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Preface

What lies before you is the result of a four year period of PhD research. It is the product
of creative ideas, hard labour, and many discussions and collaborations with other
researchers and students. It also is a result of a process that includes many moments
of joy, many moments of frustration, and many notable moments of fascination on the
beauty of mathematics and computer science in general and algorithmic research in
particular. But, maybe most of all, this thesis is the final product of a four year period
of personal growth.

In this four year period, I explored a number of areas of research, the larger part
of which was related to the topic of this thesis. Nonetheless, I have also performed
research on slightly different topics. Some of this research led to concrete results and
published papers as well. I would like to mention the research I did on role assignment
problems together with Daniël Paulusma and Pim van ’t Hof [311, 312], the joint results
with Hans L. Bodlaender on a subexponential-time algorithm for intervalising coloured
graphs [51], and the fruitful collaboration with Jesper Nederlof, Marek Cygan, Marcin
Pilipczuk, Michał Pilipczuk and Jacub Onufry Wojtaszczyk on singly-exponential-time
algorithms for connectivity problems on tree decompositions [88].

The research in this thesis was done while I was a PhD student at the Department
of Information and Computing Sciences of Utrecht University under the guidance of
Hans L. Bodlaender and Jan van Leeuwen. While most of this research was done in the
department, many ideas also originated from my visits to other universities: my visit
to the Laboratoire d’Analyse et Modélisation de Systèmes pour l’Aide à la DEcision of
the Université Paris Dauphine, my visit to the School of Engineering and Computing
Sciences of Durham University, and my visit to the Department of Informatics of the
University of Bergen. Also, attending various conferences had a major impact on my
research. Noteworthy are IWPEC 2008, ESA 2009, IPEC 2010, and Dagstuhl Seminars
08431 and 10441.

Acknowledgements. First and foremost, I would like to thank my advisor Hans Bod-
laender, whom I experienced to be a great advisor. While Hans gave me a lot of
freedom to pursue my own research, his door was nearly always open to me for dis-
cussions and conversations, both on research and on private matters. His enthusiasm
and understanding have been of great value to me and are highly appreciated.

The next person who has most probably had the most influence on this thesis
and whom I would like to thank next is Jesper Nederlof. Our collaboration, which
started while he was a Master student supervised by Hans and me, has both been very
enjoyable and very fruitful: it resulted in Chapters 8 and 9 (and [88]), and this research
also planted the seeds in my mind that led to many of the results in Chapters 10-13.

I would also like to thank my promotor Jan van Leeuwen. His guidance on the
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writing of this thesis has been very valuable; I learned much from his many comments,
both on writing in general and on relating my research to the field in particular.

Furthermore, I thank my office mate Thomas van Dijk. Reflecting on research
together has been very helpful, our joined work has been enjoyable, and, maybe most
of all, his continued assistance in C++ programming has been invaluable in my first
year as a PhD student.

The research presented in this thesis could not have taken place, and would not
have been as enjoyable, without all the people I worked with. First of all, this includes
my coauthors Hans Bodlaender, Nicolas Bourgeois, Marek Cygan, Bruno Escoffier,
Jesper Nederlof, Vangelis Paschos, Daniël Paulusma, Marcin Pilipczuk, Michał Pilip-
czuk, Peter Rossmanith, Thomas van Dijk, Marcel van Kooten Niekerk, Erik Jan van
Leeuwen, Pim van ’t Hof, Martin Vatshelle, and Jacub Onufry Wojtaszczyk. Secondly,
this includes many other people with whom I discussed research including Andreas
Björklund, Henning Fernau, Fedor Fomin, Thore Husfeldt, Dieter Kratsch, Daniel
Lokshtanov, Matthias Mnich, Igor Razgon, Saket Saurabh, and Jan Arne Telle. Of
these people, I want to express my gratitude to Vangelis Paschos, Daniël Paulusma,
and Jan Arne Telle for inviting me to visit their respective research groups.

My research benefited from the nice working environment in the Algorithmic Sys-
tems group of the department. I would like to thank the members of the group
during this four year period. This includes Jan van Leeuwen, Hans Bodlaender, Han
Hoogeveen, Marjan van den Akker, Gerard Tel, Marinus Veldhorst, Stefan Kratsch,
Bart Jansen, Eelko Penninkx, and Guido Diepen. In particular, I enjoyed the discus-
sions about politics with Han Hoogeveen and Hans Bodlaender, and the many friendly
conversations at less productive moments with Marjan van den Akker and Thomas
van Dijk. I would also like to thank the support staff, in particular Wilke Schram and
Edith Stap, for helping me find my way in the department and their contribution to a
positive working atmosphere. I would like to thank Stefan Kratsch and Erik Jan van
Leeuwen for their help in setting up various parts of the LaTeX environment used to
write this thesis.

To perform good research, I believe that it is important to be physically fit, and
that it is even more important to have a place to relax and have fun. I would like to
thank all my friends in the badminton club ‘S. B. Helios’ in Utrecht, in particular, the
members of the teams I played in and everybody who organised various activities for
this wonderful club with me, including some great tournaments. I would also like to
thank my friends from my other badminton club ‘DVS-Koto Misi’.

There are a few more people that I would like to thank for making the past four
years a pleasant time. Firstly, the members of the ‘politieke commissie’ of the ‘Jonge
Democraten’ afdeling Utrecht. I enjoyed thinking about topics related to society and
politics, and I enjoyed the things we worked on together and the fun we had in the
process. Secondly, my fellow residents of ‘Oudwijk 21’ who made sure that there was
always some fun after a day of hard work. Thirdly, all my other friends, especially
Daniël Heijnen; your support has been of great value to me.

Also, a word of thanks to my family, especially my two brothers who have always
been there for me for support.

Last, but certainly not least, I would like to thank Lizette, whose support and
comfort mean at lot to me.
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1
Introduction

The famous five queens puzzle and eight queens puzzle are chess puzzles that are played
on the usual 8-by-8 chessboard and that involve the placement of queens. According to
the rules of chess, a queen attacks any square that it can reach by moving any number
of squares in a horizontal, vertical, or diagonal direction, without passing over another
piece. The objective of the five queens puzzle is to place five queens on the chessboard
that together attack or occupy all squares of the chessboard, and the objective of the
eight queens puzzle is to place eight queens on the chessboard such that no two queens
attack each other. For possible solutions to these puzzles, see Figure 1.1.

The puzzles can be said to be the origin of the study of graph domination problems
(see also [179]). They were introduced by chess enthusiasts in the 1850s, and many
mathematicians, including C. F. Gauss (see [174]), have worked on these puzzles and

8 zzZzzZzzZ5XQzZ
7 zZz5™XQzzZzzZz
6 zzZzzZzzZzzZ
5 zZzzZzzZzzZz
4 zzZzzZzzZz5™XQ
3 zZzzZ5XQzZzzZz
2 zzZzzZzzZzzZ
1 5™XQzzZzzZzzZz

a b c d e f g h

8 5XQzZzzZzzZzzZ
7 zZzzZzzZ5XQzZz
6 zzZzzZzzZz5™XQ
5 zZz5™XQzzZzzZz
4 zzZzzZzzZ5XQzZ
3 zZzzZ5XQzZzzZz
2 z5™XQzzZzzZzzZ
1 zZzzZz5™XQzzZz

a b c d e f g h

Figure 1.1. Solutions to the five queens puzzle and the eight queens puzzle.
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their generalisations. In computer science, the puzzles have received much attention
as well. For example, the famous Dutch Turing Award winner E. W. Dijkstra used the
eight queens puzzle in 1972 to illustrate the power of structured programming [92]. He
published a highly detailed description of the development of a backtracking algorithm
for this puzzle. We will also present many backtracking algorithms in this PhD thesis,
some solving generalisations of the two puzzles.

To exhibit the relation of the puzzles to graphs, we consider the queens graph of
a chessboard. Note that an undirected graph G = (V,E) consists of a set V , whose
elements are called vertices, and a set E of unordered pairs of vertices from V , which
are called edges. The queens graph of the usual 8-by-8 chessboard is the graph that has
the 64 squares of the chessboard as vertices, and that contains an edge between a pair
of distinct squares if and only if a queen can attack one square of the pair from the
other. A solution to the five queens puzzle corresponds to a set D of five vertices in the
queens graph G with the property that every vertex in V is either in D or connected
to some vertex in D by an edge: the vertices in D correspond to the squares on which
the queens are placed. Any square corresponding to a vertex that is not in D is being
attacked by a queen since there exists an edge between the vertex and a vertex in D.
Similarly, a solution to the eight queens puzzle corresponds to a set of eight vertices I
in the queens graph G with the property that there is no edge between any two vertices
in I: since there are no edges between the vertices in I, no two queens placed on the
corresponding squares can attack each other.

In this PhD thesis, we will consider the problem of computing vertex sets similar
to the solutions to the queens puzzles in arbitrary graphs. A set of vertices D in a
graph G such that every vertex in V is either in D or adjacent to some vertex in D is
called a dominating set , and a set of vertices I in a graph G such that there is no edge
between any pair of vertices from I is called an independent set . The computational
problem of computing a dominating set of minimum size is known as Dominating

Set and the computational problem of computing an independent set of maximum
size is known as Independent Set. Notice that the five and eight queens puzzles
are special cases of these problems. We will focus on solving these, and other graph
domination problems, on graphs in general1 using algorithms that run in exponential
time (unless we can do better). Our goal is to design such algorithms for which we
can prove fast worst-case running times.

1.1. Exact Exponential-Time Algorithms

An algorithm is a step-by-step approach to solve a computational problem. The num-
ber of computation steps that are required to execute an algorithm is called the al-
gorithm’s running time. In algorithmic research, one often gives algorithms for which
one can prove that the running time is below some guaranteed asymptotic bound. The
goal is to give algorithms for which this asymptotic bound is as small as possible.

This asymptotic behaviour can have many forms. If we let n be a complexity
parameter for a problem, for example the number of vertices of an input graph (see

1For simple exact exponential-time algorithms that solve the queens puzzles directly, i.e., wi-
thout considering only the problem on the underlying graph, we refer the reader to a nice paper by
Fernau [132].
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Section 3.1 in Chapter 3 for the definition of complexity parameters), then we typically
distinguish between the following types of running times for algorithms (partially based
on [321]):

∙ Polynomial in n. For example: n2, n3, n log n, n1000.
∙ Quasi-polynomial in n. For example: nlogn, nlog2n, 2log

3n.
∙ Subexponential in n. For example: 2

√
n, 3n

0.99

, or less than 2�n for all � > 0.
∙ Exponential in n. For example: 2n, 1.4969n, n!, nn.

For many computational problems, algorithms with a relatively fast type of asymptotic
running time, e.g., algorithms with polynomial running times, are known. However,
many other computational problems seem to be solvable only by algorithms with a
slower type of running time, e.g., algorithms with exponential running times.

In this PhD thesis, we will mainly consider exponential-time algorithms. More spe-
cifically, the algorithms that we present will mostly have singly-exponential running
times: running times of the form cn. We refer to the constant c in running times of
this form as the base of the exponent of the running time. Singly-exponential running
times are the asymptotically fastest running times that are of the type exponential run-
ning time in the classification above. We will give algorithms with singly-exponential
running times for problems for which most likely no algorithms with running times of
a faster type (such as subexponential-time algorithms) exist.

We study algorithms with ‘small’ asymptotic running times. For singly-exponential-
time algorithms, this means that we try to minimise the base of the exponent of the
running time. A smaller base of the exponent can lead to much faster algorithms on
instances of moderate size: see Table 1.1 and, for example, compare 2n with 1.4969n

or even 1.0222n. For practical situations, it is often more important to consider the
maximum size of an instance that can be tackled within a given time frame, for example
in a day. One can see from Table 1.1 that, using a 2n-time algorithm, one can tackle
instances with n up to roughly 50 in a day, while if we use a 1.4969n-time algorithm,
then this becomes roughly 90. Using an algorithm with a running time that has a
smaller base of the exponent allows us to tackle problems that are a multiplicative
factor larger, while using a twice-as-fast computer allows us only to tackle problems
that are an additive factor larger.

In this PhD thesis, we care little for the polynomial factors involved in the exponen-
tial running times as they are always asymptotically dominated by any improvement
in the base of the exponent of the exponential factor; for example, compare n21.7n

with 2n in Table 1.1. However, as one can also see from the same comparison, poly-
nomial factors are of great importance in practical situations. Although most of our
algorithms can be used to solve the studied problems in practice, we will focus on the
theoretical study of exponential-time algorithms and their asymptotic running times.

In the field of exact exponential-time algorithms, one aims at the best possible
asymptotic running time. In other fields of algorithm design, one sometimes trades
running time for other resources or properties of the algorithm. Examples of this
include heuristic algorithms, where one has no a priori guarantee on the quality of a
solution, and approximation algorithms, where the quality of the solution is guaranteed
to be at most some constant times the exact optimal solution. Other approaches
include randomised algorithms, the study of average-case complexity, or parameterised
algorithms.
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This table gives the number of operations and the associated execution times corresponding to different

running times. The numbers given without brackets are the number of operations, and the given

running times between brackets are the associated execution times based on a standard of 1011

operations per second; this equals the number of FLOPS (FLoating point OPerations per Second) of

the Intel Core i7 980 XE processor at peak performance.

Behaviour n = 10 n = 30 n = 50 n = 70 n = 90

n 10 (< 1�s) 30 (< 1�s) 50 (< 1�s) 70 (< 1�s) 90 (< 1�s)
n4 104 (< 1�s) 106 (8�s) 107 (63�s) 107 (0.2ms) 108 (0.7ms)

1.02220n 1.2 (< 1�s) 1.9 (< 1�s) 3 (< 1�s) 4.6 (< 1�s) 7.2 (< 1�s)
1.08537n 2.3 (< 1�s) 12 (< 1�s) 60 (< 1�s) 309 (< 1�s) 103 (< 1�s)
1.4969n 56 (< 1�s) 105 (1.8�s) 109 (6ms) 1012 (18s) 1016 (16ℎ)
n21.7n 104 (< 1�s) 1010 (74ms) 1015 (2ℎ) 1020 (21y) 1024 (106y)
2n 103 (< 1�s) 109 (11ms) 1015 (3ℎ) 1021 (374y) 1027 (108y)
n! 106 (36�s) 1032 (1014y) 1064 (1045y) 10100 (1081y) 10138 (10119y)

Some of the given running times are based on algorithms in this PhD thesis. For example, in Chapter 4

we give an O(1.02220n)-time algorithm, in Chapter 5 an O(1.4969n)-time algorithm, and in Chapter 7

an O(1.08537n)-time algorithm. We note that, in this table, the running times are used exactly, that

is, without additional constant or polynomial factors that are suppressed in the notation.

Table 1.1. Different running times and the corresponding number of operations
and execution times for different instance sizes.

Parameterised algorithms are closely related to exact exponential-time algorithms.
The difference lies in the (complexity) parameters that are used in the analysis of the
running times of the algorithms. There are roughly three kinds of parameter that are
used for measuring the running time of an algorithm.

1. Parameters based on a size measure of the search space of the problem, for
example, the number of squares n of an input chessboard in a queens puzzle.

2. Parameters based on the solution size of the required solution, for example, the
number of queens k in a solution to a queens puzzle.

3. Parameters based on some other property of the input, for example, the treewidth
of the input graph, or the size of the minimum vertex cover of the input graph2.

Algorithms that give exact solutions to problems and whose analysis is based on a
parameter of the first type are known as exact algorithms; if their analysis is based
on a parameter of the second or third type, then they are known as parameterised
algorithms. For the third type of algorithms, one can distinguish between the kind of
parameter that is being used. If a parameter is based on a graph decomposition, for
example treewidth, we call the algorithms graph-decomposition-based algorithms.

In this PhD thesis, we will mainly study exact exponential-time algorithms and
graph-decomposition-based algorithms. Our motivation for also studying graph-de-
composition-based algorithms comes from the fact that, for some graph decomposi-
tion parameters, improvements on the decomposition-based algorithms directly relate
to improvements on exact algorithms. An example of such a graph decomposition pa-
rameter is the treewidth of the input graph. Exact exponential-time algorithms using

2See Section 2.2.2 for the definition of treewidth, and Section 1.6 for the definition of a vertex
cover.
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treewidth-based algorithms can, for example, be found in Section 2.2.2 in Chapter 2,
or in Chapters 8-10.

1.2. A Short History of Exponential-Time Algorithms

Although the study of exact exponential-time algorithms was initiated in the nineteen
sixties and nineteen seventies, the area remained a small subfield of theoretical com-
puter science for a long time. Important and well-known early results from this period
include the following3:

1. An O∗(2n)-time4 algorithm for Travelling Salesman Problem by Held and
Karp [180] (1962) and independently by Bellman [17] (1962).

2. An O(1.2852n)-time algorithm for Independent Set by Tarjan [291] (1972).
This was later improved to O(1.2599n) by Tarjan and Trojanowski [292] (1977).

3. An O(1.4143n)-time algorithm for Subset Sum and Binary Knapsack by
Horowitz and Sahni [186] (1974).

4. An O(2.4423n)-time algorithm for Graph Colouring and an O(1.4423n) time
algorithm for 3-Colouring by Lawler [220] (1976).

5. An O∗(2n)-time algorithm for Hamiltonian Cycle by Kohn et al. [207] (1977).
This algorithm was later rediscovered by Karp [200] in 1982, and by Bax [14] in
1993. This result improves the O∗(2n) for Travelling Salesman Problem

for the unweighted version of the problem in the sense that the algorithm of (1.)
uses O∗(2n) space while this algorithm uses only polynomial space.

Only a handful of results were obtained in the nineteen eighties (e.g., [195, 200, 239,
270, 283]) and the early nineteen nineties (e.g., [14, 16, 169, 272, 277, 278, 287, 328]).

In the late nineteen nineties, the field has grown tremendously. There are a number
of reasons for this increased interest. First of all, it is now widely believed that no
polynomial-time algorithms exist for many key problems; therefore, one needs to consi-
der the best possible super-polynomial or even exponential-time algorithms when the
need arises to solve these problems. Secondly, with the increase of the computational
power of modern computers, exponential-time algorithms can be practicable for solving
moderate-size instances. This is especially useful on problems where other approaches
do not perform satisfactory, e.g., in applications that require exact solutions to a given
problem, or on many problems like Independent Set and Dominating Set that
are hard to approximate [127, 178, 329] and for which most likely no parameterised
algorithms exist [116].

Finally, the interest for exact exponential-time algorithms can also be explained
from the fact that, from the scientific point of view, the field has many interesting
unsolved problems. In particular, some hard problems seem to have faster exponential-
time algorithms than others, while classical complexity theory cannot explain these
differences. The study of whether worst-case running times for various problems are
related, and whether progress on different problems is connected, has begun only very
recently. Also, in many cases, we have little idea to how close known algorithms are
to the best possible.

3For definitions of the mentioned problems, see the list of problems in Appendix B.
4The O∗-notation is introduced in Section 1.6.
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Currently the field of exact exponential-time algorithms is very active. This can
be observed from the many recent surveys, see [99, 142, 191, 282, 319, 320, 321], and
PhD theses, see [8, 24, 53, 66, 171, 223, 236, 264, 288, 315, 318], written on the topic.
We note that the thesis of Liedloff also studies domination problems in graphs [223].
Recently, Fomin and Kratsch published the first comprehensive book dedicated to the
field of exact exponential-time algorithms [149].

Over the last fifteen years, many new techniques have been developed or introduced
to the field. Prominent newly-developed techniques are the measure and conquer
technique due to Fomin et al. [144] and the invention of the fast subset convolu-
tion algorithm by Björklund et al. [28]. Examples of very successful introductions
of known techniques to the field of exact exponential-time algorithms are the use of
inclusion/exclusion by Björklund et al. [27, 33] and the use of treewidth-based algo-
rithms by various authors [138, 147, 204]. See Chapter 2 for an introduction to all
these approaches except for fast subset convolution. More on fast subset convolution
can be found in Chapter 11.

1.3. Domination Problems in Graphs

This PhD thesis deals with exact exponential-time algorithms for graph domination
problems, see e.g. the monograph ‘Fundamentals of Domination in Graphs’ by Haynes,
Hedetniemi, and Slater [179]. Graph domination problems are an important class of
combinatorial problems with many practical and theoretical applications. They model
many relevant problems in fields such as optimisation, communication networks and
network design, social network theory, computational complexity, and algorithm de-
sign. Many facility location, resource allocation, and scheduling problems, are variants
of graph domination problems.

Let us start by formally introducing a prominent graph domination problem: the
Dominating Set problem. A subset D ⊆ V of the set of vertices V in a graph G is
called a dominating set if every vertex v ∈ V is either in D or adjacent to some vertex
in D.

Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a dominating set D ⊆ V in G of size at most k?

We will consider algorithms for this problem in Chapters 5, 8, 11, 12, and 13.
Next, we will introduce some of the most common problems that are related to

Dominating Set. We first need some additional definitions. An independent set is
a subset I ⊆ V of which no two vertices are adjacent, a total dominating set is a
subset D ⊆ V such that every v ∈ V (thus, also those in D) is adjacent to a vertex
in D, and an edge dominating set is a subset D ⊆ E such that every edge in E has an
endpoint in common with an edge in D.

Independent Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist an independent set I ⊆ V in G of size at least k?
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Total Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a total dominating set D ⊆ V in G of size at

most k?

Edge Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist an edge dominating set D ⊆ E in G of size at

most k?

We will consider algorithms for Independent Set in Chapter 7, for Total Dominat-

ing Set in Chapters 5, 11, 12, and 13, and for Edge Dominating Set in Chapter 6.

1.3.1. What is a Graph Domination Problem?

As no precise definition of the concept seems to occur in the literature, we let a
domination problem be a combinatorial problem that involves at least the following
three aspects:

1. It is a subset problem. That is, we are given some ground set U , and the problem
asks whether there exists a subset S ⊆ U that satisfies certain properties.

2. The subset must dominate its complement5. That is, every element of U ∖ S
must be dominated by an element from S. Some domination problems may also
require that the elements in S are dominated.

3. The domination criterion is based on a neighbourhood relation. That is, a neigh-
bourhood relation between elements from U determines which elements from U
are dominated by a given element e ∈ U .

Similarly, we let a graph domination problem be a domination problem in which the
required subset is part of a graph, for example, a subset of the vertices or edges.

We will illustrate the three given aspects below. We refer the reader to the list
of problems in Appendix B for formal definitions of problems that we have not yet
introduced.

Let us first consider the first aspect. For graph domination problems, the problem
could ask for a subset of the vertices, such as in Dominating Set or Independent

Set, or a subset of the edges, such as in Edge Dominating Set. In non-graph
problems such as Matrix Dominating Set (see Chapter 6), the problem could ask for
a subset of non-zero entries in a matrix, or in a generalisation of the five queens puzzle
to arbitrary-size chessboards, the problem could ask for a subset of the squares to place
queens. For other problems, more specific constraints are placed on a solution subset S.
For example, the subset needs to be connected in the Connected Dominating Set

problem, and it needs to be a clique in the graph in the Dominating Clique problem.
Next, we consider the second aspect: the domination criterion. In the Dominating

Set problem, the vertex subset must dominate all other vertices, and in the Edge

Dominating Set problem, the edge subset must dominate all other edges. Additional

5This corresponds to Telle who defines a [�, �]-set (also known as [�, �]-dominating set, see its
definition in Section 1.6) to be dominating if 0 ∕∈ �. [295].
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constraints can be placed on how often a vertex must be dominated or how often
a vertex can dominate another vertex. For example, in p-Dominating Set (see
Chapters 11 and 12 that, amongst others, consider this problem), each vertex not in
the subset S must be dominated at least p times, or in Capacitated Dominating

Set, each vertex in the subset S can dominate at most as many vertices as its capacity.
Another variant is Total Dominating Set where each element, including those in
the subset S, must be dominated at least once.

Finally, consider the third aspect: the neighbourhood relation that defines which
elements can be dominated by a given element. For vertex subset graph domination
problems, this neighbourhood relation can be the closed neighbourhood in the graph,
such as in Dominating Set or Independent Set, or the open neighbourhood in
the graph, such as in Total Dominating Set. Other options include that the
neighbourhood relation is defined through the set of vertices up to distance ℓ as in
Distance-r Dominating Set. We note that this neighbourhood relation does not
need to be symmetric, see for example Directed Dominating Set in directed graphs,
or Weak Dominating Set and Strong Dominating Set in undirected graphs; for
algorithms for these problems see Chapter 5.

For edge-subset graph domination problems, an edge typically is in the neigh-
bourhood of another edge if they have a common endpoint; this is the case in Edge

Dominating Set. For matrix subset problems, an entry is typically in the neighbour-
hood of another entry if both entries are in the same row or column; this is the case
in Matrix Dominating Set. Finally, for generalisations of the five queens puzzle, a
typical neighbourhood relation between a pair of squares is that a queen on one square
can attack the other square.

This description of a graph domination problem covers all graph domination prob-
lems for which we present new algorithms in this PhD Thesis.6 Perhaps somewhat
surprisingly, the notion of a graph domination problem as described above includes
the Independent Set problem. This is because of the following well-known simple
fact:

Proposition 1.1 ([18]). An independent set I cannot be extended to a larger inde-
pendent set by adding a vertex v ∈ V ∖ I if and only if I is an independent set and a
dominating set.

For more examples of graph domination problems, we refer the reader to the [�, �]-
domination problems defined by Telle [294, 295, 296] which are defined in Section 1.6, or
to the list of problems in Appendix B. We note that for most of the [�, �]-domination
problems, fast exact algorithms improving upon the simple brute force algorithms
exist [139, 140].

1.3.2. Variants of Graph Domination Problems

For every graph domination problem there exist a number of variants7:

6Except Partial Dominating Set, but we consider this to be a partial domination problem as
not all vertices have to be dominated.

