
Exact Emulation of an Output Queueing Switch by
a Combined Input Output Queueing Switch

Ion Stoica, Hui Zhang
Carnegie Mellon University

Pit tsburgh, PA 15213
e-mail: {istoica,hzhang}@cs .cmu. edu

Abstract -
Combined input output queueing switches

(CIOQ) have better scaling properties than output
queueing (OQ) switches. However, a CIOQ switch
may have lower switch throughput, and more im-
portantly, it is difficult to control delay in a CIOQ
switch due to the existence of multiple queueing
points. In this paper, we study the following prob-
lem, originally formulated and studied by Prab-
hakar and Mckeown [16]: Can a CIOQ switch be de-
signed to behave identically to an OQ switch? In [IS],
an algorithm was proposed so that a CIOQ switch
with an internal speedup of four can behave iden-
tically to an OQ switch with FIFO as the output
queueing discipline. In this paper, we propose a
new switch scheduling algorithm called Joined Pre-
ferred Matching (JPM) that improves Prahhakar
and Mckeown’s results in two aspects. First, with
JPM, the internal speedup needed for a CIOQ
switch to achieve exact emulation of an OQ switch
is only 2 instead of 4. Second, the result applies to
OQ switches that employ a general class of output
service disciplines, including FIFO and various Fair
Queueing algorithms

This result lays the theoretical foundation for de-
signing scalable high-speed CIOQ switches that can
provide same throughput and QoS as OQ switches,
but require lower speed internal memory.

Keywords: QoS guarantees, Speedup, Output
Queueing, Combined Input Output Queueing

This research was sponsored by DARPA under contract num-
bers N66001-96-C-8528 and N00174-96-K-0002, and by a NSF
Career Award under grant number NCR-9624979. Additional
support was provided by Intel Corp., MCI, and Sun Microsys-
tems. Views and conclusions contained in this document are
those of the authors and should no be interpreted as represent-
ing the official policies, either expressed or implied, of DARPA,
NSF, Intel, MCI, Sun, or the U.S. government.

‘We note that Chuang e t al have independently come up with
similar results [6].

I . INTRODUCTION

Due to its conceptual simplicity, output queueing
(OQ) represents a natural way to design an N x N
communication switch. In an OQ switch, when a
packet arrives at an input port, it is immediately put
into the buffer that resides at the corresponding out-
put port. Since buffering and queueing happen only
a t output ports in an OQ switch, it is possible to de-
sign output queue scheduling algorithms that provide
various QoS guarantees [20].

However, OQ has fundamental scaling limitations.
Because packets destined for the same output port
may arrive simultaneously from many input ports,
the output buffer needs t o enqueue traffic at a much
higher rate than a single port may dequeue it. In the
worst case, N (the number of line cards in the switch)
packets could arrive in the amount of time a port could
send one. This requires that the memory bandwidth
and control systems speed to scale as a function of the
number of cards in the switch, which places stringent
limits on the system size.

In order to reduce cost and simplify implemen-
tation, most high performance switches (both re-
search [5] , [14] and commercial [7] , [8] have chosen
architectures employing some form of input buffering.
By having buffers at input ports, it is possible t o build
high performance switches with speedup much smaller
than N , where the speedup is defined as the ratio of
the line card’s bandwidth into/from the switch core
to the link speed.

Buffering at the input changes the contention prob-
lem inside the switch. While contentions only happen
at output links in an output buffered switch, they
also happen at input and output cards in an input
buffered switch - multiple packets from the same in-
put card may be destined to the different output cards
and multiple packets from different input cards may

0-7803-4482-0/98/$10.00 0 1998 IEEE 218

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on March 02,2010 at 13:34:38 EST from IEEE Xplore. Restrictions apply.

be destined to the sitme output card. If the input
buffer is FIFO, there is no contention at input cards,
but it introduces the problem of Head-of-Line (HOL)
blocking [13]: if the pitcket at the head of the queue is
blocked due to contention of the output card, packets
that are on the same input card but destined t o other
contention-free output cards cannot be forwarded. By
maintaining at an input card a separate queue for
each output card [l], the HOL problem can be elimi-
nated. Additional flexibility can be obtained by hav-
ing buffering at both input and output cards [5], [7],

Most of the early studies on input queueing (IQ)
and CIOQ switches have focused on the throughput
achievable by these slwitches with various speed-ups
and under different workloads [a], [4], [IO], [12], [15].
While it is important to achieve switch throughput,
it is also critical t o provide QoS guarantees, either for
each individual flow, or for both individual flows and
traffic aggregates.

