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Abstract: We compute exactly various 4−point correlation functions of shortest scalar operators in

bi-scalar planar four-dimensional “fishnet” CFT. We apply the OPE to extract from these functions the

exact expressions for the scaling dimensions and the structure constants of all exchanged operators with

an arbitrary Lorentz spin. In particular, we determine the conformal data of the simplest unprotected

two-magnon operator analogous to the Konishi operator, as well as of the one-magnon operator. We

show that at weak coupling 4−point correlation functions can be systematically expanded in terms of

harmonic polylogarithm functions and verify our results by explicit calculation of Feynman graphs at

a few orders in the coupling. At strong coupling we obtain that the correlation functions exhibit the

scaling behaviour typical for semiclassical description hinting at the existence of the holographic dual.

1Unité Mixte de Recherche 3681 du CNRS
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G0 G1 G2

Figure 1. Three types of the 4-points functions topologies. These cases differ by the number of “particles”

(red dashed lines) transfered from the bottom to the top. These particles can be associated in terms of the

ABA with magnons in the intermediate states on the OPE. We refer to them as zero, one and two particle

cases correspondingly. The black lines correspond to the X-particles.

1 Introduction

Conformal quantum field theories (CFT) have demonstrated their importance for very diverse fun-

damental problems in physics, its applications ranging from the physics of phase transitions (see [1]

and citations therein) to various problems of fundamental interactions and cosmological scenarios (see

[2] and citations therein) and QCD [3]. Whereas in d = 2 dimensions the CFTs are well studied

and classified [4], for d > 2 both the classification and the tools for study of CFTs are notoriously

incomplete. The supersymmetric QFTs, and in particular the supersymmetric Yang-Mills theories

include a rather large class of CFTs which are relatively well classified and, at least qualitatively,

understood [5–11], especially due to the discovery of the AdS/CFT correspondence. In rare cases,

such as 4-dimensional N = 4 SYM theory or 3-dimensional ABJM theory, the integrability allows us

to study in-depth, at least in the ’t Hooft limit, the basic quantities of operator product expansion:

all-loop anomalous dimensions [12–15], where the comprehensive and efficient solution is given by the

quantum spectral curve (QSC) approach [16, 17] (see also recent reviews [18, 19]), OPE coefficients

(structure constants) can be studied in various limits [20–23] and even obtain some non-perturbative

information on multi-point correlators of local operators [24, 25], cusped Wilson loops [26, 27] and

1/N -corrections [28].

Much less is known about non-supersymmetric four-dimensional CFTs. Mostly, they are known to

be IR or UV fixed points of various renormalization group flows. Usually these CFTs are strongly cou-

pled at these fixed points and, apart from a few rather exotic cases, such as the Banks-Zaks CFT [29],

their Lagrangian description is unknown. Such theories have been recently quite efficiently studied by

conformal bootstrap methods [30, 31] (using basic assumptions for CFTs, such as unitarity, crossing,

symmetry etc.) which involve heavy numerical methods and can give very accurate predictions of

OPE data. However, as for any numerical approaches, the physics behind these computations often

remains obscure.

In this respect, various integrable deformations of N = 4 SYM, breaking partially or even entirely

– 2 –
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the supersymmetry [6, 7, 32, 33], open a unique window into the dynamics of four-dimensional CFTs.

In particular, the γ-deformed N = 4 SYM, where breaking of the R-symmetry leads to the complete

loss of supersymmetry, is a CFT with the well-defined classical action. In order for the theory to

be consistent at the quantum level, one has to add to the action a finite number of particular scalar

double-trace terms, for which the couplings have to be fine tuned to special values corresponding to the

fixed points of the underlying beta-functions, or rather functions of the Yang-Mills coupling [34, 35].

The only drawback of such a CFT is the loss of unitarity, since the double-trace couplings induced

by the renormalization [36–39] take complex values at these fixed points. This poses an interesting

challenge of construction of nontrivial unitary non-supersymmetric CFTs. On the positive side, the

γ-deformed N = 4 SYM at the fixed point seems to be a genuine CFT, well defined by its explicit

action, including the double-trace terms [35]. Last but not the least, quantum integrability property

of planar γ-deformed N = 4 SYM [33] described in terms of γ-deformed quantum spectral curve

formalism in [8], occurs precisely at these fixed points, as was conjectured and argued in [35]. The

powerful machinery of quantum integrability allows us to study in great detail its complicated non-

perturbative dynamics [40, 41].

Moreover, in a specific double scaling limit proposed in [42], combining weak coupling with strong

imaginary γ-twists, the γ-deformed N = 4 SYM drastically simplifies and gives rise to a family of

chiral non-unitary CFTs with 3 effective couplings describing the scalar and Yukawa interactions of

three complex scalars and three fermions. Its spectrum of anomalous dimensions, scalar and fermion

amplitudes have been studied in a series of papers [35, 42–46]. In the particular, single coupling version

of these models, the bi-scalar “fishnet” CFT, studied in this paper, the four-point correlation function

of certain protected operators was computed in [35], providing a rich non-perturbative OPE data for

the exchange operators with an arbitrary spin. These results have been generalized to any dimension d

in [47], where the d-dimensional version of the bi-scalar model was proposed. In this paper we extend

these results to more general correlators. In addition to the wheel graphs we also consider single and

double spiral graphs as shown on Fig.1. We also analyse the results at weak and strong coupling.

An important feature of such models is the drastic simplification of their weak coupling expansion,

where in many particular cases (when we turn on a single coupling) it is dominated by various kinds

of “fishnet” Feynman graphs [43]. These graphs represent integrable two-dimensional statistical-

mechanical systems by themselves [48] and can be efficiently studied by the quantum spin chain

methods and the double-scaled version QSC [44, 49]. In particular, the individual, so called “wheel”

multi-loop Feynman graphs can be computed exactly in terms of multiple zeta values (MZV) [44].

Importantly, the explicit graph-by-graph integrability property in such models sheds some light

on the origins of the planar integrability of their “mother”-theory – the N = 4 SYM, where the

perturbation theory is much more complicated and the reasons for integrability are still obscure. In

particular, in the bi-scalar CFT discussed in this paper the integrability is manifest due to the explicit

integrability of fishnet graphs dominating the perturbation theory in this model [35].

1.1 The conformal “fishnet” theory

We will focus in this paper on a particular example of strongly γ-deformed N = 4 SYM – the bi-scalar

theory [42]. At the classical level, the Lagrangian of the bi-scalar theory is given by1

L = Nc tr
(

∂µX̄∂µX + ∂µZ̄∂µZ + (4π)2ξ2X̄Z̄XZ
)

, (1.1)

1In the literature one also uses notations φ1 = X and φ2 = Z. We use ‘bar’ for the Hermitian conjugation.

– 3 –
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X

X

Figure 2. Feynman rules

- -

X X X

X

Figure 3. Feynman rules for all three types of double-trace vertices.

where X,Z are complex Nc × Nc matrix fields and X̄ ≡ X†, Z̄ ≡ Z† are their hermitian conjugates.

The model retains the SU(Nc) global symmetry which is a remnant of the gauge symmetry of the

original N = 4 SYM theory. The effective coupling constant ξ2 = g2YMNc e
−iγ3/(4π)2 is given by the

product of the Yang-Mills coupling and the complex deformation parameter. The general γ−deformed

N = 4 SYM theory depends on three deformation parameters γ1, γ2, γ3. The Lagrangian (1.1) arises

in the double scaling limit, g2 → 0 and Im γ3 → ∞ with ξ2 and γ1,2 fixed. In this limit, all fields

except two scalars get decoupled leading to (1.1).

On the quantum level, to make the theory conformal we have to add various double-trace terms

with well-tuned couplings [34, 35, 38, 39]:

Ldt = (4π)2α2
1

[

tr(X2) tr(X̄2) + tr(Z2) tr(Z̄2)
]

− (4π)2α2
2

[

tr(XZ) tr(X̄Z̄) + tr(XZ̄) tr(X̄Z)
]

, (1.2)

where α2
1 and α2

2 are new induced coupling constants and the factor of (4π)2 is introduced for the

convenience. The corresponding Feynman rules for all types of double-trace vertices are presented on

Fig. 3.

The relative coefficients between the operators in both lines of (1.2) follow from the invariance of

– 4 –
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(1.1) under the transformations of fields

(Z → Z̄, X → X̄) , (X → X̄t , Z → Zt) , (X → Zt , Z → Xt) , (1.3)

with the conjugate fields X̄, Z̄ transforming accordingly. As we show below, these transformations can

be used to establish relations between different correlation functions.

The theory with the Lagrangian L + Ldt is renormalizable. The coupling constants depend on

the renormalization scale and the corresponding beta functions have been computed perturbatively in

[35] in the planar limit, for Nc → ∞ and ξ2, α2
1, α

2
2 = fixed. Examining zeros of the beta functions,

we find that the theory has two fixed points

(α2
1 = α2

+ , α
2
2 = ξ2) and (α2

1 = α2
− , α

2
2 = ξ2) , (1.4)

where α2
± is given at weak coupling by the following expression

α2
± = ± iξ

2

2
− ξ4

2
∓ 3iξ6

4
+ ξ8 ± 65iξ10

48
− 19ξ12

10
+O(ξ14) . (1.5)

Notice that the expansion of α2
± runs in powers of iξ2 with real coefficients.

The planar bi-scalar theory (1.1) possesses a conformal symmetry at the fixed points (1.4) [34, 35]

and is integrable [42, 44]. Viewed as a function of ξ2, the relation (1.4) defines two lines of the fixed

points. It has been argued in [35] that the “mother” theory of the bi-scalar model – the γ−deformed

N = 4 SYM – is a nonunitary CFT on a line of (complex) fixed points of double couplings as functions

of the ’t Hooft coupling, also integrable in planar limit. It is also natural to expect the existence of

such a complex conformal trajectory even at finite N .

The bi-scalar ”fishnet” CFT (1.1) is the most studied case of the abovementioned chiral CFTs

proposed in [41]. The spectrum of long local operators of the type tr(ZmXn)+permutations, can

be efficiently investigated by the asymptotic Bethe ansatz (ABA) equation [43] – the double scaled

version of the Beisert-Staudacher ABA equations for N = 4 SYM [12]. The short operators of

this and other types (also with insertions of derivatives and Z̄, X̄ fields) can be studied by QSC

methods [44] and by the quantum non-compact spin chain methods [42, 44], when the spins take

values on conformal group SU(2, 2). The spin-chain approach to this theory is very promising since it

would allow us to study there non-perturbative physics starting from the first principals, without any

assumptions. Unfortunately, efficient methods of study of non-compact, Heisenberg spin chains are

not very well developed, especially for principal series representation in physical space and for higher

ranks symmetries, such as SU(2, 2), though an important progress has been made in the study of

spectral problem for SL(2, C) spin chain, in relation with high-energy (Regge) limit of QCD [50, 51].

Another remarkable observation in bi-scalar theory concerns the planar scalar amplitudes: they are

dominated by a single multiloop fishnet graph with open boundary and obey a Yangian symmetry,

potentially allowing for their computation [45, 46]. A particular, single-trace four-point correlation

function given by such fishnet graph was explicitly computed in [52]2.

We refer to the single trace operators tr(XnZm) + perm. for n ≥ m as m-magnon states, in

accordance with the ABA description, where the asymptotic anomalous dimension is described by the

Bethe state with m Bethe roots and conformal spin chain of length n. The related Feynman graphs

have been described in [43]. They have a shape of multi-spiral when m radial lines of the field Z

2Their result can be interpreted as a correlator of the form tr[Xn(x1)Zm(x2)X̄n(x3)Z̄m(x4)]. Alternatively one can

interpret it as a leading weak coupling contribution to the 4 point correlator of 4 single trance operators.

– 5 –
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coming out of the point where the operator is placed, are “braided” by m parallel spirals, as shown

on the Fig.1(in the middle for a single spiral, and on the right for the double spiral).

Correspondingly, the simplest set of non-trivial single trace operators has length n = 2 and

numbers of magnons m = 0, 1, 2. In addition, one can also introduce Lorentz spin S by inserting light-

cone derivatives in the following way: tr(Xn(∂−)
SZm) + perm. The most efficient way of studying

these operators is to extract their conformal data from the OPE of 4-point functions. Accordingly,

we will analyze the 4-point functions of 3 different topologies, corresponding to the number of the

magnons (see Fig.5). The simplest, zero-magnon four-point correlation function was computed to all

orders of weak-coupling expansion in [35]. It is dominated by the wheel graphs containing only two

“spikes”. It was shown in [35] that this quantity has correct conformal properties in the perturbation

theory only if one takes into account the double-trace interactions.

In the current paper, we will review the findings of [35] and continue to study the properties of the

four-point correlation functions. In addition, we compute a few related four point-functions of short

local operators, corresponding to one- and two-magnon cases. These three types of four-point functions

are distinguished by the relative simplicity: for their computation one does not need to appeal to the

integrability – the conformal symmetry is enough for this purpose. We then use the obtained results

for the four point correlation functions to extract explicit expressions for the anomalous dimensions

and structure constants.

All these results represent a unique opportunity of study properties of bi-scalar CFT, in the hope

to better understand the non-perturbative structure of non-supersymmetric CFTs in d > 2 dimensions.

They provide rich data for the future integrability based calculations of the correlation functions.

1.2 Correlation functions and their perturbative structure

In this paper, we exploit conformal symmetry to find exact expressions for correlation functions of

local protected dimension–two operators

OXZ(x) = tr(XZ)(x) , OXZ̄(x) = tr(XZ̄)(x) ,

OX̄Z(x) = tr(X̄Z)(x) , OX̄Z̄(x) = tr(X̄Z̄)(x) , (1.6)

as well as of bi-local operators of a “one-magnon” type

OXZX(x1, x2) = tr(X(x1)Z(x1)X(x2)). (1.7)

The reason for the choice (1.6) is that, in the planar limit, the two-point correlation functions of

operators (1.6) are protected at the fixed points (1.4)

〈OXZ(x)OX̄Z̄(0)〉 = 〈OXZ̄(x)OX̄Z(0)〉 =
c2

(x2)2
+O(1/N2

c ) , (1.8)

where the normalization factor c = 1/(4π2) comes from free scalar propagator.

The pair correlation function of bi-local operators of the type (1.7) defined below as type C will

represent another type of four-point functions, having one-magnon exchange states in OPE, dominated

by single-spiral graphs of the type shown in Fig. 1.

In what follows we consider the simplest unprotected four-point correlation functions of the local

operators (1.6), of the following two types:

• Type A
GA = 〈OXZ(x1)OXZ̄(x2)OX̄Z(x3)OX̄Z̄(x4)〉 . (1.9)

– 6 –
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 0 x

(a) (b) (c)

Figure 4. Feynman diagrams contributing to the correlation function 〈OXZ(x)OX̄Z̄(0)〉 in the Born ap-

proximation (a) and at one-loop (b,c). Filled and open circles in diagrams (b) and (c) denote single- and

double-trace vertices, respectively. Black and red lines represent the propagators of scalar fields X and Z,

respectively, with arrows pointing from X to X̄ and from from Z to Z̄. The sum of diagrams (b) and (c)

vanishes at the fixed point (1.4).

• Type B
GB = 〈OXZ(x1)OXZ(x2)OX̄Z̄(x3)OX̄Z̄(x4)〉 ,
GB′ = 〈OXZ̄(x1)OXZ̄(x2)OX̄Z(x3)OX̄Z(x4)〉 . (1.10)

The remaining four-point correlation functions of the operators (1.6) vanish due to nonzero

total U(1) charge. Notice that type B correlation function expansion in small x212 ≡ (x1 − x2)
2

limit is saturated by the two-magnon operators. Two such spin-zero operators, tr(XZXZ) and

tr(XXZZ), are not protected and mix with each other, in such a way that their dimensions are

related by the change ξ2 → −ξ2. The analogous operator in N = 4 SYM theory is Konishi

operator tr[X,Z]2, where as the second operator with the same R-charge, tr(2XXZZ+XZXZ),

is protected3.

• Type C

We will also define the type-C four-point functions containing one-magnon exchange states:

GC′ = 〈tr(X(x1)Z(x1)X(x2)) tr(X̄(x3)X̄(x4)Z̄(x4))〉 ,
GC′′ = 〈tr(X(x1)Z(x1)X(x2)) tr(Z̄(x3)X̄(x3)X̄(x4))〉 . (1.11)

We can also define a similar pair of correlation functions

〈tr(Z(x1)X̄(x1)X̄(x2)) tr(X(x3)Z̄(x4)X(x4))〉 ,
〈tr(Z(x1)X̄(x1)X̄(x2)) tr(X(x3)Z̄(x3)X(x4))〉 , (1.12)

which, due to the relations (1.3), coincide with GC′ and GC′′ , respectively.

• Type D

In addition to (1.9) and (1.10), we also consider a four-point correlation function of scalar fields

computed in [35]

GD = 〈tr(X(x1)X(x2)) tr(X̄(x3)X̄(x4))〉 . (1.13)

As will become clear in a moment, its calculation is closely related to that of GA given by (1.9)

(see (2.9) below). The function GD is obtained from GA by Wick contracting two pairs of Z

and Z̄ fields.

3This combination is obtained by acting on the 1/2-BPS operator tr(XXXX) with su(2) lowering operator.

– 7 –
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x1x2 x3x4 x1x2 x3x4 x1x2 x3x4

G0 G1 G2

Figure 5. Three basic types of the skeleton graphs corresponding to zero, one and two magnons. They have

the structure of wheels, single and double spirals. These basics graphs are the building block of all correlators

we discuss in this paper. Another way to represent the same graphs given on Fig.1.

At the fixed point (1.4), the correlation functions (1.9), (1.10) and (1.13) are finite functions

of the coupling ξ2. The correlation functions (1.10) are related to each other through the first of

transformations (1.3) and, therefore, they coincide

GB = GB′ . (1.14)

For the correlation function (1.9), the relations (1.3) imply that GA should be invariant under the

exchange of points

GA

∣

∣

∣

x1↔x3, x2↔x4

= GA

∣

∣

∣

x2↔x3

= GA . (1.15)

A remarkable feature of all considered correlation functions is their iterative structure: the (non-

zero) contribution at each successive order of perturbation theory can be obtained from the previous

one by action on it by some graph generating integral operators. Thus the relevant graphs have a chain

structure and they can be studied using the Bethe-Salpeter equation. In addition, the emerging graph

generating operators commute with the generators of the conformal group and their eigenspectrum can

be easily found with a help of the conformal symmetry. Thanks to these features the above mentioned

correlation functions of the bi-scalar model are explicitly computable in a relatively simple way.

2 Relation to skeleton scalar graphs

In this section, we will describe the structure of Feynman graphs for all types of the studied 4-point

correlation functions. We express these correlators in terms of the basic generating functions of the

wheel graphs (G0), single (G1) and double spiral graphs (G2) as on Fig.5. In the section 4 we evaluate

these 3 types of the graphs by the Bethe-Salpeter method, by diagonalizing their graph generating

kernels. Consequently, we compute all the related structure constants defining the full explicit OPE

representation of each of these 4-point functions (1.11)–(1.13).