7We note that some of these variants may be trivial, for example, consider computing a maximum
size dominating set.
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∙ Decision variant . In a decision variant, the question is whether there exists a
subset of the given type. An example is Dominating Clique.

∙ Minimisation variant . In a minimisation variant, the question is whether there
exists a subset of the given type of size at most k. An example is Dominating

Set.
∙ Maximisation variant . In a maximisation variant, the question is whether there

exists a subset of the given type of size at least k. An example is Independent

Set.
∙ Counting variant . In a counting variant, the question is to count all subsets of a

given type. An example is #Dominating Set where we must count all minimum
size dominating sets. Alternatively, one could ask to count all dominating sets.

∙ Enumeration variant . In an enumeration variant, the question is to enumerate
all subsets of a given type. For example, enumerate all dominating sets, or
enumerate all minimum size dominating sets.

For the first three of these variants, one also distinguishes between constructive ver-
sions, where the required subset need to be constructed explicitly, and non-constructive
versions, where one needs only to decide whether the required subset exists.

Note that these five variants do not need to be mutually exclusive, as one could,
for example, ask to count minimum size solutions or enumerate maximum size solu-
tions. Also, one often asks to count or enumerate maximal or minimal solutions where
maximal and minimal mean that the solution subsets must be inclusionwise maximal
and minimal.

1.4. Thesis Overview

This PhD thesis consists of five parts and fourteen chapters. Each part consists of three
chapters except the last parts that contains only the conclusion. Except for these five
main parts, the thesis contains an introductionary chapter (i.e., this chapter) and an
appendix. Below, we give an overview of the contents of this PhD thesis.

Part I: Introduction to Exact Exponential-Time Algorithms. The first part is an
introduction to the field of exact exponential-time algorithms.

Chapter 2 introduces a series of common algorithmic techniques in the field of exact
exponential-time algorithms that will be used throughout this thesis. This chapter also
contains many references to relevant literature and concludes with a short survey on
other common techniques in the field that are less relevant to this thesis.

In Chapter 3, we give some background information required in order to understand
some results in this thesis or their relevance. This chapter states basic results from
classical complexity theory and their relation to the complexity parameters used to
analyse algorithms. The chapter also states a few basic results from parameterised
complexity and their relation to exact exponential-time algorithms, and surveys a few
recent results in exponential-time complexity.

We conclude this introductionary part with a new result in Chapter 4. In this
chapter, we study the Partition Into Triangles problem on graphs of maximum
degree four for which we give an O(1.02220n)-time algorithm. This result shows that
there exist exponential-time algorithms for NP-hard problems that have an exponential
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running time which is so small that the algorithms can be used in practice even on
instances that are quite large.

Part II: Branching Algorithms and Measure Based Analyses. In the second part, we
give the currently fastest algorithms for a number of standard graph domination prob-
lems. These algorithms are branch-and-reduce algorithms and their analyses involve
measure-based techniques that give good upper bounds on their running times.

We give a faster algorithm for Dominating Set in Chapter 5. This algorithm is
a branch-and-reduce algorithm with an analysis based on measure and conquer. In
this chapter, we also display how to obtain such an algorithm by iteratively improving
known algorithms. Furthermore, we give some results on related other problems such
as Total Dominating Set and the parameterised problem k-Nonblocker.

In Chapter 6, we apply the same approach to the Edge Dominating Set problem
and obtain the fastest known algorithm for this problem. Here, we also consider a
number of related problems such a Matrix Dominating Set and the parameterised
problem k-Minimum Weight Maximal Matching.

The Independent Set problem is the topic of Chapter 7. For this problem, we
will give the currently fastest algorithms on bounded degree graphs. These algorithms
are obtained by doing an extensive case analysis on graphs of average degree at most
three (most of this case analysis is given in Appendix A.4). Hereafter, this result is
used to obtain the currently fastest algorithms for Independent Set on graph classes
with a larger maximum or average degree.

Part III: Inclusion/Exclusion Based Branching Algorithms. In the third part of this
thesis, we obtain a number of different results based on a new approach that allows us
to use the principle of inclusion/exclusion as a branching step.

First, we give the currently fastest polynomial-space and exponential-space algo-
rithms for #Dominating Set in Chapter 8. These algorithms are also used to obtain
faster algorithms for Dominating Set restricted to some graph classes and to obtain
a faster polynomial-space algorithm for the Domatic Number problem.

In Chapter 9, we extend the approach of Chapter 8 to partial domination prob-
lems. Here, we will give the currently fastest polynomial-space and exponential-space
algorithms for Partial Dominating Set. We will also use this approach to give the
currently fastest algorithm for the parameterised problem k-Set Splitting.

Finally, we consider a completely different problem in Chapter 10, namely the
Disjoint Connected Subgraphs problem. This chapter shows that the techniques
from Chapter 8 also have applications in different problem settings. Moreover, this
chapter shows that it is sometimes useful to consider algorithms that switch from
considering a decision problem to considering the counting variant of the same problem
at a convenient moment.

Part IV: Dynamic Programming Algorithms on Graph Decompositions. In the
fourth part, we consider dynamic programming algorithms on a number of different
types of graph decompositions. We give the currently fastest algorithms for a number
of problems on these graph decompositions as a function of the associated graph-width
parameter. These results are obtained by developing a generalisation of the fast subset
convolution algorithm.
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The first type of graph decomposition we consider is the tree decomposition. We
give the currently fastest algorithms for Dominating Set, #Perfect Matching,
[�, �]-domination problems, and a number of clique covering, partitioning, and packing
problems on tree decompositions in Chapter 11. These results have been used as a
subroutine in several algorithms in Part III of this thesis.

The second type of graph decomposition we consider is the branch decomposition.
Using these decompositions, we give the currently fastest algorithms for Dominating

Set, #Perfect Matching, and [�, �]-domination problems. These results are the
topic of Chapter 12.

Finally, we consider clique decompositions, also called k-expressions, in Chapter 13.
In this short chapter, we will give the currently fastest algorithms for Dominating

Set, Total Dominating Set, and Independent Dominating Set on this type of
graph decomposition.

Part V: Conclusion. We conclude this thesis with some concluding remarks, open
problems, and directions for further research in Chapter 14.

1.5. Published Papers

This thesis is based on the following refereed journal papers and refereed conference
proceedings papers.

[1] Hans L. Bodlaender, Erik Jan van Leeuwen, Johan M. M. van Rooij, and Martin
Vatshelle. Faster algorithms on branch and clique decompositions. In P. Hli-
nený and A. Kucera, editors, 35th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2010, volume 6281 of Lecture Notes in
Computer Science, pages 174–185. Springer, 2010.

[2] Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan M. M. van
Rooij. A bottom-up method and fast algorithms for max independent set. In
H. Kaplan, editor, 12th Scandinavian Symposium and Workshops on Algorithm
Theory, SWAT 2010, volume 6139 of Lecture Notes in Computer Science, pages
62–73. Springer, 2010.

[3] Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan M. M. van
Rooij. Fast algorithms for max independent set. Algorithmica, 2010. Accepted
for publication, to appear.

[4] Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan M. M. van
Rooij. Maximum independent set in graphs of average degree at most three in
O(1.08537n). In J. Kratochvíl, A. Li, J. Fiala, and P. Kolman, editors, 7th Annual
Conference on Theory and Applications of Models of Computation, TAMC 2010,
volume 6108 of Lecture Notes in Computer Science, pages 373–384. Springer, 2010.

[5] Jesper Nederlof and Johan M. M. van Rooij. Inclusion/exclusion branching for
partial dominating set and set splitting. In V. Raman and S. Saurabh, editors, 5th
International Symposium on Parameterized and Exact Computation, IPEC 2010,
volume 6478 of Lecture Notes in Computer Science, pages 204–215. Springer, 2010.
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[6] Daniël Paulusma and Johan M. M. van Rooij. On partitioning a graph into two
connected subgraphs. In Y. Dong, D.-Z. Du, and O. H. Ibarra, editors, 20th
International Symposium on Algorithms and Computation, ISAAC 2009, volume
5878 of Lecture Notes in Computer Science, pages 1215–1224. Springer, 2009.

[7] Johan M. M. van Rooij. Polynomial space algorithms for counting dominating sets
and the domatic number. In T. Calamoneri and J. Díaz, editors, 7th International
Conference on Algorithms and Complexity, CIAC 2010, volume 6078 of Lecture
Notes in Computer Science, pages 73–84. Springer, 2010.

[8] Johan M. M. van Rooij and Hans L. Bodlaender. Design by measure and conquer,
a faster exact algorithm for dominating set. In S. Albers and P. Weil, editors, 25th
International Symposium on Theoretical Aspects of Computer Science, STACS
2008, volume 1 of Leibniz International Proceedings in Informatics, pages 657–
668. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

[9] Johan M. M. van Rooij and Hans L. Bodlaender. Exact algorithms for edge
domination. In M. Grohe and R. Niedermeier, editors, 3th International Workshop
on Parameterized and Exact Computation, IWPEC 2008, volume 5018 of Lecture
Notes in Computer Science, pages 214–225. Springer, 2008.

[10] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic
programming on tree decompositions using generalised fast subset convolution. In
A. Fiat and P. Sanders, editors, 17th Annual European Symposium on Algorithms,
ESA 2009, volume 5757 of Lecture Notes in Computer Science, pages 566–577.
Springer, 2009.

[11] Johan M. M. van Rooij, Jesper Nederlof, and Thomas C. van Dijk. Inclu-
sion/exclusion meets measure and conquer. In A. Fiat and P. Sanders, editors,
17th Annual European Symposium on Algorithms, ESA 2009, volume 5757 of
Lecture Notes in Computer Science, pages 554–565. Springer, 2009.

[12] Johan M. M. van Rooij, Marcel E. van Kooten Niekerk, and Hans L. Bodlaender.
Partition into triangles on bounded degree graphs. In I. Cerná, T. Gyimóthy,
J. Hromkovic, K. G. Jeffery, R. Královic, M. Vukolic, and S. Wolf, editors, 37th
Conference on Current Trends in Theory and Practice of Computer Science, SOF-
SEM 2011, volume 6543 of Lecture Notes in Computer Science, pages 558–569.
Springer, 2011.

1.6. Basic Notation and Definitions

We conclude this introduction by giving some commonly used notations and basic
definitions.

Graphs. An undirected graph G = (V,E) consists of a set V of elements called vertices
and a set E of unordered pairs of the vertices V called edges. We will generally use n
for the number of vertices of a graph G, and m for its number of edges.
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A path from a vertex v1 to a vertex vk in a graph G is a sequence of vertices
(v1, v2, . . . , vk) from V such that for each pair of vertices vi, vi+1 there exists an edge
{vi, vi+1} ∈ E. The length of such a path is the number of vertices in the sequence
minus one: k − 1. The distance between two vertices u, v ∈ V in G is defined as the
minimum length of any path from u to v in G.

A set of vertices X ⊆ V is connected if any two vertices u, v ∈ X are connected
through a path in G[X]. A connected component of a graph G is an inclusionwise-
maximal connected subset of the vertices V . A subset S ⊆ V is called a separator
of a connected graph G if G[V ∖ S] is not connected. A vertex v ∈ V is called an
articulation point of G if {v} is a separator in G.

The open neighbourhood N(v) of a vertex v ∈ V is defined as the set of vertices
that are connected to v through an edge in E, i.e, N(v) = {u ∈ V ∣ {u, v} ∈ E}. The
closed neighbourhood N [v] of v is defined as the set of vertices containing the vertex v
and its open neighbourhood: N [v] = {v} ∪N(v). The degree d(v) of a vertex v ∈ V is
the number of neighbours of this vertex, i.e, d(v) = ∣N(v)∣.

The definition of a neighbourhood can be extended to vertex subsets Y ⊆ V :
N(Y ) =

∪

v∈Y N(v) and N [Y ] =
∪

v∈Y N [v]. Also, N2(v) is the set of vertices at
distance two from v, and N2[v] is the set of vertices at distances at most two from v.

The maximum degree of a graph G, denoted by Δ(G), is the maximum of the
degrees of the vertices of G. The minimum degree of a graph is defined similarly and
is denoted by �(G). A graph G is called r-regular if Δ(G) = �(G) = r, i.e., if every
vertex in G has degree r.

For a vertex subset X ⊆ V , the induced subgraph G[X] of G induced by X is
defined to be the restriction of G to the vertices in X, that is, G[X] = (X,F ) where
F = (X ×X) ∩ E. By NX(v) and NX [v], we denote to the open, respectively closed,
neighbourhood of a vertex v ∈ X in G[X]. Similarly, the X-degree of a vertex
v ∈ X is denoted by dX(v): dX(v) = ∣NX(v)∣. This notation of neighbourhoods
in a subgraph induced by X ⊆ V extends to neighbourhoods of subsets Y ⊆ X:
NX(Y ) = (

∪

v∈Y NX(v))∖Y and NX [Y ] =
∪

v∈Y NX [v].
A bipartite graph is a graph G whose vertices V can be partitioned into two sub-

sets V1 and V2 such that all edges of G have one endpoint in V1 and one endpoint in V2.
A planar graph is a graph G that can be drawn in the plane in such a way that the
edges do not intersect except at their endpoints. The line graph L(G) of a graph G is
the graph L(G) = (E,F ) that has the edges of G as vertices and in which two vertices
are connected by an edge in F if and only if the corresponding edges in G share an
endpoint. That is, L(G) = (E, {{e1, e2} ∣ ∃v ∈ V : v ∈ e1 ∧ v ∈ e2}).

Finally, we denote the graph that consists only of a single path on l vertices by Pl,
and the graph that consists only of a cycle on l vertices by Cl. That is, if we let
Vl = {v1, v2, . . . , vl}, then Pl = (Vl, EPl

) where EPl
= {{vi, vi+1} ∣ 1 ≤ i ≤ l − 1}, and

Pl = (Vl, ECl
) where ECl

= EPl
∪ {{vl, v1}}.

Vertex and Edge Subsets. A set of vertices X ⊆ V is called a clique in a graph G if
every pair of distinct vertices u, v ∈ X is connected by an edge in G. An independent
set I ⊆ V in G is a set of vertices such that there is no edge between any two vertices
in I. A vertex cover C ⊆ V in G is a set of vertices such that for every edge {u, v} ∈ E,
either u ∈ C or v ∈ V . Cliques, independent sets, and vertex covers are closely related.
That is, a set C ⊆ V is a vertex cover if and only if V ∖ C is an independent set.
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� � Standard description
{0, 1, . . .} {0} Independent Set
{1, 2, . . .} {0, 1, . . .} Dominating Set
{0, 1} {0} Strong Stable Set/2-Packing/

Distance-2 Independent Set
{1} {0} Perfect Code/Efficient Dominating Set
{1, 2, . . .} {0} Independent Dominating Set
{1} {0, 1, . . .} Perfect Dominating Set
{1, 2, . . .} {1, 2, . . .} Total Dominating Set
{1} {1} Total Perfect Dominating Set
{0, 1} {0, 1, . . .} Nearly Perfect Set
{0, 1} {0, 1} Total Nearly Perfect Set
{1} {0, 1} Weakly Perfect Dominating Set
{0, 1, . . .} {0, 1, . . . , p} Induced Bounded Degree Subgraph
{p, p+ 1, . . .} {0, 1, . . .} p-Dominating Set
{0, 1, . . .} {p} Induced p-Regular Subgraph

Table 1.2. Examples of [�, �]-dominating sets (taken from [294, 295, 296]).

Furthermore, a set C ⊆ V is a clique if and only if C is an independent set in the
graph Ḡ = (V, (V × V ) ∖ E).

A dominating set D ⊆ V in G is a set of vertices such that every vertex v ∈ V is
either in D or adjacent to some vertex in D. A total dominating set is a subset D ⊆ V
such that every v ∈ V including those in D is adjacent to a vertex in D.

A distance-r dominating set is a set of vertices D ⊆ V such that for every vertex
v ∈ V there exists a vertex u ∈ D that lies at distance at most r from v. For a given
integer t ∈ ℕ, a partial dominating set is a set of vertices D ⊆ V such that there is a
subset U ⊆ V ∖D of size at most t such that every vertex v ∈ V ∖ U is adjacent to a
vertex in D, i.e., D dominates all vertices in V except for the at most t vertices in U .

The notion of a [�, �]-dominating set , introduced by Telle in [294, 295, 296], is a
generalisation of many vertex subsets including an independent set, a dominating set,
and a total dominating set.

Definition 1.2 ([�, �]-Dominating Set). Let �, � ⊆ ℕ, a [�, �]-dominating set in a
graph G is a subset D ⊆ V such that:

∙ for every v ∈ V ∖D: ∣N(v) ∩D∣ ∈ �.
∙ for every v ∈ D: ∣N(v) ∩D∣ ∈ �.

See Table 1.2 for some example vertex subsets defined as [�, �]-dominating sets. Note
that although these vertex subsets are known as [�, �]-dominating sets, we consider
the corresponding combinatorial problems to be graph domination problems only if
0 ∕∈ �; see our description of a domination problem in Section 1.3.1.

A matching in G is a set of edges M ⊆ E such that no two edges in M are incident
to the same vertex. A vertex that is an endpoint of an edge in M is said to be matched
to the other endpoint of this edge. A perfect matching is a matching in which every
vertex v ∈ V is matched. Computing a maximum-size matching in a graph, and
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thus also deciding whether a graph has a perfect matching, can be done in polynomial
time [120]. However, the following problem that asks to compute the number of perfect
matchings is #P-hard; see Chapter 3.

#Perfect Matching

Input: A graph G = (V,E).
Question: How many perfect matchings exist in G?

We note that a vertex or edge subset of a certain type is called a minimal or maximal
subset if it is inclusionwise minimal or maximal, respectively. This is different from
subsets of the same type that are called minimum or maximum subsets: these are
subsets of this type of minimum or maximum cardinality, respectively. For example,
a maximal independent set in G is an independent set to which no other vertices of G
can be added, while a maximum independent set is an independent set of maximum
size in G. Combinations also exist, for example, a minimum maximal matching is an
inclusionwise-maximum matching of minimum cardinality.

Satisfiability Problems. A literal of a variable x is a positive occurrence of x, also
denoted by x, or a negative occurrence of x, denoted by ¬x. A clause is a set of
literals. A truth assignment of X is an assignment of the values True and False to
the variables of X. Given a truth assignment of X, the value of a positive literal equals
the value of the corresponding variable, and the value of a negative literal equals the
negation of the value of the corresponding variable. For a given set of clauses C, we
denote the frequency of a variable x by f(x), that is, f(x) is the number of occurrences
of the literals x and ¬x in C.

In the Satisfiability problem, a clause is defined to be satisfied by a given truth
assignment if it contains at least one literal set to True.

Satisfiability

Input: A set of clauses C using a set of variables X.
Question: Does there exist a truth assignment to the variables in X that

satisfies all clauses in C?

The k-Satisfiability problem is defined similarly. In this variant of the Satisfi-

ability problem the clauses C in the input can have maximum size k, that is, they
may contain at most k literals.

Besides maximisation variants, where we are asked to satisfy a maximum number
of clauses, satisfiability problems have counting variants and enumeration variants that
are all defined similarly to the variants of graph domination problems in Section 1.3.2.
Many other variants of satisfiability problems exist by using different definitions of
when a clause is satisfied. For example, in the Exact Satisfiability problem, a
clause is satisfied when exactly one literal in the clause is set to True, and in the Not-

All-Equal Satisfiability problem, a clause is satisfied when at least one literal in
it is set to True and at least one literal in it is set to False.

Set Cover Problems. A multiset is a set that can contain the same element multiple
times. Given a multiset of sets S, a set cover C of S is a subset C ⊆ S such that every
element in any of the sets in S occurs in some set in C. I.e., a set cover C of S is a
collection of sets such that

∪

S∈C
S =

∪

S∈S
S. The universe U(S) of S is the set of all



16 Chap. 1: Introduction

elements that occur in any set in S: U(S) =
∪

S∈S
S. A set cover C is called a minimum

set cover if it is of minimum cardinality over all possible set covers. This leads to the
following computational problem:

Set Cover

Input: A multiset of sets S over a universe U(S) and an integer k ∈ ℕ.
Question: Does there exist a set cover C ⊆ S of size at most k?

We often denote a set cover instance by the tuple (S,U) omitting the dependency of U
on S. We note that the frequency of an element e is denoted by f(e), and the set of
all elements in S that contain e by S(e) = {S ∈ S ∣ e ∈ S}, thus, f(e) = ∣S(e)∣.

For a set S, we denote its powerset by 2U , i.e, 2U = {S′ ∣ S′ ⊆ S}. Also, a
partitioning of a set S into k subsets is defined as a collection of subsets S1, S2, . . . , Sk

such that S =
∪k

i=1 Si, while for any two distinct Si and Sj we have Si ∩ Sj = ∅.
A partitioning of a set S into k subsets is also called a k-partition.

Additional Notation. In exact exponential-time algorithms and parameterised algo-
rithms, one often uses the O∗-notation introduced by Woeginger [319]. This nota-
tion is similar to the usual big-O notation but suppresses all polynomial factors. For
exponential-time algorithms, this means that f(n) = O∗(g(n)) if f(n) = O(p(n)g(n))
for a polynomial p(n). If g(n) is at least cn for some constant c, this is identical to the
more common Õ-notation defined as f(n) = Õ(g(n)) if f(n) = O(g(n) logk(g(n))) for
some k ∈ ℕ.

For parameterised algorithms, there is a difference between both notations. An
input to a parameterised problem is measured by two complexity parameters, often
denoted by n and k, where k is said to be the ‘parameter’ which is typically assumed to
be significantly smaller than n; see Section 3.3 in Chapter 3. In this field, we say that
a running time is O∗(f(k)) if the running time is O(p(n, k)f(k)) for some polynomial p
in both k and n.

For many results in exact exponential-time algorithms, the base of the exponent c
of the running time is a real number that is rounded up to display a bounded number
of digits. In such a case, we can use the usual O-notation, as any function f(n) that
is O∗(cn) also is O((c+ �)n) for any � > 0 that we can take small enough to disappear
in the numerical rounding.

Finally, we note that we use the Iverson bracket notation: [condition] = 1 if the
condition is True and [condition] = 0 if the condition is False.
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2
Common Techniques in Exact
Exponential-Time Algorithms

The first non-trivial results in the field of exact exponential-time algorithms date back
to the nineteen sixties and nineteen seventies. The field gained a lot of attention over
the last fifteen years; see also the discussion in Section 1.2. In this chapter, we will
survey a series of important techniques in the field that are relevant to this PhD thesis.
We do not aim at giving an overview of all techniques that have been developed over
the years. However, we will conclude this chapter by mentioning additional techniques
and giving some interesting pointers to the literature.

As example algorithms, we will, amongst others, use a series of well-known results
that can be explained quickly. These examples include a simple algorithm that enu-
merates all maximal independent sets in O(1.4423n) time, Liedloff’s O(1.4143n)-time
algorithm for Dominating Set on bipartite graphs [224], Björklund’s O∗(2n)-time
algorithm for #Perfect Matching [27], the classical O∗(2n)-time algorithm for
Hamiltonian Cycle by, independently, Kohn et al. [207], Karp [200], and Bax [14],
algorithms for Dominating Set and Edge Dominating Set in graphs of maximum
degree three based on Fomin and Høie’s treewidth bound [147], and the algorithms for
Graph Colouring of Lawler that runs in O(2.4423n) time [220] and Björklund et
al. that runs in O∗(2n) time [33].

We begin by introducing branching algorithms in Section 2.1. Here, we also consider
the memorisation technique. Next, we consider exponential-time dynamic program-
ming algorithms in Section 2.2. This includes what is known as ‘dynamic programming
across subsets’ in Section 2.2.1, and dynamic programming on graph decompositions
(path decompositions and tree decompositions) in Section 2.2.2. In Section 2.3, we
introduce one last technique, namely inclusion/exclusion. We conclude with some
discussion on other techniques in Section 2.4.
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2.1. Branch-and-Reduce Algorithms

Branch and reduce1 certainly is the most basic technique in the field of exact expo-
nential-time algorithms2. It is also the technique that is used the most in this PhD
thesis: most algorithms in Chapters 5-10 are branch-and-reduce algorithms. The ap-
proach was pioneered in the nineteen sixties in the Davis-Putman-Logemann-Loveland
procedure [101, 102].

A branch-and-reduce algorithm is a recursive divide-and-conquer algorithm that
consists of a series of reduction rules and branching rules. The reduction rules are rules
that can be applied in polynomial time to simplify, or even solve, instances with specific
properties. Reduction rules that solve instances are sometimes also called halting rules.
The branching rules are rules that solve the problem instance by recursively solving
a series of smaller instances of the same problem. The recursive calls are also called
branches of the algorithm.

To explain what a branch-and-reduce algorithm is, we give an example. Consider
the Independent Set and #Independent Set problems. The first problem asks
whether there exists an independent set of size at least k in a graph G, and the
second problem asks to compute the number of maximum independent sets in G.
Algorithm 2.1 is a simple branch-and-reduce algorithm for these two problems. It
requires a graph G as input and returns solutions that are tuples (s, a) where s is the
size of a maximum independent set in G and a is the number of such sets.

To improve the readability of our pseudo-code, we adopt the following convention:

Convention about Pseudo-Code. If values of variables are claimed to exist in an if-
statement, then these variables are considered to be instantiated to the appropriate
value in the subsequent then-statement.

Algorithm 2.1 has one branching rule: if G contains a vertex v of degree at least
three, then it considers either taking v in a maximum independent set or discarding v;
it recursively solves the two problems that correspond to each of these choices. The
first branch corresponds to taking v in a maximum independent set. In this branch,
N [v] is removed because the vertices in N(v) cannot be in an independent set with v.
The second branch corresponds to discarding v. Here, only v is removed as we have
decided not to take it in the maximum independent set.

