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Exact schemes for the embedding of density functional theory (DFT) and wave function theory
(WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization.
First, a simple modification of the projector-based embedding scheme of Manby and co-workers
[J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the
system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector
we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the
embedding of WFT methods in local correlation approaches is studied. Since the latter methods
split up the system into local domains, very simple embedding theories can be defined if the
domains of the active subsystem and the environment are treated at a different level. The considered
embedding schemes are benchmarked for reaction energies and compared to quantum mechanics
(QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT
embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but
QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the
embedding of wave function methods, the clear winner is the embedding of WFT into low-level local
correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid
density functional is employed. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960177]

I. INTRODUCTION

Multilevel methods are extensively applied to describe
local events in extended electronic systems. They are well
suited to treat various phenomena including chemical reactions
and electronic excitations in both gas and condensed phases.
These methods combine an accurate, high-level quantum
mechanical (QM) method for the description of changes in
the electronic properties and take into account the effect
of the environment by a computationally efficient lower-
level method. The first multilevel methods1,2 combined semi-
empirical wave functions with molecular mechanics (MM).
Recent approaches also apply density functional theory (DFT)
or ab initio wave function theory (WFT) including accurate
correlated wave functions for the higher-level methods,
moreover, embedding into various level DFT and WFT
methods has also been developed.3–9

The coupling of the different computational schemes is a
critical point in multilevel methods. Standard wave function
and Kohn–Sham (KS) DFT methods apply orthonormal
orbitals, and this leads to significant simplifications both
in the formalism and in the computation. However, when
different methods are coupled, orthonormality may not be
automatically guaranteed. Therefore, significant efforts have
been devoted to derive multilevel methods where molecular

a)Electronic mail: kallay@mail.bme.hu

orbitals (MOs) calculated with different QM methods are
orthogonal. In the context of QM/MM methods with fixed
orbitals at the subsystem boundary, the orthogonality between
the fixed and optimized orbitals is achieved either with basis
set orthogonalization10–15 or with the application16,17 of the
Huzinaga equation.18 The latter in its most general form can
be written as

�

F̂ − P̂F̂ − F̂ P̂
�

|φ̃A
i ⟩ = ε̃A

i |φ̃
A
i ⟩, (1)

where F̂ is the Fockian composed of the optimized MOs φ̃A
i

of the embedded system A with ε̃A
i
’s as the corresponding

eigenvalues, and

P̂ =


i∈B

�

φB
i

 

φB
i

�

(2)

projects onto space B spanned by frozen orbitals φB
i
. A

distinctive feature of the operator in Eq. (1) is that it is
commutable with projector P̂ irrespective of the choice of
the latter. It means that solving Eq. (1) always guarantees
that MOs orthogonal to those in set B can be obtained. It
is worth mentioning here that, in addition to solving Eq. (1)
for subsystem A with a fixed environment represented by
subsystem B, Eq. (1) can also be solved self-consistently for
the two subsystems. Moreover, it can also be extended for
several frozen subsystems, and the subsystems can be treated
at different levels of theory.

0021-9606/2016/145(6)/064107/11/$30.00 145, 064107-1 Published by AIP Publishing.
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DFT-in-DFT and WFT-in-DFT methods face a similar
problem in ensuring orthogonality between the orbitals
representing the embedded and embedding electron density.
Without orthogonality or in an orbital free representation of
the embedding potential, the sum of the subsystem electron
densities does not agree with the total density, and the
kinetic energy contains a nonadditive term that can be
calculated with approximate nonadditive functionals19,20 or
with optimized effective potential methods.21–27 Alternative
techniques proposed by Rajchel et al.28 and by Manby and
co-workers29–32 represent the embedded electron density by
MOs (approximately) orthogonal to those from which the
embedding density is computed. The basic idea is the creation
of a Hermitian operator whose eigenfunctions include the
embedding and optimized orbitals with different eigenvalues.
In Refs. 28 and 29 it was proposed to complement the Fockian
of the embedded system by projector P̂ and solving the

�

F̂ + µP̂
�

|φ̃A
i ⟩ = ε̃A

i |φ̃
A
i ⟩ (3)

eigenvalue equation, where µ is a large number. This type
of eigenvalue equation has been extensively used in frozen
core calculations33 and is related to the Phillips–Kleinman
pseudopotential34 and also to the Huzinaga equation,18

Eq. (1), but has less favorable properties than the latter. When
the φB

i
orbitals are eigenfunctions of F̂, then P̂ commutes with

F̂ and also with F̂ + µP̂, the operator in Eq. (3). Consequently,
there exists a set of orthogonal MOs that are eigenfunctions of
both F̂ + µP̂ and P̂, and φ̃A

i
orbitals orthogonal to φB

i
’s can be

obtained by solving Eq. (3). However, when F̂ and P̂ do not
commute, orthogonal φB

i
and φ̃A

i
orbitals cannot be obtained

with a finite µ.
A promising new approach to obtain orthogonal MOs is

offered by the embedded mean-field theory (EMFT) developed
by Miller III et al.35 In EMFT the system is partitioned at the
basis set level allowing for the combination of various mean
field theories applied to atoms partitioned according to the
basis set-atom assignment. The approach is parameter free
and was shown to perform advantageously even for partitions
across multiple or aromatic bonds.35 Its major drawback is
that it only enables DFT-in-DFT-type embedding, whereas it
is not clear how to carry out WFT-in-DFT-type calculations
since the orbitals cannot be unambiguously assigned to the
subsystems.