There are several recent studies on how to provide
QoS guarantees in CIOQ switches. In [16], Prabhakar
and Mckeown considered the following problem: is
it possible to construct a CIOQ switch that behaves
identically t o an OQ switch? They proposed an algo-
rithm, called the the most urgent cell first algorithm
(MUCFA), and showed that it can identically emu-
late an OQ switch tha.t employs FIFO output queue-
ing scheduler under any arrival pattern as long as
the speedup is no less than 4. In [3], [19], Charny
et al. and Stephem and Zhang studied a similar
problem. Their focus was not t o emulate the exact
behavior of an OQ swil;ch, but to provide QoS guaran-
tees that are comparable t o those provided by an OQ
switch. Charny et al. assume a switch architecture
employing maximal matching algorithms. Stephens
and Zhang assume a switch architecture with buffered
crossbar that can operate with variable packet sizes.

In this paper, we study the Prabhakar and Mcke-
own’s problem and propose an algorithm called Joined
Preferred Matching (JPM) that improves their results
in two aspects. First, with JPM, the internal speedup
needed for a CIOQ switch t o achieve exact emula-
tion of an OQ switch is only 2 instead of 4. Sec-
ond, the result applies to any OQ switch that employs
a monotonic and work-conserving output scheduling
discipline. A scheduling algorithm is monotonic if
the arrival of a new packet does not change the rela-

PI, c141, [I71

tive scheduling order of the packets already enqueued.
Many of the widely used scheduling disciplines, such
as First-In-First-Out (FIFO) and various Fair Queue-
ing algorithms, are monotonic and work-conserving.
We have recently learned that the same problem has
been independently addressed by Chuang et al. in [6]
with an algorithm similar t o JPM. In addition, they
show that a speedup of 2-1/N is both a necessary and
sufficient condition for a FIFO OQ switch in which a
slot consists of either one or two phases.

Similarly to [16] we assume that only fixed sized
packets, also called cells, are transfered inside the
switch. This assumption is supported by the design of
many of today’s high speed switches, where the vari-
able length packets are segmented in cells when they
arrive and are reassembled before they depart. Also
we assume that the time is divided in slots, and dur-
ing each slot at most one cell can arrive at an input,
and at most one cell can depart from an output. Sim-
ilarly, in a CIOQ switch with speedup S at most S
cells can be removed from an input, and at most S
cells can arrive at an output. Finally, for convenience
we assume that one slot is divided in S phases (or
sub-slots), so that during each phase at most one cell
can be removed from an input and at most one cell
can arrive at an output.

11. ALGORITHM DESCRIPTION
To each input and output we associate a preference

list. Based on these preference lists at the beginning of
every phase we perform a stable matching [9] between
inputs and outputs. Then, similarly t o [16] we use
this matching t o transfer cells from inputs to outputs.

Next, we define the notions of input and output
preference lists, which are used to match inputs with
outputs.

Definition 1: The preference list of an input rep-
resents the list of cells at that input ordered in the
inverse order of their arrival times.

Definition 2: The preference list of an output
represents the list of cells from all inputs that should
be forwarded t o that output, ordered by their schedul-
ing times in the corresponding OQ schedule. Ties are
broken by the index of the input where the cell is en-
queued.

