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Exact Evaluation of Maximal-Ratio and Equal-Gain
Diversity Receivers for -ary QAM on

Nakagami Fading Channels
A. Annamalai, C. Tellambura, and Vijay K. Bhargava,Fellow, IEEE

Abstract—Exact integral expressions are derived for calculating
the symbol-error rate (SER) of multilevel quadrature amplitude
modulation (MQAM) in conjunction with L-fold antenna diver-
sity on arbitrary Nakagami fading channel. Both maximal-ratio
combining (MRC) (in independent and correlated fading) and
equal-gain combining (EGC) predetection (in independent fading)
diversity techniques have been considered. Exact closed-form
SER expressions for two restricted Nakagami fading cases (MRC
reception) are also derived. An exact analysis of EGC for MQAM
has not been reported previously, despite its practical interest.
Remarkably, the exact SER integrals can also be replaced by
a finite-series approximation formula. A useful procedure for
computing the confluent hypergeometric series is also presented.

Index Terms—Diversity methods, Gauss–Chebychev quadra-
ture, Nakagami fading channels, quadrature amplitude modula-
tion.

I. INTRODUCTION

RECENTLY, multilevel quadrature amplitude modulation
(MQAM) format has been considered for high-rate data

transmission over wireless links [1]. Antenna diversity is usu-
ally employed to mitigate the effects of deep fades and cochan-
nel interference. Maximal-ratio combining (MRC), which pro-
vides the highest average output signal-to-noise ratio (SNR),
is difficult to implement in practice. Equal-gain combining
(EGC), however, is easier to implement but incurs a perfor-
mance penalty. While the literature has thoroughly treated the
performance of many modulation schemes in various fading
channels, which generally involves averaging over
the fading distribution, where is the SNR, the MQAM prob-
lem presents a new wrinkle: averaging . Scanning
the literature, one can identify two distinct approaches: the
direct and the moment-generating function (MGF) approach.
In the direct approach, one first derives the probability density
function (pdf) of and performs the averaging. In the MGF
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approach, one uses the MGF of (often readily available)
and some integral representation of and
to perform the averaging.

Previous work includes the following. The symbol error
rate (SER) of MQAM in the additive white Gaussian noise
(AWGN) is furnished in [2, eq. (5-2-79)]. The performance
of MQAM and MRC diversity in Rayleigh fading is given
in [3]–[5]. In [6], we derive a simple expression (involving
finite summations of the MGF) for the SER of MQAM
with MRC diversity over a Nakagami fading channel with
arbitrary parameters. More recently, Alouini and Goldsmith [7]
presented a performance analysis for MQAM using the MGF
approach [8]–[11]. By contrast, in this paper, we enhance our
previous work by deriving several simple analytical expres-
sions for MQAM with -fold MRC diversity on a Nakagami
fading channel. Further, exact closed-form SER expressions
are derived for two special cases.

The direct method for the performance analysis of EGC
is limited to Rayleigh fading and second-order diversity [12]
because a closed-form expression for the pdf of a sum of
Nakagami-distributed (or even Rayleigh-distributed) random
variables (RV’s) does not exist for . For higher order
of diversity, the direct approach can be applied using a small
argument approximation [13], [14]. Recently, Beaulieu [15]
has devised an approximate infinite series for the pdf of a
sum of independent Rayleigh RV’s. Applying this series and
the direct approach, Beaulieu and Abu-Dayya [16] present a
comprehensive study of EGC for coherent and differential
binary signaling schemes. Two previous papers [17], [18]
make use of characteristic functions (CHF’s) for analyzing
the EGC performance. In [17], Zhang derived some closed-
form solutions for binary signaling formats with second-
and third-order diversity systems directly from the CHF of
Rayleigh fading amplitudes. In [18], the authors derive an
approximate solution for a binary case. Here, we derive the
exact performance of EGC diversity systems for both binary
and -ary modulation formats. We apply Parseval’s theorem
to transform the error integral into the frequency-domain so
that the average SER is expressed using the CHF of the EGC
output. The resulting finite-range integral can be estimated
very accurately with only a few CHF samples using the
Gauss–Chebychev quadrature (GCQ) formula. The generality
and computational efficiency of our new expressions render
themselves a powerful tool for SER analysis under a myriad
of fading scenarios.
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This paper has the following organization. The derivation of
average SER of MQAM using an-fold MRC space diversity
on a Nakagami fading channel is outlined in Section II.
Section III details the error performance of MQAM with
predetection EGC. Subsequently in Section IV, selected nu-
merical results are presented. Finally, the main points are
summarized in Section V.