We will first discuss the connected and disconnected parts of all these 4-point functions and then

study the connected planar part of each of them. For the sake of explicitness, we will restrict our

discussion to d = 4 dimensions, but the final formulas will be readily generalized in section 9 to any

d.
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2.1 Connected part of the correlation functions

The four-point correlation functions of the types A and B (1.9) – (1.10) receive both connected G(c)

and disconnected (in the sense of factorisation of the coordinate dependence) contributions G(d). The

former are suppressed with respect to the latter by a power of 1/N2
c

G = G(d) +
1

N2
c

G(c) , (2.1)

but all the most interesting physics resides of course in the connected part. The disconnected contri-

bution is given by the product of two-point correlation functions (1.8) leading to

G
(d)
A =

c4

(x214x
2
23)

2
, G

(d)
B =

c4

(x214x
2
23)

2
+ (x1 ↔ x2) . (2.2)

For the correlation function of type C ′′ and D the disconnected contribution is

G
(d)
C′′ =

c3

(x213)
2 x224

, G
(d)
D =

c2

x213 x
2
24

+ (x3 ↔ x4) . (2.3)

Due to the color structure of bi-local operators in the definition of GC′′ and GD, the disconnected

part in both cases is of the same order in 1/Nc as the connected part.

Finally, the disconnected part of the correlation function of type C ′ is suppressed by the factor of

1/N2
c as compared with its connected part.

2.2 Relation of 4-point functions of all types to basic fishnet graphs

The computation of all above-mentioned types of 4-point functions can be reduced to the evaluating

Feynman graphs having 3 basic structures of fishnet graphs. They are depicted on the Fig.1 and they

are distinguished by the the magnon numbers - 0, 1, 2 - the number of propagating “particles” (dotted

spirals lines on the Fig.1) in the exchange channel. We will denote the related generating functions as

G0, G1 and G2 and call them the n-magnon functions. As we will see shortly, the Feynman graphs for

these functions are computable by the Bethe-Salpeter approach, due to their periodic fishnet structure

and conformal properties.

To be more precise, we will define n-magnon functions as perturbative expansion w.r.t. the

coupling ξ2 as follows.

For zero-magnon case (the “wheels”) we have

G0(x1, x2|x3, x4) =
∑

n≥0

(16π2ξ2)2nG
(n)
0

(x1, x2|x3, x4) , (2.4)

where G
(n)
0

(x1, x2|x3, x4) denotes the Feynman graph depicted on the left of Figs.1 and 5 and having

2n interaction vertices (black dots).

For one-magnon case (“spiral”, or “spiderweb” graphs) the structure function looks as

G1(x1, x2|x3, x4) =
∑

n≥0

(16π2ξ2)nG
(n)
1

(x1, x2|x3, x4) , (2.5)

where G
(n)
1

(x1, x2|x3, x4) denotes the Feynman graph depicted in the middle of Figs.1 and 5 and hav-

ing n interaction vertices (black dots). Each graph takes a shape of a spiral consisting of propagators

of type X wounding around two lines of propagators of type Z. Note that we have two distinguished

– 9 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
0
3
7
P
_
0
6
1
9
 
v
2

structures depending on the parity of expansion term w.r.t. ξ2: for even powers of ξ2 the spiral on

Fig.1 starts and ends on the same (black) line of Z-propagators, whether as for odd powers of ξ2 it

starts and ends on different Z-lines.

For two-magnon case (“double spiral”) we have the structure function

G2(x1, x2|x3, x4) =
∑

n≥0

(16π2ξ2)2nG
(n)
2

(x1, x2|x3, x4) , (2.6)

where G
(n)
2

(x1, x2|x3, x4) denotes the Feynman graph depicted on the right of Figs.1 and 5 and having

2n interaction vertices (black dots).

Let us relate the correlation functions GA, GB , GC and GD to G0, G1 and G2.

2.2.1 Relations between correlation functions and n-magnon functions

First, we can immediately see from Figs. 1(left) and 5(left) and from the definitions (1.13) and (2.4)

that

GD(x1, x2|x3, x4) = G0(x1, x2|x3, x4) +G0(x1, x2|x4, x3) . (2.7)

Further on, the correlation function GA is given by the following linear combination of the functions

G0

GA =
c2

x212x
2
34

G0(x1, x2|x3, x4) +
c2

x212x
2
34

G0(x1, x2|x4, x3)

+
c2

x213x
2
24

G0(x1, x3|x2, x4) +
c2

x213x
2
24

G0(x1, x3|x4, x2)−
c4

x212x
2
13x

2
24x

2
34

, (2.8)

where the last term takes care of double counting of the tree-level diagram in the first 4 terms. It

is straightforward to verify that the linear combination on the right-hand side of (2.8) satisfies the

symmetry relation (1.15).

Comparing (2.8) and (2.7) we notice that the two correlation functions are related to each other

as

GA =

(

GD

x212x
2
34

+ (x2 ↔ x3)

)

− c4

x212x
2
13x

2
24x

2
34

. (2.9)

Having determined G0(x1, x2|x3, x4), we can apply (2.7) and (2.8) to find the correlation functions

GA and GD.

For the one-magnon correlation functions we get the following expressions through the even and

odd in ξ2 parts of the magnon function G1:

GC′ =
1

2
G1(x1, x2|x3, x4)− (ξ2 → −ξ2) ,

GC′′ =
1

2
G1(x1, x2|x3, x4) + (ξ2 → −ξ2). (2.10)

Finally, the two-magnon correlation function (1.10) coincides with the two-magnon function (2.6):

GB(x1, x2|x3, x4) = G2(x1, x2|x3, x4) . (2.11)

In the next section we review the general method for computing the magnon functions G0, G1

and G2 based on the Bethe-Salpeter equation and conformal symmetry. The explicit expressions for

these functions are derived in section 4.
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3 Conformal symmetry and Bethe-Salpeter equations: generalities

As we saw above and discuss in detail in the next section, the correlation functions introduced in

previous sections are given by very specific type of fishnet graphs: in each graph the periodically

repeating configurations of propagators are connected by pairs of coordinates of the related vertices

(see Fig. 5). Each graph can be cut into two disconnected parts by splitting only two vertices. The

three cases we are going to consider differ, in particular, by the values of dimensions of four external

(protected) operators. For all correlation functions under considerations we have ∆1 = ∆4 and

∆2 = ∆3.

This section is based on the observation that three topologically distinct configurations G0, G1

and G2 can be written, each, in terms of a suitable “graph-building” operator Ĥ. In each case we find

at the level of the operators

Ĝ =

(

c

x212

)−d+∆1+∆2 ∞
∑

ℓ=0

χℓĤℓ+n =

(

c

x212

)−d+∆1+∆2 Ĥn

1− χĤ
, (3.1)

where n is a nonnegative integer, the constant χ is proportional to a fixed power of the coupling

constant ξ2 (specified below for each case) and d is the dimension of the space-time. In most of the

paper we set d = 4 although, as we will see in the section 9, most of the equations discussed here

have a natural generalization to general d, where the bi-scalar theory can be also formulated [47]. The

operators Ĥ and Ĝ are represented by the corresponding integration kernels, e.g.

〈x1, x2|Ĝ|x3, x4〉 = G(x1, x2|x3, x4) , (3.2)

in such a way that

〈x0, y0|Ĥm|xm, ym〉 =
∫ m−1
∏

j=1

d4xjd
4yjH(x0, y0|x1, y1)H(x1, y1|x2, x2) . . . H(xm−1, ym−1|xm, ym) .

(3.3)

The problem of finding G(x1, x2|x3, x4) can be split into two main steps. First, we have to solve the

eigenvalue problem for Ĥ and, then, decompose Ĝ over the complete basis of the eigenfunctions of Ĥ.

Fortunately, the first step is simple in our case. The eigenfunctions Φµ1,...,µS
ν,x0

(x1, x2) of Ĥ which

are defined by
∫

d4x1d
4x2 Φ

µ1,...,µS
ν,x0

(x1, x2)H(x2, x1|x4, x3) = E∆,SΦ
µ1,...,µS
ν,x0

(x3, x4) , (3.4)

where x0, ν and S parameterise the eigenstates, are totally symmetric traceless tensors in 4-dimensional

indices µ1, . . . , µS . The form of Φµ1,...,µS
ν,x0

(x1, x2) is completely fixed by the conformal symmetry – if

the operator Ĥ commutes with the generators of the conformal group, its eigenstates should transform

covariantly under conformal transformations acting on xi. As such, Φµ1,...,µS
ν,x0

(x1, x2) can be represented

as a conformal “triangle” – three-point correlation function of two scalar operators at the points x1, x2
and some reference operator with dimension ∆ = 2 + 2iν and spin S at the point x0. Explicitly

Φν,S,x0
(x1, x2) ≡ Φµ1,...,µS

ν,x0
(x1, x2)nµ1

. . . nµS

=
1

x∆1+∆2−t
12 x∆1+t−∆2

10 x∆2+t−∆1

20

(

2(nx02)

x202
− 2(nx01)

x201

)S

, (3.5)

– 11 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
0
3
7
P
_
0
6
1
9
 
v
2

where 4 t = ∆−S and x∆ab ≡ (x2ab)
∆/2. In order to simplify tensor structure, we projected all Lorentz

indices onto a light-like vector nµ. In the next section we verify explicitly that the functions (3.5)

diagonalize the graph-building Hamiltonians and find the corresponding eigenvalues E∆,S .

The scaling dimension ∆ in (3.5) is given by [53]

∆ = 2 + 2iν , (3.6)

where ν is real nonnegative. For such values of ∆ the functions Φµ1,...,µS
ν,x0

(x1, x2) define the complete

orthonormal basis of states on the Hilbert space on which the graph building kernel Ĥ acts. Viewed

as a function of x0, Φ
µ1,...,µS
ν,x0

belongs to the irreducible principle series representation of the conformal

group labelled by real ν and nonnegative integer Lorentz spin S. Together with (3.4) this leads to

H(x1, x2|x3, x4) =
∞
∑

S=0

(−1)S

(x212)
4−∆1−∆2

∫ ∞

0

dν

c1(ν, S)
E∆,S

∫

d4x0 Φ
µ1...µS

−ν,x0
(x1, x2)Φ

µ1...µS
ν,x0

(x4, x3), (3.7)

where c1 is the normalization factor defined in (A.4) and we used that Φ̄µ1...µS
ν,x0

= Φµ1...µS

−ν,x0
. The values

of ν in (3.7) can be restricted to be ν ≥ 0 since the states Φµ1,...,µS
ν,x0

and Φµ1,...,µS

−ν,x0
belong to the same

representation and are related to each other through intertwining relation.

Inserting (3.7) into (3.1) we get the following expression for the correlation function G

G(x1, x2|x3, x4) =
∞
∑

S=0

(−1)S

c4−∆1−∆2

∫ ∞

0

dν

c1(ν, S)

En
∆,S

1− χE∆,S

∫

ddx0Φ
µ1...µS

−ν,S,x0
(x1, x2)Φ

µ1...µS

ν,S,x0
(x4, x3) .

(3.8)

The integral over x0 can be evaluated explicitly in terms of four-dimensional conformal blocks [53–55]

∫

d4x0Φ
µ1...µS

−ν,S,x0
(x1, x2)Φ

µ1...µS

ν,S,x0
(x4, x3) (3.9)

=

(

1

x12x34

)∆1+∆2
(

x13x24
x214

)∆1−∆2

[c(ν, S)g∆,S(u, v) + c(−ν, S)g4−∆,S(u, v)] ,

the expression in the brackets depends only on the cross ratios u and v defined as

u = zz̄ =
x212x

2
34

x213x
2
24

, v = (1− z)(1− z̄) =
x223x

2
14

x213x
2
24

, (3.10)

where z and z̄ are auxiliary complex variables. The conformal block g∆,S(u, v) depends on ∆1 and

∆2 and it is given explicitly in terms of the hypergeometric functions in (A.1). The coefficient c(ν, S)

is a ratio of the normalisation coefficients c(ν, S) = c1(ν, S)/c2(ν, S) defined in (A.4) and (A.5).

Combining together (3.8) and (3.9) we obtain5

G(x1, x2|x3, x4) ≡
(

c

x12x34

)∆1+∆2
(

x13x24
x214

)∆1−∆2

G(u, v) , (3.11)

where G(u, v) admits the following representation

G(u, v) = c−4
∑

S≥0

(−1)S
∫ ∞

−∞

dν

c2(ν, S)

En
∆,S

1− χE∆,S
g∆,S(u, v) , (3.12)

4Following the standard conventions, we shall refer to t at zero value of the coupling constant as twist.
5The constant c = 1

4π
should not be confused with the function c(ν, S).
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where ∆ = 2 + 2iν. Here we combined the two terms on the right-hand side of (3.9) to extend the

integration over ν to the whole real axis and used the identity c(ν, S) = c1(ν, S)/c2(ν, S). Note that

doing so we required that

E4−∆,S = E∆,S . (3.13)

This property follows from the fact that the states with the same Lorentz spin S and the scaling

dimensions ∆ and 4 − ∆ belong to the same representation of the conformal group. We will check

(3.13) explicitly in each case.

To bring the integral (3.12) to the standard OPE form we examine the short distance limit x12 → 0,

or equivalently u → 0 and v → 1. In this limit, the conformal block scales as g2+2iν,S(u, v) ∼
u1+iν−S/2(1−v)S and decays exponentially fast for Re(iν) → ∞. This allows us to close the integration

contour in (3.12) to the lower half-plane and compute the integral on the right-hand side of (3.12) by

residues. In terms of the OPE, the condition Re(iν) > 0 is equivalent to the restriction Re∆ > 2 on

the scaling dimension of exchanged operators.

The integrand in (3.12) has ‘physical’ poles coming from zeros of the denominator

1

E∆,S
= χ , (3.14)

and two series of ‘spurious’ poles generated by the kinematical factor c2(ν, S) and the conformal block

g2+2iν,S(u, v). We show in Appendix B that the spurious poles cancel against each other provided

that E∆,S satisfies the following relation

rk(E3+S+k,S − E3+S,S+k) = 0 , (k = 0, 1, 2, . . . ) . (3.15)

with rk defined in (B.1). Then, the correlation function (3.12) is given by the sum of residues at

the physical poles (3.14). Finally, we obtain the following conformal partial wave expansion of the

correlation function (3.12)

G(u, v) =
∑

S,∆

C∆,S g∆,S(u, v) , (3.16)

where the OPE coefficients are given by the residues at the physical poles

C∆,S =
(−1)S

c4
4π res∆

(

1

c2(ν, S)

En
∆,S

1− χE∆,S

)

(3.17)

and the sum in (3.16) runs over solutions of (3.14) with Re ∆ > 2.

In the next section, we apply the relations (3.17) and (3.16) to compute the four-point correlations

introduced in the previous section. In each case we shall verify the relations (3.13) and (3.15) which

we assumed in the above derivation.

4 Four-point correlators and the conformal OPE data

In this section, we describe Feynman graphs for the 3 types of 4-point correlation functions depicted

on Fig.5, and establish the corresponding graph-building operators Ĥ. In the previous section, it

was shown that the eigenvalue E∆,S of these operators is the only input needed in order to write a

representation of OPE type for the correlation function. We diagonalize the operators Ĥ and present

explicit expressions for the conformal data (scaling dimensions and the OPE coefficients) for each of

these 4-point functions.
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x1x2 x3x4 x1x2 x3x4
x5 x6

x1x2 x3x4
x5 x6 x7x8

ξ0 ξ4 ξ8

Figure 6. First 3 orders contributing to the G0 correlator.

4.1 Zero-magnon case and the wheel-graphs (G0)

The zero-magnon correlation function was studied in detail in [35]. Here we re-derive the results of [35]

and show how they fit into the general scheme described in the previous section.

As we show below, the zero-magnon case corresponds to the situation when the correlation function

(3.16) receives contribution from magnon-free operators of the type tr(X(n∂)SX) and tr(X�(n∂)SX)6.

We will see that only these two types of operators with arbitrary spin S contribute.

To find the zero-magnon correlation function we have to summed up diagrams shown on Fig-

ure 5(left). These diagrams contain an arbitrary number of wheels attached to the rest of the diagram

at two (single-trace) vertices. It is easy to see that the integral over the position of these vertices

develops a ultraviolet (UV) divergence at short distances. This seems to be in contradiction with

expected UV finiteness of four-point correlation function of protected operators. We recall however

that quantum corrections induce new double-trace interaction terms (1.2). In particular, the double-

trace coupling tr(X2) tr(X̄2) affects the zero-magnon correlation function. It produces a UV divergent

contribution which cancels against that of the wheel graphs in such a way that the four-point corre-

lation function remains UV finite at any order in the weak coupling expansion. Due to form of the

double-trace interaction term tr(X2) tr(X̄2), it can only affect the contribution of partial waves to

(3.16) with zero Lorentz spin S = 0. We therefore expect that the contribution of the wheel graphs

to (3.16) is well-defined for S 6= 0 whereas for S = 0 the additional contribution due to double traces

should be taken into account. We discuss this issue in more detail in Sec.5.

In this section we proceed without taking the double trace interaction into account and identify

the contrubution of wheels graphs to (3.16). We will see that the double trace contributions will be

automatically taken into account by correct treatment of the singularity at ξ → 0 in the forthcoming

formulas. We start with constructing the graph building operator and identifying the parameters ∆i,

n and χ introduced in (3.1). We recall that the parameters ∆i define the scaling dimension of the

external operators. Since the wheel graphs have only one propagator attached to each external leg we

have ∆1 = ∆4 = ∆2 = ∆3 = 1.

To first two orders of the weak coupling expansion the zero magnon function G0 is given by the

6Interestingly, in our case only single box can appear. In space-time dimension d 6= 4 this is not the case.
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sum of diagrams shown in Fig.6. The expressions corresponding to the first two diagrams are

G
(0)
0

=
c2

x224x
2
13

, G
(1)
0

= c6
∫

d4x5d
4x6

x225x
2
45x

2
16x

2
36x

4
56

, (4.1)

where each scalar propagator brings in the factor of c/x2ij . These expressions can be represented as

1st and 2nd powers of the following graph building operator Ĥ0

H0(x1, x2|x3, x4) =
c4

x412x
2
13x

2
24

. (4.2)

Indeed, we verify that

G
(0)
0

=
x412
c2
H0 , G

(1)
0

=
x412
c2

∫

d4y5d
4y6H0(x1, x2|y5, y6)H0(y5, y6|x3, x4) , (4.3)

from where it is clear that for a general graph with (n + 1) wheels we get Ĝ0

(n)
= (4π2)2x412Ĥ

n
0
.

It is straightforward to verify that the function (4.2) transforms covariantly under the conformal

transformations acting on xi.
7 As a consequence, the corresponding integral operator Ĥ0 commutes

with the generators of the conformal group.

