724 0 1.1611 −0.0001 9.7874 −0.0001 12.1183 −0.0006

1.4119 0 1.1582 0 2.5753 −0.0001 8.3732 −0.0001 13.5325 −0.0006

−1.1332 0.4747 1.1605 0 0.0029 −0.0001 7.2121 0 3.7451 −0.0005

−0.5479 −0.8127 1.1605 0 0.0029 −0.0001 7.2121 0 3.7451 −0.0005

0.2744 0.3379 1.1605 0 0.0029 −0.0001 7.2121 0 3.7451 −0.0005



















.

It is easy to observe that if some αi = 0 in the matrix C, then the matrix does

not have a full rank, as well as if we consider ImB = [α1u1 + α2u2 + α3u3 + α5u5 +

α6u6 + α4u4], the system is not controllable.
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5. Conclusion

In this work, given an n-order square matrix A, we have explicitly described a way

how to obtain all possible matrices B having the minimum number of columns,

making the system (A,B) controllable. Several examples have been included in

order to make the work easier to read and it is completed with an example in the

case of an undirected network.

A c k n ow l e g m e n t s. The author is indebted to the referee for several construc-

tive comments which improved remarkably the work.
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