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Abstract - 
Combined input output queueing switches 

(CIOQ) have better scaling properties than output 
queueing (OQ) switches. However, a CIOQ switch 
may have lower switch throughput, and more im- 
portantly, it is difficult to control delay in a CIOQ 
switch due to the existence of multiple queueing 
points. In this paper, we study the following prob- 
lem, originally formulated and studied by Prab- 
hakar and Mckeown [16]: Can a CIOQ switch be de- 
signed to behave identically to an OQ switch? In [IS], 
an algorithm was proposed so that a CIOQ switch 
with an internal speedup of four can behave iden- 
tically to an OQ switch with FIFO as the output 
queueing discipline. In this paper, we propose a 
new switch scheduling algorithm called Joined Pre- 
ferred Matching (JPM) that improves Prahhakar 
and Mckeown’s results in two aspects. First, with 
JPM, the internal speedup needed for a CIOQ 
switch to achieve exact emulation of an OQ switch 
is only 2 instead of 4. Second, the result applies to 
OQ switches that employ a general class of output 
service disciplines, including FIFO and various Fair 
Queueing algorithms 

This result lays the theoretical foundation for de- 
signing scalable high-speed CIOQ switches that can 
provide same throughput and QoS as OQ switches, 
but require lower speed internal memory. 

Keywords: QoS guarantees, Speedup, Output 
Queueing, Combined Input Output Queueing 
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‘We note that Chuang e t  al have independently come up with 
similar results [6]. 

I .  INTRODUCTION 

Due to its conceptual simplicity, output queueing 
(OQ) represents a natural way to design an N x N 
communication switch. In an OQ switch, when a 
packet arrives at an input port, it is immediately put 
into the buffer that  resides at the corresponding out- 
put port. Since buffering and queueing happen only 
a t  output ports in an OQ switch, it is possible to  de- 
sign output queue scheduling algorithms that provide 
various QoS guarantees [20]. 

However, OQ has fundamental scaling limitations. 
Because packets destined for the same output port 
may arrive simultaneously from many input ports, 
the output buffer needs t o  enqueue traffic at a much 
higher rate than a single port may dequeue it. In the 
worst case, N (the number of line cards in the switch) 
packets could arrive in the amount of time a port could 
send one. This requires that the memory bandwidth 
and control systems speed to  scale as a function of the 
number of cards in the switch, which places stringent 
limits on the system size. 

In order to reduce cost and simplify implemen- 
tation, most high performance switches (both re- 
search [5 ] ,  [14] and commercial [7] ,  [8] have chosen 
architectures employing some form of input buffering. 
By having buffers at input ports, it is possible t o  build 
high performance switches with speedup much smaller 
than N ,  where the speedup is defined as the ratio of 
the line card’s bandwidth into/from the switch core 
to the link speed. 

Buffering at the input changes the contention prob- 
lem inside the switch. While contentions only happen 
at output links in an output buffered switch, they 
also happen at input and output cards in an input 
buffered switch - multiple packets from the same in- 
put card may be destined to  the different output cards 
and multiple packets from different input cards may 
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be destined to the sitme output card. If the input 
buffer is FIFO, there is no contention at input cards, 
but it introduces the problem of Head-of-Line (HOL) 
blocking [13]: if the pitcket at the head of the queue is 
blocked due to contention of the output card, packets 
that  are on the same input card but destined t o  other 
contention-free output cards cannot be forwarded. By 
maintaining at an input card a separate queue for 
each output card [l], the HOL problem can be elimi- 
nated. Additional flexibility can be obtained by hav- 
ing buffering at both input and output cards [5], [7], 

Most of the early studies on input queueing (IQ) 
and CIOQ switches have focused on the throughput 
achievable by these slwitches with various speed-ups 
and under different workloads [a], [4], [IO], [12], [15]. 
While it is important to achieve switch throughput, 
it is also critical t o  provide QoS guarantees, either for 
each individual flow, or for both individual flows and 
traffic aggregates. 