After returning from the recursive calls, the algorithm compares the returned num-
bers from both branches. It adds one to the size s returned from the first branch
accounting for the fact that we consider v to be in the maximum independent set.
Then, the algorithm either returns the results from the branch corresponding to the
largest-size independent set, or adds up the number of such sets from both branches
if both independent sets have the same size.

Algorithm 2.1 also has one reduction rule: if v has only vertices of degree at most
two, then G consists of a collection of paths and cycles and the problem can be solved

1Besides the name ‘branch-and-reduce algorithm’ many other names exist for the same type
of algorithm. These include: branching algorithm, backtracking algorithm, search tree algorithm,
pruning the search tree, DPLL algorithm, and splitting algorithm [149].

2Fomin and Kratsch state in [149] that ‘It is safe to say that at least half of the published fast
exponential-time algorithms are branching [branch-and-reduce] algorithms’.
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Algorithm 2.1. A simple algorithm for Independent Set and #Independent Set.

Input: a graph G = (V,E)
Output: the size of a maximum independent set in G and the number of such sets in G
#MIS(G) :
1: if G contains a vertex v of degree at least three then
2: Let (stake, atake) = #MIS(G[V ∖N [v]])
3: Let (sdiscard, adiscard) = #MIS(G[V ∖ {v}])
4: if stake + 1 > sdiscard then
5: return (stake + 1, atake)
6: else if stake + 1 < sdiscard then
7: return (sdiscard, adiscard)
8: else
9: return (sdiscard, atake + adiscard)

10: else
11: Compute the solution to each connected component of G and combine them
12: return (the size of a maximum independent set in G, the number of such sets)

in polynomial time. In this case, we can use the following proposition for which we
omit the (simple) proof.

Proposition 2.1. A path Pl on l vertices has a unique maximum independent set of
size (l + 1)/2 if l is odd, and has 1 + l/2 maximum independent sets of size l/2 if l is
even. A cycle Cl on l vertices has l maximum independent sets of size (l − 1)/2 if l is
odd, and two maximum independent sets of size l/2 if l is even.

To analyse the running time of a branch-and-reduce algorithm, one looks at the
corresponding search trees. The search tree of a branch-and-reduce algorithm applied
to an instance is defined to be the tree consisting of an internal node for each sub-
problem on which the algorithm branches and a leaf node for each problem that the
algorithm solves directly in polynomial time. Note that no nodes are created for ap-
plications of other reduction rules than the halting rules. Since all reduction rules are
applied in polynomial time, an upper bound of the form cn on the size of the search
tree gives us a running time of O∗(cn) for the branch-and-reduce algorithm. We note
that often an upper bound of cn on the number of leaves of the search tree is proven;
since the number of leaves is always larger than the number of internal nodes, this also
gives us a running time of O∗(cn) .

To bound the size of the search tree, one usually considers a set of recurrence
relations containing a recurrence relation for each branching rule. Let N(n) be the
number of leaves of the search tree of Algorithm 2.1 when applied on an instance
consisting of n vertices. Then, we have that:

N(n) = 1 for n ≤ 3
N(n) ≤ N(n− 1) +N(n− 4) for n ≥ 4

Here, the top equation follows from the fact that instances with at most three vertices
are solved by the reduction rule. The inequality follows from the fact that a larger
instance is either solved by the reduction rule, or solved by generating two subproblems:
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one subproblem where at least four vertices are removed, namely v and its at least
three neighbours, and one subproblem where one vertex is removed, namely v.

An upper bound on the solution to such a set of recurrence relations can be found
by standard techniques. More specifically, the solution of a linear recurrence relation
such as the above is of the form p(n)cn for some c > 1 and polynomial p(n). If one
substitutes the exponential factor cn in the inequality of the recurrence relation, one
finds an upper bound on the running time by letting c be a (minimum) solution to the
equation:

cn ≥ cn−1 + cn−4

Or, after dividing both sides by cn and replacing the inequality by an equality, by
letting c be the solution to:

1 = c−1 + c−4

The unique positive real root of this equation is c ≈ 1.38028.
Because polynomial factors in the running time are suppressed by the decimal

rounding of c (see the discussion on the big-O notation in Section 1.6), one obtains the
following result:

Proposition 2.2. Algorithm 2.1 solves Independent Set and #Independent Set

in O(1.3803n) time.

Notice that the precise bound on the size of the instances that are solved directly
by reduction rules does not matter in the above analysis: this influences only the
polynomial factors. Also, notice that the algorithm does not contain reduction rules
that increase the complexity parameter of an instance: if a reduction rule would do
so, an analysis along these lines would not necessarily be correct.

We can significantly shorten the above analysis using the following concepts. A
branching vector associated with a branching rule that generates r subproblems is an
r-tuple (t1, t2, . . . , tr) such that each ti equals the minimum decrease in the complexity
parameter in subproblem i. In the above example, the branching rule has the asso-
ciated branching vector (1, 4). For such a branching vector, the associated branching
number (also called branching factor) is the unique positive real root of the corre-
sponding equation: 1 =

∑r
i=1 c

−ti . Given a series of branching rules, we can bound
the running time of the corresponding algorithm by giving a branching vector for each
branching rule of the algorithm. Then, the running time is O∗(cn) where c is the
largest associated branching number, which, in this case, is approximately 1.38028.

The branching number associated to a branching vector (t1, t2, . . . , tr) is often
denoted by �(t1, t2, . . . , tr). Hence, the branching number associated to the branching
vector (1, 4) equals �(1, 4) ≈ 1.38028.

Definition 2.3 (� -function). The � -function is the function that assigns the associated
branching number to a given branching vector. That is, �(t1, t2, . . . , tr) is the root of
the equation: 1 =

∑r
i=1 c

−ti .

Extensive treatments of branching vectors, branching numbers, the � -function, and
their properties are given in [216, 217, 218]. For a shorter introduction, see also [149].
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Algorithm 2.2. A simple algorithm for enumerating all maximal independent sets.

Input: a graph G = (V,E), an independent set I, and a set of discarded vertices D
Output: a list containing all maximal independent sets in G
EMIS(G, I,D):
1: if G is the empty graph then
2: return {I}
3: else if there is a vertex v ∈ D such that N [v] ⊆ D then
4: return ∅
5: else
6: Let v0 be a vertex of minimum degree in G with N(v0) = {v1, v2, . . . , vd(v0)}
7: for i = 0 to d(v0) do
8: if vi ∕∈ D then
9: Let P = {v0, v1, . . . , vi−1}

10: Let Si = EMIS(G[V ∖ (P ∪N [vi])], I ∪ {vi}, (D ∪ P ) ∖N [vi])
11: return

∪

0≤i≤d(v0),vi ∕∈D{Si}

We note that one can easily improve Algorithm 2.1. For #Independent Set,
there exist an O(1.3247n)-time algorithm by Dahllöf and Jonsson [93], which was
later improved by considering algorithms for the more general #2-Satisfiability

problem [95, 96, 119, 160, 316, 328] resulting in an O(1.2377n)-time algorithm by
Wahlström [316]. For an overview of faster algorithms for Independent Set, we
refer the reader to Chapter 7.

We will demonstrate the use of branching vectors and branching numbers on the
next algorithm: Algorithm 2.2. This is a branch-and-reduce algorithm that enumerates
all maximal independent sets, i.e., all independent sets I such that I ∪ {v} is not an
independent set for any v ∈ V . This algorithm is given as input a graph G, an
independent set I, and a set of discarded vertices D. Here, G is the graph from which
we can still add vertices to the maximal independent set I that we are constructing.
However, we may not add vertices from D: these vertices are not removed because they
still require a neighbour in I in order for I to become a maximal independent set. The
function of the set D is to prevent the algorithm from generating the same maximal
independent set twice. In each branch of the search tree, the algorithm generates
at most one maximal independent set, and it returns all maximal independent sets
through its recursive calls.

Algorithm 2.2 has two reduction (halting) rules: if G is empty, it returns I as we are
in a leaf of the search tree; and, if D contains a vertex v whose entire neighbourhood
in G is contained in D, then it returns the empty set because no maximal independent
set can be constructed from this subproblem (since we can always add v to whatever
set we could end up with).

The algorithm has one branching rule: it selects a vertex v0 of minimum degree
in G and generates a subproblem for each vertex in N [v0]∖D. If v0 /∈ D, then it starts
by creating a subproblem that corresponds to taking v0 in the independent set. Here, it
puts v0 in I and removes N [v0] from G since these vertices can no longer be added to I.
It also removes N [v0] from D since all these vertices now have a neighbour in I. In the
other subproblems, it considers not taking v0 in I and instead taking at least one of its
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neighbours. The algorithm considers these neighbours v1, v2, . . . , vd(v0) one at a time
and generates a subproblem for each such neighbour vi ∕∈ D. In these subproblems, the
algorithm takes vi in I and forbids taking any of the previously considered neighbours
to be taken in I. Therefore, the algorithm removes N [vi] from G and D and adds the
remaining previously considered neighbours of v to D (the set P in the pseudocode
of Algorithm 2.2). Notice that this use of D prevents the algorithm from generating
the same maximal independent set twice because maximal independent sets containing
multiple neighbours of v are now considered only in the branch that corresponds to
taking the first such neighbour in I. Finally, the algorithm returns a set containing all
maximal independent sets constructed from the recursive calls.

To prove an upper bound on running time of Algorithm 2.2, we consider the corre-
sponding branching vectors. If d ≥ 1 is the minimum degree in G, then the algorithm
generates at most d+1 subproblems. In each such subproblem, at least d+1 vertices
are removed since all the neighbours of v also have degree at least d. We stress that
a vertex that is put in D is not considered to be removed. The branching numbers
of these branchings correspond to �(2, 2), �(3, 3, 3), �(4, 4, 4, 4), �(5, 5, 5, 5, 5), etc. It is
easy to verify that � (⃗b) = t

1
t if b⃗ is a vector of length t with value t at each coordinate.

Therefore, the algorithm runs in O∗(3
1
3n) time as t

1
t is maximal for t ∈ ℕ∖{0} if t = 3.

This gives a running time of O(1.4423n). Thus, we have obtained the following result.

Proposition 2.4. Algorithm 2.2 enumerates all maximal independent sets in a graph G
in O(1.4423n) time.

As each leaf of the search tree of Algorithm 2.2 generates at most one maximal
independent set, this analysis directly proves the following proposition.

Proposition 2.5 ([235, 241]). An n-vertex graph contains at most 3
1
3n maximal inde-

pendent sets.

We note that the running time of Algorithm 2.2 is optimal for enumerating maxi-
mal independent sets in the sense that there exist graphs that contain 3

1
3n maximal

independent sets [235, 241]. However, if one would be interested only in counting the
number of maximal independent sets instead of enumerating them, then one can do
so in O(1.3642n) time using an algorithm by Gaspers et al. [164].

2.1.1. Memorisation

The running time of branch-and-reduce algorithms is often improved using memorisa-
tion3. This technique was introduced to the field of exact exponential-time algorithms
by Robson in 1986 in an algorithm for Independent Set [270]. It is often used to
improve the running time of branch-and-reduce algorithms at the expense of using
exponential space, e.g., see [142, 144, 229, 270, 271].

Algorithms using this technique store the solutions to all subproblems generated by
the recursive calls in the search tree in an exponential-size database. Before computing
a solution to a generated subproblem, the algorithm checks whether the solution has
already been computed in another branch of the search tree, and if so, find this solution

3Memorisation is often also called memoisation.
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Algorithm 2.3. A modification of Algorithm 2.1 using memorisation.

Input: a graph G = (V,E)
Output: the size of a maximum independent set in G and the number of such sets in G
#MIS(G,D) :
1: if the database D contains an entry for the key G then
2: return the tuple (s, a) associated with G in the database D
3: else if G contains a vertex v of degree at least three then
4: Let (stake, atake) = #MIS(G[V ∖N [v]], D)
5: Let (sdiscard, adiscard) = #MIS(G[V ∖ {v}], D)
6: if stake + 1 > sdiscard then
7: return (stake + 1, atake) and add (G; (stake + 1, atake)) to D
8: else if stake + 1 < sdiscard then
9: return (sdiscard, adiscard) and add (G; (sdiscard, adiscard)) to D

10: else
11: return (sdiscard, atake + adiscard) and add (G; (sdiscard, atake + adiscard)) to D
12: else
13: Compute the solution to each connected component of G and combine them
14: return (the size of a maximum independent set in G, the number of such sets)

by querying the database. Since such a database can be implemented such that both
querying and adding solutions can be done in time logarithmic in the database size,
these actions can be executed in polynomial time.

To show how this works, we modify Algorithm 2.1 using memorisation: this leads
to Algorithm 2.3. This algorithm uses a database D that contains key-value pairs
where the keys are generated subproblems, i.e., graphs, and the values are the solution
to these subproblems. Algorithm 2.3 first queries the database D before branching,
and returns the solution to the current subproblem if it is found in D. Otherwise, the
algorithm branches, and after returning from the recursive calls, it adds the solution
to the current subproblem to the database D. Notice that the algorithm does not
need to add solutions to D that are computed in polynomial time by the reduction
rule since the algorithm does not branch on these subproblems anyway.

Proposition 2.6. Algorithm 2.3 solves Independent Set and #Independent Set

in O(1.3424n) time and space.

Proof. Let Nℎ(n) be the number of subproblems consisting of ℎ vertices generated
when the algorithm is applied to an n-vertex instance. We can bound Nℎ(n) in two
ways. Firstly, by using a recurrence relation similar to the proof of Proposition 2.2.

Nℎ(n) ≤ 1 for n ≤ ℎ
Nℎ(n) ≤ Nℎ(n− 1) +Nℎ(n− 4) for n > ℎ

Solving this recurrence relation yields an upper bound on Nℎ(n) of cn−ℎ where c =
�(1, 4) ≈ 1.38028 as in the proof of Proposition 2.2.

Secondly, we can bound Nℎ(n) by noticing that each input graph on n vertices has
at most

(

n
ℎ

)

induced subgraphs consisting of ℎ vertices. Hence, Nℎ(n) can be bounded
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in the following way:

Nℎ(n) ≤ min

{

1.3803n−ℎ,

(

n

ℎ

)}

We will prove the claimed bound on running time of Algorithm 2.3 by using the
first bound if ℎ > �n and the second bound if ℎ ≤ �n, for some 0 < � < 1

2 . This leads
to the following bound on the number of leaves of the search tree N(n):

N(n) ≤
n
∑

ℎ=0

Nℎ(n) ≤
⌊�n⌋
∑

ℎ=0

(

n

ℎ

)

+

n
∑

ℎ=⌈�n⌉
1.3803n−ℎ ≤ �n

(

n

⌊�n⌋

)

+(1−�)n⋅1.3803(1−�)n

To minimise the upper bound on the running time, we choose � such that both ex-
ponential factors in the upper bound on the running time are equal, i.e, such that
1.3803(1−�)n =

(

n
�n

)

. Using Stirling’s formula and ignoring polynomial factors, both
terms are equal if � is the solution to the following equation; for a detailed derivation,
e.g., see [299].

c1−� =
1

��(1− �)(1−�)
with c = �(1, 4) ≈ 1.38028

By solving this equation numerically, we obtain � ≈ 0.08652. This leads to N(n) ≤
1.3424n from which the claimed running time follows.

We note that the bound of
(

n
ℎ

)

on the number of induced subgraphs that appear as
subproblems can be improved significantly if one requires these induced subgraphs to
be connected and of some maximum degree [270]. Further improvements are possible
if one additionally requires that the induced subgraphs that appear as subproblems
are of minimum degree two [271]. See [142] for an overview of these improvements.

2.2. Dynamic Programming

Another well-known paradigm for algorithm design is dynamic programming. Similar
to branch-and-reduce algorithms, dynamic programming algorithms are based on re-
cursive formulations where the solution to the problem is constructed by recursively
combining partial solutions from suitable subproblems. In this paradigm, the consid-
ered subproblems are stored in memory. As such, the memorisation technique from
Section 2.1.1 can be seen as a top-down variant of a dynamic programming algorithm.

More interesting than top-down dynamic programming algorithms, are bottom-up
variants. These algorithms begin by solving small subproblems, and they combine
solutions to considered subproblems to obtain solutions to larger subproblems. In the
field of exact exponential-time algorithms, two variants of this approach are prominent.
The first of these variants is based on dynamic programming across subsets. We
consider this approach in Section 2.2.1. The second variant is based on dynamic
programming on graph decompositions. This is the topic of Section 2.2.2.
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2.2.1. Dynamic Programming Across Subsets

Dynamic programming across subsets is a form of dynamic programming where a
subset structure is used to formulate the recursive structure of the algorithm. This ap-
proach dates back to the classical O∗(2n)-time algorithm for Travelling Salesman

Problem due to Bellman [17] and independently Held and Karp [180]. The algorithm
for Travelling Salesman Problem is often given as the first example of an exact
exponential-time algorithm; for example in [149, 319].

We choose to consider two different examples that are more closely related to the
topic of this thesis, namely the Graph Colouring algorithm of Lawler [220], and
the algorithm for Dominating Set on bipartite graphs of Liedloff [224].

We will begin by introducing the Graph Colouring problem.

Graph Colouring

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exists a colouring of the vertices of G using at most k

colours such that no two vertices of the same colour are adjacent?

Because, in a solution to above problem, each set of vertices with the same colour
contains no adjacent vertices, the problem is equivalent to the following problem:
given a graph G = (V,E), can we cover G with at most k independent sets in G?
The equivalence follows directly by taking, for each of the at most k colours c, the
independent set consisting of the vertices with colour c.

This leads to the following classical result due to Lawler:

Proposition 2.7 ([220]). Graph Colouring can be solved in O(2.4423n) time and
O(2n) space.

Proof. Let G = (V,E) be the input graph. Let C be a set of vertices with the same
colour in a solution of the problem on G. Observe that, in a solution, we can change
the colour of any vertex v to the colour of the vertices in C as long as the vertex v
does not have a neighbour in C. By repeating this action, C becomes a maximal
independent set. Hence, we can assume, without loss of generality, that any solution
contains a colour whose corresponding vertices form a maximal independent set I in G.

Let C(S) be the number of colours required to colour G[S] for any subset S ⊆ V .
Because the above observation does not only hold for G, but also for any induced
subgraph of G, C(S) satisfies the following recurrence:

C(S) = 1 +min{C(S ∖ I) ∣ I is a maximal independent set in G[S]}

As a consequence, we can compute C(V ) by setting C(∅) = 0, and evaluating C(S)
for all S ⊆ V in order of increasing size of S.

This approach requires us to enumerate all maximal independent sets in G[S] for
all S ⊆ V . We can do so for a fixed set S in O(1.4423∣S∣) time and polynomial space
using Proposition 2.4. This leads to the following running time:

n
∑

i=0

(

n

i

)

O(1.4423i) =

n
∑

i=0

(

n

i

)

O(1.4423i1n−i) = O(2.4423n)

Namely, we enumerate all maximal independent sets for all
(

n
i

)

induced subgraphs on i
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vertices for all i, 1 ≤ i ≤ n. The last equality follows from Newton’s binomial theorem.
The space requirement comes from the 2n subsets S ⊆ V for which we store C(S).

This algorithm has been improved often and many algorithms for Graph Colour-

ing that use only polynomial space have been developed; see [9, 27, 46, 65, 78, 123].
The currently fastest algorithm is the O∗(2n)-time, O(1.2916n)-space algorithm by
Björklund et al. [31]. For an O∗(2n)-time-and-space algorithm see [33] and Corol-
lary 2.21. When restricted to using polynomial space, then the currently fastest algo-
rithm is an O(2.2377n)-time algorithm that can be obtained by combining the results
of Björklund et al. [33] with a result due to Wahlström [316]. We note that there also
exist many exponential-time algorithms for deciding, for a fixed k ∈ {3, 4, . . .}, whether
a graph G can be coloured using k colours; see for example [16, 65, 122, 137, 220, 278].

The second example we give is Liedloff’s O(1.4143n)-time-and-space algorithm for
Dominating Set on bipartite graphs [224]. Let G = (A∪B,E) be a bipartite graph
with vertex partitions A and B, with ∣A∣ ≤ ∣B∣ without loss of generality. Liedloff’s
algorithm considers all subsets X ⊆ A. It uses the fact that every dominating set D
in G with D ∩ A = X can be partitioned into three disjoint subsets X, Y , Z with
Y,Z ⊆ B [224]:

1. The vertex set X = D ∩A.
2. The vertex set Y = B ∖N(X). All these vertices must be in D as they are not

dominated by X and cannot be dominated by any other vertices from B except
by the vertices themselves.

3. The vertex set Z = D ∩N(X). This vertex set is a minimum-size set of vertices
that dominates all vertices that are not dominated by either X or Y . That is,
Z is a minimum-size set from N(X) that dominates all vertices in A that are
neither in X nor dominated by N(X).

Using this partitioning, Liedloff obtains the following result.

Proposition 2.8 ([224]). There exists an algorithm for Dominating Set on bipartite
graphs running in O(1.4143n) time and space.

Proof. We use dynamic programming across subsets to compute, for each X ⊆ A, the
size of a minimum vertex set from N(X) that dominates all vertices in A∖(X∪N2(X)).
This is the size of the set Z associated with X as defined above.

To do so, we number the vertices in B, B = {v1, v2, . . . , v∣B∣}, and for each A′ ⊆ A,
we let D(A′, i) be the size of a minimum vertex set from {v1, v2, . . . , vi} that dominates
the vertices in A′. For i = 0, we have D(∅, 0) = 0 as zero vertices suffice to dominate
nothing, and D(A′, 0) = ∞, for any A′ ∕= ∅, as no such sets exists. For increasing i,
we can then compute D(A′, i) for all A′ ⊆ A using the following recurrence that
corresponds to either taking vi in the dominating set or not:

D(A′, i) = min{1 +D(A′ ∖N(vi), i− 1), D(A′, i− 1)}

Obtaining D(A′, ∣B∣) for all A′ ⊆ A clearly costs O∗(2∣A∣) time and space.
Having computed these numbers, the algorithm now considers each X ⊆ A. Be-

cause X fixes all three parts of the dominating set as defined above, the algorithm
directly sees which choice of X leads to the smallest dominating set in G. That is, the
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algorithm returns the following value which gives the size of a minimum dominating
set in G:

min{∣X∣+ ∣B ∖N(X)∣+D(A ∖ (X ∪N2(X)), ∣B∣) ∣ X ⊆ A}

The three terms of the sum under the minimum correspond to the sizes of the three
parts X, Y , and Z of the dominating set D.

Computing this minimum clearly cost O∗(2∣A∣) time. Since ∣A∣ ≤ ∣B∣, the execution
of this algorithm requires O∗(2

n
2 ) = O(1.4143n) time and space.

We note that this algorithm is sometimes also considered as an algorithm using
preprocessing . The preprocessing technique [319] considers restructuring a given input,
in this case using dynamic programming, such that the problem can be solved easily
thereafter. Other examples of algorithms that are considered to be preprocessing
algorithms are the algorithms based on sorting in Section 2.4.

2.2.2. Dynamic Programming on Graph Decompositions

The second type of structure for dynamic programming commonly used in exponential-
time algorithms is based on graph decompositions. In this PhD thesis, we consider
four types of graph decompositions, namely, path decompositions, tree decomposi-
tions, branch decompositions, and clique decompositions. In exact exponential-time
algorithms, mostly path and tree decompositions are used.

The notions of pathwidth and treewidth and the related notions of a path decom-
position and a tree decomposition were introduced by Robertson and Seymour [267].
The use of these concepts in the field of exact exponential-time algorithms can be
attributed to Fomin et al. [147] and independently to Kneis et al. [204].

Definition 2.9 (Path Decomposition). A path decomposition of a graph G = (V,E)
is a sequence of sets of vertices (called bags) X = (X1, X2, . . . , Xr) with

∪r
i=1 Xi = V

with the following properties:

1. for each {u, v} ∈ E, there exists an Xi such that {u, v} ⊆ Xi.
2. if v ∈ Xi and v ∈ Xk, then v ∈ Xj for all i ≤ j ≤ k.

The width of a path decomposition X is max1≤i≤r ∣Xi∣ − 1, and the pathwidth pw(G)
of G is the minimum width over all possible path decompositions of G.

Definition 2.10 (Tree Decomposition). A tree decomposition of a graph G = (V,E)
consists of a tree T in which each node x ∈ T has an associated set of vertices Xx ⊆ V
(called a bag) such that

∪

x∈T Xx = V and the following properties hold:

1. for each {u, v} ∈ E, there exists an Xx such that {u, v} ⊆ Xx.
2. if v ∈ Xx and v ∈ Xy, then v ∈ Xz for all nodes z on the path from node x to

node y in T .

Similar to pathwidth, the width of a tree decomposition T is maxi∈T ∣Xi∣ − 1, and the
treewidth tw(G) of G is the minimum width overall possible tree decompositions of G.

If a graph G has small pathwidth/treewidth and is given with a path/tree decom-
position of G of width k, for some small value of k, then we can efficiently solve many
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combinatorial problems on G. This can be done by dynamic programming on the
path/tree decomposition [11, 19, 34]. Below, we give two examples of dynamic pro-
gramming algorithms on path decompositions, one for Dominating Set and one for
Edge Dominating Set. After giving these algorithms, we will show how they can
be used to design fast exact exponential-time algorithms. For dynamic programming
algorithms on tree decompositions, see Chapter 11.

For the two algorithms below, we first need the concept of a nice path decomposition
introduced by Kloks [202].

Definition 2.11 (Nice Path Decomposition). A nice path decomposition is a path
decomposition X = (X1, X2, . . . , Xr) with X1 = {v} for some v ∈ V , with Xr = ∅,
and with each bag Xi with 2 ≤ i ≤ r of one of the following two types:

∙ Introduce bag : Xi = Xi−1 ∪ {v} for some v /∈ Xi. This bag is said to introduce
the vertex v.

∙ Forget bag : Xi = Xi−1 ∖ {v} for some v ∈ Xi. This bag is said to forget the
vertex v.

