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Exact decoupling of the Dirac Hamiltonian. I. General theory
Markus Reihera) and Alexander Wolfb)
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~Received 19 March 2004; accepted 12 May 2004!

Exact decoupling of positive- and negative-energy states in relativistic quantum chemistry is
discussed in the framework of unitary transformation techniques. The obscure situation that each
scheme of decoupling transformations relies on different, but very special parametrizations of the
employed unitary matrices is critically analyzed. By applying the most general power series ansatz
for the parametrization of the unitary matrices it is shown that all transformation protocols for
decoupling the Dirac Hamiltonian have necessarily to start with an initial free-particle Foldy–
Wouthuysen step. The purely numerical iteration scheme applyingX-operator techniques to the
Barysz–Sadlej–Snijders~BSS! Hamiltonian is compared to the analytical schemes of the Foldy–
Wouthuysen ~FW! and Douglas–Kroll–Hess~DKH! approaches. Relying on an illegal 1/c
expansion of the Dirac Hamiltonian around the nonrelativistic limit, any higher-order FW
transformation is in principle ill defined and doomed to fail, irrespective of the specific features of
the external potential. It is shown that the DKH method is the only valid analytic unitary
transformation scheme for the Dirac Hamiltonian. Its exact infinite-order version can be realized
purely numerically by the BSS scheme, which is only able to yield matrix representations of the
decoupled Hamiltonian but no analytic expressions for this operator. It is explained why a
straightforward numerical iterative extension of the DKH procedure to arbitrary order employing
matrix representations is not feasible within standard one-component electronic structure programs.
A more sophisticated ansatz based on a symbolical evaluation of the DKH operators via a suitable
parser routine is needed instead and introduced in Part II of this work. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1768160#

I. INTRODUCTION

Over the last 30 years methods of relativistic quantum
chemistry1,2 have emerged as a well-established branch of
theoretical chemistry. Due to a plethora of intrinsically ‘‘rela-
tivistic’’ molecules, such methods have become a widespread
standard tool in modern electronic structure theory. Most
compounds containing heavy-element atoms require a theo-
retical description based on the four-component Dirac equa-
tion to yield even qualitatively correct results. For highly
accurate calculations of properties and energies relativistic
methods also have to be applied even for molecules contain-
ing light, i.e., weakly charged nuclei—especially if spin–
orbit coupling becomes decisive.

For one electron moving in an attractive external electric
field the Dirac Hamiltonian is given in standard notation by3

HD5ca"p1~b21!mc21V5S V cs"p

cs"p V22mc2D , ~1!

with s being the familiar Pauli spin matrices. In order to get
electronic binding energies from Eq.~1! directly comparable
to the nonrelativistic Schro¨dinger theory the energy scale has
been shifted by the rest energymc2 of the electron. Reflect-
ing the (434) structure of the operators also the wave func-

tions are promoted to four-component spinorsf, whose up-
per (L) and lower (S) two components,fL and fS,
respectively, may formally be related by a so-called (232)
X operator,4

fS5XfL. ~2!

The external potentialV is of Coulomb type, V(r )5
2Ze2/r , or alternatively a potential derived from an ex-
tended nuclear charge distribution.5

Any first-quantized description of a many-electron sys-
tem based on Eq.~1! is necessarily confined to a fixed num-
ber of particles, i.e., establishes always a no-pair theory. The
possibility of creation and annihilation of electron-positron
pairs requires the field-theoretical second-quantized frame-
work of quantum electrodynamics~QED! and has to include
interactions with the quantized electromagnetic field, i.e.,
with photons. For most situations of chemical interest, how-
ever, the threshold for pair-creation processes and excitations
of the positronic degrees of freedom is far beyond the energy
scale of the valence shell. It is thus a very good approxima-
tion to integrate them out at the very beginning and to ne-
glect all QED corrections, restricting to a quasirelativistic
formulation with a fixed number of particles. As a drawback
of this unphysical first-quantized description negative-energy
states show up, which are commonly assigned to positronic
states, albeit positrons in the real world feature strictly posi-
tive energies. As a result of these pathologies it is perhaps
best to follow Thaller and to adopt a pragmatic attitude to-
wards the Dirac equation and ‘‘to consider it as a useful
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model to be applied in situations, where the Schro¨dinger
equation is already imprecise due to relativistic effects, but
where the involved energies are too small to trigger pair-
creation processes.’’6

Since the early days of relativistic quantum chemistry
both numerical and basis-set methods being directly based
on the four-component first-quantized Dirac framework have
been applied to atomic and small molecular electronic struc-
ture calculations~see Refs. 7 and 8 and references therein for
detailed reviews of this field!. However, four-component
methods are affected by two major difficulties. First, the
proper representation of negative-energy states related to the
lower components of the Dirac spinors requires substantial
additional computational effort due to the requirements of
kinetic balance.9,10 The derivative operator occurring in the
nonrelativistic limit of Eq. ~2!, fS;@(s"p)/2mc#fL, en-
forces the small component basis to contain functions of
higher angular momentum than the large component basis in
order to represent both upper and lower parts of the Dirac
Hamiltonian with equal quality for electronic solutions. This
does not only increase the number of integrals over one- and
two-electron operators significantly, but also enlarges the
size of matrix representations. Second, the pure existence of
small component basis sets in four-component approaches
also gives rise to conceptual difficulties: Though negative-
energy states are obtained in every self-consistent field~SCF!
step, only the positive-energy~i.e., electronic! states are
taken into account for the construction of the density matrix
and the Fock operator. Thus, the vast majority of one-particle
molecular spinors received in a four-component calculation
is never used for the iterative setup of the SCF equations.

Therefore various approximate decoupling schemes have
emerged over the last two decades in order to annihilate the
contributions from the lower components and to restrict the
theoretical description to the electronic, i.e., upper left part of
the Dirac Hamiltonian. These schemes may be divided into
elimination and transformation techniques, and we will only
focus on the latter in this work. All transformation methods
aim at the construction of suitable unitary transformations
which decouple the Dirac Hamiltonian. Three main schemes
have been suggested over the last 50 years: the Foldy–
Wouthuysen~FW! transformations,11 the Douglas–Kroll–
Hess ~DKH! approach,12,13 and the analytical perturbative
X-operator techniques.14–16 Especially the DKH method has
been introduced and developed to a viable relativistic tool of
quantum chemistry by Hess and collaborators.13,17–25How-
ever, all these protocols have been truncated after a finite
number of terms yielding thus only approximate quasirela-
tivistic two- or one-component Hamiltonians with eigenval-
ues deviating more or less from the exact ones. It is thus
highly desirable to follow the ideas of the general theory of
effective Hamiltonians26,27 and to devise quasirelativistic
Hamiltonians, which describe only the electronic part of the
spectrum—but with the same accuracy as provided by the
original four-component methods.