There are several recent studies on how to provide 
QoS guarantees in CIOQ switches. In [16], Prabhakar 
and Mckeown considered the following problem: is 
it possible to  construct a CIOQ switch that behaves 
identically t o  an OQ switch? They proposed an algo- 
rithm, called the the most urgent cell first algorithm 
(MUCFA), and showed that it can identically emu- 
late an OQ switch tha.t employs FIFO output queue- 
ing scheduler under any arrival pattern as long as 
the speedup is no less than 4. In [3], [19], Charny 
et al. and Stephem and Zhang studied a similar 
problem. Their focus was not t o  emulate the exact 
behavior of an OQ swil;ch, but to provide QoS guaran- 
tees that are comparable t o  those provided by an OQ 
switch. Charny et al. assume a switch architecture 
employing maximal matching algorithms. Stephens 
and Zhang assume a switch architecture with buffered 
crossbar that  can operate with variable packet sizes. 

In this paper, we study the Prabhakar and Mcke- 
own’s problem and propose an algorithm called Joined 
Preferred Matching (JPM) that improves their results 
in two aspects. First, with JPM,  the internal speedup 
needed for a CIOQ switch t o  achieve exact emula- 
tion of an OQ switch is only 2 instead of 4. Sec- 
ond, the result applies to any OQ switch that employs 
a monotonic and work-conserving output scheduling 
discipline. A scheduling algorithm is monotonic if 
the arrival of a new packet does not change the rela- 

PI, c141, [I71 

tive scheduling order of the packets already enqueued. 
Many of the widely used scheduling disciplines, such 
as First-In-First-Out (FIFO) and various Fair Queue- 
ing algorithms, are monotonic and work-conserving. 
We have recently learned that the same problem has 
been independently addressed by Chuang et al. in [6] 
with an algorithm similar t o  JPM. In addition, they 
show that a speedup of 2-1/N is both a necessary and 
sufficient condition for a FIFO OQ switch in which a 
slot consists of either one or two phases. 

Similarly to [16] we assume that only fixed sized 
packets, also called cells, are transfered inside the 
switch. This assumption is supported by the design of 
many of today’s high speed switches, where the vari- 
able length packets are segmented in cells when they 
arrive and are reassembled before they depart. Also 
we assume that the time is divided in slots, and dur- 
ing each slot at most one cell can arrive at an input, 
and at most one cell can depart from an output. Sim- 
ilarly, in a CIOQ switch with speedup S at most S 
cells can be removed from an input, and at most S 
cells can arrive at an output. Finally, for convenience 
we assume that one slot is divided in S phases (or 
sub-slots), so that during each phase at most one cell 
can be removed from an input and at most one cell 
can arrive at an output. 

11. ALGORITHM DESCRIPTION 
To each input and output we associate a preference 

list. Based on these preference lists at the beginning of 
every phase we perform a stable matching [9] between 
inputs and outputs. Then, similarly t o  [16] we use 
this matching t o  transfer cells from inputs to outputs. 

Next, we define the notions of input and output 
preference lists, which are used to match inputs with 
outputs. 

Definition 1: The preference list of an input rep- 
resents the list of cells at that input ordered in the 
inverse order of their arrival times. 

Definition 2: The preference list of an output 
represents the list of cells from all inputs that  should 
be forwarded t o  that output, ordered by their schedul- 
ing times in the corresponding OQ schedule. Ties are 
broken by the index of the input where the cell is en- 
queued. 

As outlined above, at the start  of each phase we 
perform a stable matching. A matching is an one-one 
correspondence between inputs and outputs. An in- 
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Fig. 2. Example to illustrate the Gale-Shapeley algorithm to compute a stable matching for a 3 x 3 switch. The letter 
in each cell denotes the output to which the cell is destined, while the number indicates its order in the output 
schedule. The light arrows represent the output requests, and the dark arrows represent input-output matching 
pairs. 

while there are unmatched outputs tha t  
where not rejected by all inputs do 

each unmatched output requests its most 
preferred cell from an input tha t  has not 
rejected it yet; 

with the most preferred cell; 
each input grants the request t o  the output 

Fig. 1. The Gale-Shapley algorithm to compute a stable 
matching. 

put i and output j are said to block a matching Ad, or 
t o  be a blocking pair for M ,  if i and j does not match 
in M ,  but both i and j prefer each other to their cur- 
rent match in M .  A matching that  has no blocking 
pair is called stable; otherwise it is called instable. To 
compute a stable matching we use the Gale-Shapely 
algorithm [9]. This algorithm is summarized in Fig- 
ure 1. 

