
IEEE COMMUNICATIONS LETTERS, VOL. 15, NO. 1, JANUARY 2011 67
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Abstract—In this letter, we compute the exact probability that
a receiver obtains 𝑁 linearly independent packets among 𝐾 ≥ 𝑁
received packets, when the sender/s use/s random linear network
coding over a Galois Field of size 𝑞. Such condition maps to the
receiver’s capability to decode the original information, and its
mathematical characterization helps to design the coding so to
guarantee the correctness of the transmission. Our formulation
represents an improvement over the current upper bound for
the decoding probability, and provides theoretical grounding to
simulative results in the literature.

Index Terms—Random linear network coding, wireless net-
works, error control.

I. INTRODUCTION

NETWORK coding allows efficient transmission from a
set of sources to a set of destinations, allowing nodes

to manipulate the information before forwarding it [1]. Ran-
dom linear network coding is a class of network coding,
that operates on data through linear combinations of random
codes [2]. Random linear network coding has been shown
to improve the latency, capacity and energy efficiency of
the communication in loss-prone and intermittently-connected
wireless networks, either ad-hoc [3], delay-tolerant [4], or
satellite and underwater [5].

Within these contexts, when one or more sources want
to transmit 𝑁 packets to one or more mobile nodes, the
channel unreliability and the fluctuation of connectivity force
the adoption of reliable communication techniques. However,
traditional retransmission-based mechanisms easily lead to
excessive overhead, even in presence of coordination between
the sources. If random linear network coding is employed,
the reception of a (limited) amount 𝑆 of excess packets can
eliminate the need for a feedback channel. Indeed, to be able
to decode the original data, a destination node simply has to
acquire 𝑁 linearly independent packets over the 𝐾=𝑁+𝑆 it
received from the source(s) and intermediate relay(s).

The effectiveness of random linear network coding thus
depends on the the probability that at least 𝑁 packets reach
their destination, and that they represent linearly independent
encodings of the original data. While the former condition
relates to the error probability on the channel or to the network
topology, on which one does not typically have control, the
latter concerns the coding design, that is instead configurable.
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A common approach is to assume the size 𝑞 of the Galois
Field over which the coding is performed to be very large, so
that any received packet is independent from those previously
obtained, with high probability. As an example, using large
encoding coefficients of 20 bits, that correspond to values of
𝑞 in the order of 220, allows to exclusively dimension 𝑆 on the
packet loss probability. However, using large field sizes has a
drawback in terms of computational complexity: it would thus
be desirable to determine the exact impact of the field size on
the decoding probability, so to properly dimension 𝑞. The only
such result to date is the upper bound in [6], stating that the
average number of coded packets 𝐾 to be received before the
original data can be decoded is, for a field size 𝑞, equal to

𝐾 = 𝑚𝑖𝑛{𝑁 𝑞

𝑞 − 1
, 𝑁 + 1 +

1− 𝑞−𝑁+1

𝑞 − 1
}. (1)

According to (1), when 𝑞=2, 𝑆=2 excess packets are suf-
ficient, on average, for 𝑁+𝑆 received packets to be linearly
independent, no matter the value of 𝑁 .

In this letter, we improve the upper bound in (1), by
deriving the exact formulation of the probability that 𝑁 out of
𝑁+𝑆 received packets are linearly independent, under random
linear network coding, as a function of the field size 𝑞. Our
formulation evidences that a value of 𝑞 equal to four allows a
correct decoding with just one excess packet on average.

II. EXACT DECODING PROBABILITY

Let 𝐺𝐹 (𝑞) be a Galois Field of size 𝑞 and let us assume
that a set of uncoordinated sources transmit 𝐾=𝑁+𝑆 packets.
Each 𝑘-𝑡ℎ packet is constructed using random linear network
coding; i.e., each new packet is associated with a random
encoding vector 𝑔𝑘 over 𝐺𝐹 (𝑞) of dimension 𝑁 , and it is the
result of the linear combination of the 𝑁 original packets, [2].
Let us call 𝐺𝑞 the matrix containing the encoding vectors 𝑔𝑘.
The 𝑁 original packets can be decoded if 𝐺𝑞 has rank 𝑁 , i.e.,
the receiver node has obtained 𝑁 linear independent packets
over the 𝐾 sent packets. We denote as 𝑃𝑛𝑠 the probability
that matrix 𝐺𝑞 has rank 𝑁 .