It is easy to transform any path decomposition into a nice path decomposition of equal
width in polynomial time by adding or removing bags.

Proposition 2.12. There is an algorithm that, given a path decomposition of a graph G
of width k, solves Dominating Set on G in O∗(3k).

Proof. First, transform the path decomposition into a nice path decomposition X =
(X1, X2, . . . , Xr) of equal width.

Let Vi =
∪i

j=1 Xj . For each bag Xi in X, the algorithm computes a table Ai

that is indexed by a partitioning of the vertices of Xi into three sets C, D and O. In
this table, an entry Ai(C,D,O) stores the size of a minimum vertex set of G[Vi] that
satisfies the following four properties:

1. the vertex set dominates all vertices in Vi ∖Xi.
2. the vertex set contains all vertices in C.
3. the vertex set does not contain the vertices in D, but it does dominate all vertices

in D.
4. the vertex set does not contain the vertices in O, and it may, but is not required

to, dominate some vertices in O.

If we compute these tables Ai for each bag Xi in the path decomposition X, then we
can find the size of a minimum dominating set in G in Ar(∅, ∅, ∅).

Notice that, by definition, the tables Ai have the following property that is called
monotonicity [2, 3]: for any set S ⊆ D, Ai−1(C,D ∖ S,O ∪ S) ≤ Ai−1(C,D,O). This
inequality is satisfied because Ai−1(C,D ∖S,O∪S) is the size of a minimum vertex set
that needs to satisfy less requirements compared to the vertex set whose size is stored
in Ai−1(C,D,O), namely less vertices need to be dominated.

Computing the table A1 for the bag X1 = {v} is straightforward:

A1({v}, ∅, ∅) = 1 A1(∅, {v}, ∅) = ∞ A1(∅, ∅, {v}) = 0
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If, for i ≥ 2, Xi is an introduce bag that introduces the vertex v, then we can
compute Ai(C,D,O) for each partitioning of Xi−1 into C, D, O in the following way:

Ai(C ∪ {v}, D,O) = 1 +Ai−1(C,D ∖N(v), O ∪ (N(v) ∩Xi−1))

Ai(C,D ∪ {v}, O) =

{

Ai−1(C,D,O) if N(v) ∩ C ∕= ∅
∞ otherwise

Ai(C,D,O ∪ {v}) = Ai−1(C,D,O)

The first recurrence uses the monotonicity property: because all neighbours of v in D
that are now dominated by v could either be dominated or not before adding v, the
monotonicity property makes sure that we use the corresponding dominating set of
minimum size. Correctness of the other two recurrences can easily be verified.

If Xi is a forget bag that forgets the vertex v, then we can use the following
recurrence to compute Ai(C,D,O) for each partitioning of Xi−1 into C, D, O:

Ai(C,D,O) = min{Ai−1(C ∪ {v}, D,O), Ai−1(C,D ∪ {v}, O)}

This recurrence is correct because we continue with the minimum solution that also
dominates the forgotten vertex v, which is now part of Vi ∖Xi.

Since a nice path decomposition has O(n) bags, each table that is computed for such
a bag has O(3k) entries, and the computation of each entry can be done in constant
time, we conclude that the algorithm runs in O∗(3k) time and space.

Proposition 2.13. There is an algorithm that, given a path decomposition of a graph G
of width k, solves Edge Dominating Set on G in O∗(3k).

Proof. The proof is analogous to the proof of Proposition 2.12 using a different set of
recurrences for dynamic programming.

In this algorithm, we again use a table Ai for each bag Xi in X that is indexed by
a partitioning of the vertices of Xi in three sets C, R and O. In this table, an entry
Ai(C,R,O) stores the size of a minimum edge set in G[Vi] that satisfies the following
three properties:

1. the edge set dominates all edges in G[Vi ∖Xi].
2. the edge set precisely has the vertices in C as endpoints on Xi.
3. if we would add edges (possibly outside G[Vi]) with endpoints in R to the edge

set, then the edge set also dominates all edges between Vi ∖Xi and Xi.

The vertices in R are required to become an endpoint of an edge dominating set later
on. This part of the 3-partition exists because a minimum edge dominating set may
include edges that have an endpoint outside of Vi that it needs in order to dominate
all edges in G[Vi]. The vertices in O are the other vertices (not in C or R).

To simplify the dynamic programming recurrence, we assume that the edges in the
minimum edge dominating set do not share any endpoints. We can safely assume this
because any minimum edge dominating set whose edges share endpoints can be trans-
formed into one whose edges do not share endpoints by using a standard replacement
trick from [177] whose details can be found in Corollary 6.3.

Below, we give the set of dynamic dynamic programming recurrences to compute Ai

for each bag in the path decomposition X. We notice that all edges are considered to
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be taken into the edge dominating set at some point because, by definition of a path
decomposition, each edge is in some bag Xi. In the recurrences below, we consider
taking an edge e into the edge dominating set when the algorithm considers the bag
where one endpoint of e is already present and the other endpoint is being introduced.

For A1 we have:

A1({v}, ∅, ∅) = ∞ A1(∅, {v}, ∅) = 0 A1(∅, ∅, {v}) = 0

For an introduce bag Xi that introduces the vertex v, we have:

Ai(C ∪ {v}, R,O) = 1 +min{Ai−1(C∪{u}, R ∖ {u}, O ∖ {u}) ∣ u ∈ N(v)∩(R∪O)}
Ai(C,R ∪ {v}, O) = Ai−1(C,R,O)

Ai(C,R,O ∪ {v}) = Ai−1(C,R,O)

The recurrence in which v is put in C considers taking an edge between v and a
neighbour of v in Xi that is in R or O. This is correct as it does not need to consider
neighbours in C nor picking multiple edges because we have assumed that no two edges
in the minimum edge dominating set share endpoints. Correctness of the other two
recurrences can easily be verified.

For a forget bag Xi that forgets the vertex v, we have:

Ai(C,R,O) = min

{

Ai−1(C ∪ {v}, R,O) and
Ai−1(C,R,O ∪ {v}) if (N(v) ∩Xi) ⊆ C ∪R

This recurrence makes sure that only edge sets in which the edges incident to v are
dominated are considered after forgetting v. We note that, for these edge sets to
dominated all the required edges, edges containing the vertices in R as endpoints may
only be added. This is as required by the definition of Ai.

This algorithm runs in O∗(3k) time because of the same reasons as in the proof of
Proposition 2.12.

Most applications of path decompositions in exact exponential-time algorithms are
based on the following theorem due to Fomin and Høie [147].

Theorem 2.14 ([147]). For any � > 0, there exist an integer n� such that if G is an
n-vertex graph of maximum degree at most three with n > n�, then pw(G) < 1

6n+ �n.
Moreover, a path decomposition of this width can be computed in polynomial time.

This theorem is based on a graph-theoretic result by Monien and Preis [238] who
show that, for any � > 0, there exists an integer n� such that the vertices of any
3-regular graph of size at least n� can be partitioned into two vertex sets V1, V2 that
differ at most one in size, and such that the number of edges in G between V1 and V2

is at most 1
6n+ �n.

Corollary 2.15. Dominating Set and Edge Dominating Set can be solved in
O(1.2010n) time and space on graphs of maximum degree three.

Proof. Fix any � > 0 that is small enough such that 3
1
6+� < 1.2010, and let n� be the

associated value from Theorem 2.14. Since the time and space bound of O(1.2010n) is
an asymptotic bound, we can assume that the input graph G has at least n� vertices.
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Use Theorem 2.14 to compute a path decomposition of G of width k with k <
1
6n + �n, and use Proposition 2.12 or Proposition 2.13 to solve the problem instance
by dynamic programming on the computed path decomposition.

The claimed time and space bounds follow since 3k ≤ 3
1
6n+�n < 1.2010n by the

choice of �.

Corollary 2.15 gives the currently fastest algorithms for these problems on graphs
of maximum degree three. If we restrict ourselves to using polynomial space, Domi-

nating Set on graphs of maximum degree three can be solved in O(1.3161n) time [27],
and Edge Dominating Set on graphs of maximum degree three can be solved in
O(1.2721n) time [323].

Fomin et al. have extended the result of Theorem 2.14 to graphs with vertices of
larger degrees [138]. This has led to the following result that we will use a number of
times in this thesis.

Proposition 2.16 ([138]). For any � > 0, there exists an integer n� such that if G is
an n-vertex graph with n > n� then

pw(G) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 + n≥7 + �n

where ni is the number of vertices of degree i in G, for any i ∈ {3, 4, 5, 6}, and n≥7

is the number of vertices of degree at least 7. Moreover, a path decomposition of the
corresponding width can be constructed in polynomial time.

We note that the coefficients for n4, n5, and n6 in formula of Proposition 2.16 are
computed based on the coefficient for n3. By using the same computation, we could in
principle also compute coefficients for ni for i ≥ 7. These coefficient will all be smaller
than one, but converge to one as i goes to infinity.

Corollary 2.17. Dominating Set can be solved in O(1.4423n) time and space on
graphs of maximum degree four.

Proof. Identical to the proof of Corollary 2.15, now using Proposition 2.16 and the
fact that 3

1
3 < 1.4423.

Not all graphs have small pathwidth or treewidth. A clique on n vertices, for
example, has pathwidth and treewidth n − 1. Therefore, path/tree-decomposition-
based approaches are useful only on restricted graph classes, especially on sparse
graphs. An example is the following useful result by Kneis et al.

Proposition 2.18 ([204]). For any graph G with n vertices and m edges, tw(G) ≤
m/5.769 + O(log n). Moreover, a tree decomposition of the corresponding width can
be constructed in polynomial time.

For more information on path decomposition and tree decompositions, we refer the
interested reader to [36, 38, 44]. For more path/tree-decomposition-based results in
exact exponential-time algorithms, see for example [27, 138, 165, 204].

We conclude this section by noting that path and tree decompositions of minimum
width can be computed in O∗(2n) time by dynamic programming across subsets [41].
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The currently fastest algorithm to compute a path decomposition of minimum width
is due to Suchan and Villanger and requires O(1.9657n) time and space [290]. A tree
decomposition of minimum width can be computed in O(1.7347n) time and space, or
O(2.6151n) time and polynomial space [155, 156]; see also [150].

2.3. Inclusion/Exclusion

The last common technique that we will demonstrate is inclusion/exclusion. Inclu-
sion/exclusion is a simple combinatorial counting principle often identified with the
formula in Proposition 2.19 below. This principle is based on the idea that one can
often count certain terms too often, then subtract those terms that were counted too
often, and then again add terms that were subtracted too often, etc. This then results
in a formula that counts each term in which we are interested exactly once. We will
make this approach more concrete below.

Inclusion/exclusion was introduced in the field of exact exponential-time algorithms
on the Travelling Salesman Problem with bounded integer weights through an
O∗(2n)-time and polynomial-space algorithm. This result was discovered three times
independently: by Kohn et al. [207], by Karp [200], and by Bax [14]. The approach
was popularised by a series of results by Björklund et al. who used it to solve many
covering and partitioning problems [27, 33]. Recently, this approach has found many
new applications [5, 25, 26, 28, 29, 30, 31, 32, 244, 245, 307].

Let us start by considering the following proposition. The formula in this proposi-
tion is also known as the inclusion/exclusion formula. The presented formulation and
proof below are based on [27].

Proposition 2.19. Let S be a collection of sets over the universe U, and let a(X) denote
the number of sets in S that are disjoint from X, i.e., a(X) is the number of sets S
in S with S ∩ X = ∅. Also, let ck be the number of k-tuples of sets (S1, S2, . . . , Sk)

with Si ∈ S for 1 ≤ i ≤ k that form a set cover of (S,U), i.e., with
∪k

i=1 Si = U. Then:

ck =
∑

X⊆U

(−1)∣X∣a(X)k

Proof. Notice that a(X)k counts the number of k-tuples (S1, S2, . . . , Sk) with Si ∈ S

and Si ∩ X = ∅ for each 1 ≤ i ≤ k. We will prove that the contribution of such a
k-tuple to the expression at the right hand side of the formula is exactly one if the
k-tuple is a set cover, and zero otherwise. This will prove the proposition.

If such a k-tuple is a set cover of (S,U), then its sets contain all elements of U.
Therefore, it is counted only in the term of the above formula with X = ∅, and its
contribution to the summation will be exactly one as required.

Assume that such a k-tuple is not a set cover, and let Y be the set of uncovered
elements from U, i.e., Y = U ∖ (

∪k
i=1 Si) and Y ∕= ∅. Now, this k-tuple is counted

in the terms of the summation that correspond to every X ⊆ Y . However, the total
contribution of this k-tuple over all relevant terms of the summation is:

∑

X⊆Y

(−1)∣X∣ ⋅ 1 =

∣Y ∣
∑

i=0

(∣Y ∣
i

)

(−1)i1∣Y ∣−i = (1− 1)∣Y ∣ = 0
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where the second equality above follows from Newton’s binomial theorem.

We will use the above proposition to prove that #Perfect Matching can be
solved in O∗(2n) time and polynomial space, and that Graph Colouring can be
solved in O∗(2n) time and space. The first result is due to Björklund and Husfeldt [27],
the second to Björklund et al. [33].

Corollary 2.20 ([27]). There is an algorithm that counts the number of perfect match-
ings in a graph G in O∗(2n) time and polynomial space.

Proof. We assume that n is even, otherwise the graph has no perfect matchings.
We consider counting n

2 -tuples (e1, e2, . . . , en
2
), where each ei is an edge from G for

1 ≤ i ≤ n
2 . We use Proposition 2.19 to count all such tuples in which each vertex in G

is an endpoint of at least one edge ei in the tuple. Notice that the set of edges in such
a tuple forms a perfect matchings in G because, if the tuples contains n

2 edges, and if
all n vertices are endpoint of some edge in the tuple, then every vertex is an endpoint
of exactly one edge. Also, notice that every perfect matching corresponds to exactly
(n2 )! such tuples by permuting the order of the edges in the tuple.

In this way, we can count the number of perfect matchings in G by evaluating the
2n terms of the formula in Proposition 2.19 and dividing the resulting value ck by (n2 )!.
To do so, we have to compute the values a(X) that, in this case, express the number
of edges in G that do not contain the vertices in X as endpoints. This can be done by
simple counting.

Since the involved numbers are bounded by 2nm
n
2 , they can be represented by a

polynomial number of bits as log(2nm
n
2 ) = n log(2)+ n

2 log(m). Hence, the operations
on these numbers can be preformed in polynomial time. This proves the time bound
of O∗(2n).

We note that this is the currently fastest polynomial space algorithm for #Per-

fect Matching. Using exponential space, this result was first improved to O(1.7315n)
time and space by Björklund and Husfeldt [27] and later to O(1.6181n) time and
space by Koivisto [208]. The given algorithm uses ideas that date back to Ryser, who
used inclusion/exclusion to compute the number of perfect matchings in a bipartite
graph [274].

Corollary 2.21 ([33]). There is an algorithm that solves Graph Colouring in O∗(2n)
time and space.

Proof. We will describe an algorithm that decides in O∗(2n) time and space whether G
can be coloured with k colours. The result then follows by repeating this algorithm
for increasing values of k.

As already noted in Section 2.2.1, a colouring of a graph with k colours such that no
two vertices with the same colour are adjacent equals a covering of the vertices of the
graph by independent sets. Therefore, we consider counting k-tuples (I1, I2, . . . , Ik),
where each Ii is an independent set in G for 1 ≤ i ≤ k. If such a k-tuple of independent
sets contains all vertices in G in some independent set Ii, then we can construct a
colouring from this tuple by assigning to every vertex v in G some colour i such that
v ∈ Ii. Notice that the resulting colouring has no adjacent vertices with the same
colour because each set Ii is an independent set. Also, if a vertex exists in multiple
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independent sets in the tuple, then we can choose the colour of the vertex to equal
that of any of the independent sets that contain v.

We use Proposition 2.19 to count all such k-tuples (I1, I2, . . . , Ik) that contain all
vertices in G in some independent set Ii. To be able to do so, we need the values a(X)
that now represent the number of independent sets in G[V ∖X]. We can precompute
these values a(X) for all X ⊆ V by dynamic programming across the subsets of V .
This can be done by computing the number of independent sets �(Y ) in G[Y ] for any
Y ⊆ V . The numbers a(X) then follow by a(X) = �(V ∖X).

We compute �(Y ) by dynamic programming using the following recurrence that
corresponds to either taking a vertex v ∕∈ Y in an independent set or not:

�(Y ∪ {v}) = �(Y ) + �(Y ∖N(v)) with: �(∅) = 1

If we consider the subsets Y ⊆ V in order of increasing size, the values �(Y ) for all
Y ⊆ V are computed using O∗(2n) time and space.

Now, we can evaluate the formula in Proposition 2.19 in O∗(2n) time to find the
number ck that equals the number of k-tuples (I1, I2, . . . , Ik) that correspond to a
colouring. Clearly, if ck > 0, then G is k-colourable, and if ck = 0 G is not. This
completes the proof.

For references to the literature on other Graph Colouring results, see the dis-
cussion below Proposition 2.7.

We conclude this introduction to inclusion/exclusion algorithms by giving the clas-
sical result on Hamiltonian Cycle of Kohn et al. [207], Karp [200], and Bax [14].

A Hamiltonian Cycle in a graph G is a collection of n edges from G that form a
single cycle which goes through every vertex exactly once when traversed. In other
words, every vertex in G is incident to exactly two edges of the cycle.

Hamiltonian Cycle

Input: A graph G = (V,E).
Question: Does G have a Hamiltonian cycle?

Proposition 2.22 ([14, 200, 207]). There is an algorithm that solves Hamiltonian

Cycle in O∗(2n) time and polynomial space.

Proof. The algorithm will fix a vertex v ∈ V and repeat the procedure below for each
of its neighbours u ∈ N(v). This procedure will decide whether there exists a path of
length n− 1 in G that starts in v, ends in u, and visits every vertex in G exactly once.
Clearly, G has a Hamiltonian cycle if and only if such a path exists between v and one
of its neighbours u.

Define a walk of length k in a graph G to be a sequence of vertices (v1, v2, . . . , vk+1)
from V with {vi, vi+1} ∈ E for every consecutive pair of vertices in the sequence vi,
vi+1. Notice that if such a walk has length n − 1 and visits all vertices in G, then it
must visit all vertices exactly once. Hence, we can decide if the required path of length
n− 1 in G that starts in v, ends in u, and visits every vertex in G exactly once exists
by counting walks from v to u of length n− 1 that visit all vertices in G.

For X ⊆ (V ∖ {u, v}), let a(X) be the number of walks of length n− 1 from v to u
that do not contain any vertex in X. Now, the number of paths pu,v of length n − 1
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in G that start in v, end in u, and visit every vertex in G (exactly once) equals:

pu,v =
∑

X⊆(V ∖{u,v})
(−1)∣X∣a(X)

This formula is a variation of the inclusion/exclusion formula in Proposition 2.19.
We prove the above formula in the same way as in the proof of Proposition 2.19. If

a walk visits all vertices, then it is counted only in the term of the sum corresponding
to X = ∅. If a walk does not visit the vertices in some set Y ∕= ∅ while it does visit
all vertices in V ∖ Y , then it is counted in all terms of the formula that correspond
to any X ⊆ Y . However, the total contribution of this walk to the value pu,v equals
∑

X⊆Y (−1)∣X∣ ⋅ 1 =
∑∣Y ∣

i=0

(∣Y ∣
i

)

(−1)i1∣Y ∣−i = (1 − 1)∣Y ∣ = 0 by Newton’s binomial
theorem. We conclude that pu,v equals the number of walks that visit every vertex
(exactly once) as required.

We can compute pu,v in O∗(2n) time and polynomial space by evaluating the above
formula if we can compute the values a(X) in polynomial time. We will complete the
proof of this proposition by showing how to compute these values a(X) next.

Let X ⊆ (V ∖ {u, v}) be fixed. For any w ∈ V ∖X, let aX(w, l) be the number of
walks of length l in G[V ∖X] that start in v and end in w. Clearly, aX(v, 0) = 1 and
aX(w, 0) = 0 for any w ∈ V ∖ (X ∪ {v}). For l ≥ 1, we can compute aX(w, l) for any
w ∈ V ∖X by dynamic programming over the following recurrence:

aX(w, l) =
∑

x: (w,x)∈E,x ∕∈X

aX(x, l − 1)

This recurrence considers all possible edges that can be added to the walks of length
l − 1 to construct a walk of length l.

We find the required value a(X), by noticing that a(X) = aX(u, n−1). Because the
dynamic programming requires the computation of O(n2) values using a summation
over O(n) terms, we conclude that the values a(X) can be computed in polynomial
time as required. This completes the proof.

We note that this result has very recently been improved by Björklund who gives a
randomised O(1.6576n)-time and polynomial-space algorithm for Hamiltonian Cycle

with an exponentially small probability of failure [25].
This result based on counting walks to count Hamiltonian paths has been gener-

alised by Nederlof to counting what he defines to be branching walks (treelike walks)
to count Steiner trees [244]. This Steiner Tree algorithm has applications in al-
gorithms for graph domination problems. For example, it is used as a subroutine in
recent results by Abu-Khzam et al. on Connected Red-Blue Dominating Set and
Connected Dominating Set [1].

2.4. Other Techniques

In the previous sections, we have introduced a series of common techniques in the
design of exact exponential-time algorithms. The techniques that we have presented
were chosen because we either use these techniques, or want to be able to name them
without further reference. However, many more interesting techniques have been de-
veloped in the field. In this last section, we survey some of these techniques.
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Solution-Driven Approaches. The most prominent category of techniques that we
have not covered are solution-driven approaches such as local search and iterative
compression. These techniques explore the search space of a problem by moving from
one candidate solution to another. In this search, we know that if a solution exists,
then it is found (or, with high probability in randomised variants). Searching for
a solution in this way can be beneficial to constructing a solution from scratch, for
example, by using a branch-and-reduce or dynamic programming algorithm.

Local search is a well-known technique that can be used to obtain heuristics for opti-
misation problems. It was introduced in the field of exact exponential-time algorithms
by Schöning [280] who used it for algorithms for 3-Satisfiability. We illustrate this
technique by giving a simple algorithm for 3-Satisfiability from [281], which is also
due to Schöning.

Let the Hamming distance between two truth assignments to the variables in the
instance be the number of variables on which the two assignments differ. For a given
truth assignment one can check whether there exists a satisfying truth assignment at
Hamming distance at most k from the current assignment in O∗(3k) time in the follow-
ing way. If the current assignment is a satisfying assignment, output Yes. Otherwise,
the instance contains an unsatisfied clause containing at most three literals (l1, l2, l3).
To satisfy this clause, we need to change the value of at least one of these at most
three literals. Therefore, we can branch into at most three subproblems where, in each
generated subproblem, we change the value of a different literal from this set of three
literals. If we repeat this branching step at most k times, we generate at most 3k

subproblems and find a satisfying assignment at Hamming distance at most k from
our initial assignment if such an assignment exists.

We can turn this approach into an algorithm for 3-Satisfiability by noticing
that any assignment lies at Hamming distance at most n

2 from the all-True or the
all-False assignment. By searching for solutions up to distance at most n

2 from these
two points, we obtain an O∗(3

n
2 ) = O(1.7321n)-time and polynomial-space algorithm

for 3-Satisfiability.
The currently fastest algorithms for 3-Satisfiability consider searching in the

neighbourhood of an exponential number of starting points. This can either be done
by choosing these starting points at random, or by defining some exponentially large
set of starting points from which any assignment has Hamming distance at most some
number k. A set of starting points of this second type is also called a covering code [98].

There exist many papers giving algorithms for 3-Satisfiability based on this
approach: both deterministic algorithms [61, 98, 219, 276] and randomised algo-
rithms [13, 185, 192, 193, 273, 280]. The currently fastest deterministic algorithm
is due to Moser and Scheder [242] and runs in O(1.3334n) time, and the currently
fastest randomised algorithm is due to Hertli et al. [181] and runs in O(1.3210n) time.

Iterative compression is another solution-driven technique. This technique comes
from the field of parameterised algorithms (see Section 3.3) where it was introduced by
Reed et al. [262]. In this field, this approach has many applications; see for example [76,
88, 105, 175, 187].

Iterative compression is a technique for optimisation (often minimisation) problems.
The main idea is that if we are given a solution of size k+1 for a given problem, then
we use an algorithm that either compresses it to better solution of size at most k,
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or proves that no solution of size k exists. In exact exponential-time algorithms, this
approach has been used by Fomin et al. on a number of problems among which a series
of variants of Hitting Set [135]. Very recently, we have also used this approach to
give the currently fastest parameterised algorithm for Feedback Vertex Set: a
randomised O∗(3k)-time and polynomial-space algorithm [88].

Algebraic Approaches. Another important category of techniques that we have not
covered are algebraic approaches. These approaches have recently shown to be suc-
cessful on a series of problems.

For example, Björklund has shown how to encode candidate solutions to k-Di-

mensional Matching and Exact Cover by k-Sets into polynomials over a finite
field of characteristic two [26]. This, combined with the evaluation of determinants
of matrices which entries are these polynomials allows him to solve k-Dimension-

al Matching in O∗(2n(k−2)/k) time, and Exact Cover by k-Sets in O(1.496n),
O(1.642n), O(1.721n), O(1.771n), O(1.806n) time for k = 3, 4, 5, 6, 7, respectively [26].
All these algorithms are randomised algorithms with an exponentially small probability
of failure that use polynomial space. We note that he also obtains fast algorithms for
Exact Cover by k-Sets for larger values of k.

Very recently, Björklund has also shown how to use this approach to give a random-
ised O(1.6576n)-time and polynomial-space algorithm for Hamiltonian Cycle [25].

Another recent result using algebraic techniques is due to Lokshtanov and Nederlof.
They show how to transform standard exponential-time and pseudo-polynomial-time
dynamic programming algorithms for various problems such as Subset Sum into
polynomial-space algorithms using the discrete Fourier transform [228].