Figure 2 illustrates how the matching algorithm 

works for a 3 x 3 switch. The letter in each cell de- 
notes the output port where the cell should be for- 
warded, while the number denotes its order in the 
preference list of that  output. The light arrows indi- 
cate the requests made by outputs, while the dark ar- 
rows represent the requests granted by inputs. During 
the first iteration each output asks for its most pre- 
ferred cell enqueued at the inputs (see Figure 2(a)). 
In turn, input 2 grants the only request it receives t o  
output c, while input 1 grants the request correspond- 
ing t o  its most preferred cell, i.e., the request issued 
by output a for cell a.1. Thus, after the first iteration 
outputs a and c are matched t o  their most preferred 
cells. During the next iteration, the unmatched out- 
put b requests its most preferred cell from input2 3 (see 
Figure 2(b)). As a result, input 3 grants the output 
b's request and the matching completes. Figure 2(d) 
shows the switch's state after cells are transferred ac- 

'Note that since output b was rejected in the first iteration 
by input 1, it does no longer consider this input in the current 
iteration. 
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cording to  the resulting matching. 
A shown in [ I l l ,  the stable matching problem has a 

lower bound of R(N2), where N is the number of in- 
puts/outputs. By using ranking arrays for expressing 
the preference of both inputs/outputs it can be shown 
that the Gale-Shapely algorithm can be implemented 
in N 2  time [l l] .  However, in order to  construct the 
ranking arrays efficiently we need t o  maintain for each 
input, besides its preference list, a virtual list associ- 
ated to each output wihich contains all cells destined 
to  that output, ordered by their schedule times in the 
corresponding OQ schedule. Furthermore, it can be 
shown that the average time complexity of the Gale- 
Shapely algorithm is O ( N  log N ) .  Finally, in the con- 
text of addressing the same problem Chuang et aZ[6] 
have shown that it is possible t o  reduce the match- 
ing complexity t o  N ,  by carefully considering only a 
sub-set of cells from the preference lists. 

111. ALGORITHM ANALYSIS 

In this section we prove that a CIOQ switch with a 
speedup S >_ 2 operating under JPM behaves identi- 
cally to  an OQ switch that employs a monotonic and 
work-conserving scheduling discipline (Theorem 1). 
The main idea behind the proof is to  establish a suffi- 
cient condition such tha,t Theorem 1 holds (Lemma 2 ) ,  
and then to  find an invaxiant that  makes the sufficient 
condition true (Lemma 3). 

As noted in Section I we consider a switch model in 
which every slot is divided in S phases. During each 
phase we compute a stable matching which is used to 
transfer cells from inputs to  outputs. We assume that 
a new cell arrives at the beginning of a slot, before the 
first phase starts, and that a cell is transmitted at the 
end of the slot, after all1 S phases complete. Also, we 
assume that if time t represents the starting time of a 
slot, the preference lists do not include the cells that  
eventually arrive in that slot. For simplicity, through- 
out this section we assume unit time slots. Finally, 
whenever it is clear from the context a slot that  starts 
a t  time t is simply referred as slot t .  We start  with 
two simple definitions. 

Definition 3: Let p be a cell at input i that  needs 

ranlc(p,t) - the number of cells at output j that  

6 pos (p , t )  - the position of cell p at time t in the 

to  be transferred t o  output j .  Then we define: 

are ahead of cell p in the OQ schedule. 

preference list of input i. (The cell positions in the 
preference list are assumed to  be one-indexed.) 

As noted in [16], input and output contention are 
the on29 reasons for which a cell p is not transferred 
from its input i to its output j during a phase. Input 
contention happens when input i chooses t o  send a 
cell more preferred than p ,  while output contention 
happens when output j receives a cell more preferred 
than p during that phase. The next result relates the 
rank and the position of a cell p that  is not transferred 
during a time slot. 

Lemma 1: Consider a CIOQ switch operating under 
JPM with speedup S, and let t o  be the starting time 
of an arbitrary slot. Then, for any cell p that  has 
arrived in a previous slot and which is not transferred 
during slot t o ,  we have 

r a n q p ,  t o  + 1) - P O S ( P ,  to + 1) 2 (1) 
r a n k ( p ,  t o )  - post(p,  t o )  + S - 2. 

