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ABSTRACT The method of Davie’s [5] describes an easily generated scheme based on the standard

order-one Milstein scheme, which is order-one in the Vaserstein metric, provided that the stochastic

differential equation has invertible diffusion term. We apply the exact coupling method from Davie’s paper

to Stratonovich stochastic differential equation and the convergence of this method is proved by MATLAB

implementation. We examine the strong convergence for the Stratonovich SDE using a particular invertible

SDE.

INDEX TERMS Stochastic differential equation, coupling, Stratonovich SDE, Euler scheme, Milstein

scheme.

I. INTRODUCTION

A new method developed by Davie [5] is investigated that

uses coupling and has order-one strong convergence for

stochastic differential equations (SDEs). There are several

numerical methods for solving SDEs. Kloeden and Platen [6]

described a method based on the stochastic Taylor series

expansion; however, the major difficulty with this approach is

that the double stochastic integrals cannot be easily expressed

in terms of simpler stochastic integrals when the Wiener

process is multi-dimensional. In the multi-dimensional case,

the Fourier series expansion of Wiener process has been

used to represent the double integrals in [6], [10], and [11].

However, several random variables should be generated each

time, and therefore the computation requires a large amount

of time; moreover, this method is difficult to extend to

higher order. In this study a modified interpretation for the

normal random variables generated in the Taylor expan-

sion will be considered for the Stratonovich SDE. This

method has order-one convergence under a non-degeneracy

condition for the diffusion term. In standard methods such

as Milstein, the approximations for the Taylor expansion

terms are separately generated. In the coupling method, the

approximation for the Taylor expansion is generated as a

combination of random variables. The modification con-

sists in replacing the iterated integrals by different ran-

dom variables with a good approximation in distribution.

Then, a random vector will be obtained from the linear

term that is a good approximation in distribution to the

original Taylor expansion. There are several studies that

used coupling for the numerical solution of SDEs. Kana-

gawa [12] investigated the rate of convergence in terms

of two probability metrics between approximate solutions

with i.i.d. random variables. Rachev and Ruschendorff [8]

developed Kanagawa’s method by using the Komlós et al.

theorem in [7]. Fournier [13] used the quadratic Vaserstein

distance for the approximation of the Euler scheme and the

results of Rio [14], which give a very precise rate of conver-

gence for the central limit theorem in the Vaserstein distance.

Moreover, Rio [19] provided precise bound estimates. Under

uniform ellipticity, Alfonsi et al. [3], [4] studied the Vaser-

stein bound for the Euler method and proved an O(h(
2
3−ǫ))

bound for a one-dimensional diffusion process, where h is the

step-size; subsequently, they generalized the result to SDEs of

any dimension with an O(h

√

log( 1
h
)) bound when the coeffi-

cients are time-homogeneous. Cruzeiro et al. [15] obtained

an order-one method, and under non-degeneracy, they con-

structed a modified Milstein scheme that attains order one

for the strong approximation. Charlbonneau et al. [16]

investigated the Vaserstein bound [9] by using weak con-

vergence and the Strassen–Dudley theorem. Convergence of

an approximation to a strong solution on a given proba-

bility space was established by Gyöngy and Krylov [17]

using coupling. Davie [20] applied the Vaserstein bound to

solutions of vector SDEs and used the Komlós, Major, and
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Tusnády theorem to obtain order-one approximation under a

non-degeneracy assumption. The remainder of this paper is

organized as follows. In Section 2, certain results concerning

SDEs are reviewed, and some existing schemes for numer-

ical resolution of SDE have been presented. In section 3,

the implementation of Stratonovich scheme using the exact

coupling is shown and a numerical example is provided to

demonstrate the convergence behavior. In the last section,

the Appendix (Matlab code) is provided.

2 of Dec. 2018

II. STRATONOVICH STOCHASTIC

DIFFERENTIAL EQUATIONS

A. DEFINITION

Let {W (t)}t≥0 be a d-dimensional standard Brownian motion

on a probability space (�,F,P) equipped with a filtration

F = (Ft )t≥0, a = a(t, x) be a d-dimensional vector function

(called drift coefficient), and b = b(t, x) a d × d-matrix

function (called diffusion coefficient).