It was not before 2002 that Barysz and Sadlej proposed
the first infinite-order decoupling scheme for the Dirac
Hamiltonian by applying a numerical iterative procedure in
order to solve for the matrix representation of theX

operator.28 Since this procedure is based on ideas presented
in an earlier paper by Barysz, Sadlej, and Snijders14 we will
refer to these numerical Hamiltonians as BSS Hamiltonians
in this work. Inspired by their work, the purpose of this and
the subsequent paper29 is to present an analytical decoupling
scheme based on the generalized Douglas-Kroll-Hess
transformation23 up to any predefined order in the external
potential, which does not make any reference to the small
component. The advantage of this procedure is that one ob-
tains analytical closed-form expressions for the decoupled
Hamiltonians. Furthermore one can analyze the contribution
of each new order of the block-diagonal DKH Hamiltonian
to energies or properties and thus establish rational criteria
up to which order the decoupled Hamiltonians have to be
expanded. Until now this analysis has only been possible up
to fifth order in the external potential.23 ~After submission of
this paper the first expressions for the sixth-order Hamil-
tonian have been given by van Wu¨llen.30!
The organization of this paper is as follows. We start with a
brief presentation of the general framework of unitary trans-
formation techniques that decouple the Dirac Hamiltonian in
order to introduce the basic notation. Starting from the most
general ansatz for the unitary transformations the free-
particle Foldy–Wouthuysen~fpFW! transformation is revis-
ited in Sec. II B. This initial transformation may be followed
by a sequence of suitably chosen further unitary transforma-
tions, which are commonly divided into a FW and a DKH
branch depending on the chosen expansion parameter. Ex-
cept for this choice, both transformation schemes are for-
mally equivalent, which is demonstrated in this work by ap-
plication of the most general parametrization of the unitary
matrices. However, exceeding its inherent radius of conver-
gence, it will be shown in Sec. II A. This FW expansion is
completely ill defined and doomed to fail. It is demonstrated
that this behavior is a general failure of any FW approach
irrespective of the details ofV. Only the DKH scheme,
which avoids any expansion in 1/c, yields regular and well-
defined block-diagonal expressions for the Hamiltonian,
which may be truncated after any order inV. Alternatively,
the secondary unitary transformation following the fpFW
step may also be performed purely numerically by an itera-
tive scheme~BSS!, whose discussion completes Sec. II. In
Sec. III general properties of all decoupled Hamiltonians are
discussed. In Sec. IV it is demonstrated why exact decou-
pling ~i.e., up to any arbitrary order in the external potential!
can in principle not be realized by a purely numerical recur-
sion scheme within the stepwise DKH approach. This goal
can only be achieved by symbolic operations which evaluate
the Hamiltonian order by order in an analytical fashion. Such
an algorithm will be presented in paper II.29

II. SURVEY OF UNITARY TRANSFORMATION
METHODS

The Dirac HamiltonianHD as defined by Eq.~1! con-
tains two even terms and one odd term,
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HD5~b21!mc21V1ca"p ~3!

5E[ 22]1E[0]1O[ 21] ~4!

5E01E11O0 , ~5!

where subscripts in brackets specify the order in 1/c and
subscripts without brackets denote the order in the external
potentialV of the corresponding term. Note that each term of
the Hamiltonian can be classified uniquely and equally well
with respect to these two parameters, and it is purely a matter
of personal taste which scheme one prefers. Even terms~E!
are block diagonal and commute withb, whereas odd terms
~O! are off-diagonal and anticommute withb.

If the odd termca"p were not present in the Hamil-
tonian, the upper and lower components of the Dirac spinor
f would already be decoupled and the Dirac equation could
be solved independently for the two-spinorsfL and fS.
Therefore one aims at finding a suitable unitary transforma-
tion U which achieves this goal,

Hbd5UHDU†5S h1 0

0 h2
D . ~6!

Unfortunately no energy-independent closed-form solutions
for the transformationU are known in general. However,U
can always be expressed in terms of theX operator defined
by Eq. ~2! relating the large and small components of the
Dirac spinorf,4 and its most general form is given by22,23

U5U~X!5S ~11X†X!21/2 ~11X†X!21/2X†

2eiw~11XX†!21/2X eiw~11XX†!21/2D ,

~7!

wherewP@0,2p# is an arbitrary phase factor. With this form
of the unitary transformation the electronic part of the decou-
pled Hamiltonian may immediately be expressed as

h15
1

A11X†X
$V1cs"pX1X†cs"p1X†~V22mc2!X%

3
1

A11X†X
, ~8!

and is independent of the arbitrary phasew. If the energy-
independentX operator were known one could solve the sim-
plified eigenvalue problem forh1 instead of HD which
would no longer be plagued by negative-energy solutions.
However, an energy-independent expression for theX opera-
tor is only known for very special potentials excluding the
Coulomb potential.31

By exploitation of the Dirac equation it is very easy
to give an energy-dependent expression for the operatorX,
relating only the large and small components of the eigens-
pinor with energy eigenvalueE: X5X(E)5(E2V
12mc2)21cs"p. As a consequence, each eigensolution of
the Dirac equation has its own energy-dependentX operator,
whereas there is only one energy-independentX operator
valid for all infinitely many eigenstates ofHD . In the former
case the electronic Hamiltonianh1 is a very complicated
function of its own eigenvalues and the eigenvalue equation
will have only normalizable solutions ifE is indeed a true

electronic eigenvalue of the Dirac Hamiltonian. Obviously,
solving these eigenvalue problems for energy-dependent op-
erators is a formidable task and at least as complicated as the
original problem.

Therefore one has two options: either to decompose the
overall unitary transformationU into a sequence of simpler
unitary transformations,

U5¯U4U3U2U1U0 , ~9!

which can be parametrized such that the odd term of lowest
order in a predetermined power-series expansion parameter
is eliminated stepwise, or to restrict to a purely numerical
solution for the operatorX.