Thus the zero-magnon correlation function G0 can be written as

Ĝ0 =

∞
∑

ℓ=0

(16π2ξ2)2ℓĜ0

(ℓ)
= (4π2)2x412

Ĥ0

1− (16π2ξ2)2Ĥ0

. (4.4)

Comparing with the general expression (3.1) we deduce that χ = (16π2ξ2)2 and n = 1 in the zero-

magnon case.

4.1.1 Eigenvalue of the zero-magnon graph-building operator

In order to use the general expression for the correlation function (3.16), we have to determine the

eigenspectrum of the graph building operator (4.2). In virtue of conformal symmetry, its eigenstates

are given in (3.5) with ∆1 = 1 and ∆2 = 1. Substitution of (4.2) into (3.4) leads to an integral, which

can be evaluated using the star-triangle identity as explained in appendix C.2. Going through the

calculation we obtain the following simple result [35]

E0 =
16π4c4

(−∆+ S + 2)(−∆+ S + 4)(∆ + S − 2)(∆ + S)
. (4.5)

It is easy to see that E0 is invariant under ∆ → 4−∆, in agreement with (3.13). We can also check

that (4.5) verifies the relation (3.15) that ensures the cancellation of spurious poles. In the present

case, for ∆1 = ∆2 = 1, it follows from (B.1) that r2n+1 = 0 for integer n and thus (3.15) reduces to

E0|∆=3+s+2n,S=s = E0|∆=3+s,S=s+2n , n, s = 0, 1, 2, . . . , (4.6)

which is indeed satisfied for (4.5).

4.1.2 Spectrum for zero-magnon exchange operators

We can now use (4.5) to determine the scaling dimension of the zero-magnon operators contributing to

the correlation function (3.16). Substituting (4.5) into the relation (3.14) and replacing χ = (16π2ξ2)2

we find that the scaling dimensions ∆ = 2 + 2iν satisfy the following quartic equation

(ν2 + S2/4)(ν2 + (S + 2)2/4) = ξ4 , (4.7)

7The simplest way to check this is to employ inversions xµ
i → xµ

i /x
2
i and take into account that x2

ij → x2
ij/(x

2
i x

2
j ).
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Figure 7. Structure of the spectrum ∆0(ξ) for S = 0 (left) and S = 2 (right). At weak coupling (vertical

solid line) it consists of two operators with bare dimension 2+S and 4+S. As a function of ξ2 the states can

be analytically continued from one to another.

subject to the additional condition Im ν < 0. At finite coupling, this yields the following expressions

for the scaling dimensions

∆2(S) = 2 +

√

(S + 1)2 + 1− 2
√

(S + 1)2 + 4ξ4 ,

∆4(S) = 2 +

√

(S + 1)2 + 1 + 2
√

(S + 1)2 + 4ξ4 . (4.8)

The two remaining solutions to (4.7) are related to (4.8) by ∆ → 4−∆ and describe shadow operators

with Re∆ < 2.

At weak coupling, for ξ2 < 1, and nonzero Lorentz spin, S > 0, the scaling dimensions (4.8) look

as

∆2(S) = 2 + S − 2ξ4

S(S + 1)
+

2ξ8((S − 1)S − 1)

S3(S + 1)3
+O

(

ξ12
)

,

∆4(S) = 4 + S +
2ξ4

(S + 1)(S + 2)
− 2ξ8(S(S + 5) + 5)

(S + 1)3(S + 2)3
+O

(

ξ12
)

, (4.9)

and the corresponding operators can be identified as twist-2 and twist-4 operators, respectively. 8

They have the following form O2 = tr(X(n∂)SX + . . . and O4 = tr(�X(n∂)SX + . . . where dots

denote similar terms with light-cone derivatives distributed between the fields. Similarly to [44], the

twist 4 operators can be written, due to the equations of motion, as O4 = trX∂SZ̄XZ + . . . .

Notice that the weak coupling expansion of (4.9) goes in powers of ξ4 which is exactly what one

expects since each wheel in the graph shown in Fig. 5(left) is attached to the rest of the diagram

through two single-trace vertices. Something special happens at S = 0. In this case, we find from

8This explains the meaning of the subscript of ∆t.
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(4.8)

∆2(S = 0) = 2 +
2i
√
2ξ2

√

1 +
√

4ξ4 + 1
, (4.10)

and the weak coupling expansion looks as

∆2(S = 0) = 2iξ2 − iξ6 +
7iξ10

4
+O

(

ξ14
)

. (4.11)

Surprisingly, for S = 0 the weak coupling expansion of the scaling dimension ∆2(S) starts from

the power ξ2, instead of the naively expected ξ4 (the power corresponding to each insertion of the

graph-building operator (4.2)).

To understand the reason for this we examine the eigenvalue of the zero-magnon kernel (4.5) for

S = 0 and ∆ = 2 + 2iν

E0

∣

∣

∣

S=0
=

π4c2

ν2(ν2 + 1)
. (4.12)

We notice that it goes to infinity at small ν. Then, expanding (4.4) in powers of ξ4 we find that

the contribution of the states with S = 0 to the correlation function at order O(ξ4n) is proportional

to
∫

dν(E0|S=0)
n and it diverges for ν → 0. This is in agreement with our expectations that the

contribution of the wheel graphs is well defined for all states except those with S = 0. To remove the

divergence we have to include the O(ξ4n) contribution of double traces.

We observe that, in the resummed expression for the correlation function (4.4), the contribution

of the states with S = 0 to G0 involves the integral
∫

dν/(1 − (16π2ξ2)2E0|S=0) which is convergent

for ν → 0 at finite ξ2 (for the integral to be well-defined we assume that ξ2 has a small imaginary

part). It is easy to see that, at weak coupling, the integration over small ν produces a square-root

singularity at the origin, G0 ∼
√

ξ4. This explains why the weak coupling expansion of G0 in powers

of ξ4 is divergent. At the same time, this also suggests that the double-trace contribution should be

essential only in the weak coupling regime whereas at finite coupling it can be safely ignored. We

discuss this issue in more detail in Sect. 5.

Arriving at (3.16) we have tacitly assumed that the physical poles (3.14) are located away from

real ν−axis in (3.12). As follows from (4.7), at weak coupling, the two physical poles located at

ν = ±iS/2 + O(ξ4) pinch the integration contour at the origin for S → 0 and produce a divergent

contribution. The role of the double-trace contribution is to subtract this divergence and, thus, make

the weak coupling expansion of G0 well defined. Turning the logic around, we can say that the double

traces provide a nonvanishing contribution to the scaling dimensions because the eigenvalue (4.5)

diverges as E0(ν, 0) ∼ 1/ν2 for ν → 0. The relation (4.10) is in a perfect agreement with the result of

explicit 7−loop calculation [35].

We recall that the correlation function (3.16) is given by the sum over the solutions to (3.14) with

Re∆ > 2. In our present case for S = 0 the solution (4.10) satisfy Re∆ = 2 for real ξ2. As was

mentioned above, for the correlation function (3.16) to be well-defined ξ2 should have a nonvanishing

imaginary part (see Appendix D for discussion of analytical properties of (3.16)). The expression

(4.10) satisfies Re∆ = 2 for Im ξ2 < 0. For Im ξ2 > 0, the scaling dimension is given by the same

expression (4.10) upon replacing ξ2 → −ξ2.
Let us examine the properties of the scaling dimensions (4.8). The dependence of ∆2 and ∆4 on

ξ4 is shown on Fig. 7 for S = 0 and S = 2. We observe that the two functions (4.8) represent in fact

– 17 –
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two branches of the same analytic function. It has two branch points located at

ξ4− = −1

4
(S + 1)2 , ξ4+ =

1

16
(S(S + 2))2 . (4.13)

For ξ4 = ξ4− the two operators collide, ∆2(S) = ∆4(S), whereas for ξ4 = ξ4+ one of the operators

collides with its shadow, ∆2(S) = 2. 9. The collision of operators at ξ4 = ξ4+ modifies analytic

properties of the correlation function G0. According to (D.2), the correlation function has the cut for

ξ4 > 0 that starts at ξ4 = 1/maxν∈RE0(ν, S). It is easy to see from (4.5) that E0(ν, S) is a decreasing

positive-definite function of ν2. Therefore, the cut starts at ξ4 = ξ4+ (corresponding to ν = 0) and

goes to infinity along real ξ4−axis. In the vicinity of the branch point, it follows from (4.7) that

ν2 ∼ ξ4+ − ξ4 for S 6= 0 leading to ∆2(S)− 2 ∼
√

ξ4+ − ξ4 [56].

Strong coupling. At strong coupling, for ξ2 → ∞, the relation (4.7) has four solutions iν =

ξ eiπk/2 +O(1/ξ) (with k = 0, . . . , 3). Among them only two satisfy the additional condition Im ν < 0.

The corresponding expressions for the scaling dimensions are

∆ = 2ξ eiπk/2 +2− S2 + (S + 2)2

8 ξ eiπk/2
+O(1/ξ3) , (4.14)

where integer 0 ≤ k ≤ 3 satisfies the condition Re(ξ eiπk/2) > 0 and depends on ξ.

4.1.3 Structure constants for zero-magnon exchange operators

We apply the general relation (3.17) to find the OPE coefficient for zero-magnon operators [35]

C∆,S =
(S + 1)Γ(S −∆+ 4)Γ

(

1
2 (S +∆− 2)

)

Γ
(

1
2 (S +∆)

)

((4−∆)∆+ S(S + 2)− 2) Γ2
(

1
2 (S −∆+ 4)

)

Γ(S +∆− 2)
. (4.15)

Stricktly speaking, C∆,S is given by the product of (properly normalized) 3−point correlation functions

〈OX̄ZOX̄Z̄O∆,S〉 and 〈OXZOXZ̄Ō∆,S〉. In unitary CFT they are complex conjugated to each other

and, as a consequence, C∆,S is positive definite. This is not the case for the conformal fishnet theory

(1.1) and (1.2). In virtue of the symmetry (1.3) the above mentioned 3-point functions coincide and,

therefore, C∆,S is given by the square of the 3-point correlation function of two protected and one

unprotected operators

C∆,S = (C•◦◦
0

)2 . (4.16)

We will generalize this result to a more complicated structure constant involving two non-protected

operators in section 8.

Weak coupling limit. Replacing the scaling dimensions in (4.15) by their expressions (4.8) we can

obtain the OPE coefficients at weak coupling.

First, consider twist-2 operators with the scaling dimension ∆2 and non-zero spin S > 0. In this

case we get

C∆t=2,S
=

Γ2(S + 1)

Γ(2S + 1)

[

1 + 2ξ4
(S + 1)(ψ(2S + 1)− ψ(S + 1)) + 1

S(S + 1)2

]

+O
(

ξ8
)

, (4.17)

where ψ(x) is the Euler polygamma-function. Notice that C∆t=2,S
becomes singular for S → 0. Similar

to the situation with the scaling dimension ∆2(S), this happens because the two limits S → 0 and

9If the theory were unitary, the scaling dimensions ∆2 and ∆4 would respect the Neumann-Wigner non-crossing rule

and remain to be different from each other for any coupling [56]
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ξ2 → 0 do not commute. To get the correct result for C∆t=2,S=0
at weak coupling, we should first put

S = 0 in (4.15) and, then, expand it in powers of ξ2. This gives

C∆t=2,S=0
= 1− 2iξ2 − 2ξ4 + iξ6(5− 4ζ3) + ξ8(6− 8ζ3) +O

(

ξ9
)

. (4.18)

In analogy with (4.11), the weak coupling expansion starts at order O(ξ2) indicating that C∆t=2,S=0

is sensitive to the contribution of the double traces.

For twist−4 operators we find from (4.15) and (4.9)

C∆t=4,S = ξ4
Γ2(S + 2)

2(S + 1)(S + 2)Γ(2S + 3)
+O

(

ξ8
)

. (4.19)

In distinction with (4.18), the weak coupling expansion of C∆t=4,S starts at order O(ξ4) and runs in

powers of ξ4. The latter property is in agreement with our expectations that twist−4 operators are

not affected by double-trace interaction. The twist-4 OPE coefficient (4.19) is suppressed by the factor

of ξ4 as compared with (4.18). Due to the equation of motion, �X = 16π2ξ2Z̄XZ, the corresponding

operator takes the form O4 = tr(�X(n∂)SX) + · · · = 16π2ξ2 tr(Z̄XZ(n∂)SX)) + . . . . The reason

for the above-mentioned suppression is that 〈O4Ō4〉 = O(ξ4) and 〈O4OX̄ZOX̄Z̄〉 = O(ξ4) leading to

C∆t=4,S ∼ 〈O4OX̄ZOX̄Z̄〉2/〈O4Ō4〉 = O(ξ4).

Strong coupling limit. At strong coupling the dimension ∆ become large according to (4.14) and

we get

C∆,S = 25−2∆S + 1

∆
tan

(

π
∆+ S

2

)(

1 +
3

2∆
+

4(S + 1)2 + 25

8∆2
+O

(

1

∆3

))

. (4.20)

Thus we see that the structure constant at strong coupling is exponentially small since ∆ ≃ 2ξ eiπk/2.

4.1.4 Zero-magnon 4-point correlation function

Having determined the conformal data of the zero-magnon operators, we can apply (3.11) and (3.16)

to compute the four-point correlation function (3.11) and (3.16)

G0(x1, x2|x3, x4) =
c2

x212x
2
34

G0(u, v) , (4.21)

where we replaced the scaling dimensions of the external protected operators by their values, ∆1 =

∆2 = ∆3 = ∆4 = 1, and the function G0(u, v) is given by

G0(u, v) =

∞
∑

S=0

∑

∆=∆t=2,∆t=4

C∆,S g∆,S(u, v) , (4.22)

where the sum runs over the states with the scaling dimension (4.8) and the OPE coefficients (4.15).

Here g∆,S is the four-dimensional conformal block defined in (A.1) (with ∆i = 1).

The relation (4.22) involves an infinite sum over the conformal blocks and it is not obvious a priori

that one can find a closed expression for G0(u, v) even at weak coupling. We show in section 5 by

explicit two-loop calculation that G0(u, v) can be expressed in terms of special functions, the so-called

harmonic polylogarithms (HPL). In section 6 we extend this result to any order of the weak coupling

expansion. Also in section 7 we analyse the strong coupling limit of the expression (4.22). The analytic

properties of G0(u, v) with respect to the coupling ξ are discussed in Appendix D.
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x1x2 x3x4 x1x2 x4x3
x5

x1x2 x3x4
x5 x6

ξ0 ξ2 ξ4

Figure 8. First 3 orders contributing to the G1 correlator. We assume that each of x1 and x4 points are the

sources of two propagators, by that reason x4 and x3 are interchanged in the middle picture in comparison to

the right and left.

According to (2.7) and (2.8), the correlation functions GA and GD are given by a linear combina-

tion of the zero-magnon functions G0 symmetrized in x3 ↔ x4. Let us see what effect the exchange

of x3 and x4 has on the function G0. As follows from (3.10), the cross-ratios transform under the

exchange of x3 with x4 as u→ u/v and v → 1/v. The corresponding transformation of the conformal

blocks looks as

g∆,S(u/v, 1/v) = (−1)Sg∆,S(u, v) . (4.23)

This relation follows from (3.9), it can also be verified directly from the definition (A.1). Combining

together (4.22) and (4.23) we conclude that, in the expressions for GA and GD the terms in (4.22)

with odd S cancel out whereas those with even S get doubled.

4.2 One-magnon case and single spiral graphs (G1)

In this subsection, we consider the one-magnon correlation function G1 described by graphs shown in

Fig. 5(middle). As we will see shortly, its calculation is simpler than that of G0 and G2. Since the

graph contributing to G1 have two propagators attached to x1 and x4 and only one to x2 and x3, we

identify the scaling dimensions at the external points as

∆1 = ∆4 = 2 , ∆2 = ∆3 = 1 . (4.24)

To identify the graph-building operator Ĥ0, we consider the first few terms in the weak coupling

expansion of G1 (see Fig.8). The expressions corresponding to the first two diagrams are

G
(0)
1

=
c3

x224x
2
13x

2
14

,

G
(1)
1

=

∫

d4x5
c5

x225x
2
53x

2
14x

2
15x

2
45

. (4.25)

Let us show that these expressions can be represented as 2nd and 3rd power of the graph building

operator with the integral kernel

H1(x1, x2|x3, x4) = c2
δ(4)(x4 − x1)

x212x
2
23

. (4.26)
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Indeed, we apply (3.3) to get

〈x1, x2|Ĥ2
1
|x3, x4〉 =

∫

d4y5d
4y6H1(x1, x2|y5, y6)H1(y5, y6|x3, x4) =

c

x212
G

(0)
1
,

〈x1, x2|Ĥ3
1
|x3, x4〉 =

c

x212

∫

d4y5d
4y6G

(0)
1

(x1, x2|y5, y6)H1(y5, y6|x3, x4) =
c

x212
G

(1)
1

. (4.27)

It is clear from these examples that, in general, Ĝ1

(n)
= 4π2x212Ĥ

n+1
1

. Thus the correlation function

G1 can be written as

Ĝ1 =

∞
∑

ℓ=0

(16π2ξ2)ℓĜ1

(ℓ)
=
x212
c

Ĥ2
1

1− (16π2ξ2)Ĥ1

. (4.28)

Comparing with the general form (3.1) we see that χ = 16π2ξ2 and n = 2.

4.2.1 Eigenvalue of the one-magnon graph-building operator

As in the previous case, we can verify that the integral operator Ĥ1 with kernel given by (4.26)

commutes with the generators of the conformal group acting on the external points xi and the corre-

sponding conformal weights given by (4.24). As a consequence, its eigenstates are given by (3.5) with

∆1 = 2 and ∆2 = 1. The eigenvalue equation (3.4) reduces to an integral which can be evaluated

using the star-triangle identity, as explained in Appendix C.3. The result turns out to be quite simple

E1 = (−1)S
4π2c2

(−∆+ S + 3)(∆ + S − 1)
. (4.29)

It is obviously invariant under ∆ → 4−∆ and satisfies (3.13). We can use (4.29) to verify the condition

(3.15). In the present case, for ∆1 = 2 and ∆2 = 1, we find from (B.1) that r2n = 0 for integer n so

that the relation (3.15) takes the form

E1|∆=3+s+2n+1,S=s = E1|∆=3+s,S=s+2n+1 , (4.30)

where n, s = 0, 1, 2, . . . . It is easy to see that it holds indeed. 10

4.2.2 Spectrum of one-magnon exchange operators

Substituting (4.29) into (3.14) and taking into account that χ = 16π2ξ2, we determine the scaling

dimension of the one-magnon operators O1 = tr(XZ(n∂)SX) + . . . contributing to the correlation

function (3.16)

∆1 = 2 +
√

(S + 1)2 − 4(−1)Sξ2 . (4.31)

For S = 0 we have

∆1|S=0 = 2 +
√

1− 4ξ2 . (4.32)

Interestingly, this expression coincides with the asymptotic dispersion relation for the one-magnon

state previously found from the double-scaling limit of asymptotic Bethe ansatz (ABA) in Ref. [43].

