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Exact decoupling of the Dirac Hamiltonian. |. General theory

Markus Reiher® and Alexander Wolf
Lehrstuhl fu Theoretische Chemie, UniversitBonn, Wegelerstrasse 12, D-53115 Bonn, Germany

(Received 19 March 2004; accepted 12 May 2004

Exact decoupling of positive- and negative-energy states in relativistic quantum chemistry is
discussed in the framework of unitary transformation techniques. The obscure situation that each
scheme of decoupling transformations relies on different, but very special parametrizations of the
employed unitary matrices is critically analyzed. By applying the most general power series ansatz
for the parametrization of the unitary matrices it is shown that all transformation protocols for
decoupling the Dirac Hamiltonian have necessarily to start with an initial free-particle Foldy—
Wouthuysen step. The purely numerical iteration scheme applyhogerator techniques to the
Barysz—Sadlej—SnijderSS Hamiltonian is compared to the analytical schemes of the Foldy—
Wouthuysen (FW) and Douglas—Kroll-HesgDKH) approaches. Relying on an illegalcl/
expansion of the Dirac Hamiltonian around the nonrelativistic limit, any higher-order FW
transformation is in principle ill defined and doomed to fail, irrespective of the specific features of
the external potential. It is shown that the DKH method is the only valid analytic unitary
transformation scheme for the Dirac Hamiltonian. Its exact infinite-order version can be realized
purely numerically by the BSS scheme, which is only able to yield matrix representations of the
decoupled Hamiltonian but no analytic expressions for this operator. It is explained why a
straightforward numerical iterative extension of the DKH procedure to arbitrary order employing
matrix representations is not feasible within standard one-component electronic structure programs.
A more sophisticated ansatz based on a symbolical evaluation of the DKH operators via a suitable
parser routine is needed instead and introduced in Part Il of this worRO@ American Institute

of Physics. [DOI: 10.1063/1.1768160

I. INTRODUCTION tions are promoted to four-component spingrswhose up-
per (L) and lower §) two components,¢- and ¢S,

Over the last 30 years methods of relativistic quam“mrespectively, may formally be related by a so-calleck@)
chemistry? have emerged as a well-established branch ofy operatof'

theoretical chemistry. Due to a plethora of intrinsically “rela-
tivistic” molecules, such methods have become a widespread P5=Xe". 2
standard tool in modern electronic structure theory. Mostl.he external
compounds containing heavy-element atoms require a theo—'ZeZ/r
retical description based on the four-component Dirac eqUaanded n
tion to yield even qualitatively correct results. For highly
accurate calculations of properties and energies relativisti{:em
methods also have to be applied even for molecules contair?_.)-er
ing light, i.e., weakly charged nuclei—especially if spin—
orbit coupling becomes decisive.

For one electron moving in an attractive external electri
field the Dirac Hamiltonian is given in standard notatiorf by

potentialV is of Coulomb type,V(r)=
or alternatively a potential derived from an ex-
uclear charge distributidn.
Any first-quantized description of a many-electron sys-
based on Ed1) is necessarily confined to a fixed num-
of particles, i.e., establishes always a no-pair theory. The
possibility of creation and annihilation of electron-positron
pairs requires the field-theoretical second-quantized frame-
Swork of quantum electrodynami¢QED) and has to include
interactions with the quantized electromagnetic field, i.e.,
Vv cop with photons. For most situations of chemical interest, how-
), (1)  ever, the threshold for pair-creation processes and excitations
co-p V-2me? of the positronic degrees of freedom is far beyond the energy

with o being the familiar Pauli spin matrices. In order to get Scale of the valence shell. Itis thus a very good approxima-

electronic binding energies from E¢1) directly comparable tion to integrate them out at the very beginning and to ne-
to the nonrelativistic Schringer theory the energy scale has glect all QED corrections, restricting to a quasirelativistic
been shifted by the rest energyc? of the electron. Reflect- formulation with a fixed number of particles. As a drawback

ing the (4x 4) structure of the operators also the wave func-Of this unphysical first-quantized description negative-energy
states show up, which are commonly assigned to positronic

states, albeit positrons in the real world feature strictly posi-

dAuthor to whom correspondence should be addressed. Electronic mai{.‘ive energies. As a result of these pathologies it is perhaps
reiher@thch.uni-bonn.de ’

bAuthor to whom correspondence should be addressed. Electronic maiP€St tO fOIIOV\_’ Thaller a_nd to adopt a pra_gma’_[ic attitude to-
awolf@thch.uni-bonn.de wards the Dirac equation and “to consider it as a useful

Hp=cap+(B—1)mc+V=
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model to be applied in situations, where the Sdimger  operatof® Since this procedure is based on ideas presented
equation is already imprecise due to relativistic effects, butn an earlier paper by Barysz, Sadlej, and Snijtferge will
where the involved energies are too small to trigger pairrefer to these numerical Hamiltonians as BSS Hamiltonians
creation processes.” in this work. Inspired by their work, the purpose of this and