As outlined above, at the start of each phase we
perform a stable matching. A matching is an one-one
correspondence between inputs and outputs. An in-

219

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on March 02,2010 at 13:34:38 EST from IEEE Xplore. Restrictions apply.

b

C

Fig. 2. Example to illustrate the Gale-Shapeley algorithm to compute a stable matching for a 3 x 3 switch. The letter
in each cell denotes the output to which the cell is destined, while the number indicates its order in the output
schedule. The light arrows represent the output requests, and the dark arrows represent input-output matching
pairs.

while there are unmatched outputs tha t
where not rejected by all inputs do

each unmatched output requests its most
preferred cell from an input tha t has not
rejected it yet;

with the most preferred cell;
each input grants the request t o the output

Fig. 1. The Gale-Shapley algorithm to compute a stable
matching.

put i and output j are said to block a matching Ad, or
t o be a blocking pair for M , if i and j does not match
in M , but both i and j prefer each other to their cur-
rent match in M . A matching that has no blocking
pair is called stable; otherwise it is called instable. To
compute a stable matching we use the Gale-Shapely
algorithm [9]. This algorithm is summarized in Fig-
ure 1.

Figure 2 illustrates how the matching algorithm

works for a 3 x 3 switch. The letter in each cell de-
notes the output port where the cell should be for-
warded, while the number denotes its order in the
preference list of that output. The light arrows indi-
cate the requests made by outputs, while the dark ar-
rows represent the requests granted by inputs. During
the first iteration each output asks for its most pre-
ferred cell enqueued at the inputs (see Figure 2(a)).
In turn, input 2 grants the only request it receives t o
output c, while input 1 grants the request correspond-
ing t o its most preferred cell, i.e., the request issued
by output a for cell a.1. Thus, after the first iteration
outputs a and c are matched t o their most preferred
cells. During the next iteration, the unmatched out-
put b requests its most preferred cell from input2 3 (see
Figure 2(b)). As a result, input 3 grants the output
b's request and the matching completes. Figure 2(d)
shows the switch's state after cells are transferred ac-

'Note that since output b was rejected in the first iteration
by input 1, it does no longer consider this input in the current
iteration.

220

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on March 02,2010 at 13:34:38 EST from IEEE Xplore. Restrictions apply.

cording to the resulting matching.
A shown in [I l l , the stable matching problem has a

lower bound of R(N2), where N is the number of in-
puts/outputs. By using ranking arrays for expressing
the preference of both inputs/outputs it can be shown
that the Gale-Shapely algorithm can be implemented
in N 2 time [l l] . However, in order to construct the
ranking arrays efficiently we need t o maintain for each
input, besides its preference list, a virtual list associ-
ated to each output wihich contains all cells destined
to that output, ordered by their schedule times in the
corresponding OQ schedule. Furthermore, it can be
shown that the average time complexity of the Gale-
Shapely algorithm is O (N log N) . Finally, in the con-
text of addressing the same problem Chuang et aZ[6]
have shown that it is possible t o reduce the match-
ing complexity t o N , by carefully considering only a
sub-set of cells from the preference lists.

111. ALGORITHM ANALYSIS

In this section we prove that a CIOQ switch with a
speedup S >_ 2 operating under JPM behaves identi-
cally to an OQ switch that employs a monotonic and
work-conserving scheduling discipline (Theorem 1).
The main idea behind the proof is to establish a suffi-
cient condition such tha,t Theorem 1 holds (Lemma 2) ,
and then to find an invaxiant that makes the sufficient
condition true (Lemma 3).

As noted in Section I we consider a switch model in
which every slot is divided in S phases. During each
phase we compute a stable matching which is used to
transfer cells from inputs to outputs. We assume that
a new cell arrives at the beginning of a slot, before the
first phase starts, and that a cell is transmitted at the
end of the slot, after all1 S phases complete. Also, we
assume that if time t represents the starting time of a
slot, the preference lists do not include the cells that
eventually arrive in that slot. For simplicity, through-
out this section we assume unit time slots. Finally,
whenever it is clear from the context a slot that starts
a t time t is simply referred as slot t . We start with
two simple definitions.

Definition 3: Let p be a cell at input i that needs

ranlc(p,t) - the number of cells at output j that

6 pos (p , t) - the position of cell p at time t in the

to be transferred t o output j . Then we define:

are ahead of cell p in the OQ schedule.

preference list of input i. (The cell positions in the
preference list are assumed to be one-indexed.)