II. SER OF MQAM WITH MAXIMAL -RATIO

DIVERSITY RECEIVER

In MQAM, a symbol is generated according to
data bits, and each symbol in a quadrant has different SER.
Among the various known signal constellations, rectangular
QAM signal is the most frequently used in practice because
[2]: 1) its signal constellation is easily generated as two PAM
signals impressed on phase-quadrature carriers; 2) the task of
signal demodulated can be performed without much difficulty;
and 3) the average transmitted power required to attain a given
minimum distance with rectangular QAM is only slightly
higher than that of the best MQAM signal constellation. When

is even (i.e., square QAM), the exact SER for MQAM
in the AWGN channel is given by [2]

(1)

where , and is the
average received SNR per bit. On the other hand, when
is odd, there is no equivalent -ary PAM system. In this
case, the symbol-error probability is tightly upper bounded by
[2, eq. (5-2-80)]

(2)

if the detector bases its decisions on the optimum distance
metric (maximum-likelihood criterion).

A. Independent Fading

In this section, we outline several methods for computing the
SER of MQAM with MRC diversity reception on a Nakagami
fading environment. Each method is unique, interesting, and
novel in its own right. Hence, we are presenting them in the
hope of stimulating further applications.

1) Computation of SER Using pdf of: As in [5], we as-
sume matched filter detection and perfect channel estimation
is available at the receiver. Then, the average symbol-error
probabilities in a slow and flat Nakagami fading channel may
be derived by averaging the error rates for the AWGN channel
over the pdf of the SNR in Nakagami fading

(3)

where

(4)

(5)

and is the instantaneous
SNR per bit with -fold MRC diversity, where denotes the

Nakagami-distributed RV. The pdf of is readily obtained
by invoking the basic Fourier inversion theorem

(6)

where denotes the CHF of [2]

(7)

with the assumption that the fading statistics across the
antennas are uncorrelated (achieved through sufficient antenna
separation). The notation in (7) corresponds to the pdf
of the received SNR of a single diversity branch in Nakagami
fading environment, which has the chi-square pdf given in [2,
eq. (14-3-14)]. Since is real and the real part of the
integrand is symmetric about , we get

(8)

where and
. The parameter in (8) denotes

the fading figure of the th diversity branch (i.e., antenna)
and , where
corresponds to the average received SNR of theth antenna.

Now, consider the Fourier transform (FT)

(9)

which is obtained using identity [20, eq. (6.283)]. Substituting
(8) into (4) and recognizing that the integration with respect to

is the FT shown in (9), can be manipulated into the form

(10)

by expressing in the polar form, i.e.,
. By manipulating [20, eq.

(8.258)], we get an FT identity

(11)

By substituting (8) in (5), changing the order of integration
in (5), and using the transformation formula (11), can be
restated as

(12)

Hence, substituting (10) and (12) into (3), we arrive to an exact
analytical expression for SER of MQAM in Nakagami fading
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channel with arbitrary parameters. This one-dimension integral
can be computed numerically (e.g., trapezoidal integration
rule). As before, an upper bound for the SER of rectangular
QAM with odd may be computed using

(13)

In some previous work (e.g., [1], [3], [19]), the authors have
used an approximate SER formula for MQAM in fading chan-
nel by ignoring the second integral in (3), since

as (or for relatively large SNR per bit).
However, the discrepancy between the exact SER and that of
calculated SER via the coarse approximation described above
can be quite large even for moderate values of[6].

2) Computation of SER Using pdf of and the GCQ For-
mula: Our second approach for calculating accurate SER
for MQAM in conjunction with MRC diversity is based on
knowledge of two FT identities [(9), (11)] and the application
of the GCQ formula [21, eq. (25.4.38)]. Combining (10) and
(12), we can write

(14)

where

and . Using variable substitution
in (14), the integration limits become to .

Now, by applying the GCQ formula of the first kind to the
transformed integral, we have a series expression for the SER
of MQAM with MRC diversity on Nakagami fading channel

(15)

where and
. Since the remainder

term vanishes quickly as increases, (15) is a rapidly
converging series.