Since the early days of relativistic quantum chemistrythe subsequent pageis to present an analytical decoupling
both numerical and basis-set methods being directly basestheme based on the generalized Douglas-Kroll-Hess
on the four-component first-quantized Dirac framework haveransformatiof® up to any predefined order in the external
been applied to atomic and small molecular electronic strucpotential, which does not make any reference to the small
ture calculationgsee Refs. 7 and 8 and references therein fotomponent. The advantage of this procedure is that one ob-
detailed reviews of this fie)d However, four-component tains analytical closed-form expressions for the decoupled
methods are affected by two major difficulties. First, theHamiltonians. Furthermore one can analyze the contribution
proper representation of negative-energy states related to tlg each new order of the block-diagonal DKH Hamiltonian
lower components of the Dirac spinors requires substantiab energies or properties and thus establish rational criteria
additional computational effort due to the requirements ofup to which order the decoupled Hamiltonians have to be
kinetic balancé:'® The derivative operator occurring in the expanded. Until now this analysis has only been possible up
nonrelativistic limit of Eq.(2), ¢°~[(o-p)/2mc]pt, en-  to fifth order in the external potenti&t.(After submission of
forces the small component basis to contain functions ofhis paper the first expressions for the sixth-order Hamil-
higher angular momentum than the large component basis ipnian have been given by van \lan 30
order to represent both upper and lower parts of the Diraqhe organization of this paper is as follows. We start with a
Hamiltonian with equal quality for electronic solutions. This brief presentation of the general framework of unitary trans-
does not only increase the number of integrals over one- angrmation techniques that decouple the Dirac Hamiltonian in
two-electron operators significantly, but also enlarges therder to introduce the basic notation. Starting from the most
size of matrix representations. Second, the pure existence gkneral ansatz for the unitary transformations the free-
small component basis sets in four-component approachgsarticle Foldy—WouthuysetfpFW) transformation is revis-
also gives rise to conceptual difficulties: Though negativeited in Sec. Il B. This initial transformation may be followed
energy states are obtained in every self-consistent@@H by a sequence of suitably chosen further unitary transforma-
step, only the positive-energyi.e., electroni¢ states are tjons, which are commonly divided into a FW and a DKH
taken into account for the construction of the density matrixpranch depending on the chosen expansion parameter. Ex-
and the Fock operator. Thus, the vast majority of one-particlgept for this choice, both transformation schemes are for-
molecular spinors received in a four-component calculatiormally equivalent, which is demonstrated in this work by ap-
is never used for the iterative setup of the SCF equations. plication of the most general parametrization of the unitary

Therefore various approximate decoupling schemes havgatrices. However, exceeding its inherent radius of conver-
emerged over the last two decades in order to annihilate thgence, it will be shown in Sec. Il A. This FW expansion is
contributions from the lower components and to restrict thecompletely ill defined and doomed to fail. It is demonstrated
theoretical description to the electronic, i.e., upper left part othat this behavior is a general failure of any FW approach
the Dirac Hamiltonian. These schemes may be divided int(])rrespecti\/e of the details o¥. Only the DKH scheme,
elimination and transformation techniques, and we will onlywhich avoids any expansion incl/yields regular and well-
focus on the latter in this work. All transformation methods defined block-diagonal expressions for the Hamiltonian,
aim at the construction of suitable unitary transformationsyhich may be truncated after any order\in Alternatively,
which decouple the Dirac Hamiltonian. Three main schemeshe secondary unitary transformation following the fpFW
have been suggested over the last 50 years: the Foldystep may also be performed purely numerically by an itera-
Wouthuysen(FW) transformations; the Douglas—Kroll-  tive scheme(BSS), whose discussion completes Sec. II. In
Hess (DKH) approach?*® and the analytical perturbative Sec. Il general properties of all decoupled Hamiltonians are
X-operator technique’$.*® Especially the DKH method has discussed. In Sec. IV it is demonstrated why exact decou-
been introduced and developed to a viable relativistic tool Ob”ng (i.e., up to any arbitrary order in the external potential
quantum chemistry by Hess and collaborafdrS=?*How-  can in principle not be realized by a purely numerical recur-
ever, all these protocols have been truncated after a finitgsion scheme within the stepwise DKH approach. This goal
number of terms yielding thus only approximate quasirelacan only be achieved by symbolic operations which evaluate
tivistic two- or one-component Hamiltonians with eigenval- the Hamiltonian order by order in an analytical fashion. Such
ues deviating more or less from the exact ones. It is thugn algorithm will be presented in paperl.
highly desirable to follow the ideas of the general theory of
effective Hamiltonian®?’ and to devise quasirelativistic
Hamiltonians, which describe only the electronic part of the
spectrum—nbut with the same accuracy as provided by the
original four-component methods. II. SURVEY OF UNITARY TRANSFORMATION

It was not before 2002 that Barysz and Sadlej proposeMETHODS
the first infinite-order decoupling scheme for the Dirac
Hamiltonian by applying a numerical iterative procedure in ~ The Dirac HamiltoniarH as defined by Eq(l) con-
order to solve for the matrix representation of tie tains two even terms and one odd term,
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Hp=(8—1)m&+V+ca-p (3)  electronic eigenvalue of the Dirac Hamiltonian. Obviously,
solving these eigenvalue problems for energy-dependent op-
=821t Gojt Oy (4)  erators is a formidable task and at least as complicated as the
=gt &+ Oy, 5) original problem.

Therefore one has two options: either to decompose the
where subscripts in brackets specify the order io &hd  overall unitary transformatiok) into a sequence of simpler
subscripts without brackets denote the order in the externalnitary transformations,
potentialV of the corresponding term. Note that each term of U=--U,U.U.U.U )
the Hamiltonian can be classified uniquely and equally well 4xs¥2E1ro
with respect to these two parameters, and it is purely a mattewhich can be parametrized such that the odd term of lowest
of personal taste which scheme one prefers. Even téfins order in a predetermined power-series expansion parameter
are block diagonal and commute with whereas odd terms is eliminated stepwise, or to restrict to a purely numerical
(O) are off-diagonal and anticommute with solution for the operatoX.

If the odd termca-p were not present in the Hamil-
tonian, the upper and lower components of the Dirac spinor
¢ would already be decoupled and the Dirac equation could\. Requirements for the initial transformation Uo
be solved independently for the two-spinags and ¢°. Every transformation method aiming at decoupling of
'I_'herefore_ one aims at flr_ldmg a suitable unitary transformas,a pirac Hamiltonian,
tion U which achieves this goal,
Ho=& -2+ &R+ 01, (10)

Hbd:UHDUT:

+ O
0 h_)- (6) =eP+eP+00, (11)

i imi ) —m(0);
Unfortunately no energy-independent closed-form solutiond!2S Necessarily to eliminate the odd teflyr’y;= O in the
for the transformatiot) are known in general. Howevel first step. Note that we have chosen superscripts in parenthe-

can always be expressed in terms of ¥@perator defined ses here to indicate that these terms belong to the initial, i.e.,
by Eq. (2) relating the large and small components of theuntransformed HamiltoniaH and might thus not yet be the

Dirac spinore,* and its most general form is given By final terms with'the' corresponding order occurring in the
decoupled Hamiltonian. Only the even term of ordeg