Proof. Recall that  if a cell p is not transferred dur- 
ing a phase this is due to  either input or output con- 
tention. If there is input contention this means that 
a more preferred cell a t  that  input is transferred, and 
therefore the position of cell p decreases by one. On 
the other hand, if cell p is not transferred due t o  out- 
put contention, this means that a more preferred cell 
was transferred t o  that output, and therefore accord- 
ing t o  Definition 3 the rank of cell p increases by one. 
Finally, note that in the particular case when a cell q 
more preferred than p is transferred from input i t o  
the same output j (i.e., cell q is also more preferred 
than p by output j )  the rank of p increases by one, 
while its position decreases by one. Thus, in either of 
these cases, the difference between cell’s rank and its 
position increases by at least one. 

Since cell p is not transferred during the entire slot, 
and since there are S phases during each slot, the 
difference between the rank of cell p and its position 
increases by S.  

In addition, a t  most one cell is received by input i, 
and at most one cell is transmitted by output j during 
the slot starting at to.  According to Definition 1 a new 
cell that  eventually arrives at input i will become t h e  
most preferred cell of that  input, and consequently 
will increase the position of p by one. At the same 
time, note that since the OQ scheduling discipline is 
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assumed to be monotonic a new arrival cell will not 
change the rank of p .  However, a cell that  is eventually 
transmitted by output j decreases the rank of cell p 
by one, which concludes the proof. 0 

The next lemma gives a sufficient condition under 
which a CIOQ switch behaves identically t o  an OQ 
switch. 

Lemma 2: A CIOQ switch operating under J P M  
behaves identically to an OQ switch that  employs a 
work-conserving and monotonic scheduling discipline, 
regardless of the input traffic pattern, if at the begin- 
ning of every time slot the ranks of all cells3 at the 
inputs are greater or equal t o  1. 

Proof. Assume this is not true, i.e., the ranks of all 
cells at the inputs are always greater or equal to 1, 
but there is a cell q that  is not scheduled at the same 
time in the CIOQ switch as in the corresponding OQ 
switch. Let t o  be the starting time of the slot in which 
cell q should be transmitted in the OQ switch, and let 
t be the starting of the slot during which q is actually 
transmitted in the CIOQ switch. Consider two cases, 
whether t < t o ,  or t > to, and let j be the output to 
which cell p is destined. 

If t < t o ,  let p be the cell that  is transmitted during 
the slot starting at t by output j in the correspond- 
ing OQ switch. Since the output scheduling discipline 
is work conserving, and since cell p is presented in 
the system at time t ,  but it is not transmitted until 
time t o  > t ,  we are guaranteed that such cell exists. 
But then cell p will miss its schedule (because cell q is 
transmitted instead), which contradicts our assump- 
tion that q is the first cell that  is not scheduled at the 
same time in the CIOQ switch as in the corresponding 
OQ switch. 

On the other hand, if t > t o ,  it is easy t o  see that 
cell q does not reach output j during the slot starting 
at to.  To see why, assume this is not true. Since the 
o u t p u t  scheduling discipline i s  assumed to be work- 
conserving, the only reason for which cell q is not 
transmitted during slot t o  is because another more 
preferred cell p is being transmitkd. But this means 
that  p is also late (it should have been sent during 
a previous slot), which again violates our assumption 
that q is the first cell to miss its schedule. Thus, at 

3Recall that this does not include the cell that is eventually 
received during the current slot. 

time t o ,  cell q will be enqueued at input i, and there is 
no more preferred cell than q at output j. But then ac- 
cording t o  Definition 3 we have rank(q,  to )  = 0, which 
contradicts the hypothesis, and therefore proves the 
lemma. 0 

The following lemma establishes an invariant for the 
JPM algorithm, invariant which makes the assump- 
tion of Lemma 2 true. 