The stochastic process X = X (t), considered in this study

can be described by SDEs, namely,

dX (t) = a(t,X (t))dt + b(t,X (t))dW (t), t ∈ [0,T] (1)

Let the initial condition X (0) = x be an F0-measurable

random vector in Rd . An Ft -adapted stochastic process X =

(X (t))t≥0 is called a solution of Equation (1) if

X (t) = X (0) +

∫ t

0

a(s,X (s))ds+

∫ t

0

b(s,X (s))dW (s) (2)

holds almost surely (a.s.)

The conditions that the integral processes
∫ t

0

a(s,X (s))ds,

∫ t

0

b(s,X (s))dW (s),

are well-defined are required for(2) to hold. Indeed, for the

functions a(s,X (s)) and b(s,X (s)) we have

E

∫ t

0

b2(s,X (s))ds < ∞, (3)

and a.s. for all t ≥ 0,
∫ t

0

|a(s,X (s))|ds < ∞. (4)

These conditions imply that the corresponding processes are

well defined.

One important property of the stochastic integral is that
∫ t

0

W (s)dW (s)=
1

2

∫ t

0

d(W 2(s)) −
1

2

∫ t

0

ds=
1

2
W 2(t) −

t

2
,

for more details on stochastic integral see [6].

B. DEFINITION

From the definition shown in [6], we call an equation a a

Stratonovich stochastic differential equation, writing it in

following form

dX (t) = A(t,X (t))dt + b(t,X (t)) ◦ dW (t), (5)

or in the equivalent integral equation form

X (t) = X (0) +

∫ t

0

A(s,X (s))ds+

∫ t

0

b(s,X (s)) ◦ dW (s)

(6)

The ‘‘◦’’ notation here denotes the use of Stratonovich cal-

culus. It turns out that the solutions of the Stratonovich

SDE (5)-(6) also satisfy an Ito SDE with the same dif-

fusion coefficient b(s,X (s)), but with the modified drift

coefficient

a(s, x) = A(s, x) +
1

2

d
∑

j=1

d
∑

k=1

bkj(s, x)
∂bj

∂xk
(s, x)

where bj is the j
th column of the matrix b(s, x).

C. CONVERGENCE

Let (�,F,P) be a probability space, where � is the set

of continuous functions with the supremum metric on the

interval [0,T ], F is the σ -algebra of Borel sets, and P is

the Wiener measure. An approximate solution xh of (1) is

considered that uses a subdivision of the interval [0,T ] into a

finite number N of subintervals of length h = T
N
. Moreover,

it is assumed that the approximate solutions xh are random

variables on�. Then, the discrete time approximation xh with

step-size h is said to converge strongly of order γ at time

T = Nh to the solution X (t) of (1) if

E|xh − X (T )|p ≤ Chγ p, h ∈ (0, 1),

where the strong convergence is in the Lp space. C is a

positive constant independent of h.

There are several numerical methods for solving SDEs.

Here, two important schemes will be mentioned. One is

the Euler–Maruyama scheme that has strong order 1
2
, and

the other is the Milstein scheme that has strong order

one. It is assumed that we have the stochastic differential

equation

dXi(t)=ai(t,X (t))dt+

d
∑

k=1

bik (t,X (t))dWk (t), Xi(0)=X
(0)
i ,

(7)

where i = 1,...,d , on an interval [0,T ] for a d-dimensional

vector X (t) and a d-dimensional Brownian path W (t).