A. Requirements for the initial transformation U0

Every transformation method aiming at decoupling of
the Dirac Hamiltonian,

HD5E[ 22]1E[0]
(0)1O[ 21]

(0) ~10!

5E 0
(0)1E 1

(0)1O 0
(0) , ~11!

has necessarily to eliminate the odd termO[ 21]
(0) 5O 0

(0) in the
first step. Note that we have chosen superscripts in parenthe-
ses here to indicate that these terms belong to the initial, i.e.,
untransformed HamiltonianHD and might thus not yet be the
final terms with the corresponding order occurring in the
decoupled Hamiltonian. Only the even term of order22
according to the 1/c classification of Eq.~10! does already
constitute the final expression appearing in the block-
diagonal Hamiltonian and carries thus no superscript.

Since the odd term does not depend on the external po-
tential it has to be removed by a unitary transformation in-
dependent ofV being able to cancel the odd termca"p,
which is linear in bothc anda. The most general ansatz for
the initial transformationU0 is thus to parametrize it as a
power-series expansion~as it was done for allUk.0 matrices
in Ref. 23!,

U05U0~W[0] !5a0,011 (
k51

`

a0,kW[0]
k , ~12!

whereW[0] is an odd and anti-Hermitian operator, which is
first order in 1/c but independent ofV. If the operatorW[0]

were of zeroth or even lower order in 1/c it would introduce
odd terms of lower than minus first order in the transformed
Hamiltonian due to the presence of the termE[ 22] , and if it
were of second or even higher order in 1/c, it could not
account for eliminatingO[ 21]

(0) . Note that—due to the struc-
ture of the Dirac Hamiltonian, whose only odd term is
ca"p—there is only little flexibility for the form ofW[0] : as
a matter of fact it has to be proportional to (a"p)/c.

The anti-Hermiticity requirement for the operatorW[0] is
purely due to technical reasons, since the adjoint unitary
transformationU0

† is then easily obtained employing the re-
lation (W[0]

k )†5(21)kW[0]
k . The expansion coefficientsa0,k

have to satisfy the unitarity conditions explicitly given in
Ref. 23; they are omitted here for brevity. We only recall that
a0,0561, and all odd coefficients (a0,1,a0,3, . . . ) can be
chosen arbitrarily whereas all even coefficients
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(a0,2,a0,4, . . . ) areuniquely determined by the lower odd
coefficients. By inspection of the transformed Hamiltonian

~13!

the condition, which one has to impose onW[0] in order to
eliminate the lowest-order odd term occurring inH1 , is re-
vealed,

O[ 21]
(1) 5O[ 21]

(0) 1a0,0a0,1@W[0] ,E[ 22]#5
!

0. ~14!

Due to the very simple structure ofE[ 22] , which is only a
constant independent of bothp andV, inversion of the com-
mutator is straightforward and yields immediately the odd
and anti-Hermitian operator

W[0]5
a0,0

a0,1
b

ca"p

2mc2 5
a0,0

a0,1
b

a"p

2mc
, ~15!

which is indeed first order in 1/c. Depending on the choice
of the odd coefficientsa0,2k11 , we have thus found infinitely
many different unitary parametrizationsU0 which decouple
the Dirac Hamiltonian up to zeroth order in 1/c. The result-
ing HamiltoniansH1 consist of infinitely many terms which
can all be given a definite order in both 1/c andV, e.g., the
odd operatorO[1]

(1) , which was obtained after the first ‘‘~1!’’
transformation is first order ‘@1#’ in 1/c as well as first order
‘1’ in V,

O[1]
(1)5Fb a"p

2mc
,VG . ~16!

SinceU0 is independent of the potentialV, all the various
HamiltoniansH1 , which are all given by a specific choice of
the set of coefficientsa0,k , contain only terms of at most first
order inV, albeit arbitrarily high orders in 1/c. The leading
terms ofH1 given by Eq.~13! are independent of the chosen
parametrization ofU0 ~i.e., independent of the specific
choice of the expansion coefficientsa0,k) and are given by

E[ 22]5~b21!mc2, ~17!

E[0]5V1b
p2

2m
, ~18!

E[2]52b
p4

8m3c22
†a"p,@a"p,V#‡

8m2c2 . ~19!

One clearly recovers the rest energyE[ 22] and the nonrela-
tivistic contributionsE[0] as the leading terms of the FW
series given above. The expression forE[2] can be cast into
the more familiar form

E[2]52b
p4

8m3c2 1
\2

8m2c2 ~DV!

1
\

4m2c2 S•@~“V!3p#, ~20!

explicitly featuring the mass-velocity, the Darwin, and the
spin-orbit coupling term, where Dirac’sS matrices are just a
four-component generalization of Pauli’s spin matrices.

One might be tempted to consider all these infinitely
many HamiltoniansH1 as being equivalent, since they all
seem to possess the same spectrum due to the unitary struc-
ture of the transformationU0 . However, this perception
would be completely erroneous since the situation is more
subtle. After having chosen a specific set of expansion coef-
ficientsa0,k in accordance with the unitarity conditions men-
tioned above, one must check the convergence of both the
power-series ansatz forU0 and the resulting series expansion
of the HamiltonianH1 . Especially sinceW[0] is linear in the
momentum operatorp it is by no means clear if these series
expansions are valid for large momenta, i.e., if they are re-
lated to the Dirac Hamiltonian at all.
There is, however, one very special parametrization for the
transformationU0 , which may be converted into a closed-
form expression and which allows for a closed-form evalua-
tion of the HamiltonianH1 . Its expansion coefficients are
given by

a0,051, a0,151, a0,25
1
2 , a0,35

3
2 , a0,45

11
8 ,

a0,55
31
8 , a0,65

69
16 , a0,75

187
16 , a0,85

1843
128 , ~21!

a0,95
4859
128 ,¯

and yield the familiar analytical closed-form expression for
the traditional fpFW transformation,11

U05expS b
a"p

2p
arctan

p

mcD5Ap~11bRp!, ~22!

with

Ap5AEp1mc2

2Ep
, Ep5Ap2c21m2c4,

~23!

Rp5
ca"p

Ep1mc2 5a"Pp .

Note that the coefficients defined by Eq.~21! satisfy the uni-
tarity conditions given in Ref. 23 and do thus indeed consti-
tute a unitary transformation. Accordingly, the fpFW Hamil-
tonianH1 obtained by this specific transformation may then
be expressed in closed form,

~24!

and contains only well-defined expressions valid for all real
values of the momentump.