Following the ABA approach, one could have expected that the asymptotic dispersion relation (4.32)

should be corrected already at order O(ξ4) by the wrapping corrections. The relation (4.32) implies

that the wrapping corrections to the one-magnon operator tr(X2Z) vanish. This is indeed the case

for the single wrapping contribution found in [43]. The relation (4.32) is indeed consistent with the

ABA, including the known single wrapping correction!

10Note that the factor (−1)S in the expression for E1 plays an important role for this equation to be satisfied.
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Figure 9. Dependence of ∆1 on the coupling constant ξ2 for S = 0 (left) and S = 1 (right). At weak coupling

∆1 = 3 + S + O(ξ2). For ξ2 = (−1)S(S + 1)2/4 the function ∆1 approaches the value ∆ = 2 and, then,

continues into the complex plane Re∆ = 2 after the collision with the shadow level 4−∆1.

Weak coupling. At weak coupling, the scaling dimension (4.31) of the one-magnon states reads

∆1 = 3 + S − ξ2
2(−1)S

S + 1
− ξ4

2

(S + 1)3
− ξ6

4(−1)S

(S + 1)5
+O

(

ξ7
)

. (4.33)

Strong coupling. At strong coupling, we find from (4.31)

∆1 = 2 + (−1)
S+1

2

(

2ξ − (−1)S(S + 1)2

4ξ
− (S + 1)4

64ξ3

)

+O
(

1

ξ5

)

, (4.34)

where the branch of (−1)
S+1

2 is such that Re∆ > 2. Interestingly, at the leading order we get the

same coefficient as for the zero-magnon case (4.14).

4.2.3 Structure constants with one-magnon exchange operators

We can also employ the general equation (3.17) to find the OPE coefficient

C∆,S = (S + 1)
Γ2
(

1
2 (S +∆− 1)

)

Γ(S −∆+ 4)

Γ2
(

1
2 (S −∆+ 5)

)

Γ(S +∆− 1)
. (4.35)

As in the previous case, it is given by the square of the 3−point function of two protected and one

unprotected operator, C∆,S = (C•◦◦
1

)2.

Weak coupling. At weak coupling, we obtain from (4.35) and (4.33)

C∆,S =
Γ(S + 1)Γ(S + 2)

Γ(2S + 2)

[

1− 2ξ2(−1)S
ψ(S + 1)− ψ(2S + 2)

S + 1
+O

(

ξ4
)

]

. (4.36)
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In particular for S = 0 we find

C∆,0 = 1 + 2ξ2 + 6ξ4 − 4ξ6(ζ3 − 5) + ξ8(70− 20ζ3) +O
(

ξ10
)

. (4.37)

Since the first few coefficients do not involve wrapping it should be possible to compare with the

perturbative ABA based general expressions from [57, 58].

Strong coupling. At strong coupling ∆ becomes large (4.34) and we can use it as a large expansion

parameter since the expressions are more compact

C∆,S = 26−2∆S + 1

∆
cot

(

π
S −∆

2

)(

1 +
5

2∆
+

4S2 + 8S + 53

8∆2
+O

(

1

∆3

))

. (4.38)

The structure constant is again exponentially decaying as it was in the zero-magnon case (4.20).

4.2.4 One-magnon four-point correlation function

Substituting (4.24) into (3.11) and (3.16), we obtain the one-magnon 4-point correlation function

G1(x1, x2|x3, x4) = c3
(x213x

2
24)

1/2

(x212x
2
34)

3/2x214
G1(u, v) , (4.39)

where

G1(u, v) =
∑

S=0,1,2,...

C∆,S g∆,S(u, v) (4.40)

and the sum runs over the states with the scaling dimensions ∆ and the OPE coefficients C∆,S given

by (4.31) and (4.35), respectively. Notice that in the above sum there is only one state for each value

of the spin S and spin takes all non-negative integer values. In section 6 we study (4.40) at weak

coupling and compare it with the result of perturbative calculation performed in section 5. Also in

section 7 we analyse the strong coupling limit of (4.40).

Finally, we can use (2.10) and (4.39) to calculate the 4-point correlation functions GC′ and GC′′ .

4.3 Two-magnon case and double-spiral graphs (G2)

The two-magnon correlation function G2 is given by graphs shown in Fig. 5(right). Since these graphs

have two propagators attached to all four external points, we identify the scaling dimensions as

∆1 = ∆2 = ∆3 = ∆4 = 2 . (4.41)

As before, in order to construct the graph building operator for the two-magnon case Ĥ2, we examine

the first few orders of the weak coupling expansion of G2 (see Fig.10). The expressions corresponding

to the first two diagrams on Fig.10 are

G
(0)
2

=
c4

x213x
2
14x

2
23x

2
24

,

G
(1)
2

=

∫

d4x5d
4x6

c8

x225x
2
54x

2
15x

2
53x

2
16x

2
63x

2
26x

2
64

=

[
∫

d4x5
c4

x225x
2
54x

2
15x

2
53

]2

. (4.42)

Note that the two-loop integral entering G
(1)
2

factorizes into a product of one-loop integrals. This is

not the case already at the next O(ξ8) order for the right-most diagram in Fig.10.
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x1x2 x3x4 x1x2 x3x4
x5 x6

x1x2 x3x4

ξ0 ξ4 ξ8

Figure 10. First 3 orders contributing to the G2 correlator.

The kernel H2 generating the two-magnon diagrams is

H2(x1, x2|x3, x4) ≡
c4

x213x
2
14x

2
23x

2
24

. (4.43)

Indeed we verify that the convolution of H2 reproduces all the diagrams depicted in Fig.10.

G
(0)
2

= H2(x1, x2|x3, x4) ,

G
(1)
2

=

∫

d4y5d
4y6H2(x1, x2|y5, y6)H2(y5, y6|x3, x4) . (4.44)

Thus for the sum of all two-magnon diagrams we get

Ĝ2 =

∞
∑

ℓ=0

(16π2ξ2)2ℓĜ2

(ℓ)
=

Ĥ2

1− (16π2ξ2)2Ĥ2

. (4.45)

Comparison with the general expression (3.1) shows that χ = (16π2ξ2)2 and n = 1.

4.3.1 Eigenvalue of the graph-building operator

To compute the two-magnon correlation function (4.45) we have to diagonalize the operator Ĥ2. We

can use (4.43) to show that it commutes with the generators of the conformal group. As a consequence,

its eigenstates are given by (3.5) with ∆1 = ∆2 = 2. To find the corresponding eigenvalue E2, we

replace the eigenstates in (3.4) by their explicit expressions (3.5). This leads to a rather complicated

integral on the left-hand side of (3.4). We can simply its calculation by sending x0 → ∞ on the both

sides of (3.4). In addition, we project all Lorentz indices on an auxiliary light-like vector nν (with

n2 = 0) and obtain the following representation for E2

E2(∆, S) =
1

(4π2)4

∫

d4x3d
4x4 (nx34)

S

x213x
2
14x

2
23x

2
24(x

2
34)

1−iν+S/2
, (4.46)

where ∆ = 2 + 2iν and we put x212 = (nx12) = 1 for convenience.

Since the integrand of (4.46) acquires the (−1)S factor under the exchange of the integration

points, x3 ↔ x4, E2 vanishes for odd S. For even S the calculation of (4.46) yields (see appendix C.4
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Figure 11. Function E2(∆) for S = 0 (solid line), S = 2 (dashed line) and S = 4 (dotted line). At

∆ = S + 4, S + 6, . . . the function has a double pole. Since we have to impose (4.49) at weak coupling E2

goes to infinity. We see there are always two values of ∆ for which E2 is large in the vicinity of ∆ = S + t for

t = 4, 6, 8, . . . and thus the tree level spectrum is twice degenerate.

for details)

E2 =
1

4π4(S + 1)

∞
∑

n=0

(−1)n(2n+ S + 2)

(∆− 2n− S − 4)2(∆ + 2n+ S)2

=
ψ(1)

(

1
4 (S −∆+ 4)

)

− ψ(1)
(

1
4 (S −∆+ 6)

)

− ψ(1)
(

1
4 (S +∆)

)

+ ψ(1)
(

1
4 (S +∆+ 2)

)

(4π)4(∆− 2)(S + 1)
, (4.47)

where ψ(1)(x) = dψ(x)/dx.

The expression for E2 is manifestly invariant under ∆ → 4−∆. Let us verify the condition (3.15)

for cancelling the spurious poles. In the present case, for ∆1 = 2 and ∆2 = 2, it follows from (B.1)

that r2n+1 = 0 for integer n, and the relation (3.15) reduces to

E2(∆ = 3 + s+ 2n, S = s) = E2(∆ = 3 + s, S = s+ 2n) , (4.48)

for n, s = 0, 1, 2, . . . . It is easy to check that it is indeed satisfied.

4.3.2 Spectrum

The scaling dimensions of the two-magnon operators satisfy the relation

E2(∆, S) =
1

(16π2ξ2)2
, (4.49)

subject to Re∆ > 2 and S being even nonnegative.

This time the spectrum of ∆’s has a rich structure since for each value of S there are infinitely

many solutions to (4.49). Indeed, as follows from the first relation in (4.47), the function (4.47) has

an infinite sequence of double poles at ∆ = S + t for t = 4, 6, 8 . . . . As a consequence, for small ξ the

relation (4.49) always has two solutions in the vicinity of ∆ = S + t describing operators with twist t

and even spin S. 11 Indeed we see on Fig.12 that all levels are twice degenerate at weak coupling.

11Like in the case of G0 due to the symmetry of the correlation function under the exchange of points x3 and x4 only

even spins contribute to G2.
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Figure 12. Spectrum of the scaling dimensions ∆2(ξ) of the two-magnon operators for S = 0 (left) and S = 2

(right)

The weak coupling expansion of ∆2 can be found by replacing E2 by its expansion in the vicinity

of the pole. Going through the calculation we obtain

∆2 = S + t± ξ2γ
(0)
t,S + ξ4γ

(1)
t,S +O(ξ6) , t = 4, 6, . . . , (4.50)

with the expansion coefficients given by

γ
(0)
t,S =

4 it/2
√

(S + 1)(t+ S − 2)
, γ

(1)
t,S = − 8(−1)t/2

(S + 1)(t+ S − 2)2
. (4.51)

For each t and S, the relations (4.50) and (4.51) yield two scaling dimensions that are related to each

other through the transformation ξ2 → −ξ2. For even t/2, the expansion coefficients in (4.50) are

real. For odd t/2, the leading coefficient γ
(0)
t,S is pure imaginary (see Fig.12). The relations (4.50) and

(4.51) describe the scaling dimensions of an infinite set of operators, two per each twist t = 4, 6, . . .

and spin S = 0, 2, . . . .

In particular, for S = 0 and t = 4, for the two-magnon operators of the form tr(X2Z2) + . . . the

scaling dimensions are given at weak coupling by

∆S=0,t=4 = 4± 2
√
2ξ2 − 2ξ4 ± ξ6√

2
+ (8− 12ζ3) ξ

8

±
(

30
√
2ζ3 −

513

8
√
2

)

ξ10 + (−96ζ3 − 60ζ5 + 168) ξ12 ±O
(

ξ14
)

. (4.52)

The first 4 terms reproduce the prediction from ABA [59] including the first Lüscher correction.

Critical coupling. The dependence of the two-magnon scaling dimensions ∆2 on the coupling

constant is shown on Fig.12. As can be seen from this figure, for each S the lowest level approaches
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the value ∆ = 2 at some finite ξ = ξ∗. Expanding E2 near ∆ = 2 we find the corresponding value of

the coupling constant ξ∗

ξ4∗ =
2(S + 1)

ψ(2)
(

S
4 + 1

)

− ψ(2)
(

S+2
4

) . (4.53)

Numerically, for S = 0, 2, 4, . . . we obtain12

ξ∗ = 0.610212, 1.397, 2.20284, 3.02178, 3.84809, . . . . (4.54)

For ξ > ξ∗, the scaling dimension ∆ develops an imaginary part. As we see in a moment, it grows

linearly with ξ at strong coupling.

Strong coupling. Solving (4.49) at strong coupling, we have to identify the values of ∆ at which

E2(∆, S) vanishes. A close examination of (4.47) shows that E2(∆, S) has infinitely many zeroes in

∆ for any even of S. For example, for S = 0 the first few zeroes of (4.47) satisfying Re∆ > 2 can be

found numerically as

∆S=0 = 5.0145, 6.6879± 4.08478i, 6.99634, 9.0014, 10.9993, 11.0453 + 5.05341i, . . .

Notice that the real part of most of the zeros is close to integer. They determine the leading large ξ

asymptotics of the scaling dimension of all but two states shown in Fig.12.

The remaining two states satisfy Re∆ = 2 and have an imaginary part that grows linearly with

ξ. They correspond to the solution to (4.49) with ∆ → ∞. Indeed, the function (4.47) decays at large

∆ as E2 ∼ 1/∆4 and the relation (4.49) is automatically satisfied. By expanding E2 at large ∆ and

solving (4.49) we find

∆2 = 2± i

(

2
4
√
2ξ − S2 + 2S − 2

4
4
√
2ξ

− S4 + 4S3 + 24S2 + 40S − 68

64 23/4ξ3
+O

(

1

ξ4

))

. (4.55)

4.3.3 OPE coefficients

From (3.17) we get for C∆,S :

C∆,S = − π/c4

c2(∆, S)

1

∂∆(1/E2(∆, S))
. (4.56)

where c2 is given by (A.5) for ∆1 = ∆2 = 2. Replacing E2 with (4.47), we obtain a rather cumbersome

expression for C∆,S , we do not present it here.

Weak Coupling. Expanding the resulting expression for C∆,S in powers of ξ2, we get the OPE

coefficients for the operators with twist t = (∆− S)|ξ=0 = 4, 6, 8, . . . and Lorentz spin S = 0, 2, 4, . . .

C∆,S = (−1)t/2
Γ2(t/2− 1)Γ2(S + t/2)

Γ(t− 3)Γ(2S + t− 1)

[

1 + ξ2c
(0)
t,Sγ

(0)
t,S +O(ξ4)

]

. (4.57)

Here γ
(0)
n,S is the one-loop anomalous dimension defined in (4.51) and the coefficient c

(0)
n,S is given by

c
(0)
t,S = ψ(t/2 + S)− ψ(t+ 2S − 1) + ψ(t/2− 1)− ψ(t− 3)− 1

2(S + t− 2)
. (4.58)

12For comparison, for a different operators with J = 3 with zero spin of the type tr�nX3 we get a very similar

behaviour with the critical points at 0.589884, 1.32836, 2.02683, 2.71805, 3.40652, . . . [44].
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Strong Coupling. To analyse the strong coupling behaviour of (4.56) it is convenient to rewrite it

as

C∆,S = − π/c4

c2(∆, S)

∂∆

∂(4πξ)4
, (4.59)

where we used (4.49) to get rid of E2. Since for most of the states ∆ approaches a constant value

at strong coupling, we see from (4.59) that C∆,S should decay as 1/ξ8. For the two remaining states

whose imaginary part grows linearly in ξ, the OPE coefficient (4.59) decreases slower as 1/ξ for real

ξ. We recall however that in order for the correlation function (3.12) to be well-defined, ξ should have

an imaginary part. For ξ with large imaginary part the structure constant of the lowest level at each

S decays exponentially and thus the OPE expansion at strong coupling should be dominated by the

other state, for which ∆ → const at ξ → ∞. This is rather different behaviour to that of two other

correlators and needs further investigation. We discuss this issue briefly in section 7.

4.3.4 4-point correlation function

Having determined the scaling dimensions and the OPE coefficients we can compute the two-magnon

correlation function

G2(x1, x2|x3, x4) ≡
c4

x412x
4
34

G2(u, v) , (4.60)

where

G2(u, v) =
∑

t=4,6,...

∑

S=2,4,...

C∆+,S g∆+,S(u, v) + C∆−,S g∆−,S(u, v) . (4.61)

We note that for each spin S and twist t there are two states, as one can see from the weak coupling

expansion (4.50).

Notice that the weak coupling expansion of (4.50) and (4.57) goes in powers of ξ2. However, due

to the symmetry of the spectrum, the two terms in the sum (4.61) are related to each other through

transformation ξ2 → −ξ2 so that the weak expansion of G2(u, v) runs in powers of ξ4.

In section 6, we study the equation (4.61) at weak coupling and compare the result with the

predictions from the perturbation theory of section 5.

5 Correlation functions at weak coupling from Feynman diagrams

In the previous sections, we have derived three different types of four-point correlation functions by

applying the operatorial methods. Namely, we have solved the underlying Bethe-Salpeter equations

by diagonalizing the corresponding “graph-building” kernels with a help of the conformal symmetry.

Doing so, we have ignored the double trace counterterms (1.2) which are nessesary for the consistent

definition of the bi-scalar model (1.1) on the quantum level and for restoring the conformal symmetry

of the theory.

In this section we discuss the role of the double-trace interaction terms (1.2). We show that they

are necessary at weak coupling in order to make each order of the perturbation expansion of the

correlation functions to be finite. At the same time, they do not affect the results for the correlation

functions at finite coupling obtained in the previous section.

Let us review the role of double-trace couplings α1 and α2 from the action (1.2) in perturbative

computations of the correlation functions GA, GB , GC and GD. Below we discuss which of the topolo-

gies of the Feynman graphs G0, G1 or G2 have to be completed with the double-trace interactions in

order to have meaningful weak coupling expansion of the abovementioned four-point functions.
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x1

x2

x3

x4

Figure 13. Feynman diagrams contributing to the four-point function G0(x1, x2|x3, x4). Dots denote double-

trace α2
1 vertices, all other quartic vertices describe single-trace ξ2 coupling.

5.1 Double-trace contribution to GA, GB

We recall that the four-point functions GA, GB are completely defined, at least for any finite ξ, by the

zero-magnon function G0. The latter is given by sum over the wheel graphs shown in Fig. 1. As was

already mentioned, each wheel in these graphs develops a ultraviolet divergence at short distances.

We expect that the double-trace contribution should remove this divergence.

The double-trace interaction is described by the action (1.2). It is easy to see that, due to the

cylindrical topology of the underlying planar graphs, among four different double-trace interaction

terms in (1.2) only one term (4π)2α2
1 tr(X

2) tr(X̄2) can contribute to G0 in the planar limit. It

generates a new local quartic scalar vertex. The resulting planar graphs contributing to G0 are shown

in Fig.13. They are obtained by gluing together wheel graphs. Indeed, the insertion of the double-trace

vertex 16π2α2
1 tr(X̄)2 trX2 effectively splits the planar wheel Feynman graph into two disconnected

parts, with the single trace operators, tr(X̄)2 and trX2, attached to each part.

