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Abstract: Determining the evolution of the bed of a river or channel due to the transport of sediment was first examined in a theoretical
context by Exner in 1925. In his work, Exner presents a simplified bed evolution model derived from the conservation of fluid mass and
an “erosion” equation that is commonly referred to as the sediment continuity or Exner equation. Given that Exner’s model takes the form
of a nonlinear hyperbolic equation, one expects, depending on the given initial condition of the bed, the formation of discontinuities in the
solution in finite time. The analytical solution provided by Exner for his model is the so-called classical or genuine solution of the
initial-value problem, which is valid while the solution is continuous. In this paper, using the general theory of nonlinear hyperbolic
equations, we consider generalized solutions of Exner’s classic bed evolution model thereby developing a simple theory for the formation
and propagation of discontinuities in the bed or so-called sediment bores.
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Introduction

Fluid flowing over the bed of a river, channel, or estuary acts to
deform the shape of the bed by transporting sediment. Determin-
ing the evolution of a given bed configuration due to the motion
of the fluid and the resulting sediment transport was first exam-
ined in a theoretical context by Exner �1925�. Exner’s work in this
area can properly be considered a classical treatment of the prob-
lem. It appears in many texts �see, for example, Graf 1971;
Leliavsky 1955; Raudkivi 1967; Sleath 1984; Yang 1996�, and a
generalization of the “erosion equation” presented in his work,
which is a statement of the conservation of sediment mass, is
often referred to in the literature as the Exner equation of sedi-
ment continuity or simply the Exner equation. It is the foundation
of estuarine and river morphodynamics.

From equations for the conservation of fluid and sediment
mass, and through a number of simplifying assumptions, Exner
derives a simplified bed evolution model that takes the form of a
nonlinear hyperbolic scalar equation. Despite the relative simplic-
ity of this model, the results obtained are, to a limited extent, in
good agreement with what is observed in nature. Examples pro-
vided by Exner to this effect are the prediction of dune formation

1Postdoctoral Fellow, Institute for Computational Engineering and
Sciences, Univ. of Texas at Austin, Austin, TX 78712; formerly,
Postdoctoral Researcher, Dept. of Civil Engineering and Geological
Sciences, Univ. of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN
46556 �corresponding author�. E-mail: ekubatko@ices.utexas.edu

2Professor, Dept. of Civil Engineering and Geological Sciences, Univ.
of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556. E-mail:
jjw@photius.ee.nd.edu

Note. Discussion open until August 1, 2007. Separate discussions
must be submitted for individual papers. To extend the closing date by
one month, a written request must be filed with the ASCE Managing
Editor. The manuscript for this paper was submitted for review and pos-
sible publication on September 29, 2005; approved on June 15, 2006.
This paper is part of the Journal of Hydraulic Engineering, Vol. 133,
No. 3, March 1, 2007. ©ASCE, ISSN 0733-9429/2007/3-305–311/

$25.00.

JOU
from an initially symmetric mound or hump and the prediction of
the patterns of scour and deposition that occur from changes in
river or channel cross sections.

The analytical solution provided by Exner for his model is the
so-called classical or genuine solution of the initial-value prob-
lem, which is valid while the solution is continuous. However, it
is well known that solutions of nonlinear hyperbolic equations,
depending on the given initial conditions, may develop disconti-
nuities in finite time and a classical solution ceases to exist. Since
Exner’s equation is a conservation law �the conservation of sedi-
ment mass�, which is fundamentally an integral relation, it may be
satisfied by solutions that are discontinuous, so-called weak or
generalized solutions �for the general theory, see, for example,
Lax 1973; Whithman 1974�. This is in direct analogy to the hy-
perbolic conservation equations of gas dynamics or shallow water
theory, whose solutions are well known to form discontinuities
that satisfy a given entropy condition, referred to as shock waves
in gas dynamics and hydraulic jumps �stationary discontinuities�
or bores �advancing discontinuities� in shallow water theory.