(1+XTx)~2 (1+XTX)~ V2T according to the ¥/ classification of Eq(10) does already
—eP(1+XXT) V2 de(1+xxh) "2 constitute the final expression appearing in the block-
7) diagonal Hamiltonian and carries thus no superscript.

h 0271 | bit h factor. With this f Since the odd term does not depend on the external po-
whereg <[0,2m] is an arbitrary phase factor. Wi ISTOMM antial it has to be removed by a unitary transformation in-

of the unitary transformation the electronic part of the decou'dependent ol being able to cancel the odd teroaw-p
pled Hamiltonian may immediately be expressed as ’

U=U(X)=(

which is linear in bothc and a. The most general ansatz for
the initial transformationJ, is thus to parametrize it as a

1
h,=———{V+co-pX+X'cop+X(V-2mc?)X ower-series expansidas it was done for all matrices
Nl P pX( } P P k>0
in Ref. 23,
1 o ;
x 1+ XX ® Uo=Uo(Wig)) =a0,0l+ k§=:1 agxWo; » (12)

and is independent of the arbitrary phagelf the energy- whereW)q, is an odd and anti-Hermitian operator, which is
independenX operator were known one could solve the sim-first order in 1¢ but independent o¥. If the operatoiW,,
plified eigenvalue problem foh, instead of Hy which  were of zeroth or even lower order inclit would introduce
would no longer be plagued by negative-energy solutionsodd terms of lower than minus first order in the transformed
However, an energy-independent expression foxdlopera-  Hamiltonian due to the presence of the tefm,;, and if it
tor is only known for very special potentials excluding the were of second or even higher order irc,14t could not
Coulomb potentiaf? account for eliminating?{®;;. Note that—due to the struc-
By exploitation of the Dirac equation it is very easy ture of the Dirac Hamiltonian, whose only odd term is
to give an energy-dependent expression for the opeditor ca-p—there is only little flexibility for the form oW : as
relating only the large and small components of the eigensa matter of fact it has to be proportional te-p)/c.
pinor with energy eigenvalueE: X=X(E)=(E—-V The anti-Hermiticity requirement for the operaitky, is
+2mc®) lco-p. As a consequence, each eigensolution ofpurely due to technical reasons, since the adjoint unitary
the Dirac equation has its own energy-dependénperator, transformationug is then easily obtained employing the re-
whereas there is only one energy-independénbperator lation (\N'[‘O])T:(—l)kw‘[‘O]. The expansion coefficientg)
valid for all infinitely many eigenstates &fy . In the former  have to satisfy the unitarity conditions explicitly given in
case the electronic Hamiltonidm, is a very complicated Ref. 23; they are omitted here for brevity. We only recall that
function of its own eigenvalues and the eigenvalue equatiom, o= =1, and all odd coefficientsag,,aq3,...) can be
will have only normalizable solutions i is indeed a true chosen arbitrarily whereas all even coefficients
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(agz2,804, ...) areuniquely determined by the lower odd
coefficients. By inspection of the transformed Hamiltonian

H\=UHpU§=E 5+ &+ Ex

+00

211+ 200201 [ W01 & 21]

(L)
o

E [2k]+z O[Zk 17>

1]

13

the condition, which one has to impose W, in order to
eliminate the lowest-order odd term occurringHn, is re-
vealed,

2]]:0.

Due to the very simple structure &f_,;, which is only a
constant independent of bothandV, inversion of the com-
mutator is straightforward and yields immediately the odd
and anti-Hermitian operator

OY= 08 +ag o Wio; & - (14)

Cap agp ap

aoo 8005 4P
2m&  ap,” 2mc’

Wio;= (15

which is indeed first order in &/ Depending on the choice
of the odd coefficients 5.1, we have thus found infinitely
many different unitary parametrizatiots, which decouple
the Dirac Hamiltonian up to zeroth order inc1/The result-
ing HamiltoniansH, consist of infinitely many terms which
can all be given a definite order in bothcldndV, e.g., the
odd operatoO{}], which was obtained after the firs(1)”
transformanon is first ordef1] in 1/c as well as first order
‘1'in V,

a-p

1) "
2mc’

oi=|8 V. (16)

Since Uy is independent of the potenti®l, all the various
HamiltoniansH , which are all given by a specific choice of
the set of coefficienta,,, contain only terms of at most first
order inV, albeit arbitrarily high orders in &/ The leading
terms ofH; given by Eq.(13) are independent of the chosen
parametrization ofU, (i.e., independent of the specific
choice of the expansion coefficierdagy,) and are given by

&_=(B—1)m¢, 17
2

5[01=V+/3;—m: (18
p*  [ap[ap,V]]

5[2]:_’88m3c2_ - 8mC;CZ (19

One clearly recovers the rest ene§y ,; and the nonrela-
tivistic contributions&jg; as the leading terms of the FW
series given above. The expression &y can be cast into
the more familiar form

M. Reiher and A. Wolf

4 2

p

b=~ Bgmcz t gmzcz (AVY)

h
a2z 2 [(VV)Xp],

4m (o] (20)

explicitly featuring the mass-velocity, the Darwin, and the
spin-orbit coupling term, where Dirac® matrices are just a
four-component generalization of Pauli's spin matrices.

One might be tempted to consider all these infinitely
many HamiltoniandH, as being equivalent, since they all
seem to possess the same spectrum due to the unitary struc-
ture of the transformatiord,. However, this perception
would be completely erroneous since the situation is more
subtle. After having chosen a specific set of expansion coef-
ficientsay in accordance with the unitarity conditions men-
tioned above, one must check the convergence of both the
power-series ansatz ftt, and the resulting series expansion
of the HamiltoniarH ;. Especially sincéVo, is linear in the
momentum operatqp it is by no means clear if these series
expansions are valid for large momenta, i.e., if they are re-
lated to the Dirac Hamiltonian at all.