Lemma 3: Consider a CIOQ switch with speedup 
S 2 2 operating under JPM. Let t be the starting 
time of an arbitrary slot, and let p be an arbitrary 
cell enqueued at its input. Then, at the beginning of 
every slot t ,  we have 

rank (p ,  t )  2 P O S ( P ,  t ) .  (2) 

Proof. The proof is by induction on the starting 
times of the slots during which a cell is enqueued at 
its input. (Recall, that  a cell arriving in slot t o  is 
assumed to  not be enqueued at time to.) 
Basic Step. Assume cell p ,  destined t o  output j, 
arrives at input i in slot t o .  Further, assume that cell 
p is not transferred4 during slot to .  Since p is the 
most preferred cell of input i during slot t o ,  it follows 
that the only reason for which p is not transferred 
in this slot is because there is contention its output j 
(i.e., a more preferred cell is transferred to that output 
instead) during every phase of slot to .  Since there are 
S such phases and during the entire slot at, most one 
cell is transmitted from output j, it follows that  at 
t o  + 1, output j will hold at least S - 1 cells which are 
more preferred than p .  This yields 

rank (p ,  to + 1) 2 s - 1 2 1. (3) 

Since by definition pos(p ,  to+ 1) = 1, the proof for the 
basic step follows. 

Induction Step. Assume (2) is t r u e  at t i m e  t for 
any cell p enqueued at an input. Then according t o  
Lemma 1, if cell p is not transferred in slot t ,  we have 

rank(p,  t + 1) - PO+, t + 1) 2 
rank(p,  t )  - P O S ( P ,  t )  2 0, 

(4) 

40therwise, since cell p is not enqueued at  its input the proof 
is trivially true. 
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which concludes the proof. 

Since, by Definition 3, for any cell p which is en- 
queued at the beginning of slot t we have pos(p,  t )  > 1, 
from Lemmas 2 and 3 follows the main result of the 
paper. 

Theorem 1: Under an arbitrary traffic pattern, a 
CIOQ switch with speedup S 2 2 operating under 
JPM behaves identically t o  an OQ switch that em- 
ploys a monotonic and work-conserving scheduling 
discipline. 

The above results gives a sufficient condition for em- 
ulation an OQ switch by using a CIOQ switch. An 
equally important question is whether this condition 
is also necessary. In other words: Is there any al- 
gorithm that can emulate an OQ switch by using a 
CIOQ switch with speedup smaller than two ? In our 
model where each slot consists of an integer number of 
phases during which only fixed size packets are sent, 
the answer is no. This is because in such a model the 
speedup is an integer and it can be easily shown that 
a speedup of one is not enough. To see this consider 
a 2 x 2 switch where during the first slot each input 
receives a cell for output 1, and during the second 
slot input 2 receives EL cell for output 2. In addition, 
assume that when two cells arrive during the same 
slot for the same output, ties are broken by the in- 
put index. In our case this means that the cell that  
arrives at input 1 during the first slot should depart 
first from output 1. Then it  is easy t o  see that hav- 
ing a speedup of one is not sufficient. This is because 
during the first slot only the cell from input 1 is trans- 
ferred to  output 1. This leaves input 2 with two cells 
t o  be transferred during the same slot, which is im- 
possible with the speedup of one. Moreover, it can 
be shown that even in a more general model where a 
phase duration is a fraction of a slot, and where a cell 
can be transferred during a phase only if it is already 
enqueued at the beginning of that phase, a speedup of 
two is an asymptotic lower bound [18]. More precisely, 
in [6] it is shown that in a switch model in which a slot 
can consists of either one or two phases, a speedup of 
2 - 1 / N  is a necessary condition. 

IV.  SUMMARY 

We have proposed a scheduling 
JPM that allows a combined input 

algorithm called 
output queueing 

(CIOQ) switch t o  emulate exactly an output queueing 
(OQ) switch. We extend previous results in two as- 
pects. First, we reduce the internal speedup required 
from 4 to 2. Second and more important, while previ- 
ous work tries to emulate OQ switches that  use FIFO 
as output scheduling discipline, our algorithm emu- 
lates OQ switches that use a general class of output 
scheduling algorithms, including various Fair Queue- 
ing algorithms. This enables CIOQ switches not only 
to provide the same throughput, but also to  support 
the same QbS guarantees as OQ switches, while re- 
quiring a much lower speed of the internal memory. 
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