To approximate the solution, it is assumed that [0,T ] is

divided into N equal intervals of length h = T/N . The

simplest numerical method for approximating the solution

of stochastic differential equations is the stochastic Euler

scheme (also called Euler Maruyama scheme) which utilizes

only the first two terms of the Taylor expansion and it attains

the strong convergence γ = 1
2
. The Milstein scheme is

now introduced, which yields an order-one strong Taylor

scheme. The Milstein scheme can be obtained by adding the

quadratic terms
∑d

k,l=1 ρikl(jh, x
(j))A

(j)
kl to the Euler scheme,
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namely,

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik (jh, x
(j))1W

(j)
k

+

d
∑

k,l=1

ρikl(jh, x
(j))A

(j)
kl , (8)

where 1W
(j)
k = Wk ((j+ 1)h) −Wk (jh),

A
(j)
kl =

∫ (j+1)h
jh {Wk (t) − Wk (jh)}dWl(t), and ρikl(t, x) =

∑q
m=1 bmk (t, x)

∂bil
∂xm

(t, x).

The Euler scheme is easy to implement, as one need only

generate the normal distribution for the standard Brownian

motion 1W
(j)
k ; however, it is not easy to generate the integral

A
(j)
kl for the Milstein scheme for two-dimensional (or higher)

SDEs. The two-level approximation will now be described.

The increments1W
(j)
k should be generated when the solution

to (1) is approximated by using Euler or other schemes,

which will explained later in this section. Therefore, Levy’s

construction of the Brownian motion will be used to simulate

a sequence of approximations that converge to the solution.

That is,

1W
(r,j)
k = 1W

(r+1,2j)
k + 1W

(r+1,2j+1)
k , (9)

where r ∈ N and 1W
(r,j)
k = Wk ((j+ 1)h(r))−Wk (jh

(r)) with

h(r) = T
2r
.

The two-level approximation in (9) is called the trivial

coupling. The normal distribution in (9) for the increments

for a given level r could be generated by first generating

the increments on the left-hand side and then conditionally

generating the increments on the right-hand side. The same

process is performed for all subsequent levels, and the Brow-

nian path W (t) is thus obtained. The empirical estimation of

the error of a numerical method should now be explained.

Usually, SDEs cannot be explicitly solved; therefore, the

mean error E|X (T ) − xh|, which is the absolute value of

the difference between the approximate solution xh and the

solution X (T ) of (1), cannot be directly estimated. If the

approximate solution xh is assumed to converge to the solu-

tionX (T ) as the step-size decreases and tends to zero, then the

order of convergence for a particular scheme can be estimated

by repeating R different independent simulations of sample

paths. The estimator
{

ǫ = 1
R
E(

∣

∣x(r) − x̂(r)
∣

∣)
}

will be used

for different approximate solutions x(r) and x̂(r) for different

ranges of h. Thus, for any numerical method, if there is a

bound E|xh − xh/2| ≤ C1h
γ for the error, then E|xh/2 −

xh/4| ≤ C1(
h
2
)γ ,E|xh/4 − xh/8| ≤ C1(

h
22
)γ , . . . . Therefore,

a geometric series is obtained, and we have

E|X (T ) − xh| ≤

∞
∑

h=0

C1

( h

2k

)γ
=

C1h
γ

1 − 2−γ
. (10)

Hence, the rate of convergence and the constant can be

estimated from (10).

If the commutativity condition

ρikl(t, x) = ρilk (t, x), (11)

holds for all x ∈ R
d , t ∈ [0,T ], and i, k, l, then the Milstein

scheme (8) is reduced to

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik (jh, x
(j))1W

(j)
k

+

d
∑

k,l=1

ρikl(jh, x
(j))A

(j)
kl , (12)

which depends only on the generation of the Brownian

motion 1W
(j)
k . Scheme (12) has order one if d = 1, but

if d > 1 it has order 1
2
. As it described in Davie’s study,

scheme (12) can be modified to obtain order one under a non-

degeneracy condition.

D. MODIFICATION TO (12) FOR ORDER-ONE

CONVERGENCE

As it described in [5], the generation of the normal distri-

bution will be modified in scheme (12), leading to order-

one convergence under a non-degeneracy condition. In the

implementation of the Milstein scheme, the random variables

1W
(j)
k and A

(j)
kl are separately generated and are then added to

obtain the right-hand side of (12). The idea here is to directly

generate the following:

Yi :=

d
∑

k=1

bik (jh, x
(j))1W

(j)
k +

d
∑

k,l=1

ρikl(jh, x
(j))A

(j)
kl .