There is, however, one very special parametrization for the
transformationU,, which may be converted into a closed-
form expression and which allows for a closed-form evalua-
tion of the HamiltonianH,. Its expansion coefficients are

given by
a0=1, a0,=1, =3, Q=3 A4~ s,
Qos=3, Qoe=16, Q07— 16, Aog= 1iza (21)
ag o= %589,. ..

and yield the familiar analytical closed-form expression for
the traditional fpFW transformatioft,

ap p
Uo—ex;{ﬂﬁarctanﬁ =Ap(1+BRy), (22
with
Ep+m02 2-2 2~4
A T E,=+pc +mct,
p
. cap . (23
PTE+mE ©

Note that the coefficients defined by Eg1) satisfy the uni-
tarity conditions given in Ref. 23 and do thus indeed consti-
tute a unitary transformation. Accordingly, the fpFW Hamil-
tonianH, obtained by this specific transformation may then
be expressed in closed form,

Hy=BE,—mc2+A,(V+R,VR,)A,+ BA,[R, V1A,

&

£ o

(24)

and contains only well-defined expressions valid for all real
values of the momentum.

Only the specific choice fod, established by Eq$21)
and(22) facilitates the opportunity of a closed-form evalua-
tion of the HamiltoniarH, and, hence, abandons the neces-
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sity of an expansion in &/ The legitimacy of this expansion U;=U;(W;;). In most presentations of the FW transforma-
and hence the issue of higher-order FW transformations wiltion the exponential function parametrizatior;
be analyzed in the following section in detail. As a conse-=exp\;;)) is applied. However, the specific choice of this
guence of this choice foU,, we arrive at a compact and parametrization does not matter at all, since one necessarily
concise expression fad;, Eq.(24), where each constituent has to expandl; into a power series in order to evaluate the
term can only be classified according to its orde¥iand no  Hamiltonian. This situation is completely analogous to the
longer according to its order ind./ Each term occurring in  Douglas—Kroll-Hess protocol, where it was believed for
Eq. (24) contains arbitrarily high orders ofd/s it is easily many years that the specific square-root parametrization
seen by a Taylor series expansion in this parameter. WeU; = \/1+W?+W,) introduced by Douglas and Kréfl is
would like to emphasize that our derivation of the initial stepdecisive for the success of the method. However, in 2002 it
of any transformation scheme employs the most general awas realized that the specific form of this parametrization
satz possible. Although the final result is the familiar fpFW does not matter at all and the most general unitary form
transformation being known and in use for decades, we streg¢sading to the generalized DKH approach was
that our analysis yields this result as a necessary cons@troduced??23
guence obtained from the most general viewpoint. In order to guarantee the most general setup and for
If there were no potentia¥ present and the particle was better comparison with the DKH method, the most general
moving freely, the Hamiltoniatd,; would already be block parametrization for the FW transformation is therefore em-
diagonal. In the presence of a potential, however, all odgloyed, i.e.,U; is parametrized as a power-series expansion
terms occurring in the resulting Hamiltoniddy, are at least in an odd and anti-Hermitian operatd¥;;, which is of
first order in 1¢ and exactly first order itV, in contrast to  (2i+1)th order in 1¢. After n transformation steps the in-
the original odd term of the Dirac Hamiltonian, which is termediate, partially transformed Hamiltonigly has the fol-
proportional toc and independent 0¥, respectively. Even lowing structure:
for nonvanishing potentiaV the importance of the odd

blocks has thus been diminished. In the following we will ~ Hn=Un_1Hy_ Ul
analyze different strategies to further decouple the Hamil- 2n-1 2n-1
tonianH; in the presence of an external potential. :kzl g+ ;Zn Ofgl)(il]

B. Pathologies of higher-order Foldy—Wouthuysen
transformations

n) (n)
Following up the initial fpFW transformatiotJ, one +k§2n (€2l + Ofzk- 1) (26)

could try to establish a sequence of further unitary transfor-

mationsU; (i=1,2,3....) which eliminate the respective The next transformatiot, is determined by the odd and
lowest-order odd term in &/in each step. This procedure anti-Hermitian operatow,, which has to be chosen as
results in an expansion of the block-diagonal Hamiltonian ")
Hypq in even terms of ascending order incl/and was first _no Of2n-1)
suggested in 1950 by Foldy and Wouthuy$eWe will thus M™a,,” 2me
strictly use the phrase FW transformation in this work to, _
denote a Id expansion oH,4 rather than any arbitrary de- in order to eliminate the odd termfg;ﬁll:o%ﬂ]
coupling transformation of the Dirac Hamiltonian. The Iatter+a”voa”rl[W["] .,5[72]] Of Hn.

convention may be found in some papers and should not be Though this FW procedure could formally be repeated

confused with the notation of this paper. Though the W until exact decoupling seems to be achieved, the resulting
even terms are highly singular and ill defined: they are not

expansion of the Hamiltonian is completely ill defined, as we lated to the original Dirac Hamiltoni t of the lead
will discuss in this section, this transformation protocol hag' 'at€d to n€ oniginal Lirac Hamiltonian, except of the lead-
nonrelativistic termé&p; and to some extend the first

been the subject of many investigations over the last decadddd nonr . .
and can still be found in many textbodks® and recent relativistic correctiont,;, which may at least be evaluated

research paper8= Therefore, there is a need for a thor- perturbatively. The reason for this failure of the higher-order

ough discussion of the FW scheme in the context of a com_'-:W transformation is that it necessarily relies on an illegal,

lete account on transformation techniques, which is ursuelf nonconvergentl ¢/expan§i0n of all terms.occurring in
ipn this paper g P tﬁ]wee fpFW HamiltonianH, defined by Eq.24) in order to

Within the FW framework, the decoupled Hamiltonian is classify each term. Such a power-series expansion is, how-

formally given as a series of even terms of well-defined ordef V" only permitted for analytic, i.e., holomorphlc fu_nctlons
and must never be extended beyond a singular point. Since

(27)

in 1/c, . . A
the square root occurring in the relativistic energy-
h, O momentum relationE, of Eq. (23) possesses branching
Hpa= 0 h_ points atx=p/mc= *i, any series expansion &, around

the static nonrelativistic limix=0 within the simply con-
” ” &2+ 0 nected, sliced complex plarig is only related to the exact
=k;1 5[2k]:k=§;1 0 g (25 expression folE, for nonultrarelativistic values of the mo-
mentum, i.e.|x|<1, as it is graphically illustrated in Fig. 1.
which is achieved by a sequence of unitary transformation®bviously, the alternative choice for the sliced complex
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Im(x) the FW transformation has sometimes erroneously been as-

signed to the singular behavior of the Coulomb potential near

" " the nucleus, and even the existence of the correct nonrelativ-

T istic limit of the FW Hamiltonian is sometimes subject of

: dispute. Due to Eqgs(17) and (18) and the analysis given

above the nonrelativistic limic— o, i.e.,x—0 is obviously

—‘i‘/ e Welludefined and for positive-energy solutions given by the

Schralinger HamiltoniarH ,,= p?/2m+ V.