As we demonstrated in the previous section, the wheel graphs can be summed up by introducing

the graph building operators Ĥ0. In the similar manner, we can take into account the graphs shown in

Fig. 13 by replacing the kernel (16π2ξ2)2Ĥ0 in the equation (4.22) by a linear combination (16π2α2
1)V+

(16π2ξ2)2Ĥ0 of operators V and Ĥ0 generating double-trace vertices and scalar loops, respectively (see

Fig. 13). Since the contribution to the correlation function of individual diagram shown in Fig. 13 is

divergent, we introduce dimensional regularization with d = 4 − 2ǫ. Then, the regularized operators

H0 and V are defined as

H0 Φ(x3, x4) = c4
∫

d4−2ǫx1d
4−2ǫx2

(x213x
2
24(x

2
12)

2)1−ǫ
Φ(x1, x2) ,

V Φ(x3, x4) = 2c2
∫

d4−2ǫx1d
4−2ǫx2

(x213x
2
24)

1−ǫ
δ(4−2ǫ)(x12)Φ(x1, x2) , (5.1)

where Φ(x1, x2) is a test function. They admit a simple diagrammatic representation, see Fig. 14(right)

and (left), respectively. We would like to emphasize that the operators (5.1) are well-defined for ǫ 6= 0.

Making use of the operators (5.1) we obtain the following representation for the zero-magnon

correlation function

G0(x1, x2, x3, x4) = (4π2)2x412 lim
ǫ→0

(x1, x2|
1

1− (16π2α2
1)V − (16π2ξ2)2Ĥ0

Ĥ0|x3, x4) , (5.2)

where α2
1 ≡ α2

±(ξ) is the double-trace coupling at the fixed point (1.4). Expanding (5.2) in powers

of the couplings α2
1 and ξ2 we find that the first few terms of the weak-coupling expansion of G0 are

given by graphs depicted in Fig. 16 below. We compute them later in this section. It is easy to see

that higher order terms of the weak-coupling expansion of (5.2) produce graphs shown in Fig. 13.
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x1
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x1

x2

x3

x4

Figure 14. Diagrammatic representation of the graph building operators V and H0 defined in (5.1). Dashed

blue line denotes delta-function, black and dashed red lines stand for free scalar propagators.

Note that for ǫ 6= 0 the conformal symmetry of the correlation function (5.2) is broken. To

elucidate the mechanism of restoration of the conformal symmetry of G0 and the role played by the

double traces, we present below the two-loop calculation of the correlation function (5.2).

Applying the identity 1/(x234)
2−2ǫ = π2δ(x34)/ǫ as ǫ → 0, we find from (5.1) that H0 Φ(x1, x2) ∼

ǫ−1
∫

d4x3Φ(x3, x3)/(x
2
13x

2
23). This means that the operator H0 is singular on the space of functions

Φ(x3, x4) that do not vanish at short distances x34 → 0. Examining the expression for the eigen-

functions (3.5), we find they scale at short distances as Φν,S,x0
(x3, x4) ∼ 1/x∆1+∆2−∆

34 = 1/x−2iν
34 for

∆1 = ∆2 = 1 and ∆ = 2 + 2iν. We recall that computing the correlation functions in the previous

section we deformed the integration contour over ν into the lower half-plane. It is easy to see that

in this case Φν,S,x0
(x3, x4) vanishes for x34 → 0 and, as a consequence, the operator H0 does not

develop UV divergences. Moreover, as follows from the definition (5.1), the double-trace operator V
annihilates the eigenstates Φν,S,x0

(x3, x4) with Im ν < 0 and, therefore, does not contribute. This

explains why the double-trace interaction can be neglected when computing the four-point function

G0 by the Bethe-Salpeter method. The appearance of UV divergences at weak coupling is a manifes-

tation of analytic properties of G0. As a function of ξ4, it has a square-root cut at the origin so that

its pertubative expansion runs in powers of (−ξ4)1/2. We have already observed this phenomenon on

the example of the scaling dimension (4.11).

5.2 Double-trace contributions to GB and GC

The inspection of Feynman graphs defining GB and GC shows that the double-trace interactions with

the coupling α1 do not contribute in the planar limit. On the other hand, the interactions with the

double-trace coupling α2 do contribute to both correlation functions through the graphs of the type

shown on Fig.15 on the example of GC . Each vertex depicted by white blobes on Fig.15 describes

both single- and double-trace couplings. The contribution of each such vertex to GC is UV divergent

and it is proportional to (ξ2 − α2
2). As a result, it vanishes at the fixed point (1.4), so that we are left

only with the sums over UV finite single spiral graphs summed up by the UV finite structure function

G1. This property is not surprising given the fact that the correlation function GC has to be a finite

function of ξ2 whereas the Feynman diagram in Fig.15 involves the ultraviolet divergent scalar loops.

The function GC is regular at ξ2 → 0 and its weak-coupling expansion runs in powers of ξ2.

The expression for GC at arbitrary coupling has been derived in section 4.2 using the Bethe-Salpeter

equation in the form of conformal partial wave expansion, Eqs. (2.10), (4.39) and (4.40).

The correlation function GB also receives UV divergent contribution from planar graphs similar

to those shown in Fig. 15. Their contribution vanishes at the fixed point through the same mechanism
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x1x2 x3x4

Figure 15. Typical planar graphs producing UV divergent contribution to the four-point correlation function

GC . The black blobs denote the single-trace vertices with the coupling ξ2. The white blobs denote both the

single-trace ξ2−vertices and the double-trace α2
2−vertices. Their contribution is proportional to (ξ2 −α2

2) and

it vanishes at the fixed point. Similarly, for the correlation function GB the contribution of analogous UV

divergent planar graphs vanishes at the fixed point through the same mechanism.

x1x2 x3x4 x1x2 x3x4 x1x2 x3x4
x5 x6

x1x2 x3x4

G(0,0) α2
1G

(1,0) ξ4G(0,2) α4
1G

(2,0)

Figure 16. Feynman diagrams defining the first few terms of the weak-coupling expansion of G0. G
(n,k) stands

for diagram with k single-trace vertices and n double-trace vertices. Dashed blue line denotes delta-function,

black and dashed red lines denote free scalar propagators.

as in the previous case. This means that GB is defined by the two-magnon function G2, see Eq. (2.11).

Since two-magnon graphs contributing to G2 contain even number of single-trace vertices, the weak

coupling expansion of G2 runs in powers of ξ4. At arbitrary coupling, G2 is given by the conformal

partial wave expansion (4.60) and (4.61).

In the rest of this section, we compute the first few terms of the weak coupling expansion of the

4-point correlation functions and, then, compare them with the exact expressions obtained in section 4.

5.3 Type GD

In the previous sections, GD was defined in terms of the function G0 by (2.7), and G0 is given by the

wheel diagrams shown in Fig.6. As we already discussed, this definition is not complete and has to be

supplimented with the double-trace contributions. The reason for this is that each diagram in Fig.6

is UV divergent and the extra double trace contribution is needed to make each term of the weak

coupling expansion to be UV finite.

To illustrate this, we examine the first few terms of the weak coupling expansion of G0. They are
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given by Feynman diagrams shown in Fig. 16

G0 = G(0,0) + 16π2α2
1G

(1,0) + (16π2ξ2)2G(0,2) + (16π2α2
1)

2G(2,0) +O(ξ6) , (5.3)

where G(n,k) denotes the contribution of diagram with n double-trace vertices and k single-trace

vertices. We recall that G0 depends on only one double-trace coupling α2
1 whose value is given by

(1.4) at the fixed point.

The first term on the right-hand side of (5.3) has been previously defined in (4.1), G(0,0) = G
(0)
0

.

The O(α2
1) correction to (5.3) can be computed from Feynman graphs contributing to GD and is given

by a finite four-dimensional “cross” integral (see Fig. 16)

16π2α2
1G

(1,0) =
1

2
× 4× (16π2α2

1)

∫

d4x5c
4

x215x
2
25x

2
35x

2
45

=
c2

x212x
2
34

2α2
1uD(u, v) , (5.4)

where the factor 1
2 comes from the relation (2.7) between GD and G0, 4 is the symmetry factor,

c = 1/(4π2) and D(u, v) has a simple form when expressed in terms of auxiliary variables defined in

(3.10)

D(u, v) =
1

z − z̄

[

2Li2(z)− 2Li2(z̄) + ln

(

1− z

1− z̄

)

ln(zz̄)

]

. (5.5)

The function inside the brackets is known as the Bloch-Wigner function.

The two-loop corrections G(0,2) and G(2,0) come from last two Feynman diagrams shown in Fig. 16.

The corresponding Feynman integrals are divergent and require regularization. In dimensional regu-

larization with d = 4− 2ǫ we have

G(0,2) = c6I(x1, x3|x2, x4) , G(2,0) = 4c6I(x1, x2|x3, x4) ,

where the notation was introduced for

I(x1, x2|x3, x4) =
∫

d4−2ǫx5d
4−2ǫx6

[x215x
2
25x

2
36x

2
46(x

2
56)

2]1−ǫ
. (5.6)

The integral on the right-hand side has a UV divergence coming from integration at short distances

x256 → 0. Applying the identity 1/(x256)
2−2ǫ = π2δ(4−2ǫ)(x56)/ǫ + O(ǫ0) we find that the residue of

I(x1, x2|x3, x4) at the pole 1/ǫ is proportional to the same one-loop integral that enters (5.4). The same

is true for the function I(x1, x3|x2, x4). As a consequence, the divergent part of two loop correction

to (5.3) takes the form

(16π2ξ2)2G(0,2) + (16π2α2
1)

2G(2,0) = c2
4α4

1 + ξ4

ǫ

uD(u, v)

x212x
2
34

+O(ǫ0) . (5.7)

Since α4
1 = −ξ4/4 + O(ξ6) at the fixed point (1.4), UV divergences cancel in the sum the single- and

double-trace contributions. We conclude that the two-loop correction to (5.3) is UV finite as it should

be.

Going through the calculation of a finite part of the two-loop contribution we find that it factorizes

into a product of one-loop correction (5.4) and a logarithm of the cross-ratio

(16π2ξ2)2G(0,2) + (16π2α2
1)

2G(2,0) =
c2ξ4

2x212x
2
34

uD(u, v) lnu . (5.8)
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Combining this relation with (5.4) and (5.8) we obtain that the correlation function (5.3) takes the

expected form (4.21) with the function G(u, v) given at two loops by

G0(u, v) = u− iξ2 uD(u, v) + ξ4 uD(u, v)
(

1
2 lnu− 1

)

+O(ξ6) . (5.9)

Here we replaced the double-trace coupling by its value (1.4) at the fixed point α2
1 = α2

−.
13 For

α2
1 = α2

+, the function G0(u, v) is given by the same expression with ξ2 replaced with −ξ2.
Notice that the O(ξ2) correction to (5.9) comes entirely from the double-trace contribution. In the

next section we show that (5.9) is in a perfect agreement with the exact expression for G0, Eq. (4.22),

which was obtained by resumming the wheel graphs shown in Fig. 6. This is in agreement with our

expectations that the double-trace contribution to G0 can be ignored at finite coupling.

5.4 Type G1

The weak coupling expansion of the one-magnon correlation function G1 is defined by Feynman dia-

grams shown in Fig. 8. The contribution of the first two diagrams is given by (4.25). In distinction

from the previous case, the corresponding integrals are well-defined in D = 4 dimensions and do not

require regularization.

In particular, the one-loop correction G
(1)
1

defined in (4.25) can be expressed in terms of the

“cross” integral (5.4)

16π2ξ2G
(1)
1

= c3ξ2
uD(u, v)

x212x
2
14x

2
34

= c3ξ2
(x213x

2
24)

1/2

(x212x
2
34)

3/2x214
u3/2D(u, v) . (5.10)

Then, the one-magnon correlation function G1 takes the expected form (4.39) with G1(u, v) given at

weak coupling by

G1(u, v) = u3/2 + ξ2u3/2D(u, v) +O(ξ4) . (5.11)

In the next section, we reproduce this expansion from the exact expression (4.40) for G1 and also

produce explicit expressions for higher order terms.

5.5 Type G2

The two-magnon correlation function G2 is defined by Feynman diagrams shown in Fig. 10. Like in

the previous case, the corresponding integrals are well-defined in D = 4 dimensions and do not require

regularization.

The weak coupling expansion of G2 runs in powers of ξ4 and first two terms are given by (4.42).

As was mentioned before, the O(ξ4) contribution to G2 is given by a two-loop Feynman integral

(4.42) that factorizes into the product of one-loop integrals. The latter take the form (5.4) and, as a

consequence, it can be expressed in terms of Bloch-Wigner function

(16π2ξ2)2G
(1)
2

=
ξ4

x412x
4
34

[

c2uD(u, v)
]2

. (5.12)

The resulting expression for the two-magnon correlation function takes the expected form (4.60) with

G2(u, v) =
u2

v
+ ξ4u2D2(u, v) +O(ξ8) . (5.13)

We managed to reproduce both terms of the expansion (5.13) from its expansion over conformal blocks

(4.61) by expanding it at weak coupling. For that we followed the procedure explained in the next

section 6.
13This choice is syncronized with the sign convention in (4.10).
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6 Prediction for the 4-point correlation functions at weak coupling from

OPE data

In section 4, we determined the conformal data of the operators that appear in the conformal partial

wave expansion (3.16) of the correlation functions at finite coupling. This expansion takes the form

of double infinite sums over spins and dimensions. It is not obvious a priori that these sums can be

evaluated in a closed form. We demonstrate in this section that, at weak coupling, these sums can

be computed order by order in perturbation theory. For zero- and one-magnon functions, G0 and G1,

respectively, the result can be written in terms of special class of iterated integrals known as single

valued harmonic polylogarithm functions (SVHPL) [60, 61]. The two-magnon function G2 has a more

complicated form and it can be expressed in terms of elliptic polylogarithms.

6.1 Zero-magnon case (Type G0)

As we already emphasized before, an interesting fact about G0 is that it receives corrections from the

double trace interaction. As a result, its expansion goes in powers of ξ2 rather than in ξ4.

In the previous section we computed the first three terms of the weak-coupling expansion of the

function G0 defined in (4.22). Taking into account (5.9) as well as the explicit expression (5.5) for the

function D(u, v), it is natural to look for a general expression for G0 in the form

G0 =
zz̄

z − z̄

∞
∑

n=0

(iξ2)nG(n)
0

(z, z̄) , (6.1)

where z and z̄ are defined in (3.10). The goal of this section is to compute G(n)
0

explicitly starting

from the OPE expansion (4.22).

Note that the dependence on the coupling constant ξ2 enters into (4.22) only through the scaling

dimensions ∆2(S) and ∆4(S) given by (4.8). For general S their weak coupling expansion only involves

powers of ξ4. We recall however, that, due to non-comutativety of the limits ξ → 0 and S → 0, for

S = 0 the weak coupling expansion of ∆2(S = 0) does contain powers ξ2 powers. This means that

all terms on the right-hand side of (6.1) with odd powers of ξ2 come entirely from the contribution

of the twist-2 operator with zero spin. We would like to emphasize that the scaling dimension of this

operator has to satisfy the condition Re ∆2(0) > 2. Together with (4.10), this implies that ξ2 should

have a nonzero imaginary part Im ξ2 < 0. For Im ξ2 > 0 we have to exchange the operator with its

shadow whose scaling dimension is given by 4−∆2(S) and it can be obtained from (4.10) through the

transformation ξ2 → −ξ2. This ambiguity exactly corresponds to the ambiguity of choosing the fixed

point (1.4). In what follows we assume that Im ξ2 < 0 and apply (4.10).

In order to find the explicit expressions for the coefficient functions G(n)
0

(z, z̄) we match (6.1) into

the OPE expansion (4.22) in the short distance limit, u → 0 and v → 1, or equivalently z , z̄ → 0. In

this limit, the conformal blocks scale as g∆,S(u, v) ∼ (zz̄)(∆−S)/2 and their expansion in powers of the

coupling generates terms of the form znz̄m logk(zz̄) with k not exceeding the order in the coupling.

The small z , z̄ expansion of G(n)
0

(z, z̄) involves the same terms and their coefficients can be computed

for any finite n+m using the exact expressions for the conformal data of the operators.

A nontrivial property of G(n)
0

(z, z̄) is that for n ≥ 1 they can be expanded over the basis of special

iterated integrals, the so-called harmonic polylogarithms (HPL) (see [62, 63]), schematically

G(n)
0

(z, z̄) =
∑

~a,~b

C~a,~bHa1,a2,...(z)Hb1,b2,...(z̄) , (6.2)

– 34 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
0
3
7
P
_
0
6
1
9
 
v
2

where the sum runs over the two sets of indices (including empty sets) ~a = (a1, a2, . . . ) and ~b =

(b1, b2, . . . ) with ai and bj taking the values {0, 1}. Most importantly, the number of terms on the

right-hand side of (6.3) is finite for any n thus allowing us to find the expansion coefficients C~a,~b by

matching the small z, z̄ expansion of G(n)
0

(z, z̄) into the corresponding expansion of the basis of HPL

functions. Namely, comparing the coefficients in front of znz̄m logk(zz̄) terms on the both sides of

(6.2) with sufficiently large n+m we obtain an overdetermined system of linear equations for C~a,~b. It

is remarkable that for any finite n this system has a unique solution.

For the first few coefficient functions we find

G(0)
0

= z − z̄ ,

G(1)
0

= H1,0 − H̄1,0 +H1H̄0 −H0H̄1 + H̄0,1 −H0,1 ,

G(2)
0

= H1H̄0,0 − H̄1H0,0 + H̄0H1,0 −H0H̄1,0 + H̄1,0 −H1,0 − H̄1,0,0 +H1,0,0

−H1H̄0 +H0H̄1 − H̄0,1 + H̄0,0,1 +H0,1 −H0,0,1 , (6.3)

where we introduced a short-hand notation for Ha1,a2,... = Ha1,a2,...(z) and H̄a1,a2,... = Ha1,a2,...(z̄).

The same expressions can be rewritten in terms of classical (di)logarithm functions as

G(1)
0

= −2Li2(z) + 2Li2 (z̄)− log

(

1− z

1− z̄

)

log (zz̄) ,

G(2)
0

= −1

2
(log (zz̄)− 2)

(

2Li2(z)− 2Li2 (z̄) + log

(

1− z

1− z̄

)

log (zz̄)

)

. (6.4)

We verify that these expressions coincide with the result of the two-loop calculation (5.9).

It is convenient to assign to each term on the right-hand side of (6.2) and (6.3) the weight equal

to the total length of the sets ~a∪~b. Then, G(1)
0

is given by a linear combination of weight−2 functions

whereas expansion of G(2)
0

contains both weight−2 and weight−3 functions. We see that the maximal

weight of increases by one at each loop order. Correspondingly, the dimension of the basis of the

functions increases rapidly at higher loops. The number of terms in the expression for G(n)
0

at n loops

is given by:

loops 3 4 5 6 7

dimension 38 48 154 244 508

The resulting expressions for G(n)
0

in terms of HPLs are rather lengthy and we do not present them

here.