If there is a scheme

x
(j+1)
i = x

(j)
i + ai(jh, x

(j))h+

d
∑

k=1

bik (jh, x
(j))X

(j)
k

+

d
∑

k,l=1

ρikl(jh, x
(j))(X

(j)
k X

(j)
l − hδkl), (13)

where the increments X
(j)
k are independent N (0, h) random

variables, then it is the same as scheme (12) with 1W
(j)
k

replaced by X
(j)
k , and 1W

(j)
k = X

(j)
k is not assumed. Further-

more,

Zi :=

d
∑

k=1

bik (jh, x
(j))X

(j)
k +

d
∑

k,l=1

ρikl(jh, x
(j))(X

(j)
k X

(j)
l − hδkl)

is assumed to be a good approximation to Yi, that is, the joint

distribution of the random vectors (1W
(j)
k ,A

(j)
kl ) and (X

(j)
k )

should be determined, so that they have the required marginal

distribution with bound E(Yi − Zi)
2 = O(h3). In the fol-

lowing section, it will be explained how a coupling can be

used to obtain the required marginal distribution, which will

give good bounds for the random distributions Yi and Zi.

Subsequently, an order-one approximation between the two

approximate solutions x(jh) and x(j) of the SDE will be
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obtained, i.e., E(x(jh) − x(j)) = O(h2). In the following

section, the proof of order-one convergence using (12) will

be provided under the assumption that bik (x) is invertible.

Now we need to show that the vector version of (11.1.2)

from [6] for the Stratonovich equation is equivalent (apart

from small terms) to scheme (12) for the Ito form of the

equation. Assuming the drift term equal to zero then we have

Y kn+1 = Y kn +
1

2

d
∑

i=1

{

bik (ϒn) + bik (Yn)
}

1W i
n (14)

We need to use the deterministic Taylor expansion for bik (ϒn)

to find the difference approximation between
{

bik (ϒn) −

bik (Yn)
}

. Where the supporting value is
(

ϒn = Yn +
∑d

i b
i(Yn)1W

i
n

)

. Now for 0 < θ < 1

bik (ϒn)

= bik (Yn +

d
∑

i

bi(Yn)1W
i
n

)

= bik (Yn) +

d
∑

m,i=1

∂bik (Yn)

∂yi
blm (Yn)1W

i
n +

1

2

×

d
∑

i,m,j1=1

∂2bik (Yn + θ (bi(Yn)1W
i
n)

∂yi∂ym
(bmbj11Wm

n 1W j1
n )2

(15)

Then we replace (15) in (14) which gives us

Y kn+1

= Y kn +
1

2

d
∑

i=1

{

bik (Yn) + bik (Yn)

+

d
∑

m,i=1

∂bik (Yn)

∂yi
blm (Yn)1W

i
n +

1

2

×

d
∑

i,m,j1=1

∂2bik (Yn+θ (bi(Yn)1W
i
n)

∂yi∂ym
(bmbj11Wm

n1W j1
n )

2

+ bik (Yn)
}

1W i
n (16)

Y kn+1

= Y kn +

d
∑

i=1

bik (Yn)1W
i
n +

1

2

d
∑

i,l=1

ρkil(Yn)1W
l
n1W

i
n.

(17)

The convergence behavior for the Stratonovich SDE will

be shown in the following section using a two-dimensional

invertible SDE.