Using Fast Polynomial-Time Algorithms on Exponentially Large Instances. The
last category of techniques that we will treat in this section are those that use fast
polynomial-time algorithms on exponentially-large instances to obtain fast exponen-
tial-time algorithms.

Fast matrix multiplication is an example of such a fast polynomial-time algorithm.
One can multiply two n×n matrices in O(n!) time, where ! is the matrix multiplication
constant . Currently, ! < 2.376 due to an algorithm by Coppersmith and Winograd [83]
who improved the first non-trivial algorithm for the problem by Strassen [289].

Using this fast matrix-multiplication algorithm, Itai and Rodeh have shown that
one can detect whether a graph has a triangle, and count the number of triangles,
in O(n!) time [190]. Williams uses this for an O∗(2

!n
3 ) = O(1.7315n)-time algorithm

for Maximum Cut by constructing instances of size 2
n
3 in which triangles need to

be detected [317]. Björklund also uses this approach for #Perfect Matching [27],
although more recent, faster algorithms exist.

Fast matrix multiplication is also used by Dorn for a series of dynamic programming
algorithms on branch decompositions [110]. The currently fastest subexponential-time
algorithms for many problems on planar graphs and some related graph classes are
based on this approach [113, 114]. We will also use this approach in Chapter 12.

Sorting is another example of a fast polynomial-time algorithm that is often used in
exponential-time algorithms on exponential-size instances. We illustrate this approach
by considering the example due to Woeginger [319] on the Subset Sum problem with
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numbers a1, a2, . . . , an and target sum b (see the list of problems in Appendix B for a
precise definition). This algorithm works as follows. Construct a 2⌊

n
2 ⌋ size table with all

possible sums corresponding to subsets of the numbers a1, a2, . . . , a⌊n
2 ⌋. Since sorting

can be done in O(n log n) time, we can sort this list of sums in O∗(2
n
2 ) time. Then,

for each of the 2⌈
n
2 ⌉ possible sums of the remaining numbers a⌈n

2 ⌉, a⌈n
2 ⌉+1, . . . , an, one

can check in polynomial time whether this sum can be extended to the target value b
by binary searching in the sorted table.

This technique is also known as split and list or sort and search. Examples of other
algorithms based on this approach are those for Binary Knapsack in [186, 283], and
Exact Hitting Set in [118]. Also, Fomin et al. use this approach to solve a number
of [�, �]-domination problems [139].
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3
Complexity of Exact

Exponential-Time Algorithms

An asymptotic upper bound on the running time of an exact exponential-time algo-
rithm is usually expressed as an exponential function of a complexity parameter. The
complexity parameter is a parameter that usually depends on the input, e.g., the num-
ber of vertices in the input graph, and that determines the size of the search space of
the problem. The parameters are sometimes called the ‘size’ of the input, which can
be regarded as a (slight) abuse of terminology.

In this chapter, we introduce the notion of a complexity parameter and other basic
concepts from the complexity theory of exact exponential-time algorithms. We first
introduce complexity parameters, certificates, and the definitions of the complexity
classes P, NP, and #P in Section 3.1. Then, in Section 3.2, we will give some standard
conjectures and hypotheses for the theory of exponential-time algorithms that are used
to show that subexponential-time algorithms do not likely exist for certain problems.
Next, we treat the relation between exact exponential-time algorithms and parameter-
ised algorithms and complexity in Section 3.3. In Section 3.4, we conclude with a few
issues that relate to which exponential-time algorithms can be used to solve problems
in practical situations.

We note that, in this chapter, all algorithms are considered deterministic algorithms
when considering the existence or non-existence of algorithms with a certain type of
upper bound on the running time for a given problem.

3.1. Complexity Parameters

P versus NP. Maybe the most interesting questions in complexity theory come from
the perceived difference between the computational complexity of finding a solution to
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a given problem and the computational complexity of checking that a given solution
indeed is a solution. Most prominent among these questions is the ‘P versus NP’
question introduced in 1971 by Cook [80]. This problem is considered to be the most
important question in the field by many researchers1.

Slightly informally, as we omit the definitions of languages and Turing machines,
the complexity classes P [79, 120] and NP [80] can be defined as follows.

Definition 3.1 (Polynomial Time). The complexity class P (polynomial time) is the
class of all decision problems that can be solved in time polynomial in the number of
bits required to represent a problem instance.

An example of a prominent problem in P that is used in this PhD thesis is the problem
of deciding whether a graph contains a matching of size at least k [120].

Definition 3.2 (Non-Deterministic Polynomial Time). The complexity class NP (non-
deterministic polynomial time) is the class of all decision problems which can be for-
mulated in the following way:

Given x, decide whether there exists a y with ∣y∣ ≤ �(x) such that R(x, y).

where x is the input instance, y is a binary string, � is a polynomial-time computable
function with the property that �(x) polynomially bounded in the size of x, and
R(x, y) is a polynomial-time computable relation. The binary string y is also called a
certificate for the instance x.

Notice that a problem in NP has the property that there exists a polynomial-size
‘proof’ that shows that an instance is a Yes-instance, namely the certificate y, whose
correctness can be verified in polynomial time.

We also use the name NP-problem for a problem in NP. Many natural problems are
NP-problems. For example, consider the Dominating Set problem where we need
to decide whether there exists a dominating set of size at most k in a graph G. This
problem is in NP as a given dominating set D ⊆ V of size at most k is a certificate
for this problem. Finding such a certificate can be hard. For example, the currently
fastest algorithm for this problem requires O(1.4969n) time (Chapter 5). However,
checking whether D actually is a dominating set of size at most k is easy and can be
done in polynomial time.

Definition 3.3 (Polynomial-Time Many-One Reduction). A polynomial-time many-
one reduction from a problem P to a problem Q is a polynomial-time transformation
that takes an instance x of P and outputs an instance y of Q of size polynomial in
the size of x with the property that x is a Yes-instance of P if and only if y is a
Yes-instances of Q.

Cook [80], and independently Levin [222], proved that there exist polynomial-time
many-one reductions from any problem in NP to Satisfiability. As a result, all
problems in NP can be solved in polynomial time if Satisfiability can be solved in
polynomial time.

1It is one of the Millennium Prize Problems of the Clay Mathematics Institute.
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A subclass of NP is the class of NP-complete problems introduced by Cook [80].
The NP-complete problems are the hardest problems in NP from the viewpoint of
polynomial-time algorithms.

Definition 3.4 (NP-complete). A problem P is NP-complete if P is in NP and there
exist polynomial-time many-one reductions from all problems in NP to P .

Thus, Satisfiability is NP-complete. Moreover, if some NP-complete admits a
polynomial-time algorithm, then all problems in NP admit polynomial-time algorithms
(in other words NP = P). Although P ⊆ NP, many researchers believe that P ∕= NP

which means that NP-complete problems cannot be solved in polynomial time; see
also Section 3.2.

Many natural problems are NP-complete. This includes many graph domination
problems such as Dominating Set, Independent Set, and Edge Dominating

Set, but also many other problems such as Set Cover, 3-Satisfiability and Ham-

iltonian Cycle [162, 199]. A superclass of the class of NP-complete problems is the
class of NP-hard problems. This class of NP-hard problems contains all problems that
are at least as hard as the problems in NP. If an NP-hard problem can be solved
in polynomial time, then all problems in NP can be solved in polynomial time also.
As NP-complete problems are decision problems, their (non-trivial2) maximisation or
minimisation variants are often NP-hard. This includes problems like ‘find a domi-
nating set of minimum size in a given graph’ or ‘what is the size of the maximum
independent set in a given graph’. For more on NP-completeness and NP-hardness
and many examples of NP-complete problems, see for example the book by Garey and
Johnson [162].

Complexity Parameters of NP-problems. We are now ready to introduce the concept
of a complexity parameter. This concept was introduced by Impagliazzo et al. who
observed that it is important to include a parameter (that they call the complexity
parameter) in the problem description when considering exponential-time algorithms
for NP-problems [189].

Definition 3.5 (Complexity Parameter). Given a description of an NP-problem as in
Definition 3.2, the function �(x) is called the associated complexity parameter.

Before discussing some important properties of a complexity parameter, we first
consider an example. We have already seen that a concrete dominating set is a possible
certificate for the Dominating Set problem. Such a set can be encoded as a binary
string in which each bit corresponds to a vertex and encodes whether this vertex is in
the dominating set or not. In this case, the relation R(x, y) checks whether y encodes
a dominating set and whether this dominating set is of size at most k. The resulting
certificate will have length equal to the number of vertices in the graph. Hence, the
number of vertices n is a complexity parameter �(x) for Dominating Set.

Complexity parameters are used to express the running times of exact exponential-
time algorithms. This is useful because a running time expressed in this way can

2With trivial maximisation or minimisation variants of NP-complete problems, we mean problems
like finding a maximum size dominating set or a minimum size independent set.
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directly be related to the trivial brute-force algorithms for this problem and com-
plexity parameter combination. This in the following sense. Given an NP-problem P
and a complexity parameter �, the trivial brute-force algorithm for this problem and
complexity parameter combination is defined to be the algorithm that solves a prob-
lem instance x in the following way: it enumerates all strings y of length up to �(x),
and it checks whether R(x, y) for each such string y, i.e., whether y is a certificate for
the instance x. Clearly, this trivial brute-force algorithm runs in O∗(2�(x)) time. One
of the main goals in exact exponential-time algorithms is to design algorithms that
improve upon this straightforward time bound.

Because a complexity parameter is an upper bound on the size of a certificate for
a given problem, this complexity parameter follows directly from the way in which
the certificates are encoded as binary strings. For the purpose of designing exact
exponential-time algorithms, however, the exact details of this encoding are not im-
portant. Therefore, the details of the encoding are almost always omitted, and only
the complexity parameters used to compare running times are mentioned.

Complexity parameters are not unique. That is, for many graph problems one
could use the number of vertices n, the number of edges m, or a parameter � that
is proportional to the number of bits used to represent an input graph in some given
representation. To illustrate this, we give two examples.

Example 3.1. Consider the Vertex Cover problem (see Appendix B). For this prob-
lem, we could use the number of vertices n as a complexity parameter and encode a
subset of the vertices in a certificate, or we could use the number of edges m as a
complexity parameter and let a certificate encode, for each edge, which endpoint of
the edge is used to cover it.

Example 3.2. Consider the Edge Dominating Set problem (see Section 1.3). The
obvious complexity parameter for this problem is the number of edges m because an
edge dominating set is an edge subset that can straightforwardly be encoded using m
bits. However, we can also use the number of vertices n as a complexity parameter
for this problem. We can do so by letting a certificate encode a subset of the vertices
that represents the set of endpoints Y of the edge dominating set that is a solution.

To see that this works, first recall that we can assume that no edges in a minimum
edge dominating set share endpoints. We have already used this fact in the algorithm
of Proposition 2.13; it is based on a standard replacement trick from [177] whose details
can be found in Corollary 6.3. Second, notice that the neighbourhood relation that
defines the domination criterion in the Edge Dominating Set problem is based on
the set of endpoints of the edge dominating set: it does not require knowledge of the
actual dominating edges themselves. Using these properties, the relation R(x, y) can
verify in polynomial time whether the vertices in Y are the endpoints of a sufficiently
small edge dominating set. It does so by checking whether whether ∣Y ∣

2 < k, whether
all edges in G have an endpoint in Y , and by checking whether there exists a perfect
matching in G[Y ]. Such a perfect matching can be computed in polynomial time [120]
and corresponds to a solution edge dominating set. See Section 6.2 for further details.

We conclude this discussion of complexity parameters of NP-problems by pointing
out that, although complexity parameters are defined similar to Definition 3.5 in the
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literature (e.g., see [149, 319]), often complexity parameters are used that do not cor-
respond to this definition. Consider, for example, the Hamiltonian Cycle problem.
For this problem, one could use the number of edges m as a complexity parameter
and encode edge sets, or one could use log(n!) as a complexity parameter and encode
an ordering of the vertices. However, it is not clear that the number of vertices n can
be used as a complexity parameter, while often this parameter n is used for analysing
algorithms for this problem; see for example Proposition 2.22. In any case, the com-
plexity parameter used should be a function of a complexity parameter as defined in
Definition 3.5.

For graph domination problems, this ambiguity in the precise definition of a com-
plexity parameter is often not an issue. This is because graph domination problems
are subset problems for which one can usually use a bound on the number of elements
of the ground set as a complexity parameter. That is, the number of vertices n for a
vertex-subset problem, and the number of edges m for an edge-subset problem.

Counting Problems and Complexity Parameters. Let us now consider counting var-
iants of NP-problems. The complexity class of these problems is the class #P intro-
duced by Valiant [298].

Definition 3.6 (Sharp-P). The complexity class #P (sharp-P) is the class of all count-
ing problems corresponding to NP-problems. That is, all counting problems which can
be formulated in the following way:

Given x, compute how many y exist with ∣y∣ ≤ �(x) such that R(x, y).

where x is the input instance, y is a binary string, � is a polynomial-time computable
function with the property that �(x) polynomially bounded in the size of x, and R(x, y)
is a polynomial-time computable relation.

A problem in #P is often denoted by placing the #-sign in front of the correspond-
ing problem from NP. For example, the #P-problem of computing the number of
minimum dominating sets in a graph G is denoted by #Dominating Set, and the
#P-problem of computing the number of perfect matchings in a graph G is denoted
by #Perfect Matching.

Valiant also introduced the class #P-complete [298]. We will not give a precise
definition of #P-complete problem here. The intuition behind this class of problems is
that it contains the hardest problems from #P from the viewpoint of polynomial-time
computability. If a #P-complete problem has a polynomial-time algorithm, then all
problems in #P have polynomial-time algorithms. This is similar to the way in which
NP-complete problems are the hardest problems from the class NP.

If a problem is #P-complete, then it most likely does not have a polynomial-time
algorithm. This is because the counting variants of many NP-complete problems are
#P-complete, and thus a polynomial-time algorithm for a #P-complete problem would
imply polynomial-time algorithms for all problems in NP. Maybe somewhat surpris-
ingly, the #Perfect Matching problem is #P-complete [298], while the problem
of deciding whether there exists a perfect matching in a given graph G is a prob-
lem in P [120]. For more details and some examples of reductions that prove #P-
completeness of certain problems see [194, 298].
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In this PhD thesis, we will also consider exact exponential-time algorithms for
problems in #P. To express the running times of these algorithm, we again use a
complexity parameter. In the case of #P-problems, this is the function �(x) defined
in Definition 3.6. This complexity parameter also allows us to compare the running
time of an algorithm to a trivial brute-force algorithm, namely, the algorithm that
enumerates all binary strings y of length up to �(x) and counts the number of such
strings that satisfy the relation R(x, y).

3.2. Hypotheses in Exponential-Time Complexity

Since we aim at designing algorithms whose asymptotic running time is as small as pos-
sible, the first question one could ask when considering exponential-time algorithms is
whether exponential time is really necessary. That is, do we have any evidence that no
faster algorithms exist? I.e., no faster algorithms such as polynomial-time algorithms
or subexponential-time algorithms. This section will survey some complexity-theoretic
assumptions on which such claims can be based.

We have already mentioned the following widely believed hypothesis in the previous
section.

Complexity Theoretic Hypothesis 3.7. P ∕= NP

A consequence of this widely believed hypothesis is that we may assume that no
polynomial-time algorithms exists for NP-complete problems and #P-complete prob-
lems [80, 298].

This hypothesis, however, is insufficient for our purposes as it excludes only poly-
nomial-time algorithms while subexponential-time algorithms also exist for many NP-
complete and #P-complete problems. Examples of such problems include many prob-
lems on planar graphs [110, 111, 114]. For an example problem on general graphs,
see [51]. We also note that the classical O∗(2n)-time algorithm of Kohn et al. [207]
(also [14, 200]) for Hamiltonian Cycle that can be found in Proposition 2.22 is a
subexponential time algorithm when we use the complexity parameter �(x) = log(n!).

The following hypothesis can be used to give evidence for the non-existence of
subexponential-time algorithms for specific problems. It was first formulated by
Impagliazzo and Paturi in [188].

Complexity Theoretic Hypothesis 3.8 (Exponential-Time Hypothesis - ETH). There
exists a constant c > 1 such that there exists no algorithm for 3-Satisfiability that
uses only O(cn) time.

This hypothesis is equivalent to the statement that there exist no algorithm for 3-Sat-

isfiability that, for all � > 0, runs in O(2�n) time. That is, under this hypothesis,
the worst case running time of an algorithms for 3-Satisfiability is at least singly
exponential in n.

The Exponential-Time Hypothesis, or ETH, is not merely related to the complexity
of the 3-Satisfiability problem. It is related to the syntactically defined problem
class SNP (Strict NP) [250]. Similar to the class NP, whose hardest problems from
the viewpoint of polynomial-time algorithms form the subclass of NP-complete prob-
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lems, the class SNP has a subclass of SNP-complete problems that are the hardest
problems in SNP from the viewpoint of subexponential-time algorithms. This class
SNP-complete is defined under SERF-reductions [189].

Definition 3.9 (SERF-reduction). A SubExponential Reduction Family from a prob-
lem P with complexity parameter �p to a problem Q with complexity parameter �q

is an algorithm3 that does the following for every � > 0: given an instance xp of the
problem P , the algorithm produces a series of instances xq1 , xq2 , . . . , xqk of problem Q
in O(2�⋅�p(xp)) time such that the algorithm can compute the solution to xp given
the solutions to the instances xq1 , xq2 , . . . , xqk within the given time bound. In this
reduction, each instance xqi of Q in the series must satisfy two requirements:

∙ the complexity parameter �q(xqi) must satisfy �q(xqi) ≤ c��p(xp) for some
constant c� that may depend arbitrarily on �.

∙ the size of xqi is polynomial in the size of xp.

We now show that SERF-reductions preserve subexponential-time solvability.

Lemma 3.10 ([189]). If there exist a SERF-reduction from a problem P with com-
plexity parameter �p to a problem Q with complexity parameter �q, then the prob-
lem P is solvable in subexponential time in �p if the problem Q is solvable in subex-
ponential time in �q.

Proof. Since Q is solvable in time subexponential in �q, there exists an algorithm for Q
that given an instance xq of Q, for any � > 0, solves xq in O(2�⋅�q(xq)) time.

An instance xp of P can be solved in O(2�⋅�p(xp)) time in the following way. Ap-
ply the algorithm of the SERF-reduction using any �′ < �. This generates at most
O(2�

′⋅�p(xp)) instances of Q with complexity parameters at most c�′ ⋅ �p(xp). These
instances can be solved within the required time bound by using the subexponential-
time algorithm for Q in time O(2�⋅c�′ ⋅�p(xp)) for some small enough � > 0 such that
2�

′⋅�p(xp)2�⋅c�′ ⋅�p(xp) < 2�⋅�p(xp).

Using these SERF-reductions, we can now define the classes SNP-complete and
SNP-hard. A problem P with complexity parameter �p is SNP-hard under SERF-
reductions if all problems in the class SNP are SERF-reducible to P with complexity
parameter �p. We note that this is a correct definition since SNP is a syntactically
defined subclass of NP, and thus problems in SNP are provided with complexity pa-
rameters based on their description as an NP-problem.

Definition 3.11 (SNP-complete). A problem P with complexity parameter �p is SNP-
complete if P with complexity parameter �p is in the class SNP and P with complexity
parameter �p is SNP-hard.

It is easy to see from these definitions that if there exists a subexponential-time algo-
rithm for any SNP-complete or SNP-hard problem P with complexity parameter �p,
then all problems in SNP admit subexponential-time algorithms with the complexity
parameters that arise from their syntactical definitions. As 3-Satisfiability with the

3Turing reduction.
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number of variables n as complexity parameter is SNP-complete [189], the Exponential-
Time Hypothesis says that no subexponential-time algorithm exists for any SNP-hard
(and thus also for any SNP-complete) problem and complexity parameter combination.

Assuming the Exponential-Time Hypothesis, Impagliazzo et al. show that no sub-
exponential-time algorithms exist for a large number of problem and complexity pa-
rameter combinations by showing that these problems are (size-constrained4) SNP-
complete [189]. Such results are obtained for k-Colouring with k ≥ 3 and the
number of vertices n as complexity parameter, Independent Set with the number
of vertices n as complexity parameter, and k-Set Cover with k ≥ 2 and the number
of sets n as complexity parameter. Impagliazzo et al. also show that Hamiltonian

Cycle with the number of edges m as complexity parameter is SNP-hard [189].
One of the most notable SERF-reductions is the following result by Impagliazzo et

al. known as the sparsification lemma [189].

Lemma 3.12 (Sparsification Lemma). k-Satisfiability with the number of variables
n as complexity parameter is SERF-reducible to k-Satisfiability with the number
of clauses m as complexity parameter.

This lemma is a useful tool in proving the SNP-hardness of many problem and
complexity parameters. This because, for any fixed k, k-Satisfiability with the
number of variables n as complexity parameter is SNP-complete since it contains the
3-Satisfiability problem. It then directly follows from the sparsification lemma that
k-Satisfiability with complexity parameter m or complexity parameter n+m is also
SNP-hard under SERF-reductions. As a result, a SERF-reduction used to prove SNP-
hardness for some problem P can be a SERF-reduction to k-Satisfiability with any
non-negative linear combination of n and m as a complexity parameter. We will, for
example, use this in Section 4.4 when we prove that, under the Exponential-Time
Hypothesis, no subexponential-time algorithm exists for Partition Into Triangles

on graphs of maximum degree four.
In some cases, a standard polynomial-time many-one reduction used to prove NP-

hardness for a problem can also be used as a SERF-reduction. Such a reduction takes
an instance xp of an NP-hard problem P and transforms it in polynomial time into an
instance xq of the problem Q in such a way that xp is a Yes-instance if and only if xq is
a Yes-instance. Notice that such a polynomial-time reduction often does not preserve
subexponential-time solvability as �p(xp) can have super-linear, yet still polynomial,
size in �q(xq). In cases in which the reduction guarantees that �p(xp) ≤ c ⋅ �q(xq)
for some constant c, however, the reduction does indeed preserve subexponential-time
solvability. In such a case, it is a SERF-reduction that generates only one instance and
that runs in polynomial time. An example of such a simple reduction is the reduction
from 3-Satisfiability to Vertex Cover in [162].

We now consider an important consequence of the Exponential-Time Hypothesis.
Let ck be defined in the following way:

ck = inf{c ∣ there exists an O(cn)-time algorithm for k-Satisfiability}
4Size-constrained SNP is a syntactically slightly different class that is a small generalisation of

SNP. From the viewpoint of the existence of subexponential-time algorithms, they are equivalent.
For the technical details, see [189].
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Impagliazzo and Paturi [188] have proved that, assuming the ETH, the values ck form
a sequence that increases infinitely often.

Since the trivial brute algorithm for Satisfiability solves this problem in O∗(2n)
time, we know that ck ≤ 2 for all k ≥ 3. A natural question is whether this increasing
sequence converges to 2, or to some smaller number c∞ < 2.

This leads us to the following hypothesis due to Dantsin and Wolpert [100] based
on the above question raised by Impagliazzo et al. [68, 188].

Complexity Theoretic Hypothesis 3.13 (Strong Exponential–Time Hypothesis).
There is no algorithm that solves Satisfiability in O((2− �)n) time, for any � > 0.

This assumption is often used in parameterised complexity. Under this hypothesis,
Pǎtraşcu and Williams [257] have shown that, for every � > 0, no algorithm exists for
the parameterised problem k-Dominating Set that runs in time O(nk−�). Lokshtanov
et al. [227] have also used this hypothesis to show that, among others, the bases in the
exponents of the running times of some of our algorithms in Chapter 11 are optimal.

3.3. Relations to Parameterised Algorithms

A branch of algorithmic research that is strongly related to exact exponential-time
algorithms is that of parameterised algorithms. In this area of research, part of the
input of a problem is a non-negative number k that is called the parameter. In general,
the value of this parameter k will be significantly smaller compared to a complexity
parameter for the problem (as defined in Section 3.1). The computational complexity
of a so-called parameterised problem is studied with respect to this parameter k. We
will make this more clear below. For an introduction into parameterised algorithms
and their complexity, we refer the reader to [117, 134, 247].

Definition 3.14 (Parameterised Problem). A parameterised problem is a decision
problem in which the input has two parts: the first part is the instance x, and the
second part is a non-negative number k that is called the parameter.

In the study of parameterised algorithms, one designs algorithms for parameterised
problems and expresses the worst-case running times of these algorithms by functions
of two parameters: the problem parameter k and a parameter n that is proportional
to the size of an instance x.

Definition 3.15 (Fixed-Parameter Tractable). The complexity class ℱPT (fixed-pa-
rameter tractable) contains all parameterised problems which can be solved in time
O(f(k)p(n)) where k is the parameter, n is the size of an instance, f is any computable
function, and p is a polynomial.

An algorithm for a parameterised problem that runs in O(f(k)p(n)) time as in Defini-
tion 3.15 is called a fixed-parameter-tractable algorithm or ℱPT-algorithm.

In many studies, the parameter k that is used is a bound on the size of a solution;
for example, the k-Dominating Set problem asks to find a dominating set of size at
most k. Examples of problems that are fixed-parameter tractable when parameterised
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by the size of a solution include5: k-Vertex Cover [64, 74], where one asks for a ver-
tex cover of size at most k, k-Nonblocker [104] (see also Section 5.5), where one asks
for a dominating set of size at most n − k, and k-Edge Dominating Set [23, 256],
where one asks for an edge dominating set of size at most k. Other parameterisations,
however, are also common. Examples include the size of a given vertex cover in the
graph [129], or the number of leaves of a spanning tree in the graph [128]. Other pa-
rameterisations are based on graph decompositions such as the treewidth of the graph;
we also call these parameterised algorithms graph-decomposition-based algorithms; see
for example [2, 44, 86, 110, 296] or the algorithms in Chapters 11-13.