WFT methods are most frequently embedded in DFT
approaches, but the embedding into a less expensive WFT
approach is also an alternative. A plausible choice for this
purpose is the use of local correlation models, which are
these days serious competitors to DFT methods concerning
both accuracy and speed. Since the pioneering studies in
the eighties,36–38 a number of local correlation approaches
have been developed (see, e.g., Refs. 39–47 for representative
examples). The fragmentation-based local correlation models
decompose the system into small fragments, which are treated
by conventional correlation methods. Another essential part
of the local correlation approaches describes the system
without dividing it into fragments, but local domains of
atoms and MOs or other functions are still used in the
calculations. In both cases, trivial embedding theories can be
defined if the fragments or domains are treated at different

levels. This possibility has already been explored by several
authors,48–51 but the arising WFT-in-WFT embedding theories
have not yet been compared to the corresponding WFT-in-DFT
schemes.

In this paper, we introduce several exact embedding
approaches which are applicable to DFT-in-DFT, WFT-
in-DFT, and WFT-in-WFT embedding. In Sec. II A we
provide a somewhat different derivation of the projector-based
embedding approach of Manby and co-workers,29,30 which
will facilitate the further discussion, and we also present our
proposal for the modifications of the theory. In Sec. II B,
we discuss the possibilities for embedding wave function
approaches into local correlation methods. The performance
of the various schemes will be compared in Sec. III.

II. THEORY

A. Huzinaga-equation-based embedding

Let us divide the system into two subsystems defined
by specifying the corresponding atoms: an embedded (active)
subsystem hereafter denoted by A and its environment labeled
by B. The subsystems are treated with a high- and low-level
DFT method, respectively, or alternatively for subsystem A a
correlated WFT method can also be used. The self-consistent
field (SCF) energy, which can be either KS or Hartree–Fock
(HF), for both subsystems can be written in the

ES[D] = Tr(hD) + GS[D] S = 1,2 (4)

form, where 1 and 2 refer to the SCF method used for
subsystems A and B, respectively, D is a one-particle density
matrix, h is the core Hamiltonian, and GS includes the two-
electron terms. The latter can be decomposed as

GS[D] = J[D] + Exc,S[D], (5)

where J is the Coulomb energy and Exc,S is the exchange-
correlation functional including also the exact exchange term,
if any. Following the work of Manby and co-workers,29,30

we suppose that the SCF equations are solved for the entire
system with the low-level DFT method defined by E2, and the
occupied MOs are localized using some localization criterion.
For each localized MO (LMO), the atoms are identified on
which the orbital is localized, e.g., an atom is assigned to an
orbital if the corresponding Mulliken population of the MO
is greater than a threshold. Then the LMOs can be classified
into two groups: the MOs φA

i
, which are localized on the

atoms of the embedded subsystem and the remaining orbitals,
φB
i
, which will be kept frozen in the subsequent calculations.

This assignment also fixes the number of electrons in the
subsystems, which will be denoted by nA and nB, respectively.
We can also compute the density matrices D

A and D
B of the A

and B subsystems, respectively, from orbitals φA
i

and φB
i
, and

obviously for the density matrix of the entire system, D
AB, the

D
AB = D

A + D
B (6)

identity holds.
In the next step, the SCF equations are solved for

the active subsystem of nA electrons with an embedding
potential describing the effect of the environment to calculate
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the embedded energy of the entire system, E12. An exact
embedding can be defined if we consider the energy of the
entire system calculated in the first SCF run and “replace”
the contribution of the D

A subsystem density by that of the
corresponding self-consistent density D̃

A computed with the
higher-level DFT method in the second SCF run. In other
words, E12 can be evaluated as

E12[D̃
A; D

A,DB] = E2[D
AB] + E1[D̃

A] − E2[D
A]. (7)

Note that the subscript of the energy refers to the method,
and the superscript of the density refers to the subsystem;
thus E1 is the energy with the higher-level method, D

A is the
density of subsystem A with the lower-level method, and D̃

A

designates the density of subsystem A with the higher-level
method. Provided that the reoptimized orbitals of subsystem
A, φ̃A

i
, are orthogonal to φB

i
, the Fock matrix that is compatible

with Eq. (7) can be defined as

F =
∂E12

∂D̃A
+
∂E12

∂DA
. (8)

To ensure the orthogonality, Manby and co-workers proposed
to solve the SCF equations with a modified Fock matrix
F + µP, where µ is a level-shift parameter, P = SD

B
S is the

matrix of the projector in Eq. (2) containing the localized
occupied MOs of the environment, and S is the atomic orbital
overlap matrix. If µ is infinity, the orbitals φ̃A

i
are orthogonal

to φB
i
’s, and the embedding is exact; however, in practice, µ

can only take a finite value. To avoid numerical instability,
a value of 103 Eh was suggested for practical applications,
which causes an error of a couple of tens of µEh in the final
energies.

The embedded energy can be further improved if E12

is augmented with a correction term, which is a first-
order correction to the difference between E12[D̃

A; D̃
A,DB]

and E12[D̃
A; D

A,DB]. Thus, the final DFT-in-DFT energy
expression reads as

EDFT
12 [D̃A; D

A,DB] = E12[D̃
A; D

A,DB]

+Tr


�

D̃
A
− D

A� ∂E12

∂DA



, (9)

where the last term obviously does not influence the exactness
of the embedding. In the case of WFT-in-DFT embedding,
a calculation is carried out with the WFT method using the
above Fock matrix and keeping orbitals φB

i
frozen, and the

WFT-in-DFT energy is evaluated as

EWFT
12 [ΨA; D̃

A,DA,DB] = E2[D
AB] + EWFT

1 [ΨA; D̃
A,DA,DB]

− E2[D
A] − Tr



D
A∂E12

∂DA



, (10)

where EWFT
1 is the total energy evaluated with the WFT

method and Fock matrix F, and ΨA is the corresponding wave
function.