3) Computation of SER Using MGF of and the GCQ For-
mula: Different from the conventional method for computing
SER [i.e., direct evaluation of (3)], our third approach relies
upon the knowledge of the MGF of , the use of an alterna-
tive exponential forms for one-dimension and two-dimension
complementary error functions, as well as the application of
the GCQ rule [9], [22], [23]. The MGF technique has been
applied successfully in [6], but was evaluated with the aid
of a two-dimension GCQ formula, i.e.,

(16)

where is a small positive integer, , and
. In the following, we derive a much simpler

SER formula for MQAM modulation scheme on Nakagami

fading channels. The new expression reduces the number of
MGF samples required to achieve a specified accuracy from

[in the case of (16)] to . This is mainly attributed to the
alternative exponential representation of the .

The MGF of is related to the CHF shown in (7) via
relationship . Next, by exploiting the results
from the definite integral [20, eq. (7.4.11)], the complementary
error function can be represented via an alternative exponential
form as

(17)

From Appendix A, we have an alternative exponential form
for the

(18)

It is noted that (18) may also be derived directly using the
results from definite integrals [20, eq. (7.4.12)] and (17) with
some algebraic manipulations. Substituting (17) and (18) into
(3), and recognizing , we
get

(19)

Equation (19) can be manipulated into a desired form (so
that one can apply GCQ formulas directly) using variable
transformations and

(20)

Then, using the GCQ approximation [21, eq. (25.4.38)] leads
(20) directly to a simple expression for the average SER of
MQAM in a slow and flat Nakagami fading channel

(21)

where . The remainder term can be
bounded using the results of [10, Appendix A] and/or [23].
However, this is not necessary in practice, since one simply
computes (21) for several increasing values ofand stops
when the result converges to a prescribed accuracy. Note the
implications of (21): we are simply sampling the MGF at
points. So as long as the MGF exists and computable, this
method can work very effectively. In fact, its accuracy will be
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high if the high-order derivatives of the MGF vanish rapidly.
In Appendix A, we also present another method for computing

. The Gauss–Lobatto quadrature (GLQ) integration method
also requires significantly fewer samples of MGF to evaluate
the SER than the two-dimension GCQ technique [i.e., (16)]
developed in [6].

Furthermore, using variable substitution in
(19), we get a simple exact analytical expression for the SER
of MQAM with MRC diversity receiver on generalized fading
channels

(22)

which is identical to the results presented in [7]. This form is
both easily evaluated and well suited to numerical integration
since the integrand is well behaved over the finite-range of
the integration limits.

4) Computation of SER Using Parseval’s Theorem and the
GCQ Formula: Our fourth technique for evaluating the SER
of MQAM with MRC diversity relies on knowledge of two
FT’s: the application of Parseval’s theorem and the GCQ
formula. By applying Parseval’s theorem in (3), we get

(23)

where , and are defined in (7), (9),
and (11), respectively. Notice that our methods II-A.1 and II-
A.4 are essentially the same. But the development of (23) is
interesting because it lends itself into a unified form of SER for
MQAM with MRC diversity on arbitrary fading environments
(not restricted to only Nakagami fading). Now, using variable
substitution in (23) and then applying the GCQ
formula, we get

(24)

where and
.

5) Exact Closed-Form Formulas for SER of MQAM with
MRC Diversity: Next, we will present exact closed-form SER
formulas of MQAM with MRC diversity for two special
cases of Nakagami fading: 1) identical across the
diversity branches and is a positive integer; 2) distinct
diversity branches and integer ’s for .

Case (a): Let us assume for and
is a positive integer. In this case, the RV has

a gamma pdf [obtained by inverting (7)]

(25)

Then, using identity [2, eq. (14-4-15)]

(26)

where , and

(27)

by exploiting the FT identity in (11). For small values of,
the th order differentiation in (27) can be computed
by hand. For instance

when

if

where and
. If is large, then this differentiation

may be performed with the aid of common mathematical
software packages, such as the Maple, because the number
of terms grows exponentially. Alternatively, by substituting

[20, eq. (9.121.27)] in
(27) and then invoking Leibnitz’ rule (i.e., th derivative
of a product of two functions) [20, eq. (0.42)], and after
simplifications, we get

(28)

In this case, the final SER expression can be computed
recursively in terms of Gauss hypergeometric series. For the
particular case of , (28) reduces to the results given
in [5].