Needham and Hey �1991� and Zanre and Needham �1996�
consider the formation of discontinuities in alluvial sediment beds
by analyzing a system of equations comprised of the shallow
water equations and the sediment continuity equation for bed
load. Specifically, they show that this system of equations is hy-
perbolic and by considering discontinuous solutions of this sys-
tem they develop a theory for what they call “sediment bores,” in
analogy to hydraulic bores of classical shallow water theory.
Mathematically, sediment bores are represented as discontinuities
in the bed. Physically, as with hydraulic bores in the free surface,
sediment bores in the bed are characterized by a rapid change in
the vertical over a relatively short horizontal distance. They form
as a result of sustained higher upstream than downstream sedi-
ment transport rates and will form, for example, as flow enters
into a dredged section or as the result of a dam break or landslide
that suddenly injects a large volume of sediment into a river or
channel. In the geophysical literature, this type of bed form is
often referred to as a planar delta form. Needham and Hey �1991�,

and the references therein, describe some particular cases of this
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type of bed form occurring in rivers. Fraccarollo and Capart
�2002� consider formations of this type �referred to as erosional
bores� in both a theoretical and experimental framework in the
context of an erosional dam break problem. Here, as in Needham
and Hey �1991� and in analogy to hydraulic bores, the term sedi-
ment bore will be retained.

In this paper, we develop a similar, yet simpler, theory for the
formation and propagation of sediment bores, not by considering
the full system of three equations, but by considering discontinu-
ous solutions to Exner’s simplified bed evolution model, which
captures the key features of the bed evolution process. This is
much in the same way that the inviscid Burgers equation is the
simplest model equation that captures some of the key features of
gas dynamics. This analogy, of course, between Burgers’ and Ex-
ner’s equations, is especially useful given the fact that both are
nonlinear hyperbolic scalar equations derived from conservation
laws, and can therefore be analyzed using the same mathematical
theory. Much of this theory was originally developed in the con-
text of studying the inviscid Burgers equation and then later gen-
eralized to nonlinear hyperbolic scalar equations with arbitrary
convex flux functions �see, for example, Lax 1973, and the refer-
ences therein�. We apply this general theory to the analysis of
Exner’s equation, thereby developing a simple theory for sedi-
ment bores. The results of this analysis are qualitatively similar to
those obtained by Needham and Hey �1991� and Zanre and
Needham �1996� and provide a degree of physical insight into the
problem that can often be lost in the tedious mathematical details
of an analysis of the full system of governing equations. The
analysis considered here provides a simplified setting to examine
the complex problem of bed evolution and will contribute to the
overall theoretical understanding of this problem.

We begin our analysis by deriving Exner’s model in the fun-
damental form of an integral conservation law, which is equiva-
lent to the differential form of the equation as transcribed by
Exner upon the assumption that the sediment bed is smooth �con-
tinuously differentiable�. We then consider the classical solution
of the initial-value problem and demonstrate, using Exner’s afore-
mentioned dune example, how the intersection of characteristics
leads to the breakdown of the classical solution and the formation
of a discontinuity. The corresponding parabolic equation of Ex-
ner’s model is then considered by adding a slope-dependent sedi-
ment transport term, which leads to the concept of the so-called
vanishing viscosity solution. We then consider generalized solu-
tions of Exner’s model. From the integral form of Exner’s equa-
tion we derive the so-called Rankine–Hugonoit jump condition
and the entropy condition that govern discontinuous solutions.
With these conditions, we consider generalized solutions of three
specific problems for Exner’s model including the solution of the
so-called Riemann problem. Finally, we conclude this paper by
summarizing the results and commenting on their importance in
the application and verification of numerical models of bed evo-
lution.