In this work, most of the constituents of the projector-
based embedding theory are retained, but we propose a
theoretical modification, and some algorithmic changes are
also put forth to improve the selection of the orbital spaces.
The former modification affects the SCF procedure: instead
of solving the KS or HF equations with the modified Fock

matrix F + µP, we solve the Huzinaga equations, Eq. (1),
whose matrix form reads as

�

F − SD
B
F − FD

B
S
�

C̃
A = SC̃

A
Ẽ

A, (11)

where C̃
A contains the MO coefficients of the φ̃A

i
orbitals,

and Ẽ
A is a diagonal matrix with the corresponding

ε̃A
i

orbital energies on its diagonal. As discussed above,
the F − SD

B
F − FD

B
S Huzinaga matrix is Hermitian and

commutes with the SD
B
S projector. Consequently, the φB

i

orbitals are eigenfunctions of the Huzinaga matrix, and the
φ̃A
i

orbitals will be orthogonal to them. It can be shown18 that
the φ̃A

i
orbitals satisfying Eq. (11) make the energy in Eq. (9)

stationary with the condition that they form an orthonormal
set and they are orthogonal to the fixed φB

i
orbitals.

The use of the Huzinaga equations eliminates the bias
caused by the arbitrary level shift parameter µ and makes
the embedding “strictly exact.” Nevertheless, the difference
of the numerical results obtained with the original and the
modified approach is expected to be small. The computational
complexity of the two schemes is very similar. The extra price
we have to pay for the solution of the Huzinaga equations
instead of the level-shifted KS or HF equations is just one
matrix multiplication per iteration step in place of a matrix
addition, which incurs a negligible overhead with respect to
other operations in an SCF procedure (see the supplementary
material53 for timings).

Besides this theoretical improvement, we also tested
new selection schemes for the active and frozen orbitals
since our experience showed that for relatively complicated
systems, such as conjugated and aromatic molecules, the
simple Mulliken-population-based algorithm can select the
wrong orbitals or, in the case of a reaction, the number of
orbitals is not compatible for the educt and product. We have
found that the Boughton–Pulay (BP) algorithm,52 which is
widely used in local correlation methods for the assignment of
atoms to LMOs, with a completeness criterion of 0.985 helps
to overcome these problems for conjugated systems. With
these modifications, the embedding scheme outlined above
can be used as a black-box method for most molecules except
for extended aromatic systems (see Sec. III for examples). For
the latter, we developed a two-level orbital selection strategy.
First, the core, σ, and the π orbitals are distinguished: an
LMO is regarded as a π orbital if more than 4 atoms are
assigned to it by the BP scheme, otherwise it is supposed
to be core or σ. The latter orbitals are added to the active
subsystem based on the atom assignment of the BP algorithm.
For the number of π orbitals, an upper limit is set to avoid the
incorrect number of embedded orbitals for the reactants and
products. If one of the atoms assigned to a π orbital by the BP
algorithm is part of the embedded subsystem, the Mulliken
populations of the orbital on the active atoms are summed
up, and the given number of orbitals with the largest sums is
selected. This selection scheme clearly requires the a priori

knowledge of the maximum number of π orbitals in subsystem
A and is thus not fully black-box. Our test calculations proved
that the Mulliken population-based scheme performs well
for aromatic systems with active subsystems of reasonable
size. However, for extremely small embedded subsystems,
which are normally considered only for testing purposes, the
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σ orbitals must also be selected with a similar algorithm as
the π orbitals.

An important feature of the above method, which is
also peculiar to other embedding schemes, is that the
density of the environment, D

B, is kept frozen. One would
expect better results if D

B was also relaxed during the
SCF procedure, that is, the electrons of the environment
also felt the potential of the active electrons treated at a
higher level. The EMFT of Miller III et al.35 is an elegant
approach, which is free of this problem. In EMFT, the
density matrix of the entire system, D

AB, is partitioned
into subsystem densities D

A and D
B depending on if

the corresponding basis functions reside on the atoms of
subsystem A or B. The energy is written in the same form as
Eq. (7),

E12[D
AB] = E2[D

AB] + E1[D
A] − E2[D

A], (12)

which now depends on the total density D
AB = D

A + D
B, and

the Fock matrix is defined by the derivative of the energy with
respect to the latter,

F =
∂E12

∂DAB
. (13)

We also attempted to develop a self-consistent general-
ization of the Huzinaga-equation-based embedding scheme
along this line. We again suppose that the system is
partitioned in the same way as for the projector-based
embedding, but now the densities of the two subsystems,
D

A and D
B, are optimized self-consistently in a single

SCF run. To that end, in each iteration step of the SCF
procedure the occupied orbitals are localized, the LMOs
are assigned to the two subsystems, and the D

A and
D

B density matrices are computed and used to evaluate
the energy and the Fock matrix according to the same
equations as for EMFT, Eqs. (12) and (13). The converged
E12 energy is directly our DFT-in-DFT energy, and the
definition of the WFT-in-DFT energy is straightforward.
This self-consistent approach can also be regarded as an
alternative to the EMFT scheme. Compared to EMFT, its
major advantage is that it enables both DFT-in-DFT- and
WFT-in-DFT-type embedding calculations. We also imple-
mented and tested this approach, but we have found that it does
not perform better than the parent Huzinaga-equation-based
scheme. It can be explained by that the latter benefits from
error cancellation, which has been also realized by Miller III
and co-workers.30 Since the results are not convincing, and, in
addition, the self-consistent scheme is numerically less stable,
we refrain from the detailed discussion of the algorithm
and the results obtained with this approach; further details
and selected examples are presented in the supplementary
material.53

We also note that there is another simple possibility for the
self-consistent generalization of the Huzinaga-equation-based
embedding scheme. As mentioned in Sec. I, the Huzinaga-
equations can be solved repeatedly, i.e., after converging the
Huzinaga-equations for the active subsystem, we can change
the role of the active and the embedding subsystem and
solve the Huzinaga-equations for the environment keeping the
active orbitals frozen. This procedure can be repeated until

self-consistency. Concerning that this scheme is relatively
costly, and taking into account the moderate success of
the above self-consistent approach, we did not embark on
implementing it.