Only the specific choice forU0 established by Eqs.~21!
and ~22! facilitates the opportunity of a closed-form evalua-
tion of the HamiltonianH1 and, hence, abandons the neces-
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sity of an expansion in 1/c. The legitimacy of this expansion
and hence the issue of higher-order FW transformations will
be analyzed in the following section in detail. As a conse-
quence of this choice forU0 , we arrive at a compact and
concise expression forH1 , Eq. ~24!, where each constituent
term can only be classified according to its order inV and no
longer according to its order in 1/c. Each term occurring in
Eq. ~24! contains arbitrarily high orders of 1/c as it is easily
seen by a Taylor series expansion in this parameter. We
would like to emphasize that our derivation of the initial step
of any transformation scheme employs the most general an-
satz possible. Although the final result is the familiar fpFW
transformation being known and in use for decades, we stress
that our analysis yields this result as a necessary conse-
quence obtained from the most general viewpoint.

If there were no potentialV present and the particle was
moving freely, the HamiltonianH1 would already be block
diagonal. In the presence of a potential, however, all odd
terms occurring in the resulting HamiltonianH1 are at least
first order in 1/c and exactly first order inV, in contrast to
the original odd term of the Dirac Hamiltonian, which is
proportional toc and independent ofV, respectively. Even
for nonvanishing potentialV the importance of the odd
blocks has thus been diminished. In the following we will
analyze different strategies to further decouple the Hamil-
tonianH1 in the presence of an external potential.

B. Pathologies of higher-order Foldy–Wouthuysen
transformations

Following up the initial fpFW transformationU0 one
could try to establish a sequence of further unitary transfor-
mations Ui ( i 51,2,3,. . . ) which eliminate the respective
lowest-order odd term in 1/c in each step. This procedure
results in an expansion of the block-diagonal Hamiltonian
Hbd in even terms of ascending order in 1/c, and was first
suggested in 1950 by Foldy and Wouthuysen.11 We will thus
strictly use the phrase FW transformation in this work to
denote a 1/c expansion ofHbd rather than any arbitrary de-
coupling transformation of the Dirac Hamiltonian. The latter
convention may be found in some papers and should not be
confused with the notation of this paper. Though the 1/c FW
expansion of the Hamiltonian is completely ill defined, as we
will discuss in this section, this transformation protocol has
been the subject of many investigations over the last decades
and can still be found in many textbooks32–35 and recent
research papers.36–40 Therefore, there is a need for a thor-
ough discussion of the FW scheme in the context of a com-
plete account on transformation techniques, which is pursued
in this paper.

Within the FW framework, the decoupled Hamiltonian is
formally given as a series of even terms of well-defined order
in 1/c,

Hbd5S h1 0

0 h2
D

5 (
k521

`

E[2k]5 (
k521

` S E[2k] 1 0

0 E[2k] 2
D , ~25!

which is achieved by a sequence of unitary transformations

Ui5Ui(W[ i ] ). In most presentations of the FW transforma-
tion the exponential function parametrizationU [ i ]

5exp(W[i]) is applied. However, the specific choice of this
parametrization does not matter at all, since one necessarily
has to expandUi into a power series in order to evaluate the
Hamiltonian. This situation is completely analogous to the
Douglas–Kroll–Hess protocol, where it was believed for
many years that the specific square-root parametrization
(Ui5A11Wi

21Wi) introduced by Douglas and Kroll12 is
decisive for the success of the method. However, in 2002 it
was realized that the specific form of this parametrization
does not matter at all and the most general unitary form
leading to the generalized DKH approach was
introduced.22,23

In order to guarantee the most general setup and for
better comparison with the DKH method, the most general
parametrization for the FW transformation is therefore em-
ployed, i.e.,Ui is parametrized as a power-series expansion
in an odd and anti-Hermitian operatorW[ i ] , which is of
(2i 11)th order in 1/c. After n transformation steps the in-
termediate, partially transformed HamiltonianHn has the fol-
lowing structure:

Hn5Un21Hn21Un21
†

5 (
k521

2n21

E[2k]1 (
k5n

2n21

O[2k21]
(n)

1 (
k52n

`

~E[2k]
(n) 1O[2k21]

(n) !. ~26!

The next transformationUn is determined by the odd and
anti-Hermitian operatorW[n] , which has to be chosen as

W[n]5
an,0

an,1
b

O[2n21]
(n)

2mc2 ~27!

in order to eliminate the odd termO[2n21]
(n11) 5O[2n21]

(n)

1an,0an,1@W[n] ,E[ 22]# of Hn11 .
Though this FW procedure could formally be repeated

until exact decoupling seems to be achieved, the resulting
even terms are highly singular and ill defined: they are not
related to the original Dirac Hamiltonian, except of the lead-
ing nonrelativistic termE[0] and to some extend the first
relativistic correctionE[2] , which may at least be evaluated
perturbatively. The reason for this failure of the higher-order
FW transformation is that it necessarily relies on an illegal,
i.e., nonconvergent 1/c expansion of all terms occurring in
the fpFW HamiltonianH1 defined by Eq.~24! in order to
classify each term. Such a power-series expansion is, how-
ever, only permitted for analytic, i.e., holomorphic functions
and must never be extended beyond a singular point. Since
the square root occurring in the relativistic energy-
momentum relationEp of Eq. ~23! possesses branching
points atx[p/mc56 i , any series expansion ofEp around
the static nonrelativistic limitx50 within the simply con-
nected, sliced complex planeC1 is only related to the exact
expression forEp for nonultrarelativistic values of the mo-
mentum, i.e.,uxu,1, as it is graphically illustrated in Fig. 1.
Obviously, the alternative choice for the sliced complex
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plane given in Fig. 1,C2 , is not suited here, since it does not
even contain the nonrelativistic case of vanishing momentum
at x50.

This is most easily seen by rewrittingEp as

Ep5mc2A11x2[mc2 exp@ 1
2 ln~11x2!#, ~28!

which clearly demonstrates that the branching singularities
of the logarithm atx56 i confine the domain of conver-
gence of any power-series expansion ofEp to uxu,1. For
larger momenta, the series expansion up to any arbitrary or
even infinite order inp/mc does not represent the original
function Ep . For these momenta, this series does not even
converge at all, and the singular behavior of the series ex-
pansions ofEp , and hence ofAp andRp , becomes thus the
worse the more terms of the expansions are taken into ac-
count.