Derivation of Exner’s Model

Consider a fixed control volume that extends from x=x1 to
x=x2 �refer to Fig. 1� in a river or channel of constant width with
a bed that evolves over time due to the transport of sediment as
bed load, which is that portion of transported sediment load that
remains in contact with the bed. Although not considered here,
Exner also extended his model to channels of variable width. The

equations of the conservation of fluid and sediment mass for
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depth-averaged flow can be written in integral form as

d

dt
�

x1

x2

Hdx + �Hu�x1

x2 = 0 �1�

d

dt
�

x1

x2

�dx + �qs�x1

x2 = 0 �2�

where u=depth-averaged velocity of the fluid; H=total depth of
the fluid; �=bed elevation measured vertically upwards from a
horizontal datum located below the bed; qs=volumetric flux of
transported bed load sediment per unit width of channel; and
�f�x1

x2 = f�x2�− f�x1�.
Eq. �1� is recognized as the depth-averaged continuity equa-

tion, the equation of the conservation of mass for an incompress-
ible fluid assuming depth-averaged flow. Eq. �2� represents the
conservation of sediment mass for an incompressible sediment
mixture that is homogeneous in structure, i.e., the sediment bed is
idealized as a continuous medium with no porosity. This is the
so-called sediment continuity or Exner equation. Implicit in these
two equations is the assumption that the fluid and sediment re-
main distinct and separate from one another. That is, there is no
mixing of the two media outside of a negligible boundary layer
across the interface. This assumption is consistent with the notion
of bed load transport.

Exner’s model can be derived from these two equations by
invoking the three main assumptions of his theory. First, it is
assumed that the fluid flow is nearly steady, and therefore from
Eq. �1� the fluid flow is approximated as a constant

qf � Hu � constant �3�

where we have used the notation qf to denote the fluid flux. The
second assumption is that the deviation of the fluid surface, �,
from the height of the fluid surface at rest, h, is small enough that
it may be neglected in computing the total depth of the fluid, i.e.,
H�h−� �see Fig. 1�, or what amounts to a rigid lid assumption.
From these first two assumptions the fluid velocity, u, can be
expressed as

u =
qf

h − �
�4�

Exner’s third, and perhaps crudest, assumption is that the sedi-
ment flux is given by the simple relation

qs = �u �5�

where �=constant of proportionality. That is, the sediment flux is
assumed to be a linear power law of the velocity. This equation is
based on Exner’s simple observation that an increase �decrease�
in the velocity of the fluid increases �decreases� the capacity of

Fig. 1. Definition sketch for Exner’s model
the fluid to transport sediment.



While this observation is certainly true, most empirical sedi-
ment transport formulas that are used in practice take a slightly
more complicated form

qs = ��u,H, . . . �un �6�

where n is typically greater than 1; and �=empirically derived
function that is dependent on the flow parameters, sediment prop-
erties, and a number of constants. Many of these formulas can be
reasonably approximated by taking � as a constant, as Exner has
done. The more limiting aspect of Exner’s assumption is the use
of n=1. In this paper, we will retain this assumption for simplicity
of presentation and to maintain consistency with Exner’s original
work. The theoretical results obtained, however, can easily be
extended to arbitrary values of n and will not, qualitatively at
least, change the findings.

Substituting Eq. �4� into Eq. �5� and then in turn substituting
this result into Eq. �2� results in the governing equation of Exner’s
model

d

dt
�

x1

x2

�dx + � �qf

h − �
	

x1

x2

= 0 �7�

where qf and � are both constants so the problem has been re-
duced to a single equation in terms of the single variable, �.
Assuming that � and qs are smooth, and with some manipulation,
this can be written in the form

�
x1

x2 � ��

�t
+

�

�x

 �qf

h − �
�	dx = 0 �8�

which for arbitrary �x=x2−x1 is equivalent to requiring

��

�t
+

�

�x

 �qf

h − �
� = 0 �9�

This is the differential form of Exner’s model as presented in his
original work, which is a hyperbolic conservation law with a so-
called flux function given by

f��� �
�qf

h − �
�10�

It is assumed that both � and qf �0. Additionally, it is assumed
that h is sufficiently large so that �h−���0 for all time so that the
singularity of f will not be of concern. Physically, this means that
we are assuming that the sediment bed never breaches the free
surface of the fluid. With these restrictions, f�convex function of
� �i.e., f���0� and the existence and uniqueness of �entropy-
satisfying, generalized� solutions to Exner’s model follow from a
proof of the existence and uniqueness for a scalar conservation
law in one dimension with an arbitrary convex flux function �see
Lax 1973; Oleinik 1959�. We consider these solutions in the next
section.