B. Embedding into local correlation methods

In our fragmentation-based local correlation ap-
proach,47,51,54 which is related to the cluster-in-molecule55,56

and the incremental schemes,42,57,58 the MOs are localized,
and a domain of LMOs, Ei, is constructed for each occupied
LMO i. The approximate contribution of LMO i to the
correlation energy, hereafter denoted by δEi(Ei), is evaluated
in this domain. Furthermore, to account for the long-range
correlation (LRC) neglected by this approximation, for each
i- j pair of occupied LMOs that are not included in any Ek
domain, a pair domain, Pi j, is assembled, and an approximate
pair correlation energy, δEi j(Pi j), is evaluated within the pair
domain. By summing up these increments, we arrive at our
final correlation energy expression,

Ec =


i

δEi(Ei) +


i j

′ δEi j(Pi j), (14)

where the prime indicates a restricted summation over
the pairs which are not included in any Ek domain. The
construction of the domains and other details can be
found in our previous papers47,54 and are not recapitulated
here. In our implementation, the δEi(Ei) contributions can
be computed with the second-order Møller–Plesset (MP2)
approach59 and its spin-scaled variants,60,61 the direct random-
phase approximation (dRPA)62 and its second-order screened
exchange (SOSEX) extension,63 and arbitrary iterative and
perturbative coupled-cluster (CC) methods, such as CC
with single and double excitations (CCSD) and CCSD with
perturbative triples [CCSD(T)], CCSD with triple excitations
(CCSDT), and so on (Ref. 64). The evaluation of the δEi j(Pi j)

pair correlation energies is currently possible at the MP2,
opposite-spin MP2, and dRPA levels.

The above partitioning of the correlation energy suggests
a trivial embedding scheme: the LMOs can be classified
as active or inactive using the algorithms presented in
Sec. II A, and the δEi(Ei) and δEi j(Pi j) contributions can
be evaluated at different levels of theory depending on the
type of the corresponding orbitals. An obvious possibility is
to compute the δEi(Ei) contributions at the CCSD(T) and
MP2 levels for an active and an inactive i, respectively,
and approximate the pair correlation energies also with
MP2. The resulting approach, which will be tested here,
can be denoted as LCCSD(T)-in-LMP2, where L indicates
the local approximation. A further choice is to treat the
environment simply at the HF level, that is, to neglect the
δEi(Ei) contributions for the environmental orbitals. Then we
have the option to only evaluate the pair correlation energies
within the active subsystem, but the resulting LCCSD(T)-
in-HF approach does not offer any advantage over the
LCCSD(T)-in-DFT-type embedding, which can be easily
implemented with the infrastructure described in Sec. II A.
On the other hand, we can take into account the LRC
between the embedded subsystem and the environment by
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also calculating the δEi j(Pi j) increments, where one of i

and j is an inactive LMO. In this study, we also tested
this approximation calculating the pair correlation energies at
the MP2 level; the LCCSD(T)-in-HF+LRC abbreviation will
stand for this approach.

Concerning the speed of the calculations, it is important to
note that, for a medium-sized or large molecule, the evaluation
of the local MP2 correlation energy is considerably cheaper
than the preceding HF calculation even if reduced-scaling
algorithms are used for the calculation of the exchange
contribution. The calculation of the MP2 pair correlation
energies takes just a fraction of the entire computation time.
Consequently, the speed of the LCCSD(T)-in-LMP2 and
LCCSD(T)-in-HF+LRC calculations is comparable to that
for a LCCSD(T)-in-DFT run, where the density functional
includes exact exchange.

III. BENCHMARK CALCULATIONS

A. Computational details

The localization-based embedding models proposed in
this paper just as the original projector-based embedding
scheme29,30 have been implemented in the M suite of
quantum chemical programs and will be available in the next
release of the package.65 For DFT-in-DFT embedding we eval-
uate the performance of the Huzinaga-equation-based scheme
in comparison to QM/MM and simple vacuum embedding
for energy differences. Concerning the embedding of WFT
methods, in addition to the latter two schemes WFT-in-DFT
embedding is also compared to the LCCSD(T)-in-LMP2 and
LCCSD(T)-in-HF+LRC approaches.

The Huzinaga-equation-based scheme was also bench-
marked against the parent projector-based approach, and,
as expected, we have found that the two methods behave
similarly. In accordance with Ref. 29, the difference between
total energies obtained with the two approaches is lower than
50 µEh (see the supplementary material53 for examples), and
the resulting difference in reaction energies is significantly
smaller than the intrinsic errors caused by the embedding
approximations. Consequently, in the following we only
present the results of the Huzinaga-equation-based scheme.

In our calculations, Pople’s 6-31G* and 6-311G**66,67

and Dunning’s (augmented) correlation-consistent polar-
ized valence triple-ζ basis set [(aug-)cc-pVTZ] were
employed.68–70 If the aug-cc-pVTZ basis is used for the
heavy atoms, but the diffuse functions are removed from
the hydrogens, the resulting basis set will be termed aug’-
cc-pVTZ. The density-fitting approximation was employed
throughout both for the SCF and the subsequent WFT
calculations. The auxiliary basis sets were those of Weigend
and co-workers optimized at the HF71 and MP272 levels.