III. TWO-DIMENSIONAL STOCHASTIC

DIFFERENTIAL EQUATION

Let the following 2-dimensional invertible SDE be

considered:

dX1(t) = (sin(X2(t)))
2dW1(t) −

1

1 + X2
1 (t)

dW2(t),

dX2(t) =
1

1 + X4
2 (t)

dW1(t) + (cos(X1(t)))
2dW2(t),

for 0 ≤ t ≤ 1, with X1(0) = 2 and X2(0) = 0 (18)

where W1(t) and W2(t) are independent standard Brownian

motion. To apply a numerical method to this SDE, solutions

(for the same Brownian path) should be simultaneously simu-

lated by using two different step sizes (h and h/2). TheMatlab

implementation for Stratonovich SDE using the exact cou-

pling is given in Listing (3), which will demonstrate the result

of the absolute value of the difference between two solutions

with step size h and h/2. To conduct this experiment, the error

and the convergence order of the exact coupling method will

be calculated for decreasing values of the step size h. This

will be repeated with different step size using (for example,

R = 1000) independent simulations. Then the order of con-

vergence of this method between two approximate solutions

should be 1. Now we will run the Matlab code in Listing (3)

with different step sizes over a large number of path R as it

described in the table below and see the result of the error

ǫ, where each simulation is for the same Brownian path and

ǫ = 1
R

∑R
i=1 |x

(i)
h − x

(i)
h/2| will be our estimator. The Matlab

code in Listing (3) will run with different number of steps

(200, 400, 800, 1600, 3200) over a large number of paths.

S=[ 200, 400, 800, 1600, 3200];

ErrorEuler=zeros(1,length(S));

for i=1:length(S)

ErrorEuler(1,i)=log(Stratonovich33

(’YA’,[2; 0],1,S(1,i)));

end

h=1./S,

fad=log(h)

plot(log(h), ErrorEuler, ’b--*’)

Table (1) and the plot in Figure (1) show the implementation

of the approximate solutions of the previous 2-dimensional

SDEs with different number of steps (200, 400, 800, 1600,

and 3200). Running the code in Listing (3) for 1000 simula-

tions yields a value for the estimator ǫ equal to 0.0032 with

TABLE 1. Error results for Stratonovich SDE with the invertible matrix.

FIGURE 1. Stratonovich with the exact coupling method.
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Listing. 1. The code for calculating

{

bjk (τn,ϒ
j
n)−bjk

√

h

}

.

Listing. 2. Calculating the exact coupling.

step size 0.005 i.e.

ǫ =
1

1000

1000
∑

i=1

|x
(i)
h − x

(i)
h/2| = 0.0032

0.0016 with step size 0.0125, and the corresponding values

for other step sizes. This implies that if the number of steps

Listing. 3. Calculating the error for Stratonovich equation of (11.1.2) in K
and P numerical solution of SDE.

increases, which results in a smaller step size, then the error

estimate ǫ is O(h), as can be seen in Table (1). Moreover,

Figure (1) is a plot of the log of the estimator ǫ i.e. log ǫ

against the log of step-size h i.e. log(h), which has a slope

of 0.99111, again indicating a strong convergence ofO(h) for

the stochastic differential equation (18).

IV. CONCLUSION

We have presented a Matalb implementation for the

Stratonovich stochastic differential equation and it can be

seen that good agreement is obtained between the theoretical

bound and the implementation results. The main advantage of
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this approach is that the computational load of this estimation

will be reduce comparing to some other methods.

APPENDIX

See Listings 1–3.

REFERENCES

[1] Y. Alnafisah, ‘‘First-order numerical schemes for stochastic differen-

tial equations using coupling,’’ Ph.D. dissertation, Dept. Math., Univ.

Edinburgh, Scotland, U.K. 2016.

[2] Y. Alnafisah, ‘‘The implementation of milstein scheme in two-dimensional

SDEs using the Fourier method,’’ Abstract Appl. Anal., vol. 2018,

May 2018, Art. no. 3805042.

[3] A. Alfonsi, B. Jourdain, and A. Kohatsu-Higa, ‘‘Pathwise optimal transport

bounds between a one-dimensional diffusion and its Euler scheme,’’ Ann.

Appl. Probab.,vol. 24, no. 3, pp. 1049–1080, 2014.

[4] A. Alfonsi, B. Jourdain, and A. Kohatsu-Higa. (May 2014). ‘‘Optimal

transport bounds between the time-marginals of a multidimensional diffu-

sion and its Euler scheme.’’ [Online]. Available: https://arxiv.org/abs/1405.