The coefficient functions G(n)(z, z̄) should be single-valued functions of z for z̄ = z∗. This property

is not obvious from (6.2) since HPL functions have, in general, branch cuts that start at z = 0 and

z = 1. We can use this information to restrict the basis of possible functions. The HPLs can enter

(6.3) through special linear combinations which are free from the branch cuts. They are known as

single-valued harmonic polylogarithms La1,a2,..., their definition can be found in [60, 61]. The resulting
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expressions for G(n)
0

in terms of SVHPLs are 14

G(1)
0

= −(L01 − L10) , (6.5)

G(2)
0

= (L01 − L10)− L001 + L100 ,

G(3)
0

=
3

2
(L01 − L10)− L0001 + L0010 − L0100 − L0101 + L1000 + L1010 + 4ζ3L1 ,

G(4)
0

= (3− 4ζ3)(L01 − L10)− L00001 + L00010 − L01000 − L01001 + L10000 + L10010 ,

G(5)
0

=
49

8
(L01 − L10) +

1

2
(L0001 − L0010 + L0100 + L0101 − L1000 − L1010)− 2 (ζ3 − 6ζ5)L1

+ 4ζ3 (L001 − L010 + L100 + L101)− L000001 + L000010 − L000100 − L000101 + L001000

+ L001010 − L010000 − L010001 − L010100 − L010101 + L100000 + L100010 + L101000 + L101010 .

Similar expressions up to 7 loops can be found in a Mathematica file attached to this submission.

6.2 One-magnon case (Type G1)

Going along the same lines as in the previous case, we were able to expand the sum (4.40) in terms of

the SVHPLs. The weak-coupling result (5.11) suggests to look for G1 in the form

G1 =
(zz̄)3/2

z − z̄

∞
∑

n=0

ξ2nG(n)
1

. (6.6)

The explicit expressions for the first few coefficient functions are

G(0)
1

= z − z̄ ,

G(1)
1

= −L10 + L01 ,

G(2)
1

= L0100 − L0010 ,

G(3)
1

= L000100 + L000110 − L001000 − L001010 + L010100 + L010110 − L011000 − L011010 − 4ζ3(L001 + L011) ,

G(4)
1

= −L00001000 − L00001010 + L00010000 + L00010010 − L01001000 − L01001010 + L01010000 + L01010010

−4ζ3 (L00001 − L00010 + L01001 − L01010) . (6.7)

We verify that the first two terms reproduce correctly the perturbation theory result (5.11).

6.3 Two-magnon case (Type G2)

In this case we only managed to reproduce the tree level and 2-loop perturbation theory result (5.13).

We found that it is not possilbe to express the 4-loop expression in terms of SVHPLs. We found

that it is given by elliptic function. In small z limit the underlying elliptic curve degenerates and the

correlator can be written in terms of HPL’s of z̄ multiplied by powers and logarithms of z. 15

7 Classical (Strong Coupling) Limit of the 4-point Correlators

In this section, we investigate the strong coupling limit of the 4-point correlators. Even though the

world-sheet description of this theory is still not known, it was shown in [44] that there is a classical

14We attach to the arXiv submission an auxilary file containing the expressions for SVHPLs of the weight up to 8 in

terms of the HPLs.
15We would like to thank F. Aprile, J. Bourjaily, J. Drummond, P. Heslop and O. Gurdogan for very useful discussion

on related issue.
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limit of the underlying integrability construction for the spectrum where it reduces to an algebraic

curve reminiscent of that of the classical strings in AdS5 × S5 in the full theory. Similarly, we will see

that the leading strong coupling ξ → ∞ asymptotics of the correlation function is saturated by one

state with large ∆, S ∼ ξ and the corresponding result scales as e−ξA(z,z̄), where A(z, z̄) is a certain

function of cross-ratios. Moreover, since ξ = ge−iγ3/2 this classical asymptotics reminds the behavior

of the three point correlation functions for short operators in strongly coupled N = 4 SYM theory in

planar limit (see for example [64, 65]). Whereas it would be premature to conclude that this points

to the dual string description for the bi-scalar model, the observed behaviour looks very much like

an action evaluated on some classical solution. All that constitutes an evidence towards existence

of the classical limit of the fishnet theory at strong coupling ξ → ∞. The possible relation to the

recently proposed AdS sigma model description of the ground state of the fishnet theory for infinite

L by [66] is also yet to be understood. In this section we assume that z takes a generic value in the

range 0 < |z|< 116. The convergence is not uniform and the limits z → 0 or z → 1 have to be taken

with extra care. We also assume that ξ = e−iφξ0 where ξ0 is large and real and φ is a small positive

phase. This assumption is necessary as the correlator has poles at real values of ξ which accumulate

at infinity and the limit is not defined.

7.1 Correlation function for zero-magnon case (wheel-graphs)

First we consider the correlation function GD. It is obtained from the zero-magnon function G0 given

by (4.22) via (2.7). As we discussed above, this results in dropping terms with odd S in the sum (4.22)

and doubling the terms with even S. In this subsection, we compute (4.22) in the limit when ξ → ∞.

Our main assumption, which is backed by intensive numerical analysis, is that for ξ → ∞ the sum

in (4.22) is saturated by large spins S ∼ ξ. Then, replacing the conformal blocks in (4.22) by their

asymptotic behavior at large S and ∆, we can evaluate the sum over S by the saddle-point method.

In what follows we only evaluate the leading exponential factor. The pre-exponent and the subleading

terms can be computed by the same method, we leave it to future studies.

Before we begin we notice the following property of the structure constant (4.15)

CS,∆ = −C−2−S,∆ . (7.1)

It allows us to write the 4-point function (4.22) in the following way

G0(u, v) =
∑

∆=∆t=2,∆t=4

∞
∑

S=−∞

C∆,S (−1)S
zz̄

z − z̄
k(∆ + S, z)k(∆− S − 2, z̄) , (7.2)

where k(∆, z) is given by the hypergeometric function in (A.2). This expression considerably simplifies

our analysis as it allows to replace the sum over S by an integral with exponential precision at large

ξ and the evaluate it by the saddle point method.

The asymptotic behavior of the conformal block can be found by using a series representation of

the hypergeometric functions in (A.2)

2F1

(

∆+ S

2
,
∆+ S

2
;∆ + S; z

)

=

∞
∑

k=0

zk2∆+S−1Γ
(

S
2 + ∆

2 + 1
2

)

Γ
(

k + S
2 + ∆

2

)2

√
πΓ(k + 1)Γ

(

S
2 + ∆

2

)

Γ(k + S +∆)
. (7.3)

Then rescaling the variables as

∆ = ξ d , S = ξ s , k = ξ w , (7.4)

16As below we find square roots and logariphms for definiteness we also assume in the calculation that 0 < arg z < π/4.
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we expand the expression under the sum at large ξ and extremize in w to obtain

2F1

(

∆+ S

2
,
∆+ S

2
;∆ + S; z

)

∼ exp

[

∆+ S

2
log

(

4

z

1−
√
1− z

1 +
√
1− z

)]

, (7.5)

in agreement with [67].

Similarly we replace the structure constants (4.15) by their leading asymptotic behaviour at large

S and ∆ to get from (7.2) and (2.7)

GD(z, z̄) ∼
∑

∆,S

exp

[

∆

2
log

(

(√
1− z − 1

) (√
1− z̄ − 1

)

(√
1− z + 1

) (√
1− z̄ + 1

)

)

+
S

2
log

(

(√
1− z − 1

) (√
1− z̄ + 1

)

(√
1− z + 1

) (√
1− z̄ − 1

)

)]

.

(7.6)

where the sum runs over even spins S, both positive and negative. We recall that for each S there

are only two values of ∆ that contribute to the sum, ∆2(S) and ∆4(S), given by (4.8). At strong

coupling, we apply (7.4) to find that they have different dependence on the spin

∆t=2 ≃ ξ
√

s2 − 4 , ∆t=4 ≃ ξ
√

s2 + 4 . (7.7)

Note that for s < 2 we get purely imaginary ∆t=2/ξ. In order to get a consistent strong coupling limit

we should take ξ to have slightly negative phase, so that Re ∆t=2 → +∞ at strong coupling. After

that we substitute (7.4) into (7.6) and extremize the expression in the exponent over s to get

GD(z, z̄) ∼ e−ξAt=2(z,z̄) + e−ξAt=4(z,z̄) , (7.8)

where the two states (7.7) produce two different exponents

At=2 = iAt=4 , At=4(z, z̄) ≡ −i

√

log

(
√
1− z − 1√
1− z + 1

)2

log

(
√
1− z̄ + 1√
1− z̄ − 1

)2

, (7.9)

where z̄ = z∗. Notice that At=4 is positive whereas At=2 is purely imaginary. As a consequence,

−ξAt=2 has a large negative real part and, therefore, the correlation function (7.9) is exponentially

suppressed at strong coupling, as it is expected for the tunneling processes in the classical limit.

Let us also point out that the state which saturates the sum over S in the sum (7.6) has the

following scaling dimension and spin

∆cl
t = ± 2ξ

At
log

(

(√
1− z − 1

) (√
1− z̄ − 1

)

(√
1− z + 1

) (√
1− z̄ + 1

)

)

,

Scl
t = ∓ 2ξ

At
log

(

(√
1− z − 1

) (√
1− z̄ + 1

)

(√
1− z + 1

) (√
1− z̄ − 1

)

)

, (7.10)

with the upper sign for t = 2 and lower for t = 4. It would be interesting to find a classical model

which reproduces these results.17

As a test of our result we consider the small z limit of (7.8). In this limit, we expect that the

leading contribution to the correlation function should come from the states with S = 0 leading to

GD(z, z̄) ∼ (zz̄)∆t(S=0)/2. Expanding the relations (7.9) and (7.10) at small z we find

e−ξA4 ≃
(zz̄

16

)ξ

, ∆cl
4 ≃ 2ξ , Scl

4 ≃ 0 ,

e−ξA2 ≃
(zz̄

16

)iξ

, ∆cl
2 ≃ 2iξ , Scl

2 ≃ 0 , (7.11)

17In analogy with sl(2) spin chain we expect that to be some variation of the classical Toda spin chain.
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in a perfect agreement with our expectation.

To further test our result, we computed the 4-point function (7.6) numerically for ξ = ne−iπ/6

(with n = 100, 105, 110 . . . , 200) and z = eiπ/5/8. Fitting the data we obtained the following result for

the contribution of states with ∆t=2 and ∆t=4

Re log GD

∣

∣

∣

t=2
= −3.479085434 n+ (0.5000000000 log n− 4.602673564)− 0.3908689558

n
+ . . . ,

Re log GD

∣

∣

∣

t=4
= −6.025952735 n+ (0.5000000000 log n− 4.602673564)− 0.6770048906

n
+ . . . .(7.12)

The leading term on the right-hand side agrees with analytic result (7.9) for Re(−ξAt=2(z, z̄)) and

Re(−ξAt=4(z, z̄)) up to 27 significant digits (i.e. within the fit precision 18). The relation (7.12) clearly

indicates that the first subleading correction to log GD is the same for the two states. It scales as ln ξ/2

and generates
√
ξ in pre-exponents on the right-hand side of (7.8). This factor could come from some

zero modes in the semiclassical analysis (see very similar prefactors in the expectation values of a

circular Wilson loop in N = 4 SYM [68]).

7.2 Correlation function for one-magnon case (single spiral graphs)

The strong coupling limit of the correlation function G1 happens to be very similar to the previous

case. We immediately observe using (4.31) that the states contributing to G1 have exactly the same

strong coupling asymptotics as t = 2 states in G0 from the previous section, namely, for even S we

have

∆ ≃ ξ
√

s2 − 4 , (7.13)

where s = S/ξ and the odd S have to be considered separately and their contribution can be obtained

by replacing ξ by −iξ. From (7.13), it is not surprising that the leading asymptotics of the 4−point

correlator appears to be also the same as that of GD, Eq. (7.8)

G1(z, z̄) ∼ e−ξAt=2(z,z̄) + e−ξAt=4(z,z̄) . (7.14)

where At=2 comes from even spins and At=4 from odd spins. Note, however, that the pre-exponential

factors in (7.8) and (7.14) are different.

To verify our result we computed G1(z, z̄) numerically for fixed values of ξ = ne−iπ/6, n =

100, 105, 110 . . . , 200 and for fixed z = 1
8e

iπ/5. Fitting this data with n, log n, 1, 1/n, 1/n2, . . . , 1/n18

we obtain the following result

Re log G1|even S = −3.479085434 n+ (0.5 log n− 4.705957686) +
0.2721446760

n
+ . . . , (7.15)

Re log G1|odd S = −6.025952735 n+ (0.5 log n− 4.705957686) +
0.4713684059

n
+ . . . (7.16)

The leading coefficients agrees with our analytic result−Re(e−iπ/6At=2(z, z̄)) and−Re(e−iπ/6At=4(z, z̄))

with 27 digits (i.e. within the fit precision).

* * *

The analysis of the strong coupling behavior of the two-magnon correlator (double spiral graphs)

is more complicated and we leave it for the future studies. It would be interesting to guess the “world-

sheet” degrees of freedom leading to these classical asymptotics, similarly to what was done AdS5×S5

in the full AdS5 × S5 duality. A possible way to further elucidate whether the bi-scalar model has

18For presentation purposes we lowered the precision in (7.12)
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Figure 17. Three-point correlation function of one unprotected operator located at point x1 and two protected

operators at points x2 and x3.

a string dual description is probably to study the classical behavior of the long operators with many

magnons. The finite gap description of these states in the model can help to identify the string degrees

of freedom, in analogy with the finite gap construction for the full AdS5 × S5 string [69–71].

8 Gluing triangles: general structure constants

In the previous section, we computed the OPE coefficients C•◦◦
∆,S for the two protected and one un-

protected zero-magnon operator, see (4.16). In this section we generalize these results to the OPE

coefficients of one protected and two unprotected zero-magnon operators C••◦
∆1,S1,∆2,S2

.

We show below that these OPE coefficients can be easily obtained by gluing together the three-

point correlation functions defined by C•◦◦
∆,S , schematically 19

〈On
S(x1) tr[X̄(x2)X̄(x3)]〉 = C•◦◦

∆,S

(1 + (−1)S)c2

x∆−S
12 x∆−S

13 x2−∆+S
23

(

2(n · x13)
x213

− 2(n · x12)
x212

)S

, (8.1)

where n is an auxiliary light-like vector and

On
S(x) = N Tr

[

X(x)(n · ∂)SX(x) + . . .
]

, (8.2)

with dots denoting terms with derivatives acting on both fields. As usual, the normalization factor N
is fixed by the two-point function, N 2 ∼ 1/〈On

SŌn
S〉. The stucture constant C•◦◦

∆,S is given by (4.15)

and (4.16) and the scaling dimension ∆ = ∆2(S) is defined in (4.8).

The three-point function (8.1) resums the wheel diagrams shown in Fig.17. They contain two

scalar lines connecting x1 with the two external points x2 and x3 dressed by an abritrary number of

wheels incircling x1. We can use this result as a building block for a more complicated three-point

correlation function, involving two twist-2 operators with an arbitrary spin and one protected operator

TS1,S2
(x1, x2, x3) = 〈On1

S1
(x1)Ōn2

S2
(x2) tr[X̄(x3)X(x3)]〉 , (8.3)

19The factor 1 + (−1)S on the r.h.s. comes from symmetrization in x2 and x3.
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Figure 18. Three-point correlation function of two unprotected twist-2 operators and one protected operator

tr(XX̄). It can be obtained by gluing together two wheel diagrams shown in Fig. 17 through the common

external points.

where Ōn2

S2
is given by (8.2) with X replaced with X̄ and ni (with i = 1, 2) being light-like vectors. In

the planar limit, this correlation function receives contribution from the diagrams shown on Fig. 18.

The main observation is that they can obtained by merging together two wheels depicted in Fig. 17.

To exemplify the idea we first consider (8.3) for S1 = S2 = 0. In this case, we have

T0,0(x1, x2, x3) = 2c4
∫

d4x0
C•◦◦

∆1,0

(x210)
∆1/2(x213)

∆1/2(x203)
1−∆1/2

(−�0)
C•◦◦

∆2,0

(x220)
∆2/2(x223)

∆2/2(x203)
1−∆2/2

,

(8.4)

where the operator (−�0) amputates an extra propagator and the integration over x0 glues two sets

of wheels together. Here ∆1 = ∆2 are the scaling dimensions of the operators tr(X2) and tr(X̄2) given

by (4.10) but it is convenient to keep ∆1 and ∆2 to be arbitrary. 20 Then, after differentiation in x0
the integral becomes

T0,0(x1, x2, x3) = 2c4
∫

d4x0
C•◦◦

∆1,0
C•◦◦

∆2,0
(2−∆2)∆2

x∆1

01 x
∆2+2
02 x6−∆1−∆2

03 x∆1

13 x
∆2−2
23

. (8.5)

We can employ inversions to verify that the integral transforms under the conformal transformation as

a three-point correlation function of scalar operators. This property fixes the form of T0,0(x1, x2, x3)

up to a structure constant

T0,0(x1, x2, x3) = 2c3
C••◦

∆1,0;∆2,0

x∆1+∆2−2
12 x∆1−∆2+2

13 x−∆1+∆2+2
23

. (8.6)

The integral in (8.5) can be computed immediately using the star-triangle identity leading to

C••◦
∆1,0;∆2,0 = C•◦◦

∆1,0C
•◦◦
∆2,0

Γ
(

2− ∆1

2

)

Γ
(

2− ∆2

2

)

Γ
(

∆1

2 + ∆2

2 − 1
)

Γ
(

∆1

2

)

Γ
(

∆2

2

)

Γ
(

−∆1

2 − ∆2

2 + 3
) . (8.7)

20Note that we can in principle take different couplings of wheels around x1 and around x2 (similarly to [22]), i.e. ξ1
and ξ2, making also ∆1 and ∆2 unequal.

– 41 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
0
3
7
P
_
0
6
1
9
 
v
2

Replacing C•◦◦
∆,S with (4.16) we obtain the following expression

(C••◦
∆1,0;∆2,0)

2 =
4Γ (4−∆1) Γ (4−∆2) Γ

2
(

∆1

2 + ∆2

2 − 1
)

((∆1 − 4)∆1 + 2) ((∆2 − 4)∆2 + 2)Γ (∆1 − 1) Γ (∆2 − 1) Γ2
(

−∆1

2 − ∆2

2 + 3
) ,(8.8)

which is symmetric in ∆1 and ∆2 as it should be.

So far, we treated ∆1 and ∆2 as arbitrary parameters. We expect that, in the limit ∆2 → 2,

when the correlator T0,0 looses all its wheels around x2, it should reduce to the wheel correlation

function (8.1) multiplied by a free scalar propagator connecting x2 and x3. Indeed, it is easy to see

that C••◦
∆1,0;2,0

= C•◦◦
∆1,0

.