' The failure of the FW transformation does not impose a

FIG. 1. Schematic representation of the sliced complex plépégeft) and major fundgmental prOb!em on bl(-)Ck_qlagonahzatlon proce-
L dures applied to the Dirac Hamiltonian. It rather demon-

C, (right). After removal of suitable parts of the imaginary axis, indicated by . . .
thick lines, both regions are legitimate, single-valued domainsEfpex- Strat?s tl_"at neither these unitary .transformauons nor the
cluding the branching points ati. However, only within the shaded disk of Hamiltonian must be expanded naively incli.e., trans-

radius 1 series expansions Bf aroundx=0 are legitimate, and only the  gressing the domain of convergence of the resulting series.

simply connected domaifi;, contains the whole real axis, i.e., all physically The initial transformation step discussed in Sec. Il A has thus

relevant values for the momentuxs p/mc. . .
necessarily to be chosen as the closed-form, analytical fopFW

transformation defined by E§22).

Im(x)

U Re(x) ; g - Re(x)

plane given in Fig. 1(;, is not suited here, since it does not C. Douglas—Kroll-Hess transformations
even contain the nonrelativistic case of vanishing momentum . I
If an elegant expansion of the decoupled Hamiltonian

atx=0. - . .
This is most easily seen by rewrittir, as S|m|Iar' to Eq.(25} is .to be preserved for' both analytlcql and
numerical investigations, one necessarily has to classify each
Ep= mcyJ1+x>=mc exd :In(1+x?)], (28)  term of this expansiqn accorgling to'a new order paramgter—
the electron-nucleus interactidf which is the only remain-

which clearly demonstrates that the branching singularitieg, possibility. The key feature of this expansion is that the
of the logarithm atx=xi confine the domain of Conver- ¢jnseq-form expressions of the fpFW Hamiltonien given
gence of any power-series expansionEgf to [x|<1. For 1 Fq (24) remain untouched during the whole transforma-
larger momenta, the series expansion up to any arbitrary Qo procedure, and the resulting block-diagonal Hamiltonian
even infinite order inp/mc does not .repre_sent the original ig \well defined for all momenta e R, and features exactly
function E,. For these momenta, this series does not evelo same spectrum as the original Dirac Hamiltonian. This
converge at all, and the singular behavior of the series eXzecoypling scheme has first been mentioned by Douglas and
pansions ok, and hence oA, andR,, becomes thus the (4112 j” 1974 and—due to the pioneering work of
worse the more terms of the expansions are taken into a§jessi34Lwho first realized its efficiency and made quantum
count. _ _ _ chemical implementations feasible—has become one of the

In Fig. 2 these pathologies are depicted graphically for ot gyccessful quasirelativistic methods over the last two
Ep andA, . The exact expressions are compared to the seriggscaqes. As a consequence of the above discussion, it is the
expansions arounk=0 which have been truncaFed after the only valid analytic expansion technique for the Dirac Hamil-
term of O(x'?). For small momenta<1 the series expan- tonian.
sions are excellent approximations to the exact closed-form 1o pkH procedure aims at decoupling of the Hamil-
expressions, whereas for larger momental the truncated yqnian by a sequence of further unitary transformations fol-
series expansions result in very different Hamiltonians W'thlowing the initial foFW step. The final Hamiltonian may then
different spectra and eigensystems. Furthermore, the untruz, \\ritten as
cated expansions are divergent foratt 1.

The intrinsic failure of the FW protocol is thus doubt-

lessly related to the illegal @/expansion of the kinetic term w
E,, which does not bear any reference to the external poten- He=---U,U-H UTU‘r',,:( + 0 ): 2 &, (29
tial V. However, in the literature the ill-defined behavior of bd ZrrirEEe 0 h. ) &

1751

— A_p (exact) ;'I
. 1 --- A_p (series, O(12)) ! . )
N ! N FIG. 2. Comparison of the exact expression fy

o ," (left) andA,, (right) with their series expansions around
} ! the nonrelativistic limitx=p/mc=0 up toO(x'?. The

L1251 ,"I ] series expansions do only represent the exact expres-
/ sions for x<1. Beyond the branching point of the
/ square root oE, [cf., Eq.(23)] atx=1 the series ex-
1.00 S/ g ; -

g pansions and hence the expanded Hamiltonians are

L completely ill defined.

— E_p (exact)
--- E_p (series, O(12))

0.5

n Il 1 n 1 n L 1 il Il
00635 05 o5 1 125 15 %P0 025 05 075 1 125 13
X = p/mc x = p/mc
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where each ternf, comprises all contributions which are o)
exactly ofkth order inV. e

We would like to recall that the specific form of the e e ——————— . T
unitary matricesU; is not decisive for the success of the
DKH protocol?® Analyticity of these matrices in aa priori s| 1T T T
unknown odd and anti-Hermitian operat , which has to - ]
be exactly ofith order inV in order to eliminate the lowest- A 000
order odd term is the only essential featurdJpfneeded for
the DKH approach. The determination of bd#t{ and the
even termg, requires the transformations to be expanded
in a power series around;,=0 in any case. Again, we there-
fore apply the most general parametrizatféris for the
transformationgJ; in this work,

o

0 O(l/c)
Ui=U; (W) =a o1+ gl a WK, (30)

FIG. 3. Schematic representation of all terms occurring within the block-
diagonal HamiltoniarH, 4 of Eq. (6) (shaded fields All terms have been

with the coeﬁicientsai K Satisfying the unitarity conditions €xpanded in I in order to classify them uniquely according to their order