In order to derive the exact expression of 𝑃𝑛𝑠 we employ
an urn model. Consider an urn with all the vectors that can be
generated by codes in a Galois Field of size 𝑞, 𝐺𝐹 (𝑞), over
𝑁 packets. There are 𝑞𝑁 possible vectors. For the sake of
clarity, we will first analyze the simple case in which 𝐾=𝑁 ,
and then derive the case in which 𝐾 > 𝑁 .

CASE K=N: consider the extraction of linearly independent
vectors from the urn. In the first extraction any vector that is
not the zero vector1 will be a suitable vector. The probability
of extracting a vector which is not the zero vector is equal to

1Discarding the zero vector is later treated.
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(1 − 𝑞0

𝑞𝑁
) = (1 − 1

𝑞𝑁
). After each extraction, we reinsert the

extracted vector in the urn since in the model we are randomly
extracting vectors over a Galois Field 𝐺𝐹 (𝑞). In the second
extraction, there are 𝑞 vectors that are dependent among them,
so the probability of having two linearly independent vectors
is (1− 1

𝑞𝑁 )(1− 𝑞
𝑞𝑁 ). In the third extraction there are 𝑞2 vectors

that are linearly dependent with the previously extracted ones,
and so on. As we perform exactly 𝑁 extractions, and we
need 𝑁 independent vectors, we must not fail in any of
the extractions. Thus, the probability of having 𝑁 linear
independent vectors over 𝐾=𝑁 extractions is given by:

𝑃𝑛𝑠(𝐾,𝑁) =

𝑁−1∏
𝑗=0

(1− 𝑞𝑗

𝑞𝑁
) =

𝑁∏
𝑗=1

(1− 1

𝑞𝑗
). (2)

CASE 𝐾>𝑁 : Let us first assume 𝐾=𝑁+1 extractions from
the urn. Again, during the first extraction, any vector that
is not the zero vector is acceptable. However, in the second
extraction, there is room for exactly one failure. If such failure
occurs, with probability 𝑞

𝑞𝑁 , we will be left with exactly 𝑁 -1
extractions to obtain 𝑁 -1 independent vectors. If the newly
extracted vector is instead independent with respect to the
first one, with probability (1 − 𝑞

𝑞𝑁 ), we will still have 𝑁 -
1 extractions to get 𝑁 -2 independent vectors. In the third
extraction, we can fail with probability 𝑞2

𝑞𝑁
and must not fail

with probability (1 − 𝑞2

𝑞𝑁 ) in the fourth and so on. Note that
if a failure occurs in the 𝑘-𝑡ℎ extraction, there must not be
any failure in the future extractions, and thus these events are
exclusive. Iterating, we obtain the probability that N linear
independent vectors are extracted, given 𝐾=𝑁+1 extractions,
as:

𝑃𝑛𝑠(𝐾,𝑁) =

𝑁∏
𝑗=1

(1− 1

𝑞𝑗
)

𝑁∑
𝑖=0

𝑞𝑖

𝑞𝑁
. (3)

Following the same reasoning for a generic 𝐾>𝑁 , we
obtain the following formula:

𝑃𝑛𝑠(𝐾,𝑁) = 1
𝑞𝑁(𝐾−𝑁)

𝑁∏
𝑗=1

(1− 1
𝑞𝑗 )

𝑁∑
𝑟1=0

𝑞𝑟1
𝑁∑

𝑟2=𝑟1

𝑞𝑟2 ⋅ ⋅ ⋅
𝑁∑

𝑟𝐾−𝑁=𝑟(𝐾−𝑁−1)

𝑞𝑟𝐾−𝑁 .

(4)
Note that there are 𝐾-𝑁 summatories in the formula.