In Fig. 2 these pathologies are depicted graphically for
Ep andAp . The exact expressions are compared to the series
expansions aroundx50 which have been truncated after the
term of O(x12). For small momentax,1 the series expan-
sions are excellent approximations to the exact closed-form
expressions, whereas for larger momentax.1 the truncated
series expansions result in very different Hamiltonians with
different spectra and eigensystems. Furthermore, the untrun-
cated expansions are divergent for allx.1.

The intrinsic failure of the FW protocol is thus doubt-
lessly related to the illegal 1/c expansion of the kinetic term
Ep , which does not bear any reference to the external poten-
tial V. However, in the literature the ill-defined behavior of

the FW transformation has sometimes erroneously been as-
signed to the singular behavior of the Coulomb potential near
the nucleus, and even the existence of the correct nonrelativ-
istic limit of the FW Hamiltonian is sometimes subject of
dispute. Due to Eqs.~17! and ~18! and the analysis given
above the nonrelativistic limitc→`, i.e.,x→0 is obviously
well defined and for positive-energy solutions given by the
Schrödinger HamiltonianHnr5p2/2m1V.

The failure of the FW transformation does not impose a
major fundamental problem on block-diagonalization proce-
dures applied to the Dirac Hamiltonian. It rather demon-
strates that neither these unitary transformations nor the
Hamiltonian must be expanded naively in 1/c, i.e., trans-
gressing the domain of convergence of the resulting series.
The initial transformation step discussed in Sec. II A has thus
necessarily to be chosen as the closed-form, analytical fpFW
transformation defined by Eq.~22!.

C. Douglas–Kroll–Hess transformations

If an elegant expansion of the decoupled Hamiltonian
similar to Eq.~25! is to be preserved for both analytical and
numerical investigations, one necessarily has to classify each
term of this expansion according to a new order parameter—
the electron-nucleus interactionV, which is the only remain-
ing possibility. The key feature of this expansion is that the
closed-form expressions of the fpFW HamiltonianH1 given
by Eq. ~24! remain untouched during the whole transforma-
tion procedure, and the resulting block-diagonal Hamiltonian
is well defined for all momentapPR0

1 and features exactly
the same spectrum as the original Dirac Hamiltonian. This
decoupling scheme has first been mentioned by Douglas and
Kroll 12 in 1974 and—due to the pioneering work of
Hess,13,41 who first realized its efficiency and made quantum
chemical implementations feasible—has become one of the
most successful quasirelativistic methods over the last two
decades. As a consequence of the above discussion, it is the
only valid analytic expansion technique for the Dirac Hamil-
tonian.

The DKH procedure aims at decoupling of the Hamil-
tonian by a sequence of further unitary transformations fol-
lowing the initial fpFW step. The final Hamiltonian may then
be written as

Hbd5¯U2U1H1U1
†U2

†
¯5S h1 0

0 h2
D 5 (

k50

`

Ek , ~29!

FIG. 1. Schematic representation of the sliced complex planesC1 ~left! and
C2 ~right!. After removal of suitable parts of the imaginary axis, indicated by
thick lines, both regions are legitimate, single-valued domains forEp ex-
cluding the branching points at6 i . However, only within the shaded disk of
radius 1 series expansions ofEp aroundx50 are legitimate, and only the
simply connected domainC1 contains the whole real axis, i.e., all physically
relevant values for the momentumx5p/mc.

FIG. 2. Comparison of the exact expression forEp

~left! andAp ~right! with their series expansions around
the nonrelativistic limitx[p/mc50 up toO(x12). The
series expansions do only represent the exact expres-
sions for x,1. Beyond the branching point of the
square root ofEp @cf., Eq. ~23!# at x51 the series ex-
pansions and hence the expanded Hamiltonians are
completely ill defined.
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where each termEk comprises all contributions which are
exactly ofkth order inV.

We would like to recall that the specific form of the
unitary matricesUi is not decisive for the success of the
DKH protocol.23 Analyticity of these matrices in ana priori
unknown odd and anti-Hermitian operatorWi , which has to
be exactly ofi th order inV in order to eliminate the lowest-
order odd term is the only essential feature ofUi needed for
the DKH approach. The determination of bothWi and the
even termsEk requires the transformationsUi to be expanded
in a power series aroundWi50 in any case. Again, we there-
fore apply the most general parametrizations22,23 for the
transformationsUi in this work,

Ui5Ui~Wi !5ai ,011 (
k51

`

ai ,kWi
k , ~30!

with the coefficientsai ,k satisfying the unitarity conditions
mentioned earlier. All the different parametrizations for uni-
tary matricesUi occurring in the literature, e.g., the square-
root parametrizationUi5A11Wi

21Wi given by Douglas
and Kroll,12 are only special cases of this most general
setup.23

Up to fourth order (n54), the DKH Hamiltonians

HDKHn5 (
k50

4

Ek1 (
k55

n

E k
U ~31!

are independent of the chosen parametrizations of the unitary
transformationsUi . The fifth- and all higher-order terms,
E k>5

U , depend on the coefficientsai ,k of the general
parametrization23 ~see Ref. 30 for numerical results obtained
for different E k

U operators withk55,6). The spectrum and
the eigenfunctions of the exact, i.e., untruncated and block-
diagonal HamiltonianHbd5HDKH` do certainly not depend
on the choice of the coefficientsai ,k , since all transforma-
tions applied have been unitary. We have thus found an infi-
nite family of completely equivalent Hamiltonians, which do
all describe the Dirac electron perfectly well and which are
related via unitary transformations in Hilbert space. Given
two different parametrizations of the transformationsUi ( i
>1), i.e., two different sets of expansion coefficientsai ,k ,
we could establish two different unitary transformationsU
and U8 yielding two block-diagonal HamiltoniansHbd and
Hbd8 . However, these two decoupled Hamiltonians are sim-
ply related to one another by the unitary transformation

~32!

The DKH scheme is usually referred to as an expansion in
the external potentialV or—due to the specific form of the
Coulomb potentialV(r )52Ze2/r—an expansion in the
coupling strengthZe2. This might at first glance rise ques-
tions about the convergence of the DKH series, in sharp
contrast to its excellent numerical performance. By inspec-
tion of the explicit expressions for each termEk of the DKH
Hamiltonians this rapidly convergent behavior is not
surprising, since the true expansion parameter is the damped
potential

Ṽi j 5
Vi j

Ei1Ej
5

V~pi ,pj !