As noted in [16], input and output contention are
the on29 reasons for which a cell p is not transferred
from its input i to its output j during a phase. Input
contention happens when input i chooses t o send a
cell more preferred than p , while output contention
happens when output j receives a cell more preferred
than p during that phase. The next result relates the
rank and the position of a cell p that is not transferred
during a time slot.

Lemma 1: Consider a CIOQ switch operating under
JPM with speedup S, and let t o be the starting time
of an arbitrary slot. Then, for any cell p that has
arrived in a previous slot and which is not transferred
during slot t o , we have

r a n q p , t o + 1) - P O S (P , to + 1) 2 (1)
r a n k (p , t o) - post(p, t o) + S - 2.

Proof. Recall that if a cell p is not transferred dur-
ing a phase this is due to either input or output con-
tention. If there is input contention this means that
a more preferred cell a t that input is transferred, and
therefore the position of cell p decreases by one. On
the other hand, if cell p is not transferred due t o out-
put contention, this means that a more preferred cell
was transferred t o that output, and therefore accord-
ing t o Definition 3 the rank of cell p increases by one.
Finally, note that in the particular case when a cell q
more preferred than p is transferred from input i t o
the same output j (i.e., cell q is also more preferred
than p by output j) the rank of p increases by one,
while its position decreases by one. Thus, in either of
these cases, the difference between cell’s rank and its
position increases by at least one.

Since cell p is not transferred during the entire slot,
and since there are S phases during each slot, the
difference between the rank of cell p and its position
increases by S.

In addition, a t most one cell is received by input i,
and at most one cell is transmitted by output j during
the slot starting at to. According to Definition 1 a new
cell that eventually arrives at input i will become t h e
most preferred cell of that input, and consequently
will increase the position of p by one. At the same
time, note that since the OQ scheduling discipline is

22 1

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on March 02,2010 at 13:34:38 EST from IEEE Xplore. Restrictions apply.

assumed to be monotonic a new arrival cell will not
change the rank of p . However, a cell that is eventually
transmitted by output j decreases the rank of cell p
by one, which concludes the proof. 0

The next lemma gives a sufficient condition under
which a CIOQ switch behaves identically t o an OQ
switch.

Lemma 2: A CIOQ switch operating under J P M
behaves identically to an OQ switch that employs a
work-conserving and monotonic scheduling discipline,
regardless of the input traffic pattern, if at the begin-
ning of every time slot the ranks of all cells3 at the
inputs are greater or equal t o 1.

Proof. Assume this is not true, i.e., the ranks of all
cells at the inputs are always greater or equal to 1,
but there is a cell q that is not scheduled at the same
time in the CIOQ switch as in the corresponding OQ
switch. Let t o be the starting time of the slot in which
cell q should be transmitted in the OQ switch, and let
t be the starting of the slot during which q is actually
transmitted in the CIOQ switch. Consider two cases,
whether t < t o , or t > to, and let j be the output to
which cell p is destined.

If t < t o , let p be the cell that is transmitted during
the slot starting at t by output j in the correspond-
ing OQ switch. Since the output scheduling discipline
is work conserving, and since cell p is presented in
the system at time t , but it is not transmitted until
time t o > t , we are guaranteed that such cell exists.
But then cell p will miss its schedule (because cell q is
transmitted instead), which contradicts our assump-
tion that q is the first cell that is not scheduled at the
same time in the CIOQ switch as in the corresponding
OQ switch.

On the other hand, if t > t o , it is easy t o see that
cell q does not reach output j during the slot starting
at to. To see why, assume this is not true. Since the
o u t p u t scheduling discipline i s assumed to be work-
conserving, the only reason for which cell q is not
transmitted during slot t o is because another more
preferred cell p is being transmitkd. But this means
that p is also late (it should have been sent during
a previous slot), which again violates our assumption
that q is the first cell to miss its schedule. Thus, at

3Recall that this does not include the cell that is eventually
received during the current slot.

time t o , cell q will be enqueued at input i, and there is
no more preferred cell than q at output j. But then ac-
cording t o Definition 3 we have rank(q, to) = 0, which
contradicts the hypothesis, and therefore proves the
lemma. 0

The following lemma establishes an invariant for the
JPM algorithm, invariant which makes the assump-
tion of Lemma 2 true.