7007

[5] A. M. Davie. Pathwise Approximation of Stochastic Differential Equa-

tions Using Coupling, Preprint. Accessed: 2015. [Online]. Available:

www.maths.ed.ac.uk/~adavie/coum.pdf

[6] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential

Equations. Berlin, Germany: Springer, 1995.

[7] J. Komlós, P. Major, and G. Tusnády, ‘‘An approximation of partial sums

of independent RV’-s, and the sample DF. I,’’ Zeitschrift für Wahrschein-

lichkeitstheorie Verwandte Gebiete, vol. 32, nos. 1–2, pp. 111–131,

Mar. 1975.

[8] S. T. Rachev and L. Ruschendorff,Mass Transportation Problems: Theory,

Applications, vol. 1. New York, NY, USA: Springer, 1998.

[9] L. N. Vaserstein, ‘‘Markov processes over denumerable products of spaces,

describing large systems of automata,’’ Probl. Peredaci Inf., vol. 5, no. 3,

pp. 47–52, 1969.

[10] M.Wiktorsson, ‘‘Joint characteristic function and simultaneous simulation

of iterated Itô integrals for multiple independent Brownian motions,’’ Ann.

Appl. Probab., vol 11, no. 2, pp. 470–487, 2001.

[11] T. Rydén and M.Wiktorsson, ‘‘On the simulation of iterated Itô integrals,’’

Stochastic Processes Appl., vol. 91, no. 1, pp. 151–168, Jan. 2001.

[12] S. Kanagawa, ‘‘The rate of convergence for approximate solutions of

stochastic differential equations,’’ Tokyo J. Math., vol. 12, no. 1, pp. 33–48,

1989.

[13] N. Fournier, ‘‘Simulation and approximation of Lévy-driven stochastic

differential equations,’’ ESAIM Probab. Statist., vol. 15, pp. 233–248,

Jan. 2011.

[14] E. Rio, ‘‘Upper bounds for minimal distances in the central limit theorem,’’

Ann. Inst. H. Poincaré Probab. Statist., vol. 45, no. 3, pp. 802–817, 2009.

[15] A. B. Cruzeiro, P.Malliavin, and A. Thalmaier, ‘‘Geometrization of monte-

carlo numerical analysis of an elliptic operator: Strong approximation,’’

Comp. Rendus Mathematique, vol. 338, no. 6, pp. 481–486, Mar. 2004.

[16] B. Charbonneau, Y. Svyrydov, and P. Tupper, ‘‘Weak convergence in

the prokhorov metric of methods for stochastic differential equations,’’

IMA J. Numer. Anal., vol. 30, no. 2, pp. 579–594, Apr. 2010.

[17] I. Gyöngy andN. Krylov, ‘‘Existence of strong solutions for Itô’s stochastic

equations via approximations,’’ Probab. Theory Related Fields vol. 105,

no. 2, pp. 143–158, Jun. 1996.

[18] P. E. Kloeden, E. Platen, and I. Wright, ‘‘The approximation of multiple

stochastic integrals,’’ J. Stoch. Anal. Appl., vol. 10, no. 4, pp. 431–441,

1992.

[19] E. Rio, ‘‘Asymptotic constants for minimal distance in the central limit

theorem,’’ Electron. Commun. Probab., vol. 16, no. 9, pp. 96–103, 2011.

[20] A. Davie, ‘‘KMT theory applied to approximations of SDE,’’ Stochastic

Anal. Appl., vol. 100, pp. 185–201, Dec. 2014.

Authors’ photographs and biographies not available at the time of

publication.

VOLUME 7, 2019 7447


	INTRODUCTION
	STRATONOVICH STOCHASTIC DIFFERENTIAL EQUATIONS
	DEFINITION
	DEFINITION
	CONVERGENCE
	MODIFICATION TO (12) FOR ORDER-ONE CONVERGENCE

	TWO-DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATION
	CONCLUSION
	REFERENCES
	Biographies
	Authors'