mentioned earlier. All the different parametrizations for unj-"" PothV and 1¢. Each order of a FW Hamiltonian, €.dtewe) , sums
column by column(vertically) all terms up toO(1/c®), whereas each order

tary matricesU; occurring in the literature, e.g., the SqQuare- of 5 pKH Hamiltonian, €.9.Hpkus includes line by line summation over
root parametrizatiorlJ;= \/1+W2i +W,; given by Douglas infinitely many terms. See text for further details.
and Kroll}? are only special cases of this most general

setup?®
Up to fourth order (=4), the DKH Hamiltonians v V(pi,pi)
- ij i'Mj
4 n ViTEVE T (it ypik et Y
i j Fcct+mecT+picc+mc
Hokin= 3, &t 3, €V (3 Vb Vp,

which is at least suppressed by a factor of ti@) as com-

are independent of the chosen parametrizations of the unitaRA"€d to the bare Coulomb potentldl Each orderéy (k
transformationsU; . The fifth- and all higher-order terms, — 1) Of the DKH Hamiltonian contains exacthk¢1) fac-
5E>5: depend on the coefficients; , of the general tors of V. Since also the factdr;, of Eq. (23) is of leading
parametrizatioft (see Ref. 30 for numerical results obtained order 1€, i.e., its lowest-order term occurring in a virtual
for different £ operators withk=5,6). The spectrum and Series expansion in this parameter would @gl/c), each
the eigenfunctions of the exact, i.e., untruncated and block€'m & is of leading ordeZ*~*/c? (for k=2). Therefore,
diagonal HamiltoniarH ,g=Hpkn. do certainly not depend each higher-order terrg, of the Hamiltonian is formally
on the choice of the coefficients ,, since all transforma- Suppressed bg/c” as compared to the previous approxima-
tions applied have been unitary. We have thus found an infition Hokr(k-1), which is the basis for the rapid convergence
nite family of completely equivalent Hamiltonians, which do Properties of the DKH protocol. Furthermore, this analysis
all describe the Dirac electron perfectly well and which aredemonstrates that even the Coulomb singularity near a point-
related via unitary transformations in Hilbert space. Givenlike nucleus does not cause any problems within the DKH
two different parametrizations of the transformatidns (i~ Scheme. Itis strongly damped in the higher-order DKH terms

=1), i.e., two different sets of expansion coefficient, ~ rather than giving rise to nonintegrable and singular 1/
we could establish two different unitary transformatidsis ~€Xpressions.
and U’ yielding two block-diagonal Hamiltonianis,4 and The superior performance of the DKH scheme as com-

H{4. However, these two decoupled Hamiltonians are simPared to the ill-defined FW scheme is illustrated in Fig. 3.

ply related to one another by the unitary transformation ~ Each term occurring in the block-diagonal Hamiltonian
Hy—after virtual expansion in both d/and V—can be

H..=UUTH U'U =SH' S (32 given a unique order in bothd/andV, and is accordingly
N bd= represented by one square in thec)1¥ plane of Fig. 3. As
S itis illustrated for the sixth-order FW Hamiltonidhgye; , it

The DKH scheme is usually referred to as an expansion isums only very few termgindicated by dark gray colpr
the external potentia¥ or—due to the specific form of the contributing to the exact block-diagonal Hamiltonikh .
Coulomb potentialV(r)=—Ze’/r—an expansion in the The DKH scheme, however, sums all terms up to a given
coupling strengtize?. This might at first glance rise ques- order inV, irrespective of their order in &/ Thus, even the
tions about the convergence of the DKH series, in sharphird-order HamiltonianHpky; contains all terms of the
contrast to its excellent numerical performance. By inspecsixth-order FW Hamiltonian plus infinitely many additional
tion of the explicit expressions for each teéipof the DKH  terms(indicated in normal grgy This situation may be sum-
Hamiltonians this rapidly convergent behavior is notmarized by the statement that the DKH Hamiltonians contain
surprising, since the true expansion parameter is the dampéamplicit partial summations up to infinite order in 4/
potential Only the terms indicated by light gray in Fig. 3 are not cov-
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ered by the third-order DKH Hamiltonian, but might be feature of its computational feasibility. No matrix represen-
taken into account by transition to higher-order approxima+tation of the original operatoR can be obtained within a
tions. purely two-component transformation scheme.

Equation(36) is nonlinear, i.e., quadratic and, thus, bears
the possibility of negative-energy solutions for the operator
R and thus also foiQ. The choice towards the positive-

The DKH scheme yields analytical closed-form expres-energy branch has to be implemented via the boundary con-
sions for each order in the expansion parameteAlterna-  ditions imposed on the numerical iterative technique. Essen-
tively, a purely numerical procedure might be applied in or-tially, Q and henceR have to be “small” operators with
der to derive a matrix representation of the final block-operator norms much smaller than unity.
diagonal Hamiltonian. This approach was suggested quite Once the matrix representation of the opera®@ris
recently by Barysz and Sadlej in a series of papet§?%and  known, it can immediately be used to determine the desired
makes extensive use of theoperator formalism. matrix representation of the two-component Hamiltortian

Following the mandatory initial fpFW transformation [analogous to Eq(8)]. Numerical results obtained with this
U, the sequence of subsequent unitary transformafihns method for one-electron atoms are very encouradfirigor
(i=1) of Eq. (9) applied to the fpFW Hamiltoniatd, is  the first time Barysz and Sadlej could obtain the exact rela-
united to only one residual transformation stép, which is  tivistic result, as it has so far only be accessible by four-
formally parametrized by an operat®; which constitutes component methods.
the exact relationship between the upper and lower compo-
nents of the fpFW spinorg, for electronic (class ) g comparison of FW, DKH, and BSS schemes
solutions} ¢T=R¢: . The new symboR has been used for . . . _ .
this operator in order to distinguish it from the previously ~ We conclude this section with a schematic comparison

introducedX operator relating the small and large compo-Of the three different unitary decoupling schemes discussed
nents of the original, i.e., untransformed Dirac spigovia so far. In Table | the most essential features of the FW, DKH,