In application to the conformal fishnet theory, we have to replace the scaling dimensions ∆1 = ∆2

in (8.8) with their exact expression (4.10). In this case, the expression (8.8) simplifies to

(C••◦
∆1,0;∆1,0)

2 =
4 (∆1 − 3) 2

((∆1 − 4)∆1 + 2) 2
. (8.9)

Non-zero spins. It is straightforward to generalize (8.4) to the operators with non-zero spins

TS1,S2
(x1, x2, x3) = 2c4C•◦◦

∆1,S1
C•◦◦

∆2,S2

∫

d4x0Ψ
S1,n
∆1,1,1

(x1, x0, x3)(−�0)Ψ
S2,n2

∆2,1,1
(x2, x0, x3) , (8.10)

where the notation was introduced for the so-called conformal triangle function

ΨS1,n
∆1,∆2,∆3

(x1, x2, x3) ≡
1

x∆1+∆2−∆3−S1

12 x∆1−∆2+∆3−S1

13 x−∆1+∆2+∆3+S1

23

(

2(nx13)

x213
− 2(nx12)

x212

)S1

.

(8.11)

In order to perform the x0−integration in (8.10), we make use of the following identity

ΨS1,n
∆1,∆2,∆3

(x1, x0, x3) ≡ fS1

∆1,∆2,∆3
[D∆1,n]

S1
1

x∆1+∆2−∆3−S1

10 x∆1−∆2+∆3−S1

13 x−∆1+∆2+∆3+S1

03

,(8.12)

where D∆1,n is a differential operator acting on x1
21

D∆1,n = (n∂x1
) + 2 (∆1 − 1)

(nx13)

x213
(8.13)

and the normalization constant is given by

fS1

∆1,∆2,∆3
≡ Γ

(

1
2 (−S1 +∆1 +∆2 −∆3)

)

Γ
(

1
2 (S1 +∆1 +∆2 −∆3)

) . (8.14)

Replacing the Ψ−functions in (8.10) with (8.12), we can pull out the differential operator DS
∆1,n

outside

the x0−integral to obtain

TS1,S2
(x1, x2, x3) = fS1

∆1,1,1
fS2

∆2,1,1

× [D∆1,n1
]
S1 [D∆2,n2

]
S2

∫

d4x0
(∆2 − S2) (S2 + 2−∆2)C

•◦◦
∆1,S1

C•◦◦
∆2,S2

x∆1−S1

0,1 x∆2−S2+2
0,2 xS1+S2−∆1−∆2+6

0,3 x∆1−S1

1,3 x∆2−S2−2
2,3

, (8.15)

where the x0−integral can be again computed using the star-triangle identity.

21A similar operator also appeared in [72].
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In this way, we arrive at the following expression

TS1,S2
(x1, x2, x3) = 2c3C••◦

∆1,S1;∆2,S2
ΨS1,n1,S2,n2

∆1,∆2
(x1, x2, x3) , (8.16)

where the dependence on xi is carried by the function

ΨS1,n1,S2,n2

∆1,∆2
= [D∆1,n1

]
S1 [D∆2,n2

]
S2

fS1+S2

∆1,∆2,2

x∆1+∆2−2−S1−S2

12 x∆1−∆2+2−S1+S2

13 x−∆1+∆2+2+S1−S2

23

. (8.17)

The structure constant C••◦
∆1,S1;∆2,S2

depends on the scaling dimensions and spins of the two unpro-

tected operators and reads

(

C••◦
∆1,S1;∆2,S2

)2
=

4 (S1 + 1) (S2 + 1)

(− (∆1 − 4)∆1 + S1 (S1 + 2)− 2) (− (∆2 − 4)∆2 + S2 (S2 + 2)− 2)

× Γ (S1 −∆1 + 4)Γ (S2 −∆2 + 4)Γ2
(

1
2 (S1 + S2 +∆1 +∆2 − 2)

)

Γ (S1 +∆1 − 1) Γ (S2 +∆2 − 1) Γ2
(

1
2 (S1 + S2 −∆1 −∆2 + 6)

) . (8.18)

This relation constitutes the main result of this section. We can check again that in the limit S2 → 0

and ∆2 → 2 the general expression (8.18) reduces to (C•◦◦
∆1,S1

)2 defined in (4.15). We note that there

is a striking similarity of (8.18) with the expressions for the cusp structure constants of [22, 73].

The function ΨS1,n1,S2,n2

∆1,∆2,2
describes the xi−dependence of the three-point correlation function

(8.3). Based on the conformal symmetry, we expect that it should have the following general form [74]

ΨS1,n1,S2,n2

∆1,∆2
=

1

(x212)
α12(x223)

α23(x213)
α13

min(S1,S2)
∑

n=0

cnH
n
12(V1,23)

S1−n(V2,13)
S2−n , (8.19)

where

α12 =
1

2
(S1 + S2 +∆1 +∆2 − 2) ,

α13 =
1

2
(S1 − S2 +∆1 −∆2 + 2) ,

α23 =
1

2
(−S1 + S2 −∆1 +∆2 + 2) , (8.20)

and the sum runs over the conformal tensors projected onto light-like vectors n1 and n2

H12 = 2(n1n2)x
2
12 − 4(n1x12)(n2x12) ,

V1,23 =
x212x

2
13

x223

[

2(n1x13)

x213
− 2(n1x12)

x212

]

,

V2,13 =
x223x

2
21

x231

[

2(n2x23)

x223
− 2(n2x21)

x221

]

. (8.21)

The expansion coefficients cn can be found by matching (8.19) into (8.17)

cn =
Γ (S1 + 1)Γ (S2 + 1)

Γ(n+ 1)Γ (−n+ S1 + 1)Γ (−n+ S2 + 1)

× Γ
(

1
2 (S1 − S2 +∆1 +∆2 − 2)

)

Γ
(

1
2 (−S1 + S2 +∆1 +∆2 − 2)

)

Γ
(

1
2 (S1 + S2 +∆1 +∆2 − 2)

)

Γ
(

1
2 (2n− S1 − S2 +∆1 +∆2 − 2)

) . (8.22)
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Applying (8.18) we have to replace the scaling dimensions ∆1 and ∆2 by their explicit expressions.

For the twist-two operators (8.2) they are given by the function ∆2(S), Eq. (4.8), evaluated for spin

S = S1 and S = S2, respectively. We recall that the scaling dimensions of twist-2 and twist-4 operators,

∆2(S) and ∆4(S) are two branches of the same function of the (complexified) coupling constant ξ2.

This suggests that depending on the choice of the branch of the functions ∆1(ξ
2) and ∆2(ξ

2), the

relation (8.16) should also describe the three-point correlation function of the protected operator with

two unprotected operators each having twist−2 or twist−4.

9 Generalization to any dimension

Many of the results obtained in the previous sections for the bi-scalar theory (1.1) in d = 4 dimensions

can be easily generalized to its d−dimensional version proposed in [47]. In particular, the zero-magnon

four-point correlation function GD was computed there for any d, generalizing the d = 4 results of [35].

The Lagrangian of d−dimensional bi-scalar model is non-local

Ld = Nc tr[X̄ (−∂µ∂µ)
d
4
−ωX + Z̄ (−∂µ∂µ)

d
4
+ω Z + (4π)

d
2 ξ2X̄Z̄XZ] , (9.1)

where the differential operator in an arbitrary power is defined in a standard way, as an integral oper-

ator. For the particular “isotropic” case ω = 0, the action (9.1) should be supplemented with the same

double-trace counterterms (1.2). As before, the theory has two fixed points with the corresponding

values of the double-trace couplings depending on ξ2 and computable at least at weak coupling. Since

the d-dimensional theory (9.1) has the same chiral interaction vertex as (1.1), we can consider the

correlation functions the same types as those shown on Fig.1. An important difference with the d = 4

case is that free scalar propagators are now given by c/(x212)
d/4 with c = 1/(2π)d/2.

To compute zero- and one-magnon four-point correlation functions, as it is done in 4 dimensions

in the previous sections, we have to find, at any d, the eigenvalues of the graph-building operators E0

and E1. They are computed in appendix C leading to (see also [47, 75])

E0 = c4πdΓ
(

d
4 + S

2 − ∆
2

)

Γ
(

−d
4 + S

2 + ∆
2

)

Γ
(

3d
4 + S

2 − ∆
2

)

Γ
(

d
4 + S

2 + ∆
2

) , (9.2)

E1 = c2πd/2(−1)S
Γ
(

3d
8 + S

2 − ∆
2

)

Γ
(

−d
8 + S

2 + ∆
2

)

Γ
(

5d
8 + S

2 − ∆
2

)

Γ
(

d
8 + S

2 + ∆
2

) . (9.3)

In addition, we also need the expression for the kinematical factor c2 defined in (A.5). It is given in

by (A.5), where we should take ∆1 = ∆2 = d/4 for the zero-magnon case and ∆1 = 2d/4, ∆2 = d/4

for the one-magnon case. Assuming that all the intermediate steps are still valid for general d, we find

the the following expression for the OPE coefficients

C∆,S =
4π

cd
res∆

(

1

c2(ν, S)

En
∆,S

1− χE∆,S

)

. (9.4)

where χ0 = (4π)dξ4, n = 1 and χ1 = (4π)d/2ξ2, n = 2 for zero-magnon and one-magnon cases,

respectively. The dimension ∆ of operator appearing at the corresponding pole is related to the

representation label ν in the following way: ∆ = d
2 +2iν. For d = 2, the zero-magnon spectrum looks

particularly simple [47]

∆0 = 1 +
√

S2 − 4ξ2 . (9.5)

Interestingly [47], the particular case of d = 2 with ω → 1/2 in (9.1) is relevant for the BFKL

approximation in high-energy QCD.
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For general d the structure of the poles in ν could change. In particular the poles coming from

E∆,S = 1/χ will have a different number of solutions for different d (actually, this number is infinite

for odd dimensions, see [47] for the analysis of possible exchange states in zero-magnon case), and

those have to be taken into account when computing the correlation function. The computations are

particularly simple in dimensions d = 4k, where k is integer. Then the spectral equations become

polynomial in ∆. For example, for one-magnon case, the spectral equation for d = 8 looks as

(−1)S

16
(−∆+ S + 6)(−∆+ S + 8)(∆ + S − 2)(∆ + S) = ξ2 , (9.6)

etc.

We leave the computations of a more complicated two-magnon correlation function, as well as the

detailed study of the general d case, for future investigation.

10 Discussion and Conclusions

In this work, we computed exactly and explicitly certain 4-point correlation functions in bi-scalar CFT

(1.1) which represent a specific double scaling limit (combining weak coupling and strong imaginary

twist) of γ-deformed N = 4 SYM theory in ’t Hooft approximation [42]. Although this theory obeys

the integrability properties, related to the integrability of fishnet Feynman graphs [48] dominating in

its planar perturbation theory, we concentrate here on the physical quantities which can be computed

without any appeal to the integrability and utilizing only the conformal symmetry properties. The

three types of such 4-point functions are named as zero-magnon, one-magnon and two-magnon cases,

referring to the exchange operators which are of a type tr(Z2), tr(Z2X) and tr(Z2X2) + perm., as

well as their non-zero spin cousins. The last operator is the analogue of the famous Konishi operator

in N = 4 SYM theory. It is quite remarkable that we managed to compute explicitly the all-loop

anomalous dimensions of all these operators, as well as their structure constants with the external

protected operators. These formulas give a host of very non-trivial non-perturbative OPE data, with

a rich analytic structure. To our knowledge, this are the first examples of such non-perturbatively and

explicitly computed 4-point correlation functions in an interacting CFT in d > 2 dimensions.

The results for 4-point functions are presented in a standard form, as explicit OPE expansions

over conformal blocks. We studied these functions by the weak coupling expansion and found that the

results for zero- and one-magnon cases can be presented, in each order of weak-coupling expansion, in

terms of special class of functions called Harmonic Poly Logariphms (HPL), thus facilitating the study

of these functions in the cross channels. As for the more complicated two-magnon case, we observed

that the HPL representation is only possible in the light-cone limit z → 0, or equivalently u→ 0 with

v fixed.

Many interesting questions related to the study of these quantities are left out of the scope of

this paper. In particular, we left for the future the study of the operator content and the OPE in

cross-channels of all three 4-point functions, where the analytic structure looks more complicated than

in the original channel. It would be also interesting to generalize these 4-point functions to the case of

external operators with spins. The correlation functions we computed could serve as a building block

for more complicated n−point functions by gluining them together. Similar approach was recently

developed in SYK context in [76]22. To demonstrate the procedure we show in section 8 how to obtain

more complicated structure constants starting from the elementary blocks.

22see also [77] for a recent review.
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Notice that the main common feature of the 4-point functions, which allowed for the explicit

computations using the combination of Bethe-Salpeter techniques and the conformal symmetry, was

the presence of not more than two scalar fields of each species, Z or X, in the exchange operators. If we

want to compute the multi-point correlation functions with more than two scalars of any of the species

in exchange operators, we have to appeal to the integrability methods, based on the non-compact

conformal Heisenberg type spin chains. All computations become then much more sophisticated,

though in many cases possible. Already the computations of anomalous dimensions of tr(Z3) operator

and its cousins with the same R-charge, necessitated the extraction of the results from the quantum

spectral curve of the full γ-deformed N = 4 SYM theory, in the corresponding double scaling limit [44].

The alternative method for computations of anomalous dimensions, is based on the integrable quantum

conformal spin chain [78]. For the 3-point and 4-point correlation functions in bi-scalar theory, this

last method seems to be particularly promising. Recently, in a very similar setup it was shown that

the separation of variables (SOV) approach could be used to get compact expessions for the correlation

function in [22]. The expressions for the structure constants obtained there are very similar to our

results, which indicates that a similar SOV-based approach could work here. There are also some

other options, such as the form factor approach [21], successfully applied in [52] for the computation

of certain 4-point correlation function based on fishnet graphs with disc topology.

Interestingly, all our current results for 4-point correlation functions in d = 4 dimensions appear

to be directly generalizable to the bi-scalar CFT at any d which was recently formulated in [47]. The

d = 2 case is closely related to the BFKL model of reggeized gluons describable by the SL(2, C)

Heisenberg spin chain [50, 51, 79, 80]. It is worth noticing that the computations of 4- and 6-point

correlation functions of BFKL pomeron light-ray operators presented in [81–83] look closely related

to our current computations. It would be interesting to compare those results to our current results.

The most interesting, physical questions about the bi-scalar CFT still remain to be answered. It

still remains to be understood whether this theory has a dual string description. The availability of

explicit all-loop results, such as presented in this paper, should allow for some guesses in this direction.

Quite intriguingly, the strong coupling limit of the 4 point correlators studied in this paper exhibits

typical classical exponential scaling with the coupling, suggesting existence of the dual strong coupling

classical description.

Note added: while this paper was in preparation a paper [84] appeared about SYK model, which

may however have some overlap with our results.
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A Definitions and relations

In the main text we use the following definition of the four-dimensional conformal block [55]

g∆,S = (−1)S
zz̄

z − z̄
[k(∆ + S, z)k(∆− S − 2, z̄)− k(∆ + S, z̄)k(∆− S − 2, z)] , (A.1)

where k(β,x) = xβ/2 2F1

(

β − (∆1 −∆2)

2
,
β + (∆3 −∆4)

2
, β, x

)

. (A.2)

We also use the following formulas for normalization of the conformal triangles in any dimension d

∫

ddx1d
dx2

(x212)
d−∆1−∆2

Φ−ν,S,x0
(x1, x2)Φν′,S′,x′

0
(x2, x1) = (A.3)

= (−1)Sc1(ν, S)δ(ν − ν′) δS,S′δ(d)(x00′)(nn
′)S + (−1)Sc2(ν, S)δ(ν + ν′)δS,S′

Y S(x00′)

(x200′)
d/2−S−2iν

,

where Y (x00′) = (n∂x0
)(n′∂x0′

) lnx200′ . The coefficients c1 and c2 enter into the general relations we

discuss in the text. They are given by [53]

c1 =
2S+1 S! Γ(+2iν)Γ(−2iν)

(

4ν2 + (d2 + S − 1)2
)−1

π−(3d/2+1)Γ
(

d
2 − 1 + 2iν

)

Γ
(

d
2 − 1− 2iν

)

Γ(d2 + S)
, (A.4)

c2 =
2πd+1(−1)SS! Γ

(

∆− d
2

)

Γ(∆ + S − 1)Γ
(

1
2 (d−∆+∆1 −∆2 + S)

)

Γ
(

1
2 (d−∆−∆1 +∆2 + S)

)

Γ(∆− 1)Γ
(

d
2 + S

)

Γ
(

1
2 (∆ +∆1 −∆2 + S)

)

Γ
(

1
2 (∆−∆1 +∆2 + S)

)

(d−∆+ S)
.

(A.5)

The functions Φν,S,x0
form an orthogonal basis for ν > 0. This implies the following resolution of

identity

δ(d)(x1 − x3)δ
(d)(x2 − x4) =

∞
∑

S=0

(−1)S

(x212)
d−∆1−∆2

∫ ∞

0

dν

c1(ν, S)

∫

ddx0Φ
µ1...µS

−ν,S,x0
(x1, x2)Φ

µ1...µS

ν,S,x0
(x4, x3)

(A.6)

when projected to the functional space spanned by Φν,S,x0
.

B Cancellation of the spurious poles

In this appendix we analyse additional possible contributions in (3.17) due to the extra poles in

g∆,S(u, v) and the measure factor 1/c2. We will see that these contributions cancel each other if an

additional condition is imposed on the eigenvalue E∆,S .

The conformal block g∆,S(u, v) from (A.1) has simple poles at ∆S−n = S + 3 − n (with n =

1, 2, . . . , S), or equivalently 2iνn = S+1−n. Its residue at the pole ν = νn is given by rn gS+3,S−n(u, v)

where (see for example Appendix B in [85]):

rn = (−1)n
inΓ2

(

1
2 (n−∆1 +∆2 + 1)

)

2Γ(n+ 1)2Γ2
(

1
2 (−n−∆1 +∆2 + 1)

) . (B.1)

This results in the following extra contribution to (3.17):

Rg
S,m =

(

rm
c2(∆S−m, S)

En
∆S−m,S

1− χE∆S−m,S

)

gS+3,S−m(u, v) , 1 ≤ n ≤ S <∞ . (B.2)

– 47 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
0
3
7
P
_
0
6
1
9
 
v
2

The sum of the above contributions in general is not zero, however, there are also poles at ∆ =

S+3+k, k = 0, 1, 2, . . . coming from 1/c2(∆, S) factor in (3.12). They can be also expressed in terms

of rn as follows
1

c2(S + 3 + k + 2iǫ, S)
≃ −1

ǫ

rk
c2(S + 3, S + k)

(B.3)

resulting in another contribution

Rc2
S,k = −

(

rk
c2(∆S , S + k)

En
∆S+k,S

1− χE∆S+k,S

)

gS+3+k,S(u, v) , 0 ≤ S, k <∞ . (B.4)

Let us show that these poles cancel under certain condition on E∆,S . The sum of the contributions of

Rg can be written as
∞
∑

S=0

S
∑

m=0

Rg
S,m =

∞
∑

m=0

∞
∑

S=m

Rg
S,m =

∞
∑

k=0

∞
∑

S=0

Rg
S+k,k (B.5)

where we use that r0 = 0 and in the last sum we shift the summation index by m and renamed m to

k. Since the other contribution has the form

∞
∑

k=0

∞
∑

S=0

Rc2
S,k (B.6)

we have to consider

Rc2
S,k +Rg

S+k,k = −
(

rk
c2(∆S , S + k)

[

En
∆S+k,S

1− χE∆S+k,S
−

En
∆S ,S+k

1− χE∆S ,S+k

])

gS+3+k,S(u, v) . (B.7)

We see that there will be no additional terms in (3.16) if we require

rk(E3+S+k,S − E3+S,S+k) = 0 , k = 0, 1, 2, . . . . (B.8)

We verify in the main text that this requirement is indeed satisfied for each case considered.