However, this formula can be reduced considering the 𝑞-
binomial coefficients, also called Gauss Coefficients. The 𝑞-
binomial of two non-negative integers 𝑚 and 𝑛 is defined as:[

𝑚
𝑛

]
𝑞

=
(𝑞𝑚 − 1)(𝑞𝑚−1 − 1)...(𝑞𝑚−𝑛+1 − 1)

(𝑞𝑛 − 1)(𝑞𝑛−1 − 1)...(𝑞 − 1)
. (5)

Note that, if 𝑛 = 0, the 𝑞-binomial has value 1 by definition,
while, if 𝑞 = 1, the Gauss Coefficient becomes the well
known binomial coefficients. Although Gauss Coefficients
appear as rational functions, they are in fact polynomial,
since the denominator is always a factor of the numerator.
It is not surprising that Gauss Coefficients appear in eq. (4),
since, among others, a Gauss Coefficient counts the number
𝑉 {𝑚,𝑛; 𝑞} of different 𝑛-dimensional vector subspaces of an
𝑚-dimensional vector space over 𝐺𝐹 (𝑞).

Using the Gauss Coefficient properties
𝑚−1∑
𝑖=0

𝑞𝑖=

[
𝑚
1

]
𝑞

and
[
𝑚
𝑛

]
𝑞

=𝑞𝑛
[
𝑚− 1

𝑛

]
𝑞

+

[
𝑚− 1
𝑛− 1

]
𝑞

, we may show for K-N=2 that
[

𝐾
𝐾 −𝑁

]
𝑞

=

[
𝑁 + 2

2

]
𝑞

=
𝑁∑

𝑟=0
𝑞𝑟

𝑁∑
𝑠=𝑟

𝑞𝑠. Now, it can be easily shown

using these recursions that the embedded summatories are
equal to

[
𝐾

𝐾 −𝑁

]
𝑞

, and grouping terms:

𝑃𝑛𝑠(𝐾,𝑁) =

⎧⎨
⎩

0 if 𝐾 < 𝑁

𝑁∏
𝑗=1

(1− 1
𝑞𝑗

)

⎡
⎣ 𝐾

𝐾−𝑁

⎤
⎦
𝑞

𝑞𝑁(𝐾−𝑁) if 𝐾 ≥ 𝑁,

(6)

and, by applying eq. (5), we can reduce eq. (6) to:

𝑃𝑛𝑠(𝐾,𝑁) =

⎧⎨
⎩
0 if 𝐾 < 𝑁
𝑁−1∏
𝑗=0

(1− 1
𝑞𝐾−𝑗 ) if 𝐾 ≥ 𝑁.

(7)

In eq. (7), 𝑃𝑛𝑠(𝐾,𝑁) represents the cumulative distribution
function of the probability of receiving 𝑁 linearly independent
packets, given the transmission of 𝐾 ≥ 𝑁 packets under ran-
dom linear network coding. The probability density function
can then be computed as 𝑝𝑛𝑠(𝐾,𝑁) = 𝑃𝑛𝑠(𝐾,𝑁)−𝑃𝑛𝑠(𝐾−
1, 𝑁), and the average number of packets to be sent in order
to decode the 𝑁 original ones is:

𝐸[𝐾] =
∞∑

𝑘=𝑁

𝑘 ⋅ 𝑝𝑛𝑠(𝑘,𝑁). (8)

As a further point, in a real implementation, the zero vector
would be explicitly excluded from the extraction urn. When
accounting for this aspect in the model, eq. (2) becomes:

𝑃𝑛𝑠(𝐾,𝑁) =

𝑁−1∏
𝑗=0

(1− 𝑞𝑗 − 1

𝑞𝑁 − 1
) = (

𝑞𝑁

𝑞𝑁 − 1
)𝑁

𝑁∏
𝑗=1

(1− 1

𝑞𝑗
),

(9)
whereas eq. (4) results in:

𝑃𝑛𝑠(𝐾,𝑁) = 𝑞𝑁
2

(𝑞𝑁−1)𝐾

𝑁∏
𝑗=1

(1− 1
𝑞𝑗 )

𝑁∑
𝑟1=0

(𝑞𝑟1 − 1)
𝑁∑

𝑟2=𝑟1

(𝑞𝑟2 − 1) ⋅ ⋅ ⋅
𝑁∑

𝑟𝐾−𝑁=𝑟(𝐾−𝑁−1)

(𝑞𝑟𝐾−𝑁 − 1).