Api
2c21m2c41Apj

2c21m2c4
, ~33!

which is at least suppressed by a factor of 1/(2mc2) as com-
pared to the bare Coulomb potentialV. Each orderEk (k
>1) of the DKH Hamiltonian contains exactly (k21) fac-
tors of Ṽ. Since also the factorRp of Eq. ~23! is of leading
order 1/c, i.e., its lowest-order term occurring in a virtual
series expansion in this parameter would beO(1/c), each
term Ek is of leading orderZk21/c2k ~for k>2). Therefore,
each higher-order termEk of the Hamiltonian is formally
suppressed byZ/c2 as compared to the previous approxima-
tion HDKH(k21) , which is the basis for the rapid convergence
properties of the DKH protocol. Furthermore, this analysis
demonstrates that even the Coulomb singularity near a point-
like nucleus does not cause any problems within the DKH
scheme. It is strongly damped in the higher-order DKH terms
rather than giving rise to nonintegrable and singular 1/r k

expressions.
The superior performance of the DKH scheme as com-

pared to the ill-defined FW scheme is illustrated in Fig. 3.
Each term occurring in the block-diagonal Hamiltonian
Hbd—after virtual expansion in both 1/c and V—can be
given a unique order in both 1/c andV, and is accordingly
represented by one square in the (1/c)-V plane of Fig. 3. As
it is illustrated for the sixth-order FW HamiltonianHFW[6] , it
sums only very few terms~indicated by dark gray color!
contributing to the exact block-diagonal HamiltonianHbd .
The DKH scheme, however, sums all terms up to a given
order inV, irrespective of their order in 1/c. Thus, even the
third-order HamiltonianHDKH3 contains all terms of the
sixth-order FW Hamiltonian plus infinitely many additional
terms~indicated in normal gray!. This situation may be sum-
marized by the statement that the DKH Hamiltonians contain
‘‘implicit partial summations up to infinite order in 1/c. ’’
Only the terms indicated by light gray in Fig. 3 are not cov-

FIG. 3. Schematic representation of all terms occurring within the block-
diagonal HamiltonianHbd of Eq. ~6! ~shaded fields!. All terms have been
expanded in 1/c in order to classify them uniquely according to their order
in both V and 1/c. Each order of a FW Hamiltonian, e.g.,HFW[6] , sums
column by column~vertically! all terms up toO(1/c6), whereas each order
of a DKH Hamiltonian, e.g.,HDKH3 includes line by line summation over
infinitely many terms. See text for further details.
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ered by the third-order DKH Hamiltonian, but might be
taken into account by transition to higher-order approxima-
tions.

D. Iterative numerical solutions for X

The DKH scheme yields analytical closed-form expres-
sions for each order in the expansion parameterṼ. Alterna-
tively, a purely numerical procedure might be applied in or-
der to derive a matrix representation of the final block-
diagonal Hamiltonian. This approach was suggested quite
recently by Barysz and Sadlej in a series of papers,15,16,28and
makes extensive use of theX-operator formalism.

Following the mandatory initial fpFW transformation
U0 , the sequence of subsequent unitary transformationsUi

( i>1) of Eq. ~9! applied to the fpFW HamiltonianH1 is
united to only one residual transformation stepU1 , which is
formally parametrized by an operatorR, which constitutes
the exact relationship between the upper and lower compo-
nents of the fpFW spinorf1 for electronic ~class I!
solutions,4 f1

S5Rf1
L . The new symbolR has been used for

this operator in order to distinguish it from the previously
introducedX operator relating the small and large compo-
nents of the original, i.e., untransformed Dirac spinorf via
Eq. ~2!. The matrixU1 may then be expressed as

U15S ~11R†R!21/2 ~11R†R!21/2R†

2~11RR†!21/2R ~11RR†!21/2 D , ~34!

where the arbitrary phase of Eq.~7! has been fixed to zero.
Similarly to Eq. ~8! the requirement of vanishing off-
diagonal blocks ofHbd leads to a condition imposed on the
operatorR,

R5@H1
SS#21$2H1

LS1RH1
LL1RH1

SLR%, ~35!

where an obvious notation for the (232) components ofH1

has been introduced. After insertion of the explicit expres-
sions for the components of the fpFW HamiltonianH1 given
by Eq. ~24!, this equation may be converted to the form

EpR1REp5Ap@s"Pp ,V#Ap1@ApVAp ,R#

1@Aps"PpVs"PpAp ,R#

1RAp@s"Pp ,V#ApR. ~36!

For its numerical solution within a basis set approximation, it
has first to be multiplied by the operatorPp

21s"Pp from the
left in order to reduce it to computationally feasible form,
wherePp5uPpu is a scalar operator.28 Subsequent introduc-
tion of the operatorQ5Pp

21s"PpR and frequent use of the
relation s"Pps"Pp5Pp

2 yields an equation for the (232)
operatorQ5Q(R) analogous to Eq.~36!. Afterwards, this
equation can be solved by purely numerical iterative tech-
niques and the matrix representation of the operatorQ is
obtained.28 This result seems to be the best representation of
the operatorQ that can be achieved within a given basis and
is only limited by machine accuracy. Note that all expres-
sions used for the calculation of the matrix representation of
the operatorQ depend only on the squared momentump2

rather than on the momentum variable itself. This is a very
subtle point about the BSS approach and actually the key

feature of its computational feasibility. No matrix represen-
tation of the original operatorR can be obtained within a
purely two-component transformation scheme.

Equation~36! is nonlinear, i.e., quadratic and, thus, bears
the possibility of negative-energy solutions for the operator
R and thus also forQ. The choice towards the positive-
energy branch has to be implemented via the boundary con-
ditions imposed on the numerical iterative technique. Essen-
tially, Q and henceR have to be ‘‘small’’ operators with
operator norms much smaller than unity.

Once the matrix representation of the operatorQ is
known, it can immediately be used to determine the desired
matrix representation of the two-component Hamiltonianh1

@analogous to Eq.~8!#. Numerical results obtained with this
method for one-electron atoms are very encouraging:28 For
the first time Barysz and Sadlej could obtain the exact rela-
tivistic result, as it has so far only be accessible by four-
component methods.