Case (b): If the diversity branches are distinct and ’s
assume integer values, we obtain, upon performing the inverse
Laplace transform of (7)

(29)
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where

(30)

Then, the corresponding exact SER may be evaluated as

(31)

Once again the th-order derivative term may be replaced
by an equivalent expression similar to (28). If the fading
severity index is common to all diversity branches and ,
(31) reduces to the SER formula for square MQAM on
Rayleigh fading channel derived in [5]. To the best of the
authors’ knowledge, all the exact closed-form expressions for
MQAM on Nakagami fading channel presented in this section
are new.

B. Correlated Fading

When the diversity branches are correlated, the analysis
proceeds in a similar manner as the independent fading sce-
nario. But we need to find the corresponding CHF or MGF
of the SNR at the output of the combiner. For the arbitrarily
correlated Nakagami fading environment, the joint CHF of the
instantaneous SNR may be written in the form [24]

(32)

where is the identity matrix, is a positive definite
matrix of dimension (determined by the branch covari-
ance matrix), and are two diagonal matrices defined
as and ,
respectively, and is the fading parameter. Then, the CHF of

can be obtained from (32) by setting ,
i.e.,

(33)

where are the eigenvalues of matrix . Thus, we can
readily evaluate the exact SER performance of MQAM with
MRC diversity by substituting (33) into (23) or (24).

For special cases of constant and exponential correlation
[24] models (and with the assumption of identical fading sever-
ity index and signal strength across the diversity branches), the

corresponding CHF’s can be easily shown to be (34) and (35),
respectively

(34)

(35)

where is the
correlation coefficient and is the diversity order.

III. SER OF MQAM WITH EQUAL-GAIN DIVERSITY RECEIVER

In an EGC, the output of different diversity branches are
first co-phased, equally weighted, and then summed to give
the resultant output. The instantaneous SNR at the output of
the EGC combiner is , where is defined as

(36)

where is a Nakagami RV with the statistical parameters
and as defined in Section II. Let denote
the average SNR for theth branch, which is consistent with
our definition for the MRC case. The CHF of (the sum
of Nakagami RV’s) in this case is simply the product of the
individual CHF’s, i.e.,

(37)

Recognizing that the definite integral in (37) can be expressed
in terms of parabolic cylinder function using identity [20, eq.
(3.462)], we get

(38)

where and and is the parabolic cylinder
function of order and argument . Using identity [20, eq.
(9.240)], (38) may be restated in terms of the more familiar
confluent hypergeometric function of the first kind

(39)

The confluent hypergeometric function may be computed
efficiently using a convergent series for small arguments and
via a divergent expansion for large arguments (see Appendix
B). From (1), the conditional error probability for square
MQAM is

(40)
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and we are interested in calculating its average over the
Nakagami pdf

(41)

where is the pdf of the sum of Nakagami RV’s.
In general, it is difficult (or impossible) to invert (39) to
get a closed-form expression for the pdf of. Therefore, a
Fourier series approach has previously been used [16]. Since
we already have the FT of the pdf, by transforming the product
integral in (41) to the frequency-domain using Parseval’s
theorem, the need to find the pdf is circumvented. But we
then also need the FT of , which surprisingly turns
out to be very easily computed. Hence, for our subsequent
development, the following two FT’s are needed:

(42)

(43)

which were obtained using integration by parts, and
denotes the Dawson integral

(44)

There are at least two methods for computing . First, it
has the series representation

(45)

Therefore, can be computed using the procedure outlined
in Appendix B [i.e., by evaluating sufficient number of terms
in the series of ], which can handle any real and
. It turns out that when and , there is a much

more efficient direct method to compute . In
this paper, we use this second approach due to Rybicki [25].
That is why (42) (which can also be expressed in terms of
the confluent series) and (43) are expressed in terms of this
function. Now applying Parseval’s theorem in (41), we get

(46)

Since the imaginary part of this integral is zero, we may rewrite
(46) as

(47)

where

(48)

Fig. 1. Symbol-error probability for MQAM with MRC and EGC diversity
receivers on Nakagami fading with fading figurem = 1:8.

Using variable substitution in (47), we can
express this integral in a more desirable form (i.e., suitable
for numerical integration)

(49)

Note that (47) and (49) are exact analytical solutions for
MQAM with EGC diversity. Yet making another variable
substitution in (47) and then applying
the GCQ formula, we obtain a rapidly converging series
representation for the EGC performance on Nakagami fading
channel

(50)

where It is also interesting to note that
(15) and (50) are in similar forms.