D. Iterative numerical solutions for X

Eq. (2). The matrixU, may then be expressed as and BSS schemes are summarized and compared to each
12 o1t other. The historical FW scheme with its inherent éxpan-
(1+R'R) (1+R'R)" 7R sions is completely ill defined and yields erroneous results

(34 for any order. The DKH approach avoids any expansions in

1/c and thus represents the only analytical, regular, and well-
defined decoupling transformation for the Dirac Hamil-
tonian, which might be accomplished up to any desired order
in V. The infinite-order Hamiltoniat pk.. is indeed com-
pletely decoupled and exact. All even terdiscan be ana-
R=[H?" Y{—H°+RH:"+ RH'R}, (35 lyzed individually order by order such that the importance of
any single order for relativistic effects in molecules might be

where an qbwous notation f(_)r the_}(@) C°mp°”ef?t$ OF estimated. Finally, the BSS Hamiltonian represents a purely
has been introduced. After insertion of the explicit expres-

) for th s of the foFW Hamiltonidn ai numerical representation of the infinite-order DKH Hamil-
sions for the components ot tne 1p amiftonfan given tonian, i.e., the matrix representations of all even tefips
by Eq.(24), this equation may be converted to the form

are explicitly summed up.
EpR+RE,=A [ 0Py, VIA,+[A VA, R]

Ill. GENERAL PROPERTIES OF DECOUPLED
+[A.0-P.Vo-P A R
[ApoPpVaPop R] DIRAC HAMILTONIANS

7|~ (1+RR) ¥R (1+RR) 12 |’

where the arbitrary phase of E() has been fixed to zero.
Similarly to Eg. (8) the requirement of vanishing off-
diagonal blocks oH,4 leads to a condition imposed on the
operatorR,

T RALo-Pp, VIAR. (36) The decoupled Dirac Hamiltoniad,4 given by Eq.(6)
For its numerical solution within a basis set approximation, itfeatures a very convenient mathematical structure, which al-
has first to be multiplied by the operatﬁlgla-Pp from the  lows for efficient and well-defined computational processing.
left in order to reduce it to computationally feasible form, These features do not depend on details of its derivation, but
where Pp=|Pp| is a scalar operatdf. Subsequent introduc- are common properties of all block-diagonal Hamiltonians.
tion of the operatoQ= P;la-PpR and frequent use of the We shall briefly discuss the basic reasons of these salient
relation a»P‘[,o--Pp:P,zJ yields an equation for the (22) features in this section.
operatorQ=Q(R) analogous to Eq(36). Afterwards, this Within any expansion of the block-diagonal Hamiltonian
equation can be solved by purely numerical iterative techHy, all even terms€, depend only quadratically on the
nigues and the matrix representation of the oper@lois  momentum operator rather than on the linear operatitr
obtained?® This result seems to be the best representation dagelf. The origin of this peculiarity lies, of course, in the struc-
the operatoR that can be achieved within a given basis andture of the original Dirac Hamiltonian, whose only odd com-
is only limited by machine accuracy. Note that all expres-ponent is the kinetic termma-p, which is linear inp. Since
sions used for the calculation of the matrix representation ofhere is no other odd term available and since only the prod-
the operatorQ depend only on the squared momentpf  uct of an even number of odd terms yields an even term, all
rather than on the momentum variable itself. This is a veryterms contributing toH,q do necessarily contain an even
subtle point about the BSS approach and actually the kepumber of momentum operators, which can always be
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TABLE |. Comparison of FW, DKH, and BSS decoupling transformation schemes. The FW procedure is completely ill defined and must not be used in any
order in 1¢. The regular DKH scheme yields analytic and well-defined expressions for any oMeaimd the BSS protocol is a purely numerical realization
of the infinite-order DKH scheme. See text for further explanations.

Foldy—Wouthuysen Douglas—Kroll-Hess Barysz—Sadlej—Snijders
(FW) (DKH) (BSS
Initial transformation 1¢ expanded fpFW Analytic, i.e., closed-form fpFW transformation
transformationy, Uo=A,(1+BRy), see Eq(22)

see Eqgs(12) and(15)

Methods of further decoupling Sequence of subsequent unitary One-step diagonalization
transformationd); (i=1,2,...) U,;=U,(R), see Eq(34)
Decoupling of different forms * * 1 1
U= a W U=, a W — ——=R
' kzoa“k t ' Z’oa'k ! JITRR JI+RR
=
-1 1

R
V1+RR J1+RR

Hamiltonian Analytic(closed-form expressions Numeric representation
- - h.=h.(R)
h,= 2 5[2k]+ h+:2 Ex+
K=—1 k=0
Formal expansion parameter cl/ \%
True expansion parameter x=p/mc Vi
Convergence Controlled via Controlled by convergence
order parameter of iterative solver
Finite-order approximation Il defined Regular
Formal infinite order Il defined Exact, i.e., untruncated block-diagonal Hamiltonians
are equivalentH,4=Hpkp.=Hgss
Infinite order in practice Matrix multiplications Iterative solution for
up to desired order operatorR

grouped tap? or o~pVo-p expressions. In this sense all even decreased significantly, but also the size of the matrix repre-

terms&, are thus functions gb? rather tharp. This situation sentations of any operator encountered is reduced to a di-
is graphically illustrated in Fig. 4. mensionality of N_. XN_). As a matter of fact, the number

As a consequence, application of computationally de©f integrals and the size of the matrix representations within

manding large basis sets for the small components—due fyvo-component frameworks is the same as for nonrelativistic
the kinetic balance requirements—can be avoided for th@Pproaches.
evaluation of decoupled Hamiltonians, which is the key to ~ Besides these computational benefits two-component
their efficient implementation. No reference has to be mad&"ethods do also feature an essential conceptual advantage
to odd terms with rectangular matrix representations being@Ver four-component setups. Due to the block diagonaliza-
expensive to evaluate. tion of the Hamiltonian, no interactions between the positive-
By restriction on the upper left block of the Hamiltonian, €Nergy states representing electrons and the unphysical
two-component methods do thus achieve enormous compiilegative-energy states may occur. As a consequence, the
tational savings as compared to four-component methodé&lectronic Hamiltoniarh ., is bounded from below by con-

since not only the number of integrals to be evaluated i$truction and no variational collapse can occur. Its spectrum
comprises exactly the same positive-energy eigenvalues as

the original Dirac Hamiltonian, i.e., no approximations are
N Ns introduced by the block-diagonalization procedure. Further-
more, within two-component approaches scalar-relativistic