Lemma 3: Consider a CIOQ switch with speedup
S 2 2 operating under JPM. Let t be the starting
time of an arbitrary slot, and let p be an arbitrary
cell enqueued at its input. Then, at the beginning of
every slot t , we have

rank (p , t) 2 P O S (P , t) . (2)

Proof. The proof is by induction on the starting
times of the slots during which a cell is enqueued at
its input. (Recall, that a cell arriving in slot t o is
assumed to not be enqueued at time to.)
Basic Step. Assume cell p , destined t o output j,
arrives at input i in slot t o . Further, assume that cell
p is not transferred4 during slot to . Since p is the
most preferred cell of input i during slot t o , it follows
that the only reason for which p is not transferred
in this slot is because there is contention its output j
(i.e., a more preferred cell is transferred to that output
instead) during every phase of slot to . Since there are
S such phases and during the entire slot at, most one
cell is transmitted from output j, it follows that at
t o + 1, output j will hold at least S - 1 cells which are
more preferred than p . This yields

rank (p , to + 1) 2 s - 1 2 1. (3)

Since by definition pos(p , to+ 1) = 1, the proof for the
basic step follows.

Induction Step. Assume (2) is t r u e at t i m e t for
any cell p enqueued at an input. Then according t o
Lemma 1, if cell p is not transferred in slot t , we have

rank(p, t + 1) - PO+, t + 1) 2
rank(p, t) - P O S (P , t) 2 0,

(4)

40therwise, since cell p is not enqueued at its input the proof
is trivially true.

222

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on March 02,2010 at 13:34:38 EST from IEEE Xplore. Restrictions apply.

which concludes the proof.

Since, by Definition 3, for any cell p which is en-
queued at the beginning of slot t we have pos(p, t) > 1,
from Lemmas 2 and 3 follows the main result of the
paper.

Theorem 1: Under an arbitrary traffic pattern, a
CIOQ switch with speedup S 2 2 operating under
JPM behaves identically t o an OQ switch that em-
ploys a monotonic and work-conserving scheduling
discipline.

The above results gives a sufficient condition for em-
ulation an OQ switch by using a CIOQ switch. An
equally important question is whether this condition
is also necessary. In other words: Is there any al-
gorithm that can emulate an OQ switch by using a
CIOQ switch with speedup smaller than two ? In our
model where each slot consists of an integer number of
phases during which only fixed size packets are sent,
the answer is no. This is because in such a model the
speedup is an integer and it can be easily shown that
a speedup of one is not enough. To see this consider
a 2 x 2 switch where during the first slot each input
receives a cell for output 1, and during the second
slot input 2 receives EL cell for output 2. In addition,
assume that when two cells arrive during the same
slot for the same output, ties are broken by the in-
put index. In our case this means that the cell that
arrives at input 1 during the first slot should depart
first from output 1. Then it is easy t o see that hav-
ing a speedup of one is not sufficient. This is because
during the first slot only the cell from input 1 is trans-
ferred to output 1. This leaves input 2 with two cells
t o be transferred during the same slot, which is im-
possible with the speedup of one. Moreover, it can
be shown that even in a more general model where a
phase duration is a fraction of a slot, and where a cell
can be transferred during a phase only if it is already
enqueued at the beginning of that phase, a speedup of
two is an asymptotic lower bound [18]. More precisely,
in [6] it is shown that in a switch model in which a slot
can consists of either one or two phases, a speedup of
2 - 1 / N is a necessary condition.

IV. SUMMARY

We have proposed a scheduling
JPM that allows a combined input

algorithm called
output queueing

(CIOQ) switch t o emulate exactly an output queueing
(OQ) switch. We extend previous results in two as-
pects. First, we reduce the internal speedup required
from 4 to 2. Second and more important, while previ-
ous work tries to emulate OQ switches that use FIFO
as output scheduling discipline, our algorithm emu-
lates OQ switches that use a general class of output
scheduling algorithms, including various Fair Queue-
ing algorithms. This enables CIOQ switches not only
to provide the same throughput, but also to support
the same QbS guarantees as OQ switches, while re-
quiring a much lower speed of the internal memory.