The DFT calculations used various functionals: the
local (spin) density approximation (LDA),73,74 the Perdew–
Burke–Ernzerhof (PBE)75 functional, and B3LYP (Becke’s
three-parameter hybrid functional including the correlation
functional of Lee, Yang, and Parr).76,77 These functionals were
chosen because they represent different rungs on the “Jacob’s
ladder” of the DFT functionals. LDA is the simplest existing

functional depending only on the electron density itself. PBE
is a prototype of a functional derived using the generalized
gradient approximation. In addition to the density it is also
a function of its gradient, which makes the approach more
accurate but also results in somewhat increased computational
expenses with respect to the simple LDA. The most complete
functional considered here is B3LYP, which is a hybrid
functional, that is, it also contains HF exchange. The inclusion
of the latter further improves the performance of the method,
but B3LYP is also considerably more costly than the two other
functionals due to the expensive exact exchange term.

For the localization of the occupied orbitals the
Pipek–Mezey78 method was invoked. The MO spaces were
partitioned by the algorithm discussed in Sec. II A. Though
this scheme unambiguously selects the MOs, to avoid any
confusion about the partitioning of the systems considered,
for each of them we give the serial numbers of the atoms
assigned to the localized orbitals and the serial numbers of
the localized MOs included in the embedded subsystem in the
supplementary material.53

For the QM/MM calculations, M was interfaced to
the A molecular mechanics code.79,80 For the evaluation
of the MM energy functional, the general Amber force field
(GAFF)81 was used where the corresponding MM parameters
were generated by the A program82 using the
AM1-BCC charge scheme.83,84 The electrostatic and van der
Waals terms were not cut off, and only those bonded terms
were retained which contained at least one MM or MM host
atom. Residual charges which come from zeroing the charges
of the QM and MM host atoms were distributed equally
among all MM atoms.

The benchmark test sets were adopted from Ref. 35:
the substitution reaction 1-chlorodecane to yield 1-decanol,
the deprotonation of decanoic acid, the Diels–Alder reaction
between the conjugated octadecanonaene and 1,3-butadiene
(see Fig. 2(d) of Ref. 35), and the hydrogenation of pentacene
(see Fig. 3(d) of Ref. 35). The DFT-in-DFT, WFT-in-DFT,
and WFT-in-WFT calculations used the geometries of Ref. 35
except for OH− and H2, whose bond lengths were reoptimized
at the same level as in Ref. 35 and the resulting bond
lengths of 0.978 Å and 0.744 Å, respectively, were used.
For the QM/MM and vacuum embedding calculation the
C—C bond that is cut when fragmenting the system was
replaced by a C—H bond with a standardized bond length
of 1.09 Å pointing in the original direction. In the latter
calculations, only the single C—C bonds of octadecanonaene
were broken to preserve the conjugated system, and similarly,
for pentacene the aromatic rings were not split up, that is,
benzene, naphthalene, anthracene, and tetracene were taken
as model systems.

In Subsections III B and III C, the reference energies are
substracted from reaction energies, which were calculated by
the various embedding techniques, and the error is plotted
as a function of embedded carbon atoms if not otherwise
stated. Throughout the discussion of the results, the absolute
errors will be simply referred to as errors. Reference energies
are obtained by using the corresponding high-level methods
and basis sets for the aforementioned reactions. We also
adopt the convention of Ref. 35 that the results presented
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for the case where zero carbon atoms are included in the
embedded subsystem are the errors of the reaction energies
obtained with the low-level method.

It is worth emphasizing that the Huzinaga embedding
with the BP algorithm-based system partitioning required no
user intervention, such as the manual selection of the orbitals
included in the embedded subsystem or setting the number of
those orbitals, for any system separation even when conjugated
π-electron systems were considered. The only exception was
the hydrogenation reaction of pentacene, where the number
of π-orbitals must have been specified (vide infra). However,
other than setting these parameters, no human intervention
was required either for pentacene or for its hydrogenated
derivative.

B. DFT-in-DFT embedding

1. The substitution of 1-chlorodecane

The first test for the various embedding techniques is
the simplest case, where subsystems A and B are connected
through a singleσ-bond. In this reaction 1-chlorodecane reacts
with a hydroxide anion to form 1-decanol and a chloride anion.
The results are presented in Fig. 1.

The errors show similar tendencies for the hybrid and
the non-hybrid functional, as well as for the smaller and the
larger basis set. The error (relative error) of all the embedding
techniques is less than 1 kcal/mol (1%) if the embedded
subsystem includes at least two carbon atoms. Surprisingly,
the cost–efficient vacuum embedding and QM/MM techniques
converge rapidly and produce errors similar to those of the
more advanced scheme when sufficiently large subsystem
A is applied. The error of the Huzinaga embedding is still
below 1 kcal/mol when the active subsystem includes only
one carbon atom, while the error of the two simple approaches
is somewhat larger.

2. The deprotonation of decanoic acid

For the deprotonation reaction of decanoic acid the
subsystems are also separated through a single σ-bond,
however, the total charge of the reactant (decanoic acid)

and the product (decanoate) is different. This makes the
test more sensitive because the effect of error cancellation
is likely to be less significant. The results are shown in
Fig. 2.

As expected, the embedding techniques produce larger
errors, and the errors converge more slowly with the
enlargement of the embedded subsystem compared with
the previous reaction. The Huzinaga embedding provides
satisfactory results even for small active subsystems, but its
convergence is not monotonic, and for bigger embedded
systems the simplistic methods outperform the Huzinaga
scheme. The trends are similar for both basis sets, but with
the larger basis set the errors of the Huzinaga embedding are
slightly smaller. The PBE-in-LDA reaction energies calculated
with the Huzinaga approach are accurate to 1 kcal/mol with
active subsystems of any size, while the B3LYP-in-LDA
embedding requires quite large embedded systems to reach
this accuracy. In relative terms, the errors are well below
1% for all the combinations of functionals and basis sets.
Nevertheless, if one chooses a sufficiently large embedded
region, the vacuum embedding or the QM/MM method is the
most cost efficient option.