E. Comparison of FW, DKH, and BSS schemes

We conclude this section with a schematic comparison
of the three different unitary decoupling schemes discussed
so far. In Table I the most essential features of the FW, DKH,
and BSS schemes are summarized and compared to each
other. The historical FW scheme with its inherent 1/c expan-
sions is completely ill defined and yields erroneous results
for any order. The DKH approach avoids any expansions in
1/c and thus represents the only analytical, regular, and well-
defined decoupling transformation for the Dirac Hamil-
tonian, which might be accomplished up to any desired order
in V. The infinite-order HamiltonianHDKH` is indeed com-
pletely decoupled and exact. All even termsEk can be ana-
lyzed individually order by order such that the importance of
any single order for relativistic effects in molecules might be
estimated. Finally, the BSS Hamiltonian represents a purely
numerical representation of the infinite-order DKH Hamil-
tonian, i.e., the matrix representations of all even termsEk

are explicitly summed up.

III. GENERAL PROPERTIES OF DECOUPLED
DIRAC HAMILTONIANS

The decoupled Dirac HamiltonianHbd given by Eq.~6!
features a very convenient mathematical structure, which al-
lows for efficient and well-defined computational processing.
These features do not depend on details of its derivation, but
are common properties of all block-diagonal Hamiltonians.
We shall briefly discuss the basic reasons of these salient
features in this section.

Within any expansion of the block-diagonal Hamiltonian
Hbd , all even termsEk depend only quadratically on the
momentum operator rather than on the linear operatorp it-
self. The origin of this peculiarity lies, of course, in the struc-
ture of the original Dirac Hamiltonian, whose only odd com-
ponent is the kinetic termca"p, which is linear inp. Since
there is no other odd term available and since only the prod-
uct of an even number of odd terms yields an even term, all
terms contributing toHbd do necessarily contain an even
number of momentum operators, which can always be
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grouped top2 or s"pVs"p expressions. In this sense all even
termsEk are thus functions ofp2 rather thanp. This situation
is graphically illustrated in Fig. 4.

As a consequence, application of computationally de-
manding large basis sets for the small components—due to
the kinetic balance requirements—can be avoided for the
evaluation of decoupled Hamiltonians, which is the key to
their efficient implementation. No reference has to be made
to odd terms with rectangular matrix representations being
expensive to evaluate.

By restriction on the upper left block of the Hamiltonian,
two-component methods do thus achieve enormous compu-
tational savings as compared to four-component methods,
since not only the number of integrals to be evaluated is

decreased significantly, but also the size of the matrix repre-
sentations of any operator encountered is reduced to a di-
mensionality of (NL3NL). As a matter of fact, the number
of integrals and the size of the matrix representations within
two-component frameworks is the same as for nonrelativistic
approaches.

Besides these computational benefits two-component
methods do also feature an essential conceptual advantage
over four-component setups. Due to the block diagonaliza-
tion of the Hamiltonian, no interactions between the positive-
energy states representing electrons and the unphysical
negative-energy states may occur. As a consequence, the
electronic Hamiltonianh1 is bounded from below by con-
struction and no variational collapse can occur. Its spectrum
comprises exactly the same positive-energy eigenvalues as
the original Dirac Hamiltonian, i.e., no approximations are
introduced by the block-diagonalization procedure. Further-
more, within two-component approaches scalar-relativistic
and spin-dependent terms can always be separated using
Dirac’s relation

~s"p!v~s"p!5p•vp1 i s•~p3vp!, ~37!

for Pauli spin matrices, wherev may be any scalar operator,
e.g., the external potentialV.

Due to the structure of the zeroth-order termE0 given by
Eq. ~24!, which contains the square root of the differential
operatorp2, any decoupled Hamiltonian is highly nonlocal

FIG. 4. Schematic diagram of the matrix representations of even and odd
operators. Odd blocks depend always on the linear momentum variable and
even blocks thus only onp2. The upper left blockh1 of the Hamiltonian
describes the positive-energy solutions and features a
(NL3NL)-dimensional matrix representation, whereas the negative-energy
block h2 is much more demanding to compute.

TABLE I. Comparison of FW, DKH, and BSS decoupling transformation schemes. The FW procedure is completely ill defined and must not be used in any
order in 1/c. The regular DKH scheme yields analytic and well-defined expressions for any order inV, and the BSS protocol is a purely numerical realization
of the infinite-order DKH scheme. See text for further explanations.

Foldy–Wouthuysen
~FW!

Douglas–Kroll–Hess
~DKH!

Barysz–Sadlej–Snijders
~BSS!

Initial transformation 1/c expanded fpFW
transformationU0 ,

see Eqs.~12! and ~15!

Analytic, i.e., closed-form fpFW transformation
U05Ap(11bRp), see Eq.~22!

Methods of further decoupling Sequence of subsequent unitary
transformationsUi ( i 51,2,. . . )

One-step diagonalization
U15U1(R), see Eq.~34!

Decoupling of different forms
Ui5(

k50

`

ai,kW[i]
k Ui5(

k50

`

ai,kWi
k

U15S 1

A11R†R

1

A11R†R
R†

21

A11RR†
R

1

A11RR†

D
Hamiltonian Analytic~closed-form! expressions Numeric representation

h15 (
k521

`

E[2k] 1 h15(
k50

`

Ek1

h15h1(R)

Formal expansion parameter 1/c V ¯

True expansion parameter x5p/mc Ṽ ¯

Convergence ¯ Controlled via
order parameter

Controlled by convergence
of iterative solver

Finite-order approximation Ill defined Regular ¯

Formal infinite order Ill defined Exact, i.e., untruncated block-diagonal Hamiltonians
are equivalent:Hbd5HDKH`5HBSS

Infinite order in practice ¯ Matrix multiplications
up to desired order

Iterative solution for
operatorR
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in coordinate space. Since the Taylor expansion ofEp is
completely ill defined~cf. Sec. II B!, E0 has necessarily to be
evaluated within a representation where the momentum op-
eratorp acts as a simple multiplicative operator. This may
either be directly in momentum space or in the space
spanned by the eigenfunctions of the nonrelativistic kinetic
energy operatorT, as it is done in the efficient implementa-
tion of the DKH transformation by Hess,13 which has also
been transferred to the BSS approach by Barysz and Sadlej.28

IV. EXACT DECOUPLING WITHIN THE DKH SCHEME

Inspired by the impressive success of the BSS scheme
and its outstanding accuracy for one-electron systems,28 it
would be highly desirable to devise an extension of the DKH
method up to arbitrarily high orders. For this purpose one
could try to establish an iterative numerical scheme, which
might be repeated until the exact result is obtained. The ob-
jective of this section is to demonstrate that such a purely
numerical iterative DKH protocol cannot be realized within
one- or two-component quantum chemistry packages in prin-
ciple and one has thus to break new ground to achieve DKH
transformations to arbitrary order.