The fact that ℱPT-algorithms and exact exponential-time algorithms are related
can be seen from the numerous results in which an algorithm of one of both types is
used as a subroutine to produce an algorithmic result of the other type.

Examples of exact exponential-time algorithms based on ℱPT-algorithms parame-
terised by the solution size include algorithms for a large series of problems by Raman et
al. [259] and algorithms for 3-Hitting Set by Wahlström [314]. Other examples based
on different parameters include the treewidth-based algorithms in [138, 147, 165, 204],
in Section 2.2.2, and in Chapters 8-10.

Many results for parameterised algorithms that use exact exponential-time algo-
rithms also exist. Most examples of such algorithms are ℱPT-algorithms that exploit
the existence of a small (linear-size) kernel of the parameterised problem.

Definition 3.16 (Kernel). A kernel or kernelisation algorithm for a parameterised
problem P is a polynomial-time algorithm that, given an instance x of P with para-
meter k, transforms x into an instance x′ of P with parameter k′ such that:

∙ x is a Yes-instance of P if and only if x′ is a Yes-instance of P .
∙ the size of x′ is bounded by a computable function f(k).
∙ the parameter k′ is bounded by a function of k.

The function f(k) in Definition 3.16 is called the size of the kernel. A kernel of
size f(k) is also called an f(k)-kernel. The size of a kernel can be an upper bound
on various size-parameters of an instance such as the number of vertices in a graph
or the number of bits required to represent the instance x′. We note that if we want
to use small kernels in combinations with exact exponential-time algorithms to obtain
a fixed-parameter-tractable algorithm, then the size of the kernel should be an upper
bound on a complexity parameter for P . In this case, the exact exponential-time
algorithm can solve the instance x′ in time bounded by an (exponential) function in
�(x′), which now satisfies �(x′) ≤ f(k).

One can often use small linear kernels in combination with fast exact exponential-
time algorithms to create fast ℱPT-algorithms. That is, to create ℱPT-algorithms
where the function f(k) in the bound on the running time grows slowly. Consider a
problem for which an f(k)-kernel and an O(cn)-time algorithm are known, where f is
a linear function, f(k) = �k, and n is the corresponding complexity parameter with
n ≤ �k. The combination of the kernelisation algorithm and the exact exponential-
time algorithm now runs in O∗(c�k) time. If � and c are small enough, then this
construction can give the fastest known ℱPT-algorithms for a problem. We will use

5For each of these problems, we give only a reference to the first ℱPT-algorithm for this problem
and a reference to the currently fastest parameterised algorithm.
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this construction in this PhD thesis to construct fast parameterised algorithms for
k-Nonblocker, k-Vertex Cover on graphs of maximum degree three, and k-Set

Splitting; see Section 5.5, Section 7.2, and Section 9.3, respectively.
Although fixed-parameter-tractable algorithms exist for many parameterised prob-

lems, there also exist parameterised problems which most likely do not belong to ℱPT,
i.e., parameterised problems for which ℱPT-algorithms most likely do not exist. To
show this, Downey and Fellows identified a chain of complexity classes that seem to
extend ℱPT [115]:

ℱPT ⊆ W[1] ⊆ W[2] ⊆ ⋅ ⋅ ⋅ ⊆ W[P ] ⊆ XP

Well-known examples of problems in these complexity classes are k-Independent Set

that is in W[1] and k-Dominating Set that is in W[2].
We will not provide the details of this W-hierarchy, but mention only some prop-

erties. The complexity classes are defined under ℱPT-reductions: reductions that
preserve fixed-parameter tractability and that run in O(f(k)p(n)) time. Under these
ℱPT-reductions, there exist the notions of W[1]-completeness and W[1]-hardness (or
W[i]-completeness or W[i]-hardness for any i ≥ 1) defined in roughly the same way
as NP-completeness for polynomial-time many-one reductions, or SNP-completeness
under SERF-reduction.

If a problem is W[1]-hard, then it is most likely not solvable by an ℱPT-algorithm
due to the following complexity-theoretic hypothesis.

Complexity Theoretic Hypothesis 3.17. ℱPT ∕= W[1]

Because k-Independent Set is in W[1]-complete and k-Dominating Set is W[2]-
complete [116], these two problems are most likely not in ℱPT.

We conclude this section by mentioning a relation between the above hypothesis
and the Exponential-Time Hypothesis that is due to Chen et al. [71].

Theorem 3.18 ([71]). If the ETH holds, then ℱPT ∕= W[1].

3.4. Practical Issues: Time, Space, and Parallelisation

We conclude this introductionary chapter by briefly discussing some practical com-
plexity issues that are important when implementing an exponential-time algorithm.
Although these issues are important, we point out that this PhD thesis primarily is a
theoretical search for asymptotically-fast exact exponential-time algorithms.

Time versus Space. It is a well-known phenomenon that an algorithm stops being ef-
fective in practice when it uses more space than the amount of main memory available
on the machine. In this case, the computer starts using hard disk space, and because
of the time required for the resulting swapping between both memory sources, the
algorithm’s execution will slow down tremendously. Consequently, Woeginger states
that “algorithms using exponential space are absolutely useless in real-life applica-
tions” [321]. However, other papers consider using O∗(sn) space and O∗(tn) time not
to be problematic in practice when s is significantly smaller than t; for example [89].
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We want to stress that algorithms that use exponential space can be used in practice.
A good example is the O∗(2n)-time-and-space algorithm that computes the treewidth
of a graph [41].

In practical situations, the amount of available main memory space is usually known
before running the algorithm. We think that a good exponential-space algorithm for
practical purposes must be able to use all the space available to it to speed up its
execution. This type of algorithm is usually based on combinations of techniques: it
first uses a polynomial-space approach (such as branch and reduce, or the more general
divide and conquer) that generates smaller subproblems until these subproblems are
small enough to be solved by an exponential-space approach (such as dynamic pro-
gramming). A nice example of such a result is obtained for the Travelling Salesman

Problem and other permutation problems6 by Koivisto and Parviainen [209]. They
consider algorithms running in time O∗(tn) and space O∗(sn) where one can choose t
and s on, or for some specific values even below, the curve defined by ts = 4. For more
examples, see [149].

Another practical consideration is that the precise value of a proven upper bound
on the running time of an algorithm is not interesting as long as the algorithm ter-
minates in reasonable time. This consideration applies, for example, to many of the
exponential-space algorithms that we give in Chapters 8-10. These algorithm are
based on carefully balancing a polynomial-space branch-and-reduce approach with an
exponential-space dynamic programming approach. If these algorithms are modified
such that they only switch to the dynamic programming approach when there is suf-
ficiently many main memory available, and otherwise continue branching, then these
algorithms certainly qualify as practical algorithms.

Parallelisation. Another interesting practical issue is whether an exponential-time
algorithm can benefit from using a number of parallel processors. This is of particular
interest because over the last few years multi-core processors have become standard.
Most surveys or PhD theses do not address this issue while discussing practical issues
of exact exponential-time algorithms.

While we will not elaborate on which algorithms can benefit from parallelisation
and which algorithms are inherently difficult to run in parallel, we do want to mention
that parallelisation is possible for most algorithms given in this thesis. First of all,
most algorithms given in Chapters 4-10 are branch-and-reduce algorithms (that do not
use memorisation); see also Section 2.1. These algorithms are easily run in parallel
because different subproblems that are generated by the branching rules can be solved
independently on different processors. Secondly, the algorithms given in Chapters 11-
13 are dynamic programming algorithms that need to compute exponential-size tables
at each step. For these algorithms, the entries in the tables can be divided into equal-
sized parts that can be computed independently in most cases.

6Problems for which the corresponding certificates are a permutation of a given set of elements,
for example, a permutation of the vertices of a graph.
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4
A Very Fast

Exponential-Time Algorithm
for Partition Into Triangles on

Graphs of Maximum Degree Four

We conclude Part I of this thesis with a result to illustrate the fact that exponential-
time algorithms do not necessarily need to be slow: exponential-time algorithms can
be practical algorithms. This fact is expressed beautifully in the following quote by
Alan J. Perlis, the first Turing Award winner:

“For every polynomial-time algorithm you have, there is an exponential
algorithm that I would rather run.”

This quote is illustrated by Richard J. Lipton in his weblog [226] in the following way.
“His point is simple: if your algorithm runs in n4 time, then an algorithm that runs in
n2n/10 time (alternatively denoted as n1.07178n time) is faster if for example n = 100.”

Woeginger made the same observation for NP-hard problems instead of polyno-
mial time solvable problems in his well-known survey on exact exponential-time algo-
rithms [319]. Woeginger considers the fact that algorithms for NP-hard problems with
exponential running times may actually lead to practical algorithms: he compares the
running times of O(n4) with O(1.01n).

†This chapter is joint work with Marcel E. van Kooten Niekerk and Hans L. Bodlaender. This
research started in Marcel E. van Kooten Niekerk’s research project for the course “Seminar Exact
algorithms for hard problems” Hans L. Bodlaender and I taught in first period of 2008/2009. The
results have changed much since that time. The chapter contains results of which a preliminary
version has been presented at the 37th International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2011) [309]. The full version is also available as technical
report UU-CS-2010-005 [308].
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However, we are not aware of any results on natural NP-hard problems with
exponential-time algorithms with running times anywhere near O(1.01n) without in-
volving huge polynomial factors (either visible, or hidden in the notation, or hidden
in the decimal rounding of the exponent in the big-O). ‘Very fast’ exponential-time
algorithms exist for problems such as Independent Set restricted to graphs in which
99% of the vertices have degree at most two. However, we do not consider this to
be a natural problem because we can reduce an instance of this artificial problem in
polynomial time to an equivalent instance of Independent Set in which only 1% of
the vertices remain (for the polynomial time reductions see Chapter 7). Then, the
trivial brute-force O(n2n) algorithm for Independent Set gives an algorithm for this
artificial problem running in O(n2n/100) = O(1.0070n) time. We note that for the
problem studied in this chapter, no polynomial time transformation that greatly re-
duce the instance size are known from the problem on graphs of maximum degree four
to the problem on general graphs (and most likely none are possible).

In this chapter, we will give a very fast exponential-time algorithm for the Parti-

tion Into Triangles problem restricted to graphs of maximum degree four, running
in O(1.02445n) or O(2n/28.69) time. This result is further improved to O(1.02220n) or
O(2n/31.58) time by a further case analysis in Appendix A.1. Both algorithms use an
interesting and powerful relation between this problem and Exact 3-Satisfiability.
We will use this relation not only to give fast exponential-time algorithms, but also
to prove that, assuming the Exponential-Time Hypothesis, no subexponential-time
algorithms for this problem can exist.

We first introduce the Partition Into Triangles and Exact 3-Satisfiability

problems and survey known results in Section 4.1. Then, we give a linear-time algo-
rithm for Partition Into Triangles on graphs of maximum degree three in Sec-
tion 4.2. Thereafter, we focus on the relation between Partition Into Triangles

on graphs of maximum degree four to and Exact 3-Satisfiability in Section 4.3.
We use this relation to prove our hardness results in Section 4.4 and to give a simple
O(1.02445n)-time algorithm for Partition Into Triangles in Section 4.5. In the
appendix, one can find the slightly faster O(1.02220n)-time algorithm.

4.1. Partition Into Triangles and Exact Satisfiability

The Partition Into Triangles problem is a classical NP-complete problem [162].
Let us first define the problem and then survey some previous results. Recall that a
triangle in a graph is a set of three vertices that are pairwise joined by an edge.

Partition Into Triangles

Input: A graph G = (V,E).
Question: Can V be partitioned into 3-element sets S1, S2, . . . , S∣V ∣/3 such

that for each Si the graph G[Si] is a triangle?

A partitioning of the vertices of G into 3-element vertex set S1, S2, . . . , S∣V ∣/3 that each
form a triangle is also called a triangle partition of G.

On general graphs, Partition Into Triangles can be solved using inclusion/ex-
clusion [33] in O(2nnO(1)) time and polynomial space (similar to Corollary 2.20).
This was recently improved by Koivisto [208] who has given a general covering al-
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gorithm that can be used to solve the problem in O(1.7693n) time and space. Also,
Björklund [26] has given a general randomised partitioning algorithm that can be used
to solve the problem in O(1.496n) time and polynomial space while having a probabi-
lity of failure that is exponentially small in n. On bounded-degree graphs, we do not
know of any results besides the hardness result of Kann: he proved that the optimi-
sation variant (find a packing consisting of a maximum number of triangles in G) is
Max-SNP-complete on graphs of maximum degree at least six [198].

The second problem that we consider in this chapter is Exact 3-Satisfiability.
This problem is a variant of 3-Satisfiability where a clause is satisfied if and only
if exactly one literal in the clause is set to True.

Exact 3-Satisfiability

Input: A set of clauses C with each clause of size at most three using a
set of variables X.

Question: Does there exist a truth assignment of the variables X such that
each clause in C contains exactly one true literal?

The problem Exact Satisfiability is defined similarly by omitting the requirement
on the input that clauses must have size at most three.

For both the Exact Satisfiability and the Exact 3-Satisfiability problem
there exists a long series of papers giving fast exponential-time algorithms. The first
non-trivial algorithm for Exact Satisfiability is due to Schroeppel and Shamir
and runs in O∗(2

n
2 ) time and O∗(2

n
4 ) space [283]. This was already improved in

1981 by Monien et al. to O(1.1844n) [240]. However, many authors seem to have
missed this paper as they published algorithms with slightly worse upper bounds on
the running time [94, 118]. The currently fastest algorithm for this problem is due
to Byskov et al. and runs in O(1.1749n) time. When the number of clauses m is
used as the complexity parameter, there exists an unpublished algorithm by Skjernaa
using O∗(2m) time and space, and an O∗(m!)-time and polynomial-space algorithm by
Madsen [232]. These results were improved by Björklund and Husfeldt who gave an
O(2m)-time and polynomial-space algorithm [27].

The first improvement for Exact 3-Satisfiability is an O(1.1545n)-time algo-
rithm due to Drori and Peleg [118]. This was later improved by Porschen et al. [255],
by Kulikov [215], and Byskov et al. [67]. The currently fastest algorithm is due to
Wahlström and runs in O(1.0984n) time and polynomial space [315].

4.2. A Linear-Time Algorithm on Graphs of Maximum
Degree Three

We begin by considering Partition Into Triangles on graphs of maximum degree
three. We will prove that this problem is polynomial time solvable on this class of
graphs by giving a linear-time algorithm: Algorithm 4.1.

Lemma 4.1. Let G = (V,E) be an instance of Partition Into Triangles restricted
to graphs of maximum degree d containing a vertex v of degree at most two. In
constant time, we can either decide that G is a No-instance, or transform G into an
equivalent smaller instance.
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Figure 4.1. Possible edges within the neighbourhood of a vertex in a cubic graph.

Proof. If v has degree at most one, then this vertex cannot be in any triangle and
the instance is a No-instance. Otherwise, let u, w be the neighbours of v. As G is
of constant maximum degree, we can test in constant time whether (u,w) ∈ E. If
(u,w) ∈ E, then {u, v, w} is the unique triangle containing v, and we remove this
triangle from G to obtain a smaller equivalent instance. If (u,w) ∕∈ E, then v is not
part of any triangle, and we again have a No-instance.

Theorem 4.2. Algorithm 4.1 solves Partition Into Triangles on graphs of maxi-
mum degree three in linear time.

Proof. For correctness, we note that the number of vertices must be a multiple of three
in order to partition G into triangles. Consider the tree cases in the if-statement in
the main loop of the algorithm. Correctness of the first case follows from Lemma 4.1.
For the other two cases, we observe that any local neighbourhood of v must equal
one of the four cases in Figure 4.1. In Case 1, no triangle containing v exists, and, in
Cases 3 and 4, the fact that G is cubic would mean that removing any triangle leads
to vertices of degree at most 1 which can no longer be in a triangle. Hence, these are
all No-instances. In Case 2, v can only be part of one triangle, which Algorithm 4.1
determines.

Each iteration of the main loop requires constant time, since inspecting a neighbour-
hood in a cubic graph can be done in constant time. In each iteration, Algorithm 4.1
either terminates, or removes three vertices from G. Hence, there are at most a linear
number of iterations and Algorithm 4.1 runs in linear time.

Algorithm 4.1. A linear-time algorithm for graphs of maximum degree three.

Input: a graph G = (V,E) of maximum degree three
Output: a triangle partition T of G or falseif no such partition exists
1: if ∣V ∣ is not a multiple of three then return false
2: while G is non-empty do
3: Take any vertex v ∈ V
4: if N [v] contains a vertex of degree at most two then
5: Reduce the graph using Lemma 4.1; if a triangle is determined, add it to T
6: else if N [v] corresponds to Cases 1, 3, or 4 of Figure 4.1 then
7: return false
8: else // Case 2 of Figure 4.1
9: Add the triangle in N [v] to T and remove its vertices from G

10: return T
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Figure 4.2. Reducing an instance with a degree three vertex by merging its
neighbours.

4.3. The Relation Between Partition Into Triangles on
Graphs of Maximum Degree Four and Exact 3-
Satisfiability

When we restrict the Partition Into Triangles problem to graphs of maximum
degree four, an interesting relation with Exact 3-Satisfiability can be observed.
This relation will be the topic of this section.

We will first give three lemmas used to either decide that an instance of Partition

Into Triangles on graphs of maximum degree four is a No-instance, or that it can
be reduced to an equivalent smaller instance. These lemmas will apply to any instance
unless all vertices in the instance have a local neighbourhood that is identical to one
of two possible options. If we cannot reduce an instance in this way, pairs of vertices
with one of these local neighbourhoods can be interpreted as a clause of size three in
which exactly one variable must be set to True. The variables are then represented by
connected series of vertices that each have the other remaining local neighbourhood.
These variable can be set to True or False depending on in which of the two possible
ways the corresponding connected series of vertices will be partitioned into triangles.
In this way, remaining instances can be interpreted as an Exact 3-Satisfiability

instance.

Lemma 4.3. Let G be an instance of Partition Into Triangles of maximum degree
four with a vertex v of degree at most three. In constant time, we can either decide
that G is a No-instance, or obtain an equivalent smaller instance.

Proof. We can assume that v has degree three: otherwise we apply Lemma 4.1.
Similar to in the proof of Theorem 4.2, the local neighbourhood of v corresponds to

one of the four cases in Figure 4.1. If this neighbourhood corresponds to Case 1, then
all edges incident to v are not part of any triangle. If this neighbourhood corresponds
to Case 2, then the edge between v and the bottom vertex is not part of any triangle.
In these two cases, we remove these edges and apply Lemma 4.1 to v, which now has
degree at most two. If this neighbourhood corresponds to Case 4, then, since G is of
maximum degree four, selecting any triangle in the solution results in the creation of a
vertex of degree at most one: we can conclude that we have a No-instance. The same
holds for Case 3 unless the vertices a and b (see Figure 4.2) are of degree four.

In this last case, we reduce the graph as in Figure 4.2. Either vertex a or vertex b
must be in a triangle with u and v. If we take the triangle {a, u, v} in a solution, then b
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must be in a triangle with its other two neighbours; the same goes if we switch the
roles of a and b. We distinguish three subcases depending on the number of common
neighbours of a and b.

Case 1. Let a and b have no other common neighbours than u and v. Observe
that an edge between a neighbour of a and a neighbour of b outside the shown part
of the graph cannot be in a triangle in any solution: we such edges if any exist. Next,
we merge the vertices a and b to a single vertex and remove both u and v. Now, the
new vertex is part of only two different triangles, and both possibilities corresponds to
taking one of the two possible triangles containing v in the original graph. Also, no
extra triangles are introduced as we have removed the edge between the neighbours of
the merged vertices. We conclude that the new smaller instance is equivalent.

Case 2. Let a and b have exactly three common neighbours, and let w be this third
common neighbour. We must pick a triangle with u, v and either a or b. Consequently,
the two edges incident to a and not incident to u or v can be removed if they are not
on a common triangle together. If we do so, we obtain a vertex of degree two and can
apply Lemma 4.1. The same holds for the two edges incident to b and not incident
to u or v. Hence, we can assume that both a and b lie on a triangle with their third
common neighbour w. Moreover, depending on which vertex from a and b we pick in
a triangle with u and v, the other must be in a triangle with w. Now, we remove u
and v and merge a and b to a single vertex and remove double edges. In the new
instance, the edge between the merged vertex and w can be in two triangles and the
choice corresponds directly to either taking the triangle u, v, a and the triangle with b
and w, or taking the triangle u, v, b and the triangle with a and w.

Case 3. Let a and b have four common neighbours, called u, v, w and x. Again,
the two pairs of edges incident to a and b not incident to u and v must be pairwise in
triangles or we can remove them and apply Lemma 4.1. In the remaining case, each
of these pairs of edges forms a triangle with the edge between w and x. Now, we must
either pick the triangles u, v, a and b, w, x or we must pick u, v, b, and a, w, x. Both
options involve the same vertices, hence we can remove these to obtain an equivalent
smaller instance.

As a result, we can reduce any instance of maximum degree four that is not 4-
regular. In a 4-regular graph, a vertex v can have a number of possible local neigh-
bourhoods, all shown in Figure 4.3. We will now show that we can reduce any instance
having a vertex whose local neighbourhood does not correspond to one of two specific
local neighbourhoods: Cases 2b and 3a from Figure 4.3.

Lemma 4.4. Let G be a 4-regular instance of Partition Into Triangles containing
a vertex v whose local neighbourhood is different from Cases 2b, 3a and 3b in Fig-
ure 4.3. In constant time, we can either decide that G is a No-instance, or we can
transform G into an equivalent smaller instance.

Proof. Consider the possible local neighbourhoods of v shown in Figure 4.3.
If the local neighbourhood of v equals Case 0, 1, 2a, or 3c, then v is incident to

an edge that is not part of any triangle in G because there exists an edge incident
to v from which both endpoints do not have a common neighbour. For these cases, we
remove the edge and apply Lemma 4.3 to v. If this local neighbourhood equals Case 5
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Figure 4.3. Possible edges within the local neighbourhood of a degree four vertex.
The numbering corresponds to the number of edges between the neighbours of v.

or 6, then we have a No-instances since picking any triangle containing v results in a
vertex of degree at most one.

Next, we consider the remaining two Cases: 4a, and 4b.
Case 4a: Consider the edge from the top left vertex to the bottom right vertex.

This edge is part of two triangles, one with the centre vertex v and one with the
top right vertex. If we would take any of these two triangles in the solution, a vertex
of degree at most one remains. Hence, this edge cannot be part of a triangle in the
solution and we can apply Lemma 4.3 after removing this edge.

Case 4b: Consider one of the four edges in N [v] not incident to v, say the edge
between the top two vertices. This edge is part of one or two triangles, one with v,
and one with a possible third vertex outside of N [v]. Assume that we take the triangle
with this edge and v in a solution, then the remaining two vertices will get degree
two and thus they can be only in a triangle together and with a common neighbour.
Hence, for each of the four edges in N [v], we remove it if the endpoints of both the
edge and the opposite edge (edge between the other two vertices in N [v] ∖ {v}) have
no common neighbour except for v.

Note that there is no instance in which all four edges remain since each of the four
corner vertices has only one neighbour outside of N [v]. Hence there can be at most two
such common neighbours, and if there are two then they must involve the endpoints
of opposite edges. We can now apply Lemma 4.3.

Having reduced the number of possible local neighbourhoods of a vertex in an
instance to three, we now remove one more such possibility.

Lemma 4.5. Let G be a 4-regular instance of Partition Into Triangles in which
the local neighbourhood of each vertex equals Case 2b, 3a or 3b in Figure 4.3. Then,
vertices whose local neighbourhood equal Case 3b form separate connected components
in G. In linear time, we can either decide that G is a No-instance, or remove these
components to obtain an equivalent smaller instance.

Proof. Let v be a vertex whose local neighbourhood corresponds to Case 3b of Fig-
ure 4.3. Let u be the top left vertex in this picture and consider the local neighbour-
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Figure 4.4. A connected component with all local neighbourhoods equal to
case 3b of Figure 4.3.

hood of u. This neighbourhood cannot equal Case 2b of Figure 4.3 as it contains one
vertex adjacent to two other vertices in the neighbourhood. The neighbourhood can
also not equal Case 3a, since v is of degree four and thus cannot have an extra edge
to the neighbour of u outside N [v]. We conclude that the local neighbourhood of u
must equal that of Case 3b in Figure 4.3. Thus, the top two vertices have a common
neighbour outside N [v].

We can repeat this argument and apply it to u to conclude that the top right vertex
in the picture w also has the same local neighbourhood. This shows that w and the
new vertex created in the previous step must have another common neighbour. In
this way, we conclude that every vertex in the connected component containing v has
this local neighbourhood. An example of such a connected component can be found
in Figure 4.4.

It is not hard to see that such a connected component can be partitioned into
triangles if and only if its number of vertices is a multiple of three. Therefore, we can
decide that we have a No-instance if this is not the case, and otherwise we can remove
it in linear time to obtain an equivalent smaller instance.

Let a reduced instance of Partition Into Triangles on maximum degree four
graphs be an instance to which Lemmas 4.3, 4.4 and 4.5 do not apply, i.e., an instance
in which each local neighbourhood corresponds to Case 2b or 3a in Figure 4.3.

Let v be a vertex in a reduced instance whose neighbourhood equals Case 3a. Note
that v has one neighbour with the same neighbourhood and it has three neighbours
whose neighbourhoods are equal to Case 2b. We refer to a pair of two vertices which
have the neighbourhood of Case 3a as a fan. And, we refer to adjacent series of vertices
with local neighbourhood equals Case 2b as a cloud of triangles. See Figure 4.5.