3. The Diels–Alder reaction of octadecanonaene

The next test reaction is the Diels–Alder addition of
1,3-butadiene and octadecanonaene. The main difference of
this example compared with the previous ones is that the
system is separated not through simple single C—C bonds
but bonds of order higher than one. The modeling of a
delocalized, conjugated π system is a serious test for the
embedding methods because these systems are sensitive to the
polarizing effects of the environment, hence distortions or the
truncation of the conjugated π orbitals can cause significant
errors. In the case of vacuum embedding and QM/MM, the
systems are only partitioned across single bonds to maintain
the conjugation in subsystem A. At all the system separations
1,3-butadiene is part of the embedded subsystem. The results
are depicted in Fig. 3, where we adopted the convention of
Ref. 35: the horizontal axis indicates the number of carbon
atoms of the octadecanonaene chain included in the embedded

FIG. 1. Error of the reaction energy
for the substitution reaction of 1-
chlorodecane with various embedding
schemes as a function of the number
of carbon atoms included in the em-
bedded subsystem using the 6-31G*
and 6-311G** basis sets. The B3LYP/6-
31G*, B3LYP/6-311G**, PBE/6-31G*,
and PBE/6-311G** reference reaction
energies are −89.0, −92.1, −88.8, and
−91.2 kcal/mol, respectively. The reac-
tion energies of the LDA/6-31G* and
LDA/6-311G** low-level methods are
−93.7 and −97.5 kcal/mol, respectively.
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FIG. 2. Error of the reaction energy
for the deprotonation of decanoic acid
with various embedding schemes as
a function of the number of car-
bon atoms included in the embed-
ded subsystem using the 6-31G* and
6-311G** basis sets. The B3LYP/6-
31G*, B3LYP/6-311G**, PBE/6-31G*,
and PBE/6-311G** reference reaction
energies are 363.3, 359.9, 363.0, and
359.3 kcal/mol, respectively. The reac-
tion energies of the LDA/6-31G* and
LDA/6-311G** low-level methods are
357.1 and 351.0 kcal/mol, respectively.

FIG. 3. Error of the reaction en-
ergy for the Diels–Alder reaction
of 1,3-butadiene and octadecanonaene
with various embedding schemes as
a function of the number of car-
bon atoms included in the embed-
ded subsystem using the 6-31G* and
6-311G** basis sets. The B3LYP/6-
31G*, B3LYP/6-311G**, PBE/6-31G*,
and PBE/6-311G** reference reaction
energies are −21.5, −16.3, −27.9, and
−23.6 kcal/mol, respectively. The reac-
tion energies of the LDA/6-31G* and
LDA/6-311G** low-level methods are
−40.1 and −35.6 kcal/mol, respectively.

subsystem, and subsystem A enlarges symmetrically from the
central C==C bond, where the reaction takes place.

The results show similar trends with both DFT functionals
and basis sets. The Huzinaga embedding performs the best of
all the embedding methods because its error (relative error)
is well below 1 kcal/mol (3%) if at least 6 carbon atoms
are included in the active subsystem, and it does not exceed
1.7 kcal/mol with any embedded system size. The convergence
is not smooth with the Huzinaga method, and the errors usually
increase when the system is partitioned across double bonds,
which can be rationalized by the destruction of the conjugated
π system. The vacuum embedding and QM/MM are not
competitive since for quantitative accuracy they require that
almost the entire molecule be included in the active subsystem.

We note again that the BP-algorithm-based partitioning
scheme is completely black-box even for this complicated
system as not even the number of orbitals of the embedded
subsystem had to be specified for any active subsystem of
octadecanonaene, except for the smallest embedded subsystem
where we had to set the number of embedded orbitals. It is
worth mentioning that the success of this scheme is probably
a consequence that the algorithm also selects those π orbitals,
which are close to the subsystem boundaries but localized
mainly in subsystem B.

4. The hydrogenation of pentacene

The last test system for the embedding methods is the
hydrogenation of pentacene. This is the most challenging
reaction because the π orbitals of the aromatic system
are even more sensitive to polarization compared with the
conjugated π orbitals of the previous test. Moreover, the
orbitals are also more delocalized, which increases the risk
that the automated orbital selection process selects different
number of orbitals for subsystem A in the educts and the
product. We experienced that the standard BP algorithm
greatly suffers from this problem, consequently the two-level
orbital selection scheme is applied for these calculations. This
orbital selection technique worked well for this test system as
no user intervention was necessary other than setting the upper
limit for the embedded π orbitals. These orbital limits were
incremented by 2 at each new aromatic ring broken except for
the smallest embedded subsystem, that is, for the product the
limits were 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, and 10 for the embedded
subsystems of 2,4,6, . . . ,22 carbon atoms, respectively, while
the above limits were increased by one for pentacene. The
results are presented in Fig. 4, where the numbering of the
horizontal axis starts from the end of the pentacene molecule
where the hydrogen addition occurs.
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FIG. 4. Error of the reaction en-
ergy for hydrogenation of pentacene
with the various embedding schemes
as a function of the number of car-
bon atoms included in the embed-
ded subsystem using the 6-31G* and
6-311G** basis sets. The B3LYP/6-
31G*, B3LYP/6-311G**, PBE/6-31G*,
and PBE/6-311G** reference reaction
energies are 32.4, 34.7, 22.2, and
24.3 kcal/mol, respectively. The reac-
tion energies of the LDA/6-31G* and
LDA/6-311G** low-level methods are
13.4 and 15.8 kcal/mol, respectively.