IV. NUMERICAL RESULTS

In this section, we present selected numerical results to
show the efficacy of MRC and EGC diversity receivers on
a Nakagami fading channel with arbitrary fading parameters.
When using the GCQ sum, we have used and
for the MRC and EGC results, respectively. Note that these
numbers were conservatively chosen to be large. In fact, as
few as eight samples can be sufficient in some cases. Fig. 1
depicts the SER performance curves of 4-QAM, 16-QAM
and 64-QAM with the assumption that all the MRC or EGC
space diversity branches undergo identical Nakagami fading
with . This fading severity index corresponds to a
Rician channel with Rice factor . From this figure, it is
apparent that diversity reception is an effective technique for
combatting the detrimental effects of deep fades experienced
in wireless channels. It is also observed that the penalty in
SNR to achieve a given SER of MQAM system with a larger
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Fig. 2. Symbol-error probability for MQAM with MRC and EGC diversity
receivers on Nakagami fading with fading figurem = 0:75.

signal constellation size declines more rapidly than that of a
smaller signal set, as the diversity order increases. This is true
for both MRC and EGC diversity systems. In other words,
the diversity improvement is greater as the constellation size

increases. When , the performance curves evaluated
using (15) and/or (21) coincide with that evaluated via (47), as
anticipated (i.e., corresponds to the nondiversity case). As well,
the penalty in SNR for the EGC diversity receiver to achieve
the same level of performance with the optimum diversity
receiver is quite minimal. For instance, the difference for 4-
QAM at is only about 0.4 and 0.6 dB for
and , respectively.

In Fig. 2, we plot the SER curves for different QAM
systems, with and without diversity reception, in Nakagami
fading environment with . Comparison between
Figs. 1 and 2 reveals that the relative diversity advantage
is more pronounced in a poorer channel condition. This
is intuitively satisfying, since the difference between the
instantaneous received SNR on various diversity branches will
be less as increases. However, the SER performance is
always better in a channel where a strong line-of-sight path
exists for a specified average received SNR per branchand
diversity order. We also observe that the discrepancy between
the EGC and MRC diversity performance curves gets larger
as the fading becomes more severe (i.e., smaller).

Fig. 3 compares the exact SER with MRC [computed using
(14) or (22)] with the approximate SER [which may be
calculated via (10) or more efficiently by evaluating only the
first term in (21)] for the system parameters considered in
Figs. 1 and 2. The percentage of approximation error is defined
as . Notice that the approximate SER for a
dual-diversity 16-QAM is more than 10% higher than the true
SER even at dB when . The discrepancy
between the approximate and the exact SER diminishes as the
average received SNR per branch increases or for higher order

(a)

(b)

Fig. 3. Comparison between the exact and approximate SER of MQAM
with MRC space diversity in different fading environments and for different
diversity orders: (a)m = 1:8 and (b)m = 0:75.

of diversity. On the other hand, their difference becomes more
apparent if the channel condition degrades (i.e., smaller) or
for a larger signal constellation size.

Next in Fig. 4, the SER performance of 64-QAM system is
plotted against the order of diversity for several fading severity
indexes. All the diversity branches are assumed to have
identical fading statistics, and the received SNR per branch is
assumed to be dB. The larger the number of diversity
branches, the smaller the chance of the combined signal going
into fade. However, the effective improvement in SNR for
a fixed error performance does not improve in proportion to
increasing (see Figs. 1 and 2). The greatest improvement
step occurs in going from a single-branch receiver to a
two-branch receiver. The results in Fig. 4 indicate that the
discrepancy between the error performance of MRC and EGC
diversity receivers becomes more apparent as the diversity
order grows. This may be attributed to the fact that MRC
yields better statistical reduction of deep fades, as well as
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Fig. 4. Symbol-error probability versus order of diversity for 64-QAM with
MRC and EGC diversity receivers.

Fig. 5. Effect of unbalance mean signal strength (�1 is fixed to 10 dB) on
the SER performance of dual-diversity 16-QAM systems in different fading
conditions.

provides the higher average output SNR of the combined
signal than EGC. Since the deviation between the EGC and
MRC curves decline rapidly as increases, we can conclude
that the ability to mitigate the deep fades is the main factor
that has contributed the difference in the performance of the
two receiver structures.