(10)
Expressing eq. (10) in terms of 𝑞-binomial coefficients, with

𝑃 0
𝑛𝑠 = 𝑞𝑁

2

(𝑞𝑁−1)𝐾

𝑁∏
𝑗=1

(1− 1
𝑞𝑗

), results in:

𝑃𝑛𝑠(𝐾,𝑁) =⎧⎨
⎩
0 if 𝐾 < 𝑁

𝑃 0
𝑛𝑠 ⋅ (

[
𝐾

𝐾−𝑁

]
𝑞

+
𝐾−𝑁∑
𝑛=1

(−1)𝑛
(
𝐾
𝑛

)[ 𝐾−𝑛

𝐾−𝑁−𝑛

]
𝑞

) if 𝐾 ≥ 𝑁.

(11)
As a final remark, we stress that the formulation above only

accounts for the decoding probability due to the actual random
coding, in terms of excess packets and field size. Packet losses
and network topology also impact on the number of packets
required for a correct transmission, but they are independent
of how random vectors are chosen. For example, for a packet
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Fig. 1. 𝑃𝑛𝑠 versus 𝑆, for 𝑁=100.
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Fig. 2. 𝑃𝑛𝑠 versus 𝑆, for 𝑁=5.
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Fig. 3. Mean excess packets to decode versus 𝑞.

delivery probability 𝑝 at the receiver, the probability of decod-
ing correctly 𝑁 packets over 𝐾 coded packets will be:

𝑝𝑑𝑒𝑐 =

𝐾∑
𝑗=𝑁

(
𝐾

𝑗

)
𝑝𝑗(1− 𝑝)𝐾−𝑗 ⋅ 𝑝𝑛𝑠(𝑗,𝑁) (12)

III. NUMERICAL RESULTS

As discussed above, our analysis concerns the decoding
probability as a function of 𝑞 and 𝑆, and is thus limited to the
linear independence of the random vectors employed for the
encoding of received packets. Figure 1 shows 𝑃𝑛𝑠(𝐾,𝑁) as a
function of the number of excess packets, 𝑆, for 𝑁=100 and
𝑞 ∈ {2, 4, 16, 32}. Our analysis, represented by continuous and
dashed lines, perfectly matches simulation results, portrayed
as points, that are obtained via an actual extraction of random
vectors, and are averaged over 105 runs: differences between
analytical and simulative values are in the order of 0.1%.

We can also observe that larger values of the field size
𝑞 allow to reach higher decoding probabilities with a same
number of excess packets, or, conversely, less excess packets
are required to reach a high decoding probability. However,
increasing the field size only pays out for low values of
𝑞, since considering very large field sizes induces greater
computational complexity, but no real advantage in terms of
decoding probability.

On the other hand, the number of packets 𝑁 has a negligible
impact on the results, as depicted in Figure 2. There, the
number of packets is 𝑁=5, but the results are virtually
identical to those obtained for the case of 𝑁=100. Again, the
analysis perfectly matches simulation.

Figure 3 shows the average number of excess packets
𝐸[𝐾] − 𝑁 required to decode the 𝑁 original packets. The
plot portrays the outcome of our analytical formulation in
eq. (11), the upper bound in [6] described in eq. (1), as well as
the results obtained from simulation. Once more, our analysis
provides a perfect matching with the simulation results.

Moreover, the exact formulation shows that the average
number of excess packets required for the decoding is notice-
ably lower than that indicated by the upper bound. Indeed, the

exact solution demonstrates that, if a field size of 𝑞 equal to 3
or 4 is considered, just one extra packet is sufficient for having
𝑁 linearly independent packets. Such result also holds when
considering large blocks of coded packets (i.e., high values
of 𝑁 ), a situation that the upper bound cannot reproduce and
that was only discussed via simulation in [6].

As a final remark, we note that numerical results on the
decoding probability in presence of the zero vector, as in
eq. (7), returned values similar to those shown for eq. (11),
unless very small values of 𝑞 and 𝑁 are selected.

IV. CONCLUSIONS

We have computed the exact probability that a receiver
obtains 𝑁 linear independent packets over 𝐾 ≥ 𝑁 received
packets under random linear network coding over a Galois
Field of size 𝑞. The derivation makes use of an urn model, and
employs Gauss Coefficients to achieve a simple formulation.
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