In general the behavior of the Huzinaga embedding is
similar to the B3LYP and PBE functionals, but the errors are
higher and the convergence is slower for the B3LYP-in-LDA
embedding. With the smallest embedded subsystem the error
is moderate probably due to error compensation, and after a big
jump at four carbon atoms it starts to decrease. Surprisingly,
for bigger active subsystems the embedding is more accurate
when full carbon rings are not part of subsystem A, which
can also be explained by error cancellation effects. The error
only drops below 1 kcal/mol, which still corresponds to a
considerable relative error of 5% (PBE) or 3% (B3LYP)
if 20 carbon atoms are part of the embedded subsystem.
Nevertheless, the error does not depend on the chosen basis set.
The vacuum embedding and QM/MM approaches are again
not competitive for small embedded subspaces. However,
if chemical accuracy is desired, we can also choose these
methods since they reach this limit in the same region as the
more advanced method.

All in all, the aromatic systems are separable with the
embedding techniques considered if sufficiently large active
subsystems are chosen. For qualitative accuracy, the Huzinaga
approach is recommended in conjunction with embedded
subsystems of medium size. For accurate reaction energies
big active subsystems are required, but any of the embedding
techniques can be employed.

C. WFT-in-DFT and WFT-in-WFT embedding

The above test set is also used for benchmarking the
WFT-in-DFT and the WFT-in-WFT embedding techniques,
consequently, the general remarks and technical consider-
ations of Sec. III B also hold here.

1. The substitution of 1-chlorodecane

The results for the substitution reaction calculated by the
various embedding techniques are shown in Fig. 5. The results
reveal that the performance of all the embedding methods is
good because the errors are below 1 kcal/mol, in addition,
the relative error is not greater than 1.1%. The LCCSD(T)-
in-HF+LRC approach provides the smallest maximum error,

followed by the embedding into PBE, LMP2, vacuum, B3LYP,
LDA, and MM. As to the convergence rate, the WFT-in-WFT
methods perform the best (LMP2 and HF+LRC embedding),
followed by the WFT-in-DFT methods (PBE, B3LYP, and
LDA), and the cost-efficient techniques are the slowest to
converge with respect to the size of subsystem A. However, in
the case of the B3LYP-based embedding, the error fluctuates
in the (−0.2, 0.2) kcal/mol interval when larger embedded
subsystems are applied. All in all, the considered methods
prove their capability of handling this simple test case, but the
most accurate technique is the LCCSD(T)-in-LMP2 scheme.
If one takes into account the computational cost as well, the
vacuum embedding seems to be the best option here, followed
by the QM/MM method and the PBE-based embedding.

2. The deprotonation of decanoic acid

Fig. 6 presents the errors in the deprotonation energies
calculated by the embedding techniques investigated. These
results show more pronounced differences among the
embedding methods than those for the previous reaction;

FIG. 5. Error of the reaction energy for the substitution reaction of
1-chlorodecane with various embedding schemes as a function of the number
of carbon atoms included in the embedded subsystem using the cc-pVTZ
basis set. The LCCSD(T) reference reaction energy is −71.3 kcal/mol. The
reaction energies of the B3LYP, PBE, LDA, HF, and LMP2 low-level methods
are −73.3, −71.8, −75.4, −78.7, and −70.5 kcal/mol, respectively.
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FIG. 6. Error of the reaction energy for the deprotonation reaction of de-
canoic acid with the various embedding schemes as a function of the number
of carbon atoms included in the embedded subsystem using the aug’-cc-pVTZ
basis set. The LCCSD(T) reference reaction energy is 353.1 kcal/mol. The
reaction energies of the B3LYP, PBE, LDA, HF, and LMP2 low-level methods
are 351.2, 350.4, 340.3, 357.6, and 349.9 kcal/mol, respectively.

however, if a sufficiently large embedded subsystem is
taken, all the techniques are still capable of describing the
deprotonation reaction. If we inspect the plot, we find that the
LCCSD(T)-in-LMP2 method provides the smallest maximum
error (0.7 kcal/mol), which is followed by the HF+LRC, the
vacuum, the QM/MM, the B3LYP, the PBE, and the LDA
embeddings, respectively. In relative terms, the error of the
LCCSD(T)-in-LMP2 approach is less than 0.2%, while that
for the other schemes still does not exceed 3%. Interestingly,
the fastest method to converge with respect to the size of
subsystem A is the QM/MM approximation: if subsystem
A consists of at least two carbon atoms, the most accurate
embedding scheme is QM/MM, which is also the second
cheapest method. However, its convergence is not monotonic
and is only marginally better than that for LCCSD(T)-in-
LMP2, which is followed by the HF+LRC, the B3LYP, the
PBE, the vacuum, and the LDA embeddings, respectively.
That is, the WFT-in-WFT schemes are proven to be more
accurate than the LCCSD(T)-in-B3LYP method, which is the
most complete WFT-in-DFT embedding but only slightly less
expensive than the WFT-in-WFT models considered here. As
expected, the WFT-in-DFT methods become more accurate as
the quality of the exchange-correlation functional increases,
but the vacuum embedding is still more accurate and, of
course, cheaper than the simplest WFT-in-DFT method,
LCCSD(T)-in-LDA.