Let us assume the intermediate Hamiltonian of the DKH
procedure aftern transformation steps were given. Due to
the (2n11) rule21,23 it may be written as

Hn5 (
k50

2n21

Ek1 (
k52n

`

E k
(n)1 (

k5n

`

O k
(n) , ~38!

where each term is classified according to its order in the
external potentialV and its even or odd structure. The next
unitary transformationUn is established by the odd operator
Wn , which is of nth order inV, via a general power-series
ansatz of the type given by Eq.~12! and yields

~39!

Wn is determined uniquely by the requirement that it has to
account for the elimination of the termO n

(n11) . Being annth
order integral operator, this is guaranteed if the kernel ofWn

is given by

Wn~p0 ,p1 , . . . ,pn!5
an,0

an,1
b

O n
(n)~p0 ,p1 , . . . ,pn!

Ep0
1Epn

. ~40!

If the matrix representation of this kernel were known, one
could immediately employ it to evaluate all terms of the
HamiltonianHn11 . This procedure could then be repeated
until the resulting Hamiltonian is block diagonal up to the
desired order inV.

It is, however, exactly this step which is not feasible
within any two- or one-component implementation, since the
matrix representations of odd operators are not calculated in
standard quantum chemistry program packages. As discussed
in Sec. III, their evaluation would inevitably require the in-
troduction of basis sets analogously to those for the small
components of the molecular spinors, which are approxi-
mately twice as large as the large component basis and have
to contain exponents for higher angular momentum func-
tions. This would not only blow up the computational costs
of the calculations considerably, but even destroy the elegant
framework of one- or two-component quasirelativistic meth-
ods, which could no longer be easily embedded in any non-
relativistic computer program.

The evaluation of higher-order DKH approximations
does thus necessarily require new algorithmic principles,
which accomplish the evaluation of the upper left blockh1

of the block-diagonal HamiltonianHbd , i.e., the even terms
Ek without any reference to the small component. As shown
above, such a new algorithmic scheme can in principle not
work numerically, but has to determine the individual terms
of the DKH Hamiltonian purely algebraicly, i.e., by a sym-
bolical evaluation of the corresponding unitary transforma-
tions. Due to the increasing complexity and number of the
higher-order terms, their determination, however, is only
possible if the algebraic manipulations can be executed au-
tomatically by a suitable parser routine yielding analytic for-
mulas for each orderEk . Subsequently, this parser should be
able to translate the resulting closed-form operator expres-
sions into corresponding matrix multiplications arising in a
basis set approach. Since the details of this procedure cannot
be described in sufficient detail in this work, the construction
and implementation of such a parser routine as well as its
numerical performance will be presented in paper II of this
series.29

V. CONCLUSION

The main objective of this work was to show that the
DKH protocol is the only valid transformation technique for
decoupling the Dirac Hamiltonian. For this purpose, all pos-
sible transformation schemes for the exact decoupling of the
Dirac Hamiltonian have been investigated. By application of
the most general ansatz for the unitary transformations we
have shown that all schemes, independent of their special
strategy, have necessarily to start with an initial fpFW step.
Neither this initial nor any subsequent transformation must
be expanded in 1/c around the nonrelativistic limitp50,
since any such series expansion is only valid for small mo-
menta, i.e.,x5p/mc,1. Meeting singularities within the
complex plane atx56 i , these series expansions will conse-
quently be ill defined for any larger value of the momentum.

Every series expansion of the block-diagonal Hamil-
tonianHbd has thus necessarily to employ a different expan-
sion parameter, and the damped external potentialṼ is the
only acceptable choice. This naturally leads to the DKH pro-
tocol, i.e., the stepwise construction of the decoupled Hamil-
tonian by a sequence of unitary transformations, which for-
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mally results in an expansion of this Hamiltonian in terms of
ascending and well-defined orders in the potentialV.

The main results of this study may be summarized as
follows.

~a! The ~well-known! expression of the fpFW transfor-
mationU0 is rederived employing the framework of the gen-
eralized DKH transformation, i.e., the most general param-
etrization of unitary matrices.

~b! The uniqueness of the fpFW transformation is shown
by a discussion of the radius of convergence of a Taylor
series expansion of the analytical, block-diagonal, fpFW-
transformed Dirac HamiltonianH1 @cf. Eq. ~24!# in 1/c. All
other parametrizations ofU0 , i.e., all other choices for the
expansion coefficientsa0,k yield ill-defined and singular ex-
pressions.

~c! The initial transformationU0 of the DK procedure
has necessarily and uniquely to be chosen as the fpFW trans-
formation.

~d! The failure of higher-order FW transformations is
shown to be related to the kinetic termE0 rather than being
due to properties of the external potentialV. This ill-defined
behavior of higher-order FW transformations occurs for any
choice ofV and not only for Coulomb potentials.@Due to the
1/r singularity of the Coulomb potentialVC , the FW trans-
formation ofVC does cause additional problems forr→0 as
it is known for a long time ~see, e.g., the work of
Kutzelnigg42,43!.#

~e! The DKH protocol is the unique transformation
scheme for decoupling the Dirac Hamiltonian, and yields
regular and well-defined expressions up to any arbitrary or-
der in V.

~f! Consequently, the Barysz–Sadlej–Snijders approach
can be discussed in this frame and represents a fully numeri-
cal variant of the infinite-order DKH scheme.

~g! The true expansion parameter of the DKH protocol is
the damped potentialṼ, which is strongly suppressed by
large energy denominators. This guarantees excellent conver-
gence behavior of the DKH scheme for all values of the
nuclear chargeZ.

~h! It has been discussed, why the individual terms of the
DKH Hamiltonians can only be determined purely algebra-
ically, i.e., by symbolic evaluation of the unitary transforma-
tions.

We have thus demonstrated that the contributions of
each individual order of the infinite-order DKH Hamiltonian
are only to be analyzed if an automated analytical derivation
of higher-order terms can be accomplished. This is due to the
fact that absolutely no reference to a small component is to
be made in a two-component framework. An algorithm for
infinite-order DKH calculations~DKH`! will be described in
paper II.29
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