Figure 4.5. A fan and a cloud, with the two ways in which the cloud can be
partitioned into triangles.
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Observe how these reduced instances can be partitioned into triangles. In a fan,
we must select a triangle containing the middle two vertices and exactly one of the
three vertices on the boundary. In a cloud, each triangle is either selected or all
its neighbouring (cloud or fan) triangles are selected. Hence, adjacent triangles will
alternate between being selected and not being selected in a triangle partition of a
cloud; see Figure 4.5. If such a series of adjacent triangles forms a cycle consisting
of an odd number of these triangles, then the instance is a No-instance since an odd
length series cannot alternate between being selected and not being selected. If a
cloud does not have such an odd cycle of adjacent triangles, then it has two groups of
boundary vertices connecting it to fans: in any solution all fan triangles connected to
one group will be selected and all fan triangles connected to the other group will not
be selected (see also Figure 4.5). The only exception to this is the single vertex cloud
that directly connects two fans; here the single vertex is in both groups of endpoints.

Now, the relation between Partition Into Triangles on graphs of maximum
degree four and Exact 3-Satisfiability emerges. Namely, we can interpret a reduced
instance of Partition Into Triangles on graphs of maximum degree four as an
Exact 3-Satisfiability instance in the following way. We interpret a fan as a
clause containing three literals which corresponding variables are represented by the
clouds adjacent to this fan. Exactly one fan triangle must be selected and this choice
determines exactly which triangles in the adjacent clouds will be selected. In this
way, we interpret a cloud as a variable that can be set to True or False. Both truth
assignments correspond to one of the two possible ways to partition the cloud into
triangles. If we fix one of the two possible ways to partition a cloud into triangles
and let the corresponding truth value of the corresponding variable by the value True,
then we can define the positive and negative literals of this variable. Namely, if this
partitioning of the cloud into triangles forces that a triangle from a fan is selected, then
the literal corresponding to this occurrence of the variable in the clause is a positive
literal. Otherwise, this occurrence of the variable in the clause is a negative literal.

Notice that if we had fixed the other possible ways to partition a cloud into triangles,
then this would result in the same instance of Exact 3-Satisfiability that we would
get from the above procedure only with the sign of all literals of this variable flipped.
It is not hard to see that this Exact 3-Satisfiability interpretation of a reduced
instance is satisfiable if and only if the partition into triangles instance has a solution.

An Exact 3-Satisfiability instance obtained in this way can have multiple iden-
tical clauses. We will now prove that if we count copies of identical clauses separately,
then an instance that is obtained in this way satisfies Property 4.6. We remind the
reader that f(x) denotes the number of occurrences (frequency) of the variable x,
and that f+(x), f−(x) denote the number of positive or negative occurrences of x,
respectively.

Property 4.6. For any variable x, the number of positive f+(x) and negative f−(x)
literals differ by a multiple of three.

Proposition 4.7. An Exact 3-Satisfiability instance obtained in the above way
from an instance of Partition Into Triangles satisfies Property 4.6.

Proof. Let x be any variable in the Exact 3-Satisfiability instance. Consider the
cloud that represents x, and let t+ and t− be the number of triangles selected this
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cloud when x is set to True or False, respectively. A cloud has a fixed number of
vertices and for each corresponding truth assignment each vertex is either selected in
a triangle or part of a corresponding literal, thus: 3t+ + f+(x) = 3t− + f−(x). Hence,
f+(x) ≡ f−(x) (mod 3).

The following lemma shows how we can model Exact 3-Satisfiability instances
by reduced instances of Partition Into Triangles on graphs of maximum degree
four.

Lemma 4.8. Any variable x satisfying Property 4.6 can be represented by a cloud.
Such a cloud consists of 2f(x)− 3 vertices.

Proof. Without loss of generality, let f+(x) > 0, and define F (x) = (f+(x), f−(x)).
Notice that the single vertex cloud corresponds to F (x) = (1, 1), a single triangle
corresponds to F (x) = (3, 0), two adjacent triangles corresponds to F (x) = (2, 2), and
a chain of four triangles corresponds to F (x) = (3, 3).

These small clouds can be extended to larger clouds that correspond to any com-
bination F (x) = (f+(x), f−(x)) with f+(x) ≡ f−(x) (mod 3) by repeatedly increasing
f+(x) or f−(x) by three in the following way. Take three triangles that are adjacent
in the sense that two triangles are connected to the third triangle through having one
common vertex. Now, identify the third vertex of the middle triangle with a vertex v
that could be connected to a fan in the cloud that we are enlarging. This vertex can
now no longer be connected to a fan, but four new such vertices that can be connected
to fans are added. Furthermore, these vertices will be in a triangle with the adjacent
fan if and only if the vertex v would be in such a triangle before we enlarged the cloud.
Therefore, this construction increases the number of positive or negative literals of the
variable represented by the cloud by three.

One easily checks that the statement on the number of vertices holds for the initial
cases and is maintained every time three triangles are added.

We conclude by formally expressing the relation between Partition Into Tri-

angles on graphs of maximum degree four and Exact 3-Satisfiability. The proof
of the resulting theorem directly follows from the above results.

Theorem 4.9. There exist linear-time transformations between Partition Into Tri-

angles on graphs of maximum degree four and Exact 3-Satisfiability restricted
to instances that satisfy Property 4.6 such that the following holds:

1. Any given instance is equivalent to its transformed instance.

2. An Exact 3-Satisfiability instance with variable set X and clause set C

obtained from an n-vertex Partition Into Triangles instance of maximum
degree four satisfies: 2∣C∣+∑x∈X (2f(x)− 3) ≤ n.

3. A Partition Into Triangles instance on n vertices obtained from an Exact

3-Satisfiability instance satisfying Property 4.6 with variable set X and clause
set C satisfies: 2∣C∣+∑x∈X (2f(x)− 3) = n.
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4.4. Hardness Results for Graphs of Maximum Degree
Four

Having formalised the relation between Partition Into Triangles on graphs of
maximum degree four and Exact 3-Satisfiability, we are now ready to prove some
hardness results. In this section, we will show that Partition Into Triangles

on graphs of maximum degree four is NP-complete, and that no subexponential-time
algorithm for this problem exists unless the Exponential-Time Hypothesis (ETH) fails.

Theorem 4.10. Partition Into Triangles on graphs of maximum degree four is
NP-complete.

Proof. Clearly, the problem is in NP. For hardness, we reduce from the NP-complete
problem Exact 3-Satisfiability [162]. Given an Exact 3-Satisfiability instance,
we enforce Property 4.6 by making three copies of each clause. Then, the result follows
from Theorem 4.9.

Next, we show that no subexponential-time algorithm for our problem exists. We
note that although we prove that, under the ETH, no algorithm subexponential in n
exists, this also implies that no algorithm subexponential in m exists as m = O(n) on
bounded-degree graphs.

Theorem 4.11. Assuming the ETH, there exists no algorithm for Partition Into

Triangles on graphs of maximum degree four with a running time subexponential
in n.

Proof. Consider an arbitrary 3-Satisfiability instance with m clauses. We create an
equivalent Exact 3-Satisfiability instance with 4m clauses by using the equivalence
from [275] shown below. To avoid confusion, we now denote a 3-Satisfiability clause
with literals x, y, and z by SAT(x, y, z) and a similar Exact 3-Satisfiability clause
with literals x, y, and z by XSAT(x, y, z).

SAT(x, y, z) ⇐⇒ XSAT(x, v1, v2) ∧XSAT(y, v2, v3)

∧XSAT(v1, v3, v4) ∧XSAT(¬z, v2, v5)

We then transform this Exact 3-Satisfiability instance into an equivalent in-
stance of Partition Into Triangles of maximum degree four using the construction
in the proof of Theorem 4.10. This construction triples the number of clauses to 12m,
and thus the total sum of the number of literal occurrences is at most 36m. By
Lemma 4.8, variables x can be represented by clouds using less than 2f(x) vertices
each. This gives at most 96m vertices: 72m for the variables and another 24m for the
two vertices of a fan for each clause.

Suppose there exists a subexponential-time algorithm for Partition Into Tri-

angles on graphs of maximum degree four, i.e, an O(2�n)-time algorithm for all � > 0.
Then, this algorithm solves 3-Satisfiability in O(2�m) for all � > 0 using the above
construction and � = �/96. However, assuming the ETH, no such algorithm can exist
by the sparsification lemma [189] (Lemma 3.12).
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4.5. A Very Fast Exponential-Time Algorithm

In the previous section, we have given two hardness results for Partition Into Tri-

angles on graphs of maximum degree four. Despite these results, this problems seems
to admit very fast, though exponential-time, algorithms.

In this section, we give a simple O(1.02445n)-time algorithm for this problem based
on the algorithm for Exact Satisfiability by Byskov et al. [67] and the algorithm
for Exact 3-Satisfiability by Wahlström [315]. In Appendix A.1, we also give a
faster O(1.02220n)-time algorithm. This algorithm is based on the same principles as
the one in Theorem 4.12 but uses an extensive case analysis.

Theorem 4.12. There exists an O(1.02445n)-time algorithm for Partition Into Tri-

angles on graphs of maximum degree four.

Proof. Use Theorem 4.9 to obtain an instance of Exact 3-Satisfiability with var-
iable set X and clause set C satisfying n ≥ 2∣C∣ +∑x∈X (2f(x)− 3). Let 
1 be the
number of variables x with f+(x) = f−(x) = 1 and let 
3 be the number of variables x
with f(x) ≥ 3; by Property 4.6 the total number of variables 
 equals 
1 + 
3. Since
clauses have size three, we find that n ≥ 2(2
1 + 3
3)/3 + 
1 + 3
3 = 2 1

3
1 + 5
3.
If 
1 ≤ 0.10746n, then apply Wahlström’s O(1.0984
)-time algorithm for Exact

3-Satisfiability [315]. Now, 
 = 
1 + 
3 ≤ 0.10746n + (n − 2 1
3 × 0.10746n)/5 <

0.25732n by basic calculus. Therefore, the problem is solved by this algorithm in
O(1.09840.25732n) = O(1.02445n) time.

Otherwise 
1 > 0.10746n. In this case, we first reduce the instance in polyno-
mial time removing all variables x with f+(x) = f−(x) = 1 by using the following
equivalence where C and C ′ are arbitrary sets of literals and Φ denotes any Exact

Satisfiability formula:

(x,C) ∧ (¬x,C ′) ∧ Φ ⇐⇒ (C,C ′) ∧ Φ

Hereafter, we apply the O(20.2325
) Exact Satisfiability algorithm from Byskov et
al. [67]. This algorithm now solves our instance in O(1.1749
3) = O(1.02445n) time as

3 ≤ (n− 2 1

3 × 0.10746n)/5 < 0.14986n by basic calculus.

Theorem 4.13. There exists an O(1.02220n)-time algorithm for Partition Into Tri-

angles on graphs of maximum degree four.

Proof. See Appendix A.1.

4.6. Concluding Remarks

In this chapter, we have given some results on Partition Into Triangles restricted
to bounded-degree graphs. We have given a linear-time algorithm on graphs of maxi-
mum degree three. Our main result was an O(1.02220n)-time algorithm on graphs of
maximum degree four. This algorithm uses an interesting relation between Partition

Into Triangles on graphs of maximum degree four and Exact 3-Satisfiability; a
relation that we also used to give a number of hardness results on the studied problem.



4.6. Concluding Remarks 65

Our algorithm is an example of a ‘very fast’ exponential-time algorithm. This
in the sense that it has a singly-exponential running time with a very small base of
the exponent when compared to exact exponential-time algorithms in the literature.
The algorithm can be used to solve the problem in practice, even on reasonably large
instances. This is because the running time of O(1.02220n) does not involve any large
constant, or even polynomial, factors hidden in the big-O notation.

It would be interesting to see whether there exist more natural1 problems for which
similar (possibly even faster) ‘very fast’ exact exponential-time algorithms exist.

1See the discussion in the introduction of this chapter.
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5
Designing Algorithms for

Dominating Set

An important paradigm for the design of exact exponential-time algorithms is branch
and reduce, first used in 1960 for solving Satisfiability problems by Davis and
Putnam [101, 102]. A recent breakthrough in the analysis of branch-and-reduce al-
gorithms is measure and conquer [144]. The measure-and-conquer approach helps
to obtain good upper bounds on the running times of branch-and-reduce algorithms,
often improving upon the currently best-known bounds for exact exponential-time al-
gorithms. It has been used successfully on many problems and has become one of the
standard techniques in the field.

In this chapter, we will use the measure-and-conquer approach in a step-by-step
process to design exact exponential-time algorithms for the Dominating Set problem.
We will do so in the following way. Measure and conquer uses a non-standard size
measure for instances. This measure is based on weight vectors that are computed by
solving a numerical optimisation problem. Analysis of the solution of this numerical
optimisation problem not only yields an upper bound on the running time of the
algorithm, but also gives information on which instances are worst-case instances with
respect to the analysis. This information can then be used to design new reduction
rules. We add these new reduction rules to the branch-and-reduce algorithm, possibly
improving the algorithm. In the next step of our step-by-step design process, we repeat
this procedure by analysing and improving the modified algorithm.

We apply this step-by-step process to Set Cover instances that are equivalent

†This chapter is joint work with Hans L. Bodlaender. This research started in my master’s
thesis [299] supervised by Hans L. Bodlaender, INF/SCR-2006-005. Several results have been added
and corrected since. The chapter contains results of which a preliminary version has been presented at
the 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008) [304].
The full version is also available as technical report UU-CS-2009-025 [304].
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to instances of the Dominating Set problem. This is done in exactly the same way
as the setting in which measure and conquer was first introduced [141]. If we start
with the trivial algorithm, then we can obtain the O(1.5263n)-time algorithm that
Fomin et al. used to introduce measure and conquer after a number of steps [141, 144].
After additional steps, we obtain a faster algorithm: an O(1.4969n)-time algorithm for
Dominating Set. For this algorithm, we show that it cannot be improved significantly
by performing additional improvement steps in the same way as used to obtain this
algorithm.

We first repeat some basic definitions on Dominating Set and survey known
results in Section 5.1. In Section 5.2, we give a short introduction to the measure-and-
conquer technique. Then, we give a detailed step-by-step overview of how we design
an algorithm for Dominating Set using measure and conquer in Section 5.3. In this
section, we also prove that there exists an O(1.4969n)-time algorithm for Dominating

Set, although the case analysis involved is moved to Appendix A.2. We also give some
intuition that it is hard to improve our algorithm significantly using the same approach
in Section 5.4. In Section 5.5, we show that the same algorithm can be used to solve
some other problems as well, both in the field of exact exponential-time algorithms
and the field of parameterised algorithms. We conclude in Section 5.6 by giving some
remarks on how to solve the associated numerical optimisation problems.

5.1. Dominating Set

Let us first recall the definition of Dominating Set and then survey some previous
results. A subset D ⊆ V of the vertices of a graph G is called a dominating set if every
vertex v ∈ V is either in D or adjacent to some vertex in D, i.e., a dominating set D
is a set of vertices in G such that

∪

v∈D N [v] = V . A dominating set in G is called a
minimum dominating set if it is of minimum cardinality.

Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a dominating set D ⊆ V in G of size at most k?

The Dominating Set problem is a classical NP-complete problem [162]. More-
over, there exists no subexponential-time algorithm for this problem unless the Expo-
nential-Time Hypothesis fails. A proof of this can be found in [151], and it is also a
direct consequence of Proposition 5.3.

While for several classical combinatorial problems the first non-trivial exact algo-
rithms date from many years ago, the first algorithms with running time faster than
O∗(2n) for Dominating Set are from 2004. In this year, there were three independent
papers giving faster algorithms for the problem: one by Fomin et al. [151], one by
Randerath and Schiermeyer [279], and one by Grandoni [172]. Before our work, the
fastest algorithms for Dominating Set were by Fomin, Grandoni, and Kratsch [144]:
they gave two algorithms, one using O(1.5260n) time and polynomial space, and one
using O(1.5137n) time and exponential space. See Table 5.1 for an overview of recent
results on this problem.
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Authors Polynomial space Exponential space

Fomin, Kratsch, Woeginger [151] O(1.9379n)
Randerath and Schiermeyer [279] O(1.8899n)
Grandoni [172] O(1.9053n) O(1.8021n)
Fomin, Grandoni, Kratsch [142] O(1.5263n) O(1.5137n)
van Rooij [299] O(1.5134n) O(1.5086n)
van Rooij, Bodlaender [302] O(1.5134n) O(1.5063n)

van Rooij, Nederlof, van Dijk [307]† O(1.5048n)
This chapter O(1.4969n) ⇐=
† See also Chapter 8.

Table 5.1. Known exact exponential-time algorithms for Dominating Set.

5.1.1. Set Cover and Dominating Set

We will often use the following Set Cover modelling of Dominating Set. This
modelling is useful in the design of algorithms with running times faster than O∗(2n)
for Dominating Set, a fact that was first observed by Grandoni [172]. This modelling
is the basis of most exact exponential-time algorithms for Dominating Set (all except
the first two in the overview of Table 5.1) and will be used often throughout this thesis.

Recall that, given a multiset of sets S over a universe U, a set cover C of S is a
subset C ⊆ S such that every element in any of the sets in S occurs in some set in C.
I.e., a set cover C of S is a collection of sets such that

∪

S∈C
S =

∪

S∈S
S = U. A set

cover C is called a minimum set cover if it is of minimum cardinality.

Set Cover

Input: A multiset of sets S over a universe U(S) and an integer k ∈ ℕ.
Question: Does there exist a set cover C ⊆ S of size at most k?

Also, recall that the frequency of an element e is denoted by f(e), and the set of all
elements in S that contain e by S(e) = {S ∈ S ∣ e ∈ S}, thus, f(e) = ∣S(e)∣.

We can reduce Dominating Set to Set Cover by introducing a set for each
vertex of G containing the closed neighbourhood of this vertex, i.e., S :={N [v] ∣ v∈V },
U := V . Hence, we can solve an instance of Dominating Set on an n-vertex graph
by a using a set-cover algorithm running on an instance with n sets and a universe of
size n.

5.2. Measure and Conquer

In the design of exact exponential-time algorithms, the branch-and-reduce paradigm
is one of the most prominently used approaches; see Section 2.1. A breakthrough in
the analysis of branch-and-reduce algorithms is the measure-and-conquer technique by
Fomin, Grandoni, and Kratsch [144]. This follows earlier work by Eppstein on ana-
lysing branch-and-reduce algorithms by multivariate recurrences [124]. In a measure-
and-conquer analysis, a carefully chosen non-standard measure of instance or subprob-
lem size is used. This stands in contrast to classic analyses relying on simple, mostly
integer measures for the size of an instance, e.g., the number of vertices in a graph.
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The first problem to which the measure-and-conquer technique has been applied
is Dominating Set [141, 144]. In these papers, the authors present an algorithm for
Set Cover. This algorithm is then applied to instances obtained by transforming an
n-vertex Dominating Set instance into an equivalent Set Cover instance on n sets
over a universe of size n. The algorithm is analysed using the following measure k,
where v and w are weight functions giving an element e of frequency f(e) measure
v(f(e)) and a set S of size ∣S∣ measure w(∣S∣).

k := k(S,U) =
∑

e∈U

v(f(e)) +
∑

S∈S

w(∣S∣) with: v, w : ℕ → ℝ+

The behaviour of the algorithm is analysed using this measure. For each branching rule,
a series of recurrence relations is formulated corresponding to all possible situations
the branching rule can be applied to.

Let N(k) be the number of subproblems generated by a branch-and-reduce algo-
rithm applied to an instance of measure k. Furthermore, let R be a set of cases con-
sidered by the branch-and-reduce algorithm covering all possible situations in which
the algorithm can branch. For any such case r ∈ R, we denote by #(r) the number of
subproblems generated when branching in case r, and by Δk(r,i) the decrease of the
measure k for the i-th subproblem after branching in case r. Similar to the analysis
in Section 2.1, we thus obtain a series of recurrence relations of the form:

∀r ∈ R : N(k) ≤
#(r)
∑

i=1

N
(

k −Δk(r,i)
)

We will often identify R with the set of corresponding recurrences.
A solution to this set of recurrence relations has the form �k, for some � > 1.

This gives an upper bound on the running time of the branch-and-reduce algorithm
expressed in the measure k. Assume that vmax = maxn∈ℕ v(n), wmax = maxn∈ℕ w(n)
are finite numbers. Then, �(vmax+wmax)n is an upper bound on the running time of the
algorithm for Dominating Set since, for every input instance (S,U), we have that
k(S,U) ≤ (vmax + wmax)n and thus �k(S,U) ≤ �(vmax+wmax)n.

What remains is to choose ideal weight functions: weight functions that minimise
the proven upper bound on the running time of the algorithm, i.e., weight functions
that minimise �vmax+wmax . This gives rise to a large numerical optimisation prob-
lem. Under some assumptions on the weight functions (see Sections 5.3 and 5.6 for
more details), this gives a large but finite quasiconvex optimisation problem. Such a
quasiconvex problem can be solved by computer; see [124]. In our case, the numerical
optimisation problem is not always a quasiconvex program. Details on how we solved
the associated numerical optimisation problems can be found in Section 5.6.

In this way, Fomin, Grandoni and Kratsch [144] prove a running time of O(1.5263n)
on an algorithm that is almost identical to the O(1.9053n)-time algorithm in [172].
See Section 5.3 for concrete examples of measure-and-conquer analyses on simple al-
gorithms for the Set Cover problem.

Although relatively new, the measure-and-conquer technique has become one of
the standard approaches in the field. Examples of results using this approach in-
clude Dominating Set [144], Independent Set [59, 144] (Chapter 7), Dominating

Clique [54, 214], Connected Dominating Set [133, 143] (although these results
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New reduction rule Section Running Time
Trivial algorithm 5.3.1 O∗(2n)
Unique element rule 5.3.2 O(1.7311n)
Stop when all sets have cardinality one 5.3.3 O(1.6411n)
Subset rule 5.3.4 O(1.5709n)
Stop when all sets have cardinality two 5.3.5 O(1.5169n)
Subsumption rule 5.3.6 O(1.5134n)
Counting rule 5.3.7 O(1.5055n)
Size two set with only frequency-two elements rule 5.3.8 O(1.4969n)

Table 5.2. The iterative improvement of the algorithm.

were improved without using measure and conquer in [1]), Independent Dominat-

ing Set [56, 166], Edge Dominating Set [303] (Chapter 6), Feedback Vertex

Set [136], bounding the number of minimal dominating sets [146], and many others.
Also, a direct application in the field of parameterised algorithms has been found [23].
Measure and conquer is one of the techniques that we will often use in Chapters 5-10.

5.3. Designing Algorithms Using Measure and Conquer

In this section, we use the measure-and-conquer technique not only to analyse branch-
and-reduce algorithms, but also to serve as a guiding tool to design these algorithms.
This works in the following way.

Suppose we are given a non-standard measure of instance size using weight func-
tions and some initial branching procedure, i.e. we are given the basic ingredients
of a measure-and-conquer analysis and some trivial algorithm. Then, in an iterative
process, we will formulate a series of branch-and-reduce algorithms. In this series,
each algorithm is analysed using measure and conquer. Hereafter, the associated nu-
merical optimisation problem is inspected, and the recurrence relations that bound
the current optimum (the best upper bound on the running time involving this meas-
ure) are identified. Each of these bounding recurrence relations corresponds to one or
more worst-case instances which can be identified easily. We can use these instances
to design new reduction rules, or change the branching procedure, such that some of
these worst-case instances are handled more efficiently by the algorithm. The modifi-
cation then gives a new, faster algorithm. This improvement series ends when we have
sufficient evidence showing that improving the current worst cases is hard.

In the next subsection, we set up the framework used to analyse our algorithms by
measure and conquer and analyse a trivial algorithm. In each subsequent subsection,
we treat the next algorithm from the series: we analyse its running time and apply an
improvement step, as just described. See Table 5.2 for an overview of the algorithms
in the series and the corresponding upper bounds on the running times.

5.3.1. A Trivial Algorithm

We start with a trivial algorithm for Set Cover: Algorithm 5.1. Given a problem
instance (S,U), this algorithm simply selects a largest set S from S and considers two
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Algorithm 5.1. A trivial set-cover algorithm.

Input: a set cover instance (S,U)
Output: a minimum set cover of (S,U), or false if non exists
MSC(S,U):
1: if S = ∅ then return ∅ if U = ∅, or false otherwise
2: Let S ∈ S be a set of maximum cardinality among the sets in S

3: Let C1 = {S} ∪ MSC({S′ ∖ S ∣ S′ ∈ S ∖ {S}},U ∖ S) and C2 = MSC(S ∖ {S},U)
4: return the smallest set cover from C1 and C2, or false if no set cover is found

subproblems (branches): one in which it takes S in the set cover and one in which it
discards S. In the branch where S is taken in the set cover, we remove S from S, and
we remove all elements in S from U; consequently, we also remove all elements in S
from all sets S′ ∈ S ∖ {S}. In the other branch, we just remove S from S. Then, the
algorithm recursively solves both generated subproblems and returns the smallest set
cover returned by the recursive calls. It stops when there is no set left to branch on;
then, it checks whether the generated subproblem corresponds to a set cover.

We analyse this algorithm using measure and conquer. To this end, let v, w :
ℕ → ℝ+ be weight functions giving an element e of frequency f(e) measure v(f(e))
and a set S of size ∣S∣ measure w(∣S∣), just like in Section 5.2. Furthermore, let
k :=

∑

e∈U
v(f(e)) +

∑

S∈S
w(∣S∣) be our measure.