3. The Diels–Alder reaction of octadecanonaene

Fig. 7 presents the errors of the various embedding
schemes calculated for the addition reaction of octadecanon-
aene and 1,3-butadiene. The results for this reaction show
that again the LCCSD(T)-in-LMP2 method produces the
smallest maximum error (0.6 kcal/mol = 1.7%), followed
by the HF+LRC, PBE, B3LYP, LDA, vacuum, and the MM
embedding, respectively. The latter methods are significantly
less accurate than LCCSD(T)-in-LMP2, and their maximum
errors are higher than 3%, even if most of them seem to
benefit from error cancellation for the smallest embedded
subsystems. For instance, the most accurate technique is

FIG. 7. Error of the reaction energy for the Diels–Alder reaction of
1,3-butadiene and octadecanonaene with various embedding schemes as a
function of the number of carbon atoms included in the embedded sub-
system using the cc-pVTZ basis set. The LCCSD(T) reference reaction
energy is −35.4 kcal/mol. The reaction energies of the B3LYP, PBE, LDA,
HF, and LMP2 low-level methods are −13.0, −20.5, −32.4, −21.6, and
−38.8 kcal/mol, respectively.

LCCSD(T)-in-LDA when only two carbon atoms are included
in the embedded subsystem, while it shows otherwise the
poorest performance amongst the WFT-in-WFT and WFT-in-
DFT methods. The convergence of the LCCSD(T)-in-LMP2
results is smooth, which is not true for the other WFT-in-WFT
and WFT-in-DFT methods. The order of the latter as well as
the vacuum and QM/MM schemes regarding the convergence
with the size of subsystem A is the same as their order of
accuracy. Just as for the DFT-in-DFT embedding, vacuum
embedding and QM/MM cannot compete with the other
methods for this reaction, though it is interesting to observe
that vacuum embedding always outperforms QM/MM. Similar
to the previous reactions, the WFT-in-WFT methods perform
consistently better than LCCSD(T)-in-B3LYP, which has
comparable computational costs. Moreover, LCCSD(T)-in-
PBE also proves to be more accurate than the latter method,
and LCCSD(T)-in-LDA has similar accuracy as the B3LYP-
based embedding when a larger embedded subsystem is
assembled.

4. The hydrogenation of pentacene

Fig. 8 depicts the errors obtained with the embedding
techniques studied for the hydrogenation reaction of
pentacene. The two-level selection scheme was used for
the WFT-in-WFT and WFT-in-DFT methods using the same
upper limits for the number of π orbitals as at the DFT-in-DFT
benchmarks.

The results show that the most accurate technique is
LCCSD(T)-in-LMP2 because this method gives by far the
smallest errors among all the embedding schemes. The
second best performance is observed for the LCCSD(T)-in-
PBE and LCCSD(T)-in-B3LYP schemes, which is followed
by the LDA, the HF+LRC, the QM/MM, and the vacuum
embeddings, respectively. Even though LCCSD(T)-in-LMP2
is significantly more accurate than the others, its error
(relative error) is still considerable, more than 5 kcal/mol
(20%) if the carbon atoms of the first benzene ring are
included in the embedded subsystem. The convergence of
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FIG. 8. Error of the reaction energy for the pentacene hydrogenation reaction
with various embedding schemes as a function of the number of carbon
atoms included in the embedded subsystem using the cc-pVTZ basis set. The
LCCSD(T) reference reaction energy is 25.9 kcal/mol. The reaction energies
of the B3LYP, PBE, LDA, HF, and LMP2 low-level methods are 37.1, 26.5,
17.7, 55.9, and 33.7 kcal/mol, respectively.

LCCSD(T)-in-LMP2 is monotonic, though it requires 14
carbons in the active subsystem to reduce the error to
1 kcal/mol, while the fluctuating LCCSD(T)-in-PBE crosses
this border earlier. The LCCSD(T)-in-B3LYP errors oscillate
and reach convergence more slowly than those of the
aforementioned two approaches, which means that it does not
offer any advantage even over the cheaper LCCSD(T)-in-PBE
scheme. In general, this aromatic system is separable with the
LCCSD(T)-in-LMP2 and LCCSD(T)-in-DFT methods, but
they require at least three carbon rings in subsystem A for
quantitative reaction energies. The vacuum, QM/MM, and the
HF+LRC embeddings are only suitable for modeling aromatic
systems when a very large embedded subsystem is chosen.

IV. CONCLUSIONS

Several schemes for the embedding of DFT and wave
function methods into lower-level DFT or WFT approaches
have been studied. The common feature of the embedding
theories is that they utilize orbital localization and are exact,
that is, the energy of the whole systems is recovered if the
DFT or WFT method is embedded into itself. First, a simple
theoretical modification of the projector-based embedding
scheme of Manby and co-workers29 is introduced. The
proposed modification, the use of the Huzinaga-equation,
eliminates the bias caused by the arbitrary level shift parameter
of the original theory, though it has a very small effect
on the numerical results. A modified algorithm is also
suggested for the partitioning of the molecular orbital space,
which increases the applicability of the theory. Second,
straightforward approaches for the embedding into local
correlation methods are proposed exploiting their intrinsic
feature, that is, they split up the system by default into
smaller species, which can be treated at different levels of
theory.

Benchmark calculations have been carried out to assess
the performance of the embedding schemes introduced in
comparison to QM/MM and vacuum embedding. Our results
suggest that, if reasonable active subsystems are chosen,

the proposed models can be applied as black-box methods
except for extended aromatic systems, where the maximum
number of embedded π orbitals have to be specified. For DFT
embedding, the performance of the Huzinaga-equation-based
scheme seems to be superior to the other approaches, but
QM/MM or even the simple vacuum embedding performs
surprisingly well if the system is partitioned across single
bonds. Concerning the embedding of wave function methods,
the best choice is to employ a low-level local correlation
method, such as local MP2 for the environment. Such
embedding schemes are considerably more accurate than
the corresponding WFT-in-DFT approaches, and considering
that a local MP2 calculation is significantly less expensive
than the preceding HF calculation, WFT-in-DFT embedding
can only be competitive if a non-hybrid density functional is
used.
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