C Eigenvalues of the graphs-building operators

In this appendix we give technical details of the derivation of the eigenvalues of the graphs-building

operators H0, H1 and H2.

C.1 Star-triangle identity

The calculation can be simplified by applying the so-called star-triangle identity

∫

ddx0 x
a
01x

b
02x

c
03 = πd/2Γ

(

a
2 + d

2

)

Γ
(

b
2 + d

2

)

Γ
(

c
2 + d

2

)

Γ
(

−a
2

)

Γ
(

− b
2

)

Γ
(

− c
2

) x−a−d
23 x−b−d

13 x−c−d
12 , (C.1)

where the exponents a, b and c satisfy a+ b+ c = −2d. A particular case of it is

∫

ddx0 x
a
01x

b
02 = πd/2Γ

(

a
2 + d

2

)

Γ
(

b
2 + d

2

)

Γ
(

−a
2 − b

2 − d
2

)

Γ
(

−a
2

)

Γ
(

− b
2

)

Γ
(

a
2 + b

2 + d
) xa+b+d

12 , (C.2)

which can be obtained from (C.1) by sendind point x3 to infinity.
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C.2 Eigenvalue E0

Here we compute the eigenvalue of the graph-building operator H0 corresponding to the correlation

function G0 in the d-dimensional version of the bi-scalar theory.

In virtue of conformal symmetry, the eigenstate of H0 is given by (3.5) with ∆1 = ∆2 = d/4 being

scaling dimension of scalars in d−dimensions

Φν,S,x0
(x1, x2) = x−∆+S

01 x−∆+S
02 x

∆−S−d/2
12

(

2(nx02)

x202
− 2(nx01)

x201

)S

. (C.3)

The calculation of the eigenvalue of H0 reduces to the following integral

I =

∫

ddx1d
dx2Φν,S,x0

(x1, x2)
c4

xd12x
d/2
13 x

d/2
24

= E0Φν,S,x0
(x3, x4) , (C.4)

where we used (4.2), generalised to any d.

Firstly, we observe that the integrand simplifies by the change of variables xa (with a = 1, 2, 3, 4)

xµ0a =
xµ0ā
x20ā

, x0a =
1

x0ā
, xab =

xāb̄
x0āx0b̄

, ddxa =
ddxā
x2d0ā

(C.5)

corresponding to the inversion around x0. This results in the following integral

I = c42S
∫

ddx1̄d
dx2̄

(

x03̄x04̄
x1̄3̄x2̄4̄

)d/2

x
− 3d

2
+∆−S

1̄2̄
(n · x2̄1̄)S

= c4
∫

ddx1̄d
dx2̄

(

x03̄x04̄
x1̄3̄x2̄4̄

)d/2 Γ
(

3d
4 − S

2 − ∆
2

)

Γ
(

3d
4 + S

2 − ∆
2

) (n · ∂1̄)Sx
− 3d

2
+∆+S

1̄2̄
, (C.6)

where in the second relation we replaced the factor of (n · x2̄1̄) by derivatives acting on x1̄.

Next integrating by parts we can swap ∂1̄ into the derivative in x3̄ and pull it out of the integral

I = c4(x03̄x04̄)
d/2(n · ∂3̄)S

∫

ddx1̄d
dx2̄

(

1

x1̄3̄x2̄4̄

)d/2 Γ
(

3d
4 − S

2 − ∆
2

)

Γ
(

3d
4 + S

2 − ∆
2

)x
− 3d

2
+∆+S

1̄,2̄
. (C.7)

After that the integration can be performed by applying the star-triangle identity (C.2) twice, leading

to

I = c4πdΓ
(

d
4 − S

2 − ∆
2

)

Γ
(

−d
4 + S

2 + ∆
2

)

Γ
(

3d
4 + S

2 − ∆
2

)

Γ
(

d
4 + S

2 + ∆
2

) (x03̄x04̄)
d/2(n · ∂3̄)Sx

− d
2
+∆+S

3̄,4̄
. (C.8)

Evaluating the derivatives and comparing with (C.4) we arrive at

E0 = c4πdΓ
(

d
4 + S

2 − ∆
2

)

Γ
(

−d
4 + S

2 + ∆
2

)

Γ
(

3d
4 + S

2 − ∆
2

)

Γ
(

d
4 + S

2 + ∆
2

) . (C.9)

In the particular case d = 4 we obtain (4.5). The last relation agrees with the results of [47] and

generalizes the d = 4 result of [35]

C.3 Eigenvalue E1

The calculation of the eigenvalue of the graph-building operator for the correlation function G1 is

similar to the previous case. As before, we perform the calculation for general d. The graph-building

operator H1 looks as

H1(x1, x2|x3, x4) = c2δ(d)(x4 − x1) (x42x23)
−d/2 . (C.10)
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Its eigenstate is given by (3.5) with ∆1 = d/2 and ∆2 = d/4

Φν,S,x0
(x1, x2) = x

−∆+S−d/4
01 x

−∆+S+d/4
02 x

∆−S−3d/4
12

(

2(nx02)

x202
− 2(nx01)

x201

)S

. (C.11)

Like in the previous case, to find the eigenvalue we need to evaluate the integral

I = c2
∫

ddx2 (x42x23)
−d/2Φν,S,x0

(x2, x4) = E1Φν,S,x0
(x4, x3) . (C.12)

Again the integrand simplifies after the inversion around x0

I = c22Sx
d/2

03̄
xd04̄

∫

ddx2̄ x
−d/2

2̄3̄
x
− 5d

4
+∆−S

2̄4̄
(n · x4̄2̄)S . (C.13)

Again we can absorb the last term under the integral into the derivatives in x4̄ and evaluate the

integral using (C.2)

I = c2πd/2(−1)S
Γ
(

3d
8 − S

2 − ∆
2

)

Γ
(

−d
8 + S

2 + ∆
2

)

Γ
(

5d
8 + S

2 − ∆
2

)

Γ
(

d
8 + S

2 + ∆
2

) x
d/2

03̄
xd04̄(n · ∂4̄)Sx

− 3d
4
+∆+S

3̄4̄
. (C.14)

Finally, computing the derivatives and comparing the result with (C.12) we arrive at

E∆,S = c2πd/2(−1)S
Γ
(

3d
8 + S

2 − ∆
2

)

Γ
(

−d
8 + S

2 + ∆
2

)

Γ
(

5d
8 + S

2 − ∆
2

)

Γ
(

d
8 + S

2 + ∆
2

) , (C.15)

which reduces at d = 4 to (4.29).

C.4 Eigenvalue E2

Introducing for convenience I = (4π)4E2 and defining dual coordinates, p = x12, k1 = x31 and

k2 = x41, we can rewrite (4.46) as a two-loop Feynman integral

I(ν, S) =
1

π4

∫

d4k1d
4k2 (nk12)

S

k21(p+ k1)2k22(p+ k2)2(k212)
1−iν+S/2

, (C.16)

where p2 = (pn) = 1 and k12 = k1 − k2. Due to symmetry of the integrand under k1 ↔ k2, I(ν, S)

vanishes for odd S.

For S = 0 the integral (4.46) is known as a massless two-loop self-energy Feynman integral. It

can be expressed in a closed form in terms of 3F2−hypergeometric function (see e.g. review [86])

I(ν, 0) = 2Γ(−iν)Γ(iν)
(

π cot(iπν)− 3F2(1, 2, 1 + iν; 2 + iν, 2 + iν; 1)

(1 + iν)Γ(1− iν)Γ(2 + iν)

)

. (C.17)

This representation is not convenient however to elucidate analytic properties of I(ν, 0), that why we

derive below another equivalent representation.

We start with rewriting (C.16) with all Lorentz indices uncontracted

I(ν, S)p(µ1 . . . pµS) =
1

π4

∫

d4k1d
4k2 k

(µ1

12 . . . k
µS)
12

k21(p+ k1)2k22(p+ k2)2(k212)
1−iν+S/2

, (C.18)

where p(µ1 . . . pµS) denotes a symmetric traceless tensor and S is even. Then, we project all Lorentz

indices on the vector p and take into account the identity

k
(µ1

12 . . . k
µS)
12 pµ1

. . . pµS
= (pk12)

S + c1(pk12)
S−2p2k212 + . . .+ cS/2(p

2k212)
S/2 . (C.19)
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The coefficients ck can be found from the requirement for the expression on the right-hand side to

vanish upon hitting it with ∂2/∂pµ∂pµ. Replacing k12 with p in (C.19) we get

p(µ1 . . . pµS)pµ1
. . . pµS

= (p2)S(1 + c1 + . . .+ cS/2) . (C.20)

In this way, we obtain another representation for I(ν, S) that differs from (C.16) in that (nk12)
S is

replaced by the expression on the right-hand side of (C.19) divided by the normalization factor that

enters (C.20). The advantage of this representation is that we can use the identity

2(k12p) = (k1 + p)2 − k21 − (k2 + p)2 + k22 (C.21)

to express I(ν, S) in terms of scalar Feynman integrals. Some of the integrals coincide with those

contributing to I(ν, 0) whereas the remaining integrals have one propagator less and can be easily

evaluated. As a consequence, I(ν, S) is given by a linear combination of I(ν, 0) and some rational

functions of ν.

Going through the calculation of I(ν, S) for S = 2 and S = 4 we find

I(ν, 2) = −1

3
I(ν, 0) +

8

3 (ν2 + 1)
2 ,

I(ν, 4) = −3

5
I(ν, 2) +

16

5 (ν2 + 4)
2 . (C.22)

In general, for S = 2ℓ, we have

I(ν, 2ℓ) = −2ℓ− 1

2ℓ+ 1
I(ν, 2ℓ− 2) +

8ℓ

(2ℓ+ 1)(ν2 + ℓ2)2
. (C.23)

The solution to this recurrence relation looks as

I(ν, 2ℓ) =
(−1)ℓ

2ℓ+ 1

[

I(ν, 0) +

ℓ
∑

n=1

8(−1)nn

(n2 + ν2)2

]

. (C.24)

Assuming that I(ν, 2ℓ) vanishes at large ℓ faster then 1/ℓ (this property can be verified a posteriori)

we find from (C.24) that I(ν, 0) is given by

I(ν, 0) =

∞
∑

n=1

8(−1)n−1n

(n2 + ν2)2
=
i
(

ψ(1)
(

1+iν
2

)

− ψ(1)
(

iν
2

))

2ν
+ (ν → −ν) . (C.25)

We verified that the two representations (C.17) and (C.25) are equivalent.

Substituting (C.25) into (C.24) we arrive at

I(ν, 2ℓ) =
1

2ℓ+ 1

∞
∑

n=ℓ+1

(−1)n−ℓ−1 8n

(n2 + ν2)2

=
i
[

ψ(1)
(

1
2 (ℓ+ iν + 1)

)

− ψ(1)
(

1
2 (ℓ+ iν + 2)

)]

2(2ℓ+ 1)ν
+ (ν → −ν) . (C.26)

D Analytic properties of the correlation functions

We can apply (3.11) and(3.12) to understand analytic properties of G(x1, x2|x3, x4) as a function of

the coupling constant ξ2. The integrand of (3.12) is a meromorphic function of χ which is just a power

of ξ2 dependent on the type of the correlation function.
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The integral in (3.12) is well-defined as soon as the physical poles (3.14) are away from the real

axis. As soon as the physical pole (3.14) approaches the real axis, the integral (3.12) generates a

branch cut in χ. The discontinuity across the cut can be found from (3.12)

discχG(u, v) = c−4
∑

S≥0

(−1)S
∫ ∞

−∞

dν

c2(ν, S)
En

∆,Sg∆,S(u, v)δ(1− χE∆,S) . (D.1)

In virtue of (3.13), the integral localizes at two points ∆ = 2 + 2iν⋆ and 4 −∆ = 2 − 2iν⋆ satisfying

(3.14). Taking into account (3.17) we obtain

discχG(x1, x2|x3, x4) =
∑

S≥0

C2+2iν⋆,Sg2+2iν⋆,S(u, v)− C2−2iν⋆,Sg2−2iν⋆,S(u, v)

2πi
. (D.2)

According to (4.5) and (4.47), E0 and E2 are positive definite functions of ν and, therefore, the integral

on the right-hand side of (D.1) vanishes for χ < 0 for zero- and two-magnon functions, G0 and G2,

respectively. Moreover, the function E2 satisfies the relation 0 < E2 ≤ 3ζ(3)/(128π4) on the real

ν−axis and, as a consequence, discχG2(u, v) 6= 0 for χ > 128π4/(3ζ(3)).

E Renormalization group flow of the coupling constants

The γ-deformed N = 4 SYM remains a unitary theory as long as the γ-deformation angles are real and

all the couplings, ’t’Hooft coupling and the double-trace couplings, are real. On the other hand, this

is not a CFT anymore since the real double-scaling couplings run with the scale even in the leading

’t Hooft limit. Looking at the leading order beta-function for the interaction term α2
jj tr(φjφj) tr(φ

†
jφ

†
j)

the one-loop beta-function is given by [39]

βα2
jj

=
g4

π2
sin2 γ+j sin2 γ−j +

α4
jj

4π2
, (E.1)

where γ±1 = ∓ 1
2 (γ2 ± γ3), γ

±
2 = ∓ 1

2 (γ3 ± γ1), and γ
±
3 = ∓ 1

2 (γ1 ± γ2) are the parameters of γ-twist,

we expect the critical double-trace couplings at βα2
jj
(αjj) = 0, where the theory is conformal, to have

two complex conjugate fixed points

α2
jj ± = ±2ig2 sin γ+j sin γ−j +O(g4). (E.2)

Using Callan-Symanzik RG equation we arrive, at the critical point, to the following complex anoma-

lous dimension

γJ=2(g) = ∓ ig2

2π2
sin γ+j sin γ−j +O(g4). (E.3)

At a finite g, then two exact (in a given scheme) critical couplings are comnplex conjugate functions

of g :

α2
jj ± = ±2iA(g) +B(g). (E.4)

where A(g) and B(g) are real functions of the couplping and γj .

It is interesting to understand how the vicinity of these critical points to the real axis may influence

the RG flow of αjj coupling (we remind that the ’t Hooft coupling g stays fixed with RG, at least in

the large Nc limit). To get a better qualitative picture of what happens in γ-deformed N = 4 SYM

we can study the RG of the similar coupling α1(ξ) in the bi-scalar model where we have more of the

exact data, and only one coupling α2
1 is running. The beta function for this coupling was computed in
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Figure 19. Flow of α2(µ) from µ = 0 (red point) to µ = ∞ (purpule point) for ξ = 1/3 − i/14 on a

complex α2−plane. Different curves correspond to different initial conditions, α2(µ = 1) = −0.1 + 0.01 k with

k = 0, 1, . . . , 20.

[35] up to a few orders of PT in ǫ = 4−D regularisation, in MS scheme, and the result is quadratic in

α2
1, as was predicted in [87] for a generic large N CFT of this type 23, with non-running single-trace

four-scalar interaction and a running double trace coupling:

β1 = a(ξ) + α2
1 b(ξ) + α4

1 c(ξ) = c(α2
1 − α2

1,+)(α
2
1 − α2

1,−) , (E.5)

where α2
1,± = − 1

2c (b±
√
b2 − 4ac) and the functions a, b, and c are given by

a = −ξ4 + ξ8 − 4

3
ξ12 +O(ξ16) ,

b = −4ξ4 + 4ξ8 − 88

15
ξ12 +O(ξ16) ,

c = −4− 4ξ4 +
4

3
ξ8 +O(ξ12) . (E.6)

Moreover, there exists the following exact relation between the functions (E.6) and the scaling

dimensions (4.32) at the fixed point [35, 87]:24

b2 − 4ac = 4γ2. (E.7)

23 This mechanism was first established in [88] an the example of non-supersymmetric orbifold theories
24This relation between the scaling dimension of the operator trX2 at the critical point and the discriminant of

quadratic equation on zeros of the beta-function follows directly from the eqs.(2.47-48) of the paper [87]. It is valid for

a generic large N CFT of this type.
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where γ = ∆− 2 is the anomalous dimension of tr(X2) at the corresponding fixed point, so that

α2
1,± = − 1

2c
(b±

√

b2 − 4ac) = ᾱ2
1 ±

γ(ξ)

c(ξ)
, (E.8)

where we introduced two real functions of ξ

ᾱ2
1 = − b

2c
, γ = 2i

√

√

1 + ξ4 − 1 . (E.9)

We can write the RG equation in the following form

∂α2
1

∂ logµ
= c(ξ)

[

(

α2
1 − ᾱ2

1 (ξ)
)2 − γ2(ξ)

c2(ξ)

]

. (E.10)

Let us introduce a new coupling α2 = c α2
1, as well as ᾱ2 = c ᾱ2

1 = − b
2 , which can be considered as

changing the RG scheme. Then the RG equation can be written as

∂α2

∂ logµ
=
(

α2 − ᾱ2 (ξ)
)2 − γ2(ξ) . (E.11)

Solving this equation in this specially chosen renormalization scheme, we find an RG flow:

α2 − ᾱ2 = −γ(ξ) tanh [(γ(ξ) log(µ/µ0)] . (E.12)

which is defined only through the universal quantity - the anomalous dimension γ(ξ). This type of

RG flow for the double-trace coupling also first appeared in the papers [87, 88].

The physical quantities of the theory have a cut along the half-axis ξ > 0 and poles. For generic

complex ξ’s there is no such problem. Assuming the coupling to have a little negative imaginary

ξ → ξ − iǫ the RG flow (E.12) will avoid the poles in the r.h.s. and interpolate between two fixed

point α1,+ or α1,− (one of them is IR fixed point, another is the UV fixed point, depending on the

sign of ǫ). We illustrate the possible RG flows in Fig.19.
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