Solutions to Exner’s Model

Continuous Solutions

Given that Exner’s model takes the form of a hyperbolic equation,
it is most clearly analyzed using the notion of characteristics.

Consider the initial-value problem of Exner’s model

JOU
��

�t
+

�

�x

 �qf

h − �
� = 0, ��x,0� = �0�x�, − � � x � �

�11�

Assuming that the initial condition, �0, is smooth and that the
solution itself remains smooth for a given time interval, then con-
stant values of the initial condition simply propagate along the
characteristics in space–time with a speed

c��� �
�f

��
=

�qf

�h − ��2 �12�

and the solution to the initial-value problem is given implicitly by

��x,t� = �0�x − c���t� �13�

This is the so-called classical or genuine solution, and its deriva-
tion is based on the assumption of smoothness of the solution.

In the present context the speed as given by Eq. �12� may be
interpreted as the bed celerity, the propagation speed of the bed.
Examining this expression a few basic facts about the evolution
of the bed are immediately apparent:
1. Higher fluid flow rates result in more rapid changes in the

bed;
2. A given bed profile will evolve more rapidly in shallower

water �smaller values of h� than in deeper water when sub-
jected to the same fluid flow rate; and

3. For a given bed profile and fluid flow rate, higher parts of the
bed will propagate faster than lower parts.

Points 1 and 2 are fairly obvious and straightforward. Point 3,
however, warrants additional consideration. Depending on the
given initial conditions, the nonlinear dependence of the bed ce-
lerity on the bed elevation could lead to the formation of a dis-
continuity in the solution, which occurs when characteristics first
intersect. By a simple argument �see, for example, Lax 1973�, it
can be shown that for a convex flux function this will occur if any
part of the initial condition has a negative slope.

As an example of the formation of a discontinuity, consider the
problem examined by Exner, that of an initially symmetric
mound. In the region to the left of the characteristic emanating
from the point x=0, t=0, characteristics spread out in a rarefac-
tion wave, which in the present context corresponds to the process
of erosion, i.e., the downstream portion of the mound erodes. In
the region to the right of this, the characteristics compress to-
gether, eventually intersecting, and the solution ceases to be
smooth �see Fig. 2�. The time when this occurs is referred to as
the breaking time, tb. After this time the differential form of Ex-
ner’s equation no longer holds �by definition the solutions must
be smooth�, and we must return to the integral form of the equa-

Fig. 2. Evolution of an initially symmetric mound according to Eq.
�13� and a sketch of the characteristics in the space–time plane
tion as given by Eq. �7�, which is also valid for discontinuous
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solutions. Extension of the classical solution beyond the breaking
time results in the unphysical multivalued “solution” as demon-
strated in Exner’s original paper and as shown here in Fig. 3.
Exner recognizes that this solution is unphysical, and, in fact, he
states that his model would be subject to the proviso that the bed
slopes should not exceed the angle of repose of the bed material
�Exner 1925�, i.e., a “smoothing effect” would be present in na-
ture that is not accounted for in his model.

This leads us to consider the so-called vanishing viscosity so-
lution of a parabolic equation �see, for example, Leveque 2002�.
Suppose a small diffusive or viscous term is added to Exner’s
model

��

�t
+

�

�x

 �qf

h − �
� = 	

�2�

�x2 �14�

where 	=positive constant diffusivity parameter, which would
theoretically be a function of the angle of repose of the bed ma-
terial. Diffusive terms of this type in the sediment continuity
equation have appeared in the literature �see, for example, Wa-
tanabe 1987; Daly and Porporato 2005�. Their inclusion in the
equation can be justified by the argument that the sediment trans-
port is dependent on the bed slope, that is, downward �upward�
slopes result in an increase �decrease� in sediment transport rates
due to gravity effects. This idea may be expressed by modifying
the original sediment transport formula, qs0, by an additional bed
slope term

qs = qs0 − 	
��

�x
�15�

which produces the desired results due to gravity effects. Substi-
tution of this equation into Exner’s equation produces the addi-
tional diffusive term of Eq. �14�. The resulting equation is now
parabolic instead of hyperbolic, and it can be shown that for all
time t�0 this equation will have a unique, smooth solution.
Furthermore, it can be shown that as 	→0 the solution of the
parabolic equation approaches a solution that possesses a discon-
tinuity, as illustrated in Fig. 3. This is termed the vanishing vis-
cosity solution of the parabolic equation.