V . ACKNOWLEDGEMENT

We are grateful to Shang-Tse Chuang, Ashish Goel,
Nick McKeown and Balaji Prabhakar for pointing out
an error in a previous version of our algorithm. Also,
we would like to thank Donpaul Stephens for many
helpful discussions that greatly enhanced our under-
standing of the problem and the quality of our paper.

REFERENCES
T. Anderson, S. Owicki, J. Saxe, and C. Thacker. High
speed switch scheduling for local area networks. In Pro-
ceedings of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, Boston, MA, October 1992.
C-Y. Chang, A. J. Paultraj, and T. Kailath. A Broad-
cast Packet Switch Architecture with Input and Output
Queueing. In Proceedings of Globecom ’94, pages 448-452,
1994.
A. Charny, P. Krishna, N. Patel, and R. Simcoe. Al-
gorithms for Providing Bandwidth and Delay Guarantees
in Input-Buffered Crossbar with Speedup. In IWQoS’98,
Napa, CA, May 1998.
J.S. Chen and T. E. Stern. Througput analysis optimal
buffer allocation, and traffic imbalance study of a generic
nonblocking packet switch. IEEE Journal on Selected Areas
in Communication, 9(3):439-449, September 1991.
F.M. Chiussi, Y. Xia, and V.P. Kumar. Backpressure
in shared-memory-based atm switches under multiplexed
bursty sources. In Proceedings of IEEE INFOCOM’96,
pages 830-843, San Francisco, CA, March 1996.
S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar.
Matching Output Queueing with a Combined Input Out-
put Queued Switch, April 1998. Technical Report, CSL-
TR-98-758.
Ascend Communications. GRF family of switches.
www .ascend.com.
Digitill Equipment Corporation. GIGAswitch.
www.networks.digital.com.
D. Gale and L. S. Shapley. College Admissions and the
Stability Marriage. Mathematical Monthly, 69:9-15, 1962.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on March 02,2010 at 13:34:38 EST from IEEE Xplore. Restrictions apply.

http://ascend.com
http://www.networks.digital.com

[lo] A. L. Gupta and N. D. Georganas. Analysis of a Packet
Switch with Input and Output Queueing. In Proceedings
of IEEE INFOCOM’SI, pages 694-700, Bal Harbour, FL,
April 1991.

[Ill D. Gusfield and R. W. Irving. The Stable Mariage Problem:
Structure and Algorithms, MIT Press. 1989.

[la] I. Iliadis and W. E. Denzel. Performance of Packet Switches
with Input and Output Queueing. In Proceedings of ICC
’90, pages 747-753, Atlanta, GA, April 1990.

[13] M. J. Karol, M. G. Hluchyj, and S. Morgan. Input versus
output queueing on a space-division packet switch. IEEE
Transactions on Comm~lniccations, 35(12):1347-1356, De-
cember 1987.

[14] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and
M. Horowitz. The Tiny Tera: A Packet Switch Core. IEEE
Micro, pages 26-33, January 1997.

[15] Y. Oie, M. Murata, and H. Miyahara. Effects of Speedup
in Nonblocking Packet Switch. In Proceedings of ICC ’89,
pages 410-414, Boston, MA, June 1989.

On the Speedup Re-
quired for Combined Input and Output Queued Switching.
manuscript, 1997.

[17] R. Simcoe and T. Pei. Perspectives on ATM Switch Ar-
chitecture and the Influence of Traffic Patterns on Switch
Design. Computer Communication Review, 25(2):93-105,
April 1995.

[18] D. C. Stephens, February 1998. Personal communication.
[19] D.C. Stephens and H. Zhang. Implementing distributed

packet fair queueing in a scalable switch architecture. In
INFOCOM’98, pages 282-290, San Francisco, CA, March
1998.

[20] H. Zhang. Service Disciplines For Guaranteed Performance
Service in Packet-Switching Networks. Proceedings of the
IEEE, 83(10):1374-1399, October 1995.

[16] B. Prabhakar and N. McKeown.

224

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on March 02,2010 at 13:34:38 EST from IEEE Xplore. Restrictions apply.