Figs. 5 and 6 examine the sensitivity of the error probability
for 16-QAM system with MRC or EGC diversity receivers in
the presence of dissimilar mean signal strength and unequal
fading parameters. It is clear that departure of the EGC
performance curve from the MRC case is not very significant

Fig. 6. Sensitivity of SER for 16-MQAM with dual-diversity MRC or EGC
diversity receiver on Nakagami fading channels due to dissimilar fading
severity index (m1 is fixed to 1).

if the ratio is not excessively small and/or if the ratio
is not too large. From Fig. 5, it can be concluded

that MRC makes much more effective use in diversity of
relatively weak signals than can the EGC. Besides, equal
noise levels in all branches is crucial to proper operation of
EGC, since otherwise those branches with large noise levels
would dominate the output SNR even if the branch itself were
weak in signal level. This, in turn, suggests that a very weak
signal should not be combined in the equal-gain diversity-
receiver configuration because it may cause a considerable
degradation in the mean SNR (due to combination losses).
Alternatively, one should equalize the noise levels across
the diversity branches by introducing different gains in these
branches, prior to the combiner. One way to explain the larger
difference between the EGC and MRC performance curves as
the ratio increases is by noting that fading severity
index has the diversity-like effect. Hence, the ability to
mitigate the deep fades and average output SNR of the EGC
combiner is inferior to the optimum MRC, specifically when
the order of diversity increases (see Fig. 4).

V. CONCLUSION

Exact symbol-error probability expressions have been de-
rived for coherent MQAM systems employing MRC and
EGC antenna diversity in a Nakagami fading environment
with an arbitrary fading severity index and/or dissimilar sig-
nal strength. The SER formula is exact for square QAM.
A tight bound for the rectangular signal constellations was
also presented. In particular, the SER formulas based on the
GCQ approximation can be easily programmed and evaluated
efficiently. Our results are sufficiently general to allow for
arbitrary fading parameters, as well as dissimilar mean signal
strengths across the diversity branches. The generality and
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computational efficiency of the new results presented in this
paper render themselves as powerful means for both theoretical
analysis and practical applications.

APPENDIX A

In this appendix, we present an alternative technique for
evaluating the term involving in (3) instead of the
two-dimension GCQ method illustrated in [6]. By definition

(A.1)

By making variable substitution and
in (A.1) and using integration by parts, we can show that the
double integral in (A.1) reduces to

(A.2)

Then, can be restated as

(A.3)

where the second integral in (A.3) is obtained via variable
transformation . Now by applying the GLQ
formula [21, eq. (25.4.36)], we arrive to a simple expression
for evaluating (5)

(A.4)

The abscissas and weights are given by and
, respectively, where is the th positive zero of

Legendre function , and are the Gaussian weights
of order . It is evident that this alternative method requires
fewer samples of MGF (i.e., samples for practical
values of ) compared to the two-dimension GCQ formula.
This is because the numerical approximation is performed
over a single integral in GLQ instead of the double integral in
the latter approach. Yet making another variable substitution

in (A.2), we get

(A.5)

which is an alternative representation for the . It is
noted that this new form is essentially the same as the results
presented recently by Simon and Divsalar in [11].

APPENDIX B

In this appendix, we present three series that are used in the
calculations involving the confluent hypergeometric function
of the first kind. The confluent series is defined as

(B.1)

where the polychamer symbol .
Note that if is a positive integer, then the series is a finite
polynomial of , i.e.,

(B.2)

In the mathematical sense, the series (B.1) converges every-
where (i.e., the radius convergence is infinite). However, for
large , the series does not converge until by which
time overflow problems may have occurred. Therefore, (B.1) is
not computationally useful when is large. Note that when
the series (B.1) reduces to (B.2), the convergence problem
does not occur.

For EGC performance evaluation, both
and are needed,

where can be real or integer. Beaulieu and Abu-Dayya
provide a method to compute for
positive integer [16, Appendix A], and their finite series
simply follows from (B.3) and (B.2). They also provide a
recursion to compute [16, Appendix B],
which again holds for positive integer only. In contrast,
the following procedure handles both real and integer.

We now consider the calculation of for ,
and is a positive real number. For this case, it is better to
apply Kummer’s transformation formula

(B.3)

The advantage of this transformation is that if or
is an integer, then the series required in (39) is a

finite polynomial. Therefore, no convergence problems are
encountered. For , we use

(B.4)

which can be computed via standard series evaluation tech-
niques. For , we use the divergent series [26, p.
278]

(B.5)
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