Discontinuous Solutions

In order to consider the solution of Exner’s model after the for-
mation of the discontinuity, we must generalize the notion of a
solution so that we can consider discontinuous functions as solu-
tions as well, so-called weak or generalized solutions. To do so
we must return to the integral form of Exner’s equation.

Suppose that x=s�t� defines a smooth curve in space–time
along which the solution � has a discontinuity. On either side of

Fig. 3. Sketch of the multivalued “solution” and the concept of the
vanishing viscosity solution
the curve x=s�t� we assume that the solution is continuous and
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differentiable. Looking at the integral form of Exner’s model with
the limits of integration defined such that x1�s�t� and x2�s�t�
we have

d

dt
�

x1

s�t�

�dx +
d

dt
�

s�t�

x2

�dx + � �qf

h − �
	

x1

x2

= 0 �16�

where the range of integration has been split into two intervals on
either side of s. With some manipulation and letting x1 and
x2→s, we arrive at the well-known Rankine–Hugoniot jump con-
dition, which governs solutions of hyperbolic equations along
discontinuities

ṡ��� = �f���� �17�

where ṡ=propagation speed of the discontinuity; and
�·�= �·�L− �·�R represents the jump in the quantity across the dis-
continuity from the left, L, to the right, R. For Exner’s model this
is easily computed to be

ṡ =
�qf

�h − �L��h − �R�
�18�

where �L and �R=bed elevation to the left and right of the dis-
continuity, respectively. It is this jump condition that must be
satisfied along discontinuities that may form in the bed.

Generalized solutions, however, are not necessarily unique and
an additional criterion �in addition to the jump condition� known
as the entropy condition must be satisfied at discontinuities. The
term entropy condition originates from the condition in gas dy-
namics that requires that the entropy of a particle must increase
across a discontinuity. This condition leads to unique, physically
correct generalized solutions. In fact, it can be shown �see
Kalashnikov 1959� that a generalized solution that satisfies an
entropy condition corresponds to the vanishing viscosity solution
of the related parabolic problem. The entropy condition relates the
propagation speed of the discontinuity, ṡ, to the propagation
speeds of the bed, c, ahead of and behind the discontinuity and is
given by

c��L� � ṡ � c��R� �19�

For convex flux functions this reduces to the condition

�L � �R �20�

In the general theory of hyperbolic equations, discontinuities that
satisfy both a jump condition and an entropy condition are termed
shocks �as previously mentioned, in shallow water theory the
term bore is used�. In the present analysis, a discontinuity in the
bed that satisfies both the jump condition given by Eq. �18� and
the entropy condition given by Eq. �20� will be termed a sediment
bore.

Example Problems

With the notion of a generalized solution defined, in this section,
we consider the application of the theory developed in the previ-
ous section to some specific examples.

Exner’s Dune Example

As a first example, we consider the generalized solution of Ex-
ner’s dune problem. The initial condition is that of a wavy bed

given by



��x,0� = A0 + A1 cos
2
x

�
� − � � x � � �21�

where A0, A1�A0�A1�, and �=positive constants as defined in
Fig. 4�a�. Following Exner �1925�, as an example, we take the
following numerical values for these parameters: A0=A1=1,
�=20, h=3, and �qf =1 �see, also, Graf 1971�. The solution will
be smooth up until the breaking time, tb, which we can compute
explicitly from the equation

tb = −
1

min
−��
��

�F��
��
�22�

where F�
�=c��0�
��; and F��
� denotes differentiation with re-
spect to 
. Using this equation with the given initial condition we
compute the breaking time to be

tb =
5�5 − �7�3

4
��27 − 4�1/2
� 4.5685 �23�

�It should be noted here that Exner’s plot of the solution in his
original work �Exner 1925�, which is also reproduced by Graf
�1971�, is actually for the case �=10, not �=20, as reported in
those works. For �=10, Eq. �22� gives tb�2.28, which is consis-
tent with what is shown in Exner’s plots, i.e., the dune is shown to
break between the plots for t=2 and t=3.�

For t� tb the solution is smooth and is given by Eq. �13�. From
the solution it can be observed �see Fig. 4� that the upstream
portions of the mounds develop gentle slopes, while the down-
stream portions develop steep fronts, i.e., the wavy bed evolves
into a train of dunes. For t� tb the solution will continue to be
given by Eq. �13� in smooth regions, but the multivalued parts of
the “solution” as given by this equation will be replaced by a
discontinuity or sediment bore �the discontinuity obviously satis-
fies the entropy condition� propagating with speed ṡ as given by
Eq. �18�.

The location of the sediment bore can be determined graphi-
cally by the so-called equal-area principle �see, for example,
Whitham 1974, which also includes a quantitative means of de-

Fig. 4. Evolution of the bed for Exner’s dune example at three
different times: �a� t=0; �b� t� tb; and �c� t� tb
termining the shock location�, where it is placed at a position that

JOU
separates the multivalued dune form, as given by the classical
solution, into equal areas as shown by the dashed lines in Fig.
4�c�. In this way, of course, sediment mass is still conserved. This
can be seen by the fact that the area contained within the multi-
valued dune shape is equal to the area under the discontinuous
solution. It should be noted that the generalized solution as shown
in Fig. 4 closely resembles the form of dunes observed in nature
with the exception, of course, that the downstream face of the
dune would not be completely vertical due to some small diffu-
sive effect that would be present in nature, which is not accounted
for in the hyperbolic model. Finally, we remark that as the sedi-
ment bore continues to propagate downstream it experiences a
decrease in height, and it can be shown that for periodic initial
conditions the solutions tend to the mean value, �̄0, of the initial
condition as t→� �see Lax 1973�, that is, the bed eventually
flattens out.

Dredged Section

Next we consider the evolution of an isolated dredged section
given by the following initial condition:

�0�x� = 
A0 − A1 cos�2
x/�� for − �/2 � x � �/2

A0 + A1 otherwise
� �24�

where the parameters are as previously defined. A similar problem
was examined analytically by van de Kreeke et al. �2002� by
considering a similar model to that of Exner’s.

The solution to this problem is shown in Fig. 5 where it can be
observed that the dredged section deforms in shape as it propa-
gates downstream. A rarefaction wave can be observed in the
downstream portion of the section while the upstream portion
becomes gradually steeper, eventually developing a sediment bore
at time tb, which will propagate with a speed, ṡ, given by Eq. �18�.
From the entropy condition given by Eq. �19�, it can be seen that
as the sediment bore propagates further into the dredged section it
will eventually “catch up” with the rarefaction wave �since
ṡ�c��R�� after which time the height of the sediment bore will
decay at O�t−1/2� �see Lax 1973�, i.e., the dredged section will fill

Fig. 5. Evolution of the bed for the dredged section at three different
times: �a� t=0; �b� t� tb; and �c� t� tb
with sediment.
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Riemann Problem

Finally, we consider the so-called Riemann problem for Exner’s
equation, that is, Eq. �9� supplemented with an initial condition
that is piecewise constant with a single jump discontinuity

��x,0� = 
�L x � 0

�R x � 0
� �25�

In the present context, the discontinuity takes on the form of a
simple step discontinuity in the bed. For example, consider the
situation as illustrated in Fig. 6 where an infinitesimally thin wall
at x=0 separates the bed into unique left, �L, and right, �R, states
with the current flowing from the left to the right. Suppose then at
time t=0 the wall is removed. This problem, for example, could
represent the sudden failure of a submerged retaining wall or
sediment trap. We seek the solution to this problem and consider
the two possible cases below:

Case I: �L��R
One possible generalized solution in this case would be the propa-
gation of a sediment bore downstream with speed, ṡ, as given by
Eq. �18�. This solution would obviously satisfy the given jump
condition, but it is clearly in violation of the entropy condition as
given by Eq. �20�. Intuitively, this makes sense, in that we would
not expect a discontinuity in the bed that steps up from left to
right in the direction of the current to be propagated downstream
undisturbed but rather to be “washed out” or eroded away by the
current. The physically correct solution, that is, the entropy-
satisfying solution, is given by the rarefaction wave solution

��x,t� = ��L x � c��L�t

h − ��t/x c��L�t � x � c��R�t
�R x � c��R�t

� �26�

It can easily be verified that this rarefaction wave solution satis-
fies Eq. �9�. An example of this solution for some time t�0 is
shown in Fig. 7�a� where we see that the initial step in the bed is
eroded away as it propagates downstream. Thus, it is seen how
consideration of the entropy condition leads to physically correct
solutions.

Fig. 6. Illustration of the Riemann problem for Exner’s model
showing two bed elevations �L and �R separated by an infinitesimally
thin wall

Fig. 7. Illustrations of the solution of the Riemann problem for
Exner’s model for �a� Case I: �L��R; �b� Case II: �L��R
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Case II: �L��R
In this case the generalized solution is given by

��x,t� = 
�L x � ṡt

�R x � ṡt
� �27�

This scenario, which obviously satisfies the entropy condition,
represents the steady propagation of a sediment bore downstream
in the direction of the current, as shown in Fig. 7�a�. Needham
and Hey �1991� present an example of the generation and propa-
gation of a sediment bore in an experimental flume.

Summary

In this paper, we have developed a simple theory for sediment
bores by considering discontinuous solutions to a simplified bed
evolution model originally due to Exner. We have extended solu-
tions beyond the time of the breakdown of the classical solution,
which will invariably occur if the initial condition has a negative
slope. The solutions are extended by considering generalized so-
lutions of the fundamental integral form of Exner’s equation.
Through the addition of a bed–slope-dependent sediment trans-
port term, which acts in a viscous or diffusive manner, we have
also considered the corresponding parabolic equation of Exner’s
model, the vanishing viscosity solution of which corresponds to
the entropy-satisfying, generalized solution. We have demon-
strated the application of these principles to three specific ex-
amples. Namely, we have extended Exner’s solutions beyond the
breaking time for problems involving the evolution of a dune and
a dredged section, and we have considered the solution of the
Riemann problem for Exner’s model.

We conclude by noting that although the formation of sedi-
ment bores is intrinsically of theoretical interest, it is also an
important point to consider in terms of developing numerical
models for bed evolution. Many numerical methods for hyper-
bolic equations, such as finite-volume and discontinuous Galerkin
methods, involve solving the Riemann problem. A theoretical un-
derstanding of this problem for Exner’s model aids in the appli-
cation and extension of such methods to the equations governing
bed evolution. Additionally, many numerical methods will exhibit
spurious oscillations in the presence of steep gradients or discon-
tinuities. Working with the single equation of Exner’s model pro-
vides a simplified setting in which to examine a numerical
method, and the solutions developed in this paper could serve as
rigorous “benchmark” test cases for bed evolution models. An
example of the numerical solution of Exner’s model is addressed
by Kubatko et al. �2005�.
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Notation

The following symbols are used in this paper:
A0 ,A � positive constants;
c � propagation speed of the bed;



H � total height of the water column;
h � rigid lid elevation;

qf � fluid flow discharge;
qs � sediment flux;
ṡ � shock propagation speed;
t � time;

tb � breaking time;
u � depth-averaged velocity in the x-direction;

x ,x1 ,x2 � Cartesian coordinates;
� � sediment flux constant of proportionality;
	 � diffusivity constant;
� � free surface elevation;
� � bed elevation; and
� � positive constant.
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