N i oP 0 ok h+(p)§ 0 and spin-dependent terms can always be separated using
i : z = Dirac’s relation

Ng|| 'oPi{ 0 sp 0 0 h o)
| : / | (0p)w(0o-p)=p-wpt+io-(pXwp), (37)

FIG. 4. Schematic diagram of the matrix representations of even and odfor Pauli spin matrices, wher@ may be any scalar operator,
operators. Odd blocks depend always on the linear momentum variable ar*éi_g_ the external potenti.

even blocks thus only op?. The upper left blockh, of the Hamiltonian .
describes  the  positive-energy  solutions  and  features a Due to the structure of the zeroth-order tefggiven by

(N, X N, )-dimensional matrix representation, whereas the negative-energied- (24), Which contains the square "'OOt' of _the differential
block h_ is much more demanding to compute. operatorp?, any decoupled Hamiltonian is highly nonlocal
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in coordinate space. Since the Taylor expansionEgfis It is, however, exactly this step which is not feasible
completely ill definedcf. Sec. Il B, &, has necessarily to be within any two- or one-component implementation, since the
evaluated within a representation where the momentum opmatrix representations of odd operators are not calculated in
eratorp acts as a simple multiplicative operator. This maystandard quantum chemistry program packages. As discussed
either be directly in momentum space or in the spacéan Sec. lll, their evaluation would inevitably require the in-
spanned by the eigenfunctions of the nonrelativistic kinetidroduction of basis sets analogously to those for the small
energy operator, as it is done in the efficient implementa- components of the molecular spinors, which are approxi-
tion of the DKH transformation by Hes<s,which has also mately twice as large as the large component basis and have
been transferred to the BSS approach by Barysz and S4dlejto contain exponents for higher angular momentum func-
tions. This would not only blow up the computational costs
IV. EXACT DECOUPLING WITHIN THE DKH SCHEME of the calculations considerably, but even destroy the elegant

Inspired by the impressive success of the BSS SChemferamework of one- or two-component quasirelativistic meth-

and its outstanding accuracy for one-electron sysnis, ods, which could no longer be easily embedded in any non-

would be highly desirable to devise an extension of the DKH The evaluation of higher-order DKH approximations

method up to arbitrarily high orders. For this purpose ON%oes thus necessarily require new algorithmic principles,

could try to establish an iterative numerical scheme, which s .
. . . : which accomplish the evaluation of the upper left bldck
might be repeated until the exact result is obtained. The ob- X - .
oo . o of the block-diagonal Hamiltoniahl 4, i.e., the even terms
jective of this section is to demonstrate that such a purely, = .
o ) : . € without any reference to the small component. As shown
numerical iterative DKH protocol cannot be realized within N . S
) .. above, such a new algorithmic scheme can in principle not
one- or two-component quantum chemistry packages in prin- : . St
. : ork numerically, but has to determine the individual terms
ciple and one has thus to break new ground to achieve DK . . .
of the DKH Hamiltonian purely algebraicly, i.e., by a sym-

transformations to arbitrary order. . : ) .
. . A bolical evaluation of the corresponding unitary transforma-
Let us assume the intermediate Hamiltonian of the DKH_. . . .
. . tions. Due to the increasing complexity and number of the
procedure aften transformation steps were given. Due to , . : S .
123 . higher-order terms, their determination, however, is only
the (2n+1) rulet2it may be written as o . ; )
possible if the algebraic manipulations can be executed au-
" ~ - tomatically by a suitable parser routine yielding analytic for-
Hy= kgo 5k+k:22n Ex +k2n O, (38 mulas for each ordef, . Subsequently, this parser should be
able to translate the resulting closed-form operator expres-
where each term is classified according to its order in th&ions into corresponding matrix multiplications arising in a
external potentiaV and its even or odd structure. The next basis set approach. Since the details of this procedure cannot
unitary transformatiotd , is established by the odd operator be described in sufficient detail in this work, the construction
W, , which is ofnth order inV, via a general power-series and implementation of such a parser routine as well as its
ansatz of the type given by E¢L2) and yields numerical performance will be presented in paper Il of this
series?®

relativistic computer program.

2n—1 o

H,.,=UH,U}

2n+1 o0
=D g+ > &pty V. CONCLUSION
k=0 k=2n+2
The main objective of this work was to show that the
+O£:n)+an,0an,l[Wn .&o] DKH protocol is the only valid transformation technique for
T decoupling the Dirac Hamiltonian. For this purpose, all pos-
" sible transformation schemes for the exact decoupling of the
* Dirac Hamiltonian have been investigated. By application of
+1< E . O,(c"“). (39 the most general ansatz for the unitary transformations we
=n-+

have shown that all schemes, independent of their special

. ) ) ) ) strategy, have necessarily to start with an initial fpFW step.
W, is determined uniquely by the requirement that it has toneijther this initial nor any subsequent transformation must

account for the elimination of the terfﬁﬁ””). Being annth be expanded in t/around the nonrelativistic limip=0,
order integral operator, this is guaranteed if the kem&Npf  gsince any such series expansion is only valid for small mo-
is given by menta, i.e.,x=p/mc<1. Meeting singularities within the
ano OM(Pg.P1s- .. .Pn) complex plz_ine ax= *i, these series expansions will conse-
W,(Po,P1,---.Pn)= a—,B E TE . (40 quently be ill defined for any larger value of the momentum.
n.l Po " ~Pn Every series expansion of the block-diagonal Hamil-
If the matrix representation of this kernel were known, onetonianHy4 has thus necessarily to employ a different expan-
could immediately employ it to evaluate all terms of the sion parameter, and the damped external potektia the
HamiltonianH,,, ;. This procedure could then be repeatedonly acceptable choice. This naturally leads to the DKH pro-
until the resulting Hamiltonian is block diagonal up to the tocol, i.e., the stepwise construction of the decoupled Hamil-
desired order irV. tonian by a sequence of unitary transformations, which for-
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