We start by defining the following very useful quantities:

Δv(i) = v(i)− v(i− 1) Δw(i) = w(i)− w(i− 1) for i ≥ 1

We impose some constraints on the weights. We require the weights to be monotone
and set the weights of sets and elements that no longer play a role in the algorithm to
zero:

v(0) = 0 w(0) = 0 ∀i ≥ 1 : Δv(i) ≥ 0 Δw(i) ≥ 0

Intuitively, this corresponds to the idea that larger sets and higher-frequency elements
contribute more to the complexity of the problem than smaller sets and lower-frequency
elements, respectively. Furthermore, we impose the following non-restricting steepness
inequalities, which we will discuss in a moment:

∀i ≥ 2 : Δw(i− 1) ≥ Δw(i)

Let ri be the number of elements of frequency i in S. In the branch where S is taken
in the set cover, the measure is reduced by w(∣S∣) because we remove S, by

∑∞
i=1 riv(i)

because we remove its elements, and by at least an additional minj≤∣S∣{Δw(j)} ⋅
∑∞

i=1 ri(i − 1) because the removal of these elements reduces other sets in size. In
the other branch, the measure is reduced by w(∣S∣) because we remove S, and by an
additional

∑∞
i=1 riΔv(i) because the frequencies of elements in S are reduced by one.

Let Δktake and Δkdiscard be the decrease in measure k in the branch where we
take S in the solution and where we discard S, respectively. Thus, we have derived
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the following lower bounds on the decrease of the measure:

Δktake ≥ w(∣S∣) +
∞
∑

i=1

riv(i) + Δw(∣S∣)
∞
∑

i=1

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=1

riΔv(i)

Here, we used the steepness inequalities to replace the term minj≤∣S∣{Δw(j)} by
Δw(∣S∣). One can show that these steepness inequalities do not change the solution
to the associated numerical optimisation problem; they only simplify its formulation.
In other words, the steepness inequalities do not influence the computed upper bound
on the running time; they only simplify its computation.

In this way, we find the following set of recurrence relations. Let N(k) be the
number of subproblems generated by branching on an instance of measure k.

∀ ∣S∣ ≥ 1, ∀ ri :

∞
∑

i=1

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Finally, we compute the optimal weight functions minimising �vmax+wmax , where
�k is a solution to the above set of recurrence relations. To make this set of recurrence
relations finite, we first set v(i) = vmax and w(i) = wmax for all i ≥ p for some p ∈ ℕ.
This results in the fact that all recurrence relations with ∣S∣ > p + 1 are dominated
by those with ∣S∣ = p + 1 as Δw(i),Δv(i) = 0 if i ≥ p + 1. Moreover, we now need
to consider only recurrence relations with ∣S∣ =∑p

i=1 ri + r>p where r>p =
∑∞

i=p+1 ri
and r>p has the role of rp+1 in the above formulas. In this chapter, we use p = 8,
but any p > 8 leads to the same results. The choice for p needs to be large enough,
such that the recurrence relations using large sets S or large elements e (with generally
Δw(∣S∣) = 0 and Δv(f(e)) = 0) are not among the tight cases. In this case, the fact
that we make the problem finite does not affect the running time in a negative way.

Notice that if all weights v(i), w(i) are multiplied by a positive real number, then
a different value � will result from the set of recurrence relations. However, it is not
hard to see that, in this case, the value �vmax+wmax will remain the same. Hence, we
can set wmax = 1 without loss of generality1. We will omit these details concerning
finiteness of the numerical optimisation problem in the analyses of the other algorithms
throughout the improvement series in the coming subsections.

We solve the corresponding numerical optimisation problem with continuous var-
iables v(1), v(2), . . . , v(p), w(1), w(2), . . . , w(p) minimising �vmax+wmax where �k is a
solution to the set of recurrence relations. We do so with a C++ implementation
of an algorithm that we designed for this type of numerical optimisation problems.
This algorithm is a modification of Eppstein’s smooth quasiconvex programming al-
gorithm [124] that we describe in Section 5.6. For an alternative way to solve such
numerical problems, see the work of Gaspers and Sorkin [167].

1We could equally well have set vmax = 1 giving the same upper bound on the running time for all
algorithms in the improvement series except for this first algorithm. This is the case since vmax = 0
in this analysis, therefore, the optimal weights cannot be multiplied by a positive real number such
that vmax = 1.
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Using our implementation (see Section 5.6), we obtain a solution of N(k) ≤ 2k

using the following weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
w(i) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

This gives an upper bound on the running time of Algorithm 5.1 of O∗(2(0+1)n
)

=
O∗(2n). All recurrences considered contribute to the bounding cases (worst cases) in
this analysis.

It is no surprise that we obtain a running time of O∗(2n) for this trivial algorithm:
the algorithm branches on all n sets considering two subproblems. We only formally
used measure and conquer here as the optimal weights correspond exactly to the stand-
ard measure: the total number of sets in the instance. The above analysis functions
to set up our algorithm design process.

5.3.2. The First Improvement Step: Unique Elements

We will now give the first improvement step. To this end, we consider the bounding
cases of the numerical optimisation problem associated with the previous analysis.
In this case, all recurrences in the numerical optimisation problem form the set of
bounding cases. At each improvement step in the design process of our algorithm, we
will consider the ‘smallest ’ worst case. With smallest worst case, we mean the worst
case that involves the smallest sets and lowest frequency elements. We note that this
is often not uniquely defined, and that we mean the worst case that intuitively looks
the smallest. This ‘smallest’ worst case from the analysis of Algorithm 5.1 is the case
where ∣S∣ = r1 = 1.

This case can be improved easily. Algorithm 5.1 considers many subsets of the input
multiset S that will never result in a set cover since they cannot cover all elements
in the universe U. More specifically, when considering a set with unique elements
(elements of frequency one), Algorithm 5.1 still branches on this set. This, however,
is not necessary since any set cover includes this set.

In the second algorithm in the series, we add a reduction rule dealing with unique
elements improving, among others, the case ∣S∣ = r1 = 1. This reduction rule takes
any set containing a unique element in the computed set cover.

Reduction Rule 5.1.

if there exists an element e ∈ U of frequency one then
return {R}∪MSC({R′ ∖R ∣ R′ ∈ S∖{R}},U∖R), where R is the set with e ∈ R

We can change the formulation of the algorithm after adding this reduction rule to
it: we no longer need to check whether every computed cover also covers all of U. In
this way, we obtain Algorithm 5.2.

Let us analyse Algorithm 5.2. To this end, we use the same measure as before; only
we add some extra constraints. First of all, we note that the new reduction rule does
not increase the measure when applied to an instance: this is easy to see as Reduction
Rule 5.1 removes sets and elements from the instance without adding any. Secondly,
we note that the new reduction rule can be applied exhaustively in polynomial time.
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Algorithm 5.2. An improved version of Algorithm 5.1 by adding Reduction Rule 5.1.

Input: a set cover instance (S,U)
Output: a minimum set cover of (S,U)
MSC(S,U):
1: if S = ∅ then return ∅
2: Let S ∈ S be a set of maximum cardinality among the sets in S

3: if there exists an element e ∈ U of frequency one then
4: return {R} ∪MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R), where R is such that e ∈ R
5: Let C1 = {S} ∪ MSC({S′ ∖ S ∣ S′ ∈ S ∖ {S}},U ∖ S) and C2 = MSC(S ∖ {S},U)
6: return the smallest set cover from C1 and C2

These two properties not only hold for this reduction rule, but also for the reduction
rules that we will add later. In these future cases, we will omit these observations from
the analysis.

Since unique elements are directly removed from an instance, they do not contribute
to the (exponential) complexity of a problem instance; therefore, we can set v(1) = 0.
Notice that this results in Δv(2) = v(2).

Next, we derive new recurrence relations for Algorithm 5.2. Let Algorithm 5.2
branch on a set S containing ri elements of frequency i. Due to Reduction Rule 5.1,
we now have to consider only cases with ∣S∣ =

∑∞
i=2 ri, i.e., with r1 = 0. In the

branch where Algorithm 5.2 takes S in the set cover, nothing changes to the decrease
in measure. But, in the branch where it discards S, an additional decrease in measure
is obtained when S contains elements of frequency two, that is, when S contains
elements that become unique elements after discarding S. In this case where r2 > 0,
at least one extra set is taken in the set cover. Because of the steepness inequalities
(Δw(i−1) ≥ Δw(i)), the smallest decrease in measure occurs when the one set consists
exactly of all frequency-two elements in S: this one set will have less measure than
multiple smaller sets containing these same elements, and less measure than a larger
set containing additional elements. Since the size of this set is r2, this gives us an
additional decrease in measure of [r2 > 0]w(r2).

Altogether, this gives the following set of recurrences:

∀ ∣S∣ ≥ 1, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + [r2 > 0]w(r2)

We solve the associated numerical optimisation problem minimising �vmax+wmax

where �k is a solution to the set of recurrence relations. We obtain a solution of
N(k) ≤ 1.58143k using the following set of weights:
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i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.011524 0.162465 0.192542 0.197195 0.197195 0.197195 0.197195
w(i) 0.750412 0.908050 0.968115 0.992112 1.000000 1.000000 1.000000 1.000000

This leads to an upper bound of O
(

1.58143(0.197195+1)n
)

= O(1.73101n) on the running
time of Algorithm 5.2. The bounding cases of the numerical optimisation problem are:

∣S∣ = r2 = 1 ∣S∣ = r3 = 2 ∣S∣ = r4 = 2 ∣S∣ = r4 = 3 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r>6 = 6

This concludes the first improvement step. By applying this improvement step,
we have obtained our first simple algorithm with a non-trivial upper bound on the
running time.

5.3.3. Improvement Step Two: Sets of Cardinality One

The next step will be to inspect the case ∣S∣ = r2 = 1 more closely. This case
corresponds to branching on a set S containing only one element and this elements is
of frequency two.

We improve this case by the simple observation that we can stop branching when
all sets have size one. Namely, in this case, any solution consists of a series of singleton
sets: one for each remaining element. This leads to the following reduction rule.

Reduction Rule 5.2.

Let S ∈ S be a set of maximum cardinality
if ∣S∣ ≤ 1 then

return {{e} ∣ e ∈ U}

We add Reduction Rule 5.2 to Algorithm 5.2 to obtain our next algorithm. For
this algorithm, we derive the following set of recurrence relations; these are exactly
the ones used to analyse Algorithm 5.2 that correspond to branching on a set of size
at least two:

∀ ∣S∣ ≥ 2, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + [r2 > 0]w(r2)

We solve the associated numerical optimisation problem and obtain a solution of
N(k) ≤ 1.42604k on the recurrence relations using the following set of weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.161668 0.325452 0.387900 0.395390 0.395408 0.395408 0.395408
w(i) 0.407320 0.814639 0.931101 0.981843 0.998998 1.000000 1.000000 1.000000
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This leads to an upper bound of O
(

1.42604(0.395408+1)n
)

= O(1.64107n) on the running
time of the algorithm. The bounding cases of the numerical optimisation problem are:

∣S∣ = r2 = 2 ∣S∣ = r3 = 2 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r5 = 3 ∣S∣ = r5 = 4
∣S∣ = r5 = 5 ∣S∣ = r6 = 5 ∣S∣ = r6 = 6

5.3.4. Improvement Step Three: Subsets

Consider the new ‘smallest’ worst case: ∣S∣ = r2 = 2. For this case, the previous
section uses the following inequalities in the corresponding recurrences: Δktake ≥
w(2) + 2v(2) + 2Δw(2) and Δkdiscard ≥ w(2) + 2Δv(2) + w(2). An instance that is
tight for these inequalities contains a set S of size two containing two frequency-two
elements, and, in this instance, these frequency-two elements occur only in the set S
and in a set R that is a copy of S. To see this, notice that the last computed weights
satisfy 2Δw(2) = w(2) and that by definition v(2) = Δv(2).

Observe that we never have to take two identical sets in any minimum set cover.
This can be generalised to sets Q and R that are not identical, but where R is a
subset of Q: whenever we take R in the set cover, we could equally well have taken Q,
moreover, any set cover containing both R and Q can be replaced by a smaller cover
by removing R. This leads to the following reduction rule:

Reduction Rule 5.3.

if there exist sets Q,R ∈ S such that R ⊆ Q then
return MSC(S ∖ {R},U)

Reduction Rules 5.1 and 5.3 together remove all sets of size one from an instance:
either the element in a singleton set S has frequency one and is removed by Reduction
Rule 5.1, or it has higher frequency and thus S is a subset of another set. Consequently,
Reduction Rule 5.2 becomes obsolete after adding Reduction Rule 5.3 to the algorithm.

In the analysis of the new algorithm with Reduction Rule 5.3 added, we set w(1) = 0
because sets of size one are now removed. Notice that this violates the steepness
inequalities. We solve this by imposing them only for i ≥ 3:

∀i ≥ 3 : Δw(i− 1) ≥ Δw(i)

Observe what happens when our new algorithm branches on a set S containing ri
elements of frequency i. In the branch where we take S in the set cover, we still decrease
the measure by w(∣S∣) +∑∞

i=2 riv(i) for removing S and its elements. Recall that
Δw(∣S∣) is a lower bound on the decrease in measure obtained by reducing the size of
a set by one; this is because of the steepness inequalities. Even though w(1) = 0 in our
new analysis, we can still use Δw(∣S∣)∑∞

i=2 ri(i−1) as a lower bound on the additional
decrease in measure due to the fact that no other set R containing elements from S can
be a subset of S by Reduction Rule 5.3; therefore, we reduce R at most ∣R∣−1 times in
size, and the steepness inequalities still make sure that

∑∣R∣
i=2 Δw(i) ≥ (∣R∣−1)Δw(∣S∣).

In the branch where we discard S, we still decrease the measure by w(∣S∣) +
∑∞

i=2 riΔv(i) for removing S and reducing the frequencies of its elements. Observe
what happens to frequency-two elements. If r2 = 1, we take at least one more set in
the set cover and remove at least one more element since this set cannot be a subset
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of S. For every additional frequency-two element in S, the size of the set that is taken
in the set cover increases by one in the worst case, unless r2 = ∣S∣. In the last case, all
elements cannot be in the same other set because this would make the set larger than S
which cannot be the case by the branching rule. Since w(2) = Δw(2), this leads to
an additional decrease in measure of at least [r2 > 0](v(2)+

∑min{r2,∣S∣−1}
i=1 Δw(i+1))

by the above discussion. Finally, if r2 = ∣S∣, then we remove at least one more set,
decreasing the measure by at least w(2) more.

This leads to the following set of recurrence relations:

∀ ∣S∣ ≥ 2, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + [r2 > 0]

⎛

⎝v(2) +

min{r2,∣S∣−1}
∑

i=1

Δw(i+ 1)

⎞

⎠+[r2= ∣S∣]w(2)

We solve the associated numerical optimisation problem and obtain a solution of
N(k) ≤ 1.37787k on the recurrence relations using the following set of weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.089132 0.304202 0.377794 0.402590 0.408971 0.408971 0.408971
w(i) 0.000000 0.646647 0.853436 0.939970 0.979276 0.995872 1.000000 1.000000

This leads to an upper bound of O
(

1.37787(0.408971+1)n
)

= O(1.57087n) on the running
time of the algorithm. The bounding cases of the numerical optimisation problem are:

∣S∣ = r2 = 2 ∣S∣ = r3 = 2 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r4 = 4 ∣S∣ = r5 = 4
∣S∣ = r5 = 5 ∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7

We notice that this analysis is not tight in the following way. The quantities we use
for Δktake and Δkdiscard can both correspond to a real instance on which the algorithm
branches. That is, there are real instances to which the reduction in the measure is
bounded tightly. However, for some considered cases, there is no real instance in
which the reduction in the measure is tight for both the inequality for Δktake and the
inequality for Δkdiscard. This even happens on the bounding case ∣S∣ = r2 = 2.

We could give a better analysis of the current algorithm. However, this requires a
different set-up with some more case analysis. We feel that it is better to ignore this
for the moment and continue with new reduction rules for instances tight for any of
the individual values of Δktake and Δkdiscard. We will give such a case analysis only
for our final algorithm: Algorithm 5.4. This case analysis is given in Appendix A.2.

5.3.5. Improvement Step Four: All Sets Have Size at Most Two

The case ∣S∣ = r2 = 2 corresponds to a set S containing two frequency-two elements
whose second occurrences are in different sets. In this case, all sets have cardinality
at most two since our algorithm branches only on sets of maximum cardinality. It has
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Algorithm 5.3. The algorithm of Fomin, Grandoni, and Kratsch [144].

Input: a set cover instance (S,U)
Output: a minimum set cover of (S,U)
MSC(S,U):
1: if S = ∅ then return ∅
2: Let S ∈ S be a set of maximum cardinality among the sets in S

3: if there exists an element e ∈ U of frequency one then
4: return {R} ∪MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R), where R is such that e ∈ R
5: else if there exist sets Q,R ∈ S such that R ⊆ Q then
6: return MSC(S ∖ {R},U)
7: else if ∣S∣ ≤ 2 then
8: return a minimum set cover computed by using maximum matching
9: Let C1 = {S} ∪ MSC({S′ ∖ S ∣ S′ ∈ S ∖ {S}},U ∖ S) and C2 = MSC(S ∖ {S},U)

10: return the smallest set cover from C1 and C2

often been observed that this case can be solved in polynomial time by computing a
maximum matching; see for example [144].

In this situation, we can construct a set cover in the following way. We initially
repeatedly pick sets that each cover two elements until only sets containing one thus
far uncovered element remain. The maximum number of sets that cover two elements
per set are used in a minimum set cover. We can find such a maximum set of disjoint
size two sets by computing a maximum matching in the following graph H = (V,E):
introduce a vertex for every element e ∈ U, and an edge (e1, e2) for every set of size two
{e1, e2} ∈ S. A maximum matching M in H can be computed in polynomial time [120].
Given M , we can construct a minimum set cover by taking the sets corresponding to
the edges in M and add an additional set for each vertex that is not incident to an
edge in M .

This leads to the following reduction rule.

Reduction Rule 5.4.

Let S ∈ S be a set of maximum cardinality
if ∣S∣ ≤ 2 then

return a minimum set cover computed by using maximum matching

If we add this reduction rule to the algorithm of Section 5.3.4, we obtain the
algorithm of Fomin, Grandoni, and Kratsch [144]: Algorithm 5.3.

The numerical optimisation problem used to compute the upper bound on the
running time of Algorithm 5.3 is the same as the numerical optimisation problem used
to compute the upper bound on the running time of the algorithm of Section 5.3.4,
except for the fact that we consider branching on only sets S with ∣S∣ ≥ 3.

∀ ∣S∣ ≥ 3, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)
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Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + [r2 > 0]

⎛

⎝v(2) +

min{r2,∣S∣−1}
∑

i=1

Δw(i+ 1)

⎞

⎠+[r2=∣S∣]w(2)

We again solve the associated numerical optimisation problem. We obtain a solu-
tion of N(k) ≤ 1.28505k on the recurrence relations using the following set of weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.261245 0.526942 0.620173 0.652549 0.661244 0.661244 0.661244
w(i) 0.000000 0.370314 0.740627 0.892283 0.961123 0.991053 1.000000 1.000000

This leads to an upper bound of O
(

1.28505(0.661244+1)n
)

= O(1.51685n) on the running
time of Algorithm 5.3. The bounding cases of the numerical optimisation problem are:

∣S∣ = r2 = 3 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r4 = 4 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7

We note that the analysis in [144] gives an upper bound on the running time of
Algorithm 5.3 of O(1.5263n). The difference with our better upper bound comes from
the fact that we allow vmax to be variable in the associated numerical optimisation
problem, while vmax = 1 is taken in the analysis in [144].

5.3.6. Improvement Step Five: Subsumption

Again, we consider the ‘smallest’ bounding case: ∣S∣ = r2 = 3. The reduction in
the measure in the inequality for Δkdiscard in the previous section is tight for the
following real instance. We have a set S of cardinality three containing three elements
of frequency two, and these three frequency-two elements together have their second
occurrences in two sets, each containing the same extra frequency-two element such
that they are not subsets of S. In other words, we have S = {e1, e2, e3} existing next
to {e1, e2, e4}, {e3, e4} with f(e1) = f(e2) = f(e3) = f(e4) = 2.

We can reduce this case by introducing the notion of subsumption. We say that an
element e1 is subsumed by e2 if S(e1) ⊆ S(e2), i.e., if the collection of sets containing e1
is a subset of the collection of sets containing e2. Notice that in this case, any collection
of sets that covers e1 will always cover e2 also. Therefore, an algorithm can safely
remove e2 from the instance to obtain a smaller, equivalent instance. After solving
this equivalent instance, it can then put e2 back in the appropriate sets to get a solution
to the original instance.

This leads to the following reduction rule.

Reduction Rule 5.5.

if there exist two elements e1 and e2 such that S(e1) ⊆ S(e2) then
return MSC({R ∖ {e2} ∣ R ∈ S},U ∖ {e2}) with e2 put back in the sets in S(e2)

We will now analyse our algorithm, which gives a first improvement over the al-
gorithm by Fomin, Grandoni and Kratsch: Algorithm 5.3 augmented with Reduction
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Rule 5.5. In the branch where S is taken in the set cover, nothing changes. In the
branch where we discard S, all sets containing the occurrence outside S of a frequency-
two element from S are taken in the set cover. These are at least r2 sets since no two
frequency-two elements can have both occurrences in the same two sets by Reduction
Rule 5.5. Hence, we decrease the measure by at least r2w(2). The measure is further
decreased because these removed sets contain elements that are removed also. More-
over, this removal reduces the cardinality of other sets. We bound the total decrease
of the measure from below by considering only the cases where r2 ∈ {1, 2, 3} in more
detail. If r2 ∈ {1, 2}, then at least one extra element is removed which we bound from
below by v(2); this is tight if r2 = 2. If r2 = 3, then the three sets can either contain
the same extra element which gives a decrease of v(3), or these contain more extra
elements giving a decrease of at least 2v(2) and an additional Δw(∣S∣) because these
exist in other sets also.

This leads to the following set of recurrence relations:

∀ ∣S∣ ≥ 3, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + r2w(2)

+ [r2 ∈ {1, 2}]v(2) + [r2 = 3]min{v(3), 2v(2) + Δw(∣S∣)}

We obtain a solution of N(k) ≤ 1.28886k on the recurrence relations using the
following set of weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.218849 0.492455 0.589295 0.623401 0.632777 0.632777 0.632777
w(i) 0.000000 0.367292 0.734584 0.886729 0.957092 0.988945 1.000000 1.000000

This leads to an upper bound of O
(

1.28886(0.632777+1)n
)

= O(1.51335n) on the running
time of the algorithm. The bounding cases of the numerical optimisation problem are:

∣S∣ = r2 = 3 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r4 = 4 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7

5.3.7. Improvement Step Six: Counting Arguments

The new ‘smallest’ worst case of our algorithm is ∣S∣ = r2 = 3. Although this is the
same case as in the previous improvement, there is a different instance for which the
inequality for Δkdiscard of the previous section is tight. This corresponds to a set S
containing three elements of frequency two that all have their second occurrence in a
different set of size two, and, since the optimal weights in the analysis of Section 5.3.6
satisfy v(3) < v(2) + Δw(∣S∣), these sets all contain the same second element which
is of frequency three. Thus, we have the following situation: S = {e1, e2, e3} existing
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e1 e2 e3

e4

S

Figure 5.1. An instance corresponding to a bounding case in the analysis in
Section 5.3.6.

next to {e1, e4}, {e2, e4}, {e3, e4} with f(e1) = f(e2) = f(e3) = 2 and f(e4) = 3; see
Figure 5.1.

We notice that we do not have to branch on this set S. Namely, if we take S in
the set cover, we cover three elements using one set, while if we discard S and thus
take all other sets containing e1, e2 and e3, then we cover four elements using three
sets. We can cover the same four elements with only two sets if we take S and any of
the three sets containing e4. Therefore, we can safely take S in the set cover without
branching.

This counting argument can be generalised. For any set R, let q be the number of
elements in the sets containing a frequency-two element from R that are not contained

in R themselves, i.e., q =
∣

∣

∣

(

∪

e∈R,f(e)=2,Q∈S(e) Q
)

∖R
∣

∣

∣. Also, let r2 be the number of

elements of frequency two in R. We cover ∣R∣ elements using one set if we take R in
the set cover, and we cover q + ∣R∣ elements using r2 sets if we discard R. Thus, if
q < r2, taking R is always as least as good as discarding R since then we use r2 − 1
sets less while also covering q < r2 less elements, i.e., q ≤ r2 − 1 less elements; we can
always cover these elements by picking one additional set per element.

This leads to the following reduction rule:

Reduction Rule 5.6.

if there exists a set R ∈ S s.t.
∣

∣

∣

(

∪

e∈R,f(e)=2,Q∈S(e) Q
)

∖R
∣

∣

∣ < ∣{e ∈ R ∣ f(e) = 2}∣
then

return {R} ∪ MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R)

We add Reduction Rule 5.6 to the algorithm of Section 5.3.6 and analyse its running
time. If S is discarded, we now know that at least r2 sets are removed due to Reduction
Rule 5.5 and that, due to Reduction Rule 5.6, these sets contain at least r2 elements
that are also removed. This gives a decrease in measure of at least r2(v(2) + w(2)).
Furthermore, additional sets are reduced in cardinality because of the removal of these
elements. The decrease in measure due to reducing the cardinality of these sets can not
be bounded from below by r2Δw(∣S∣). This is because repeatedly reducing the cardi-
nality of the same set R can remove this set entirely while the steepness inequalities do
not guarantee that this decrease in measure is bounded by ∣R∣Δw(∣S∣) since w(1) = 0.
Therefore, the smallest possible decrease in measure is obtained by either exploiting
this situation repeatedly by putting as many additionally removed elements in sets of
size two as possible, or we can again bound this additional decrease in measure from
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e1 e2 e3
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e1 e2 e3
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e4 e5

S

Figure 5.2. Three instances corresponding to a bounding case in the analysis in
Section 5.3.7.

below by r2Δw(∣S∣). The steepness inequalities now do guarantee that the smallest
possible decrease in measure due to the removal of these elements is bounded from
below by min

{

r2Δw(∣S∣),
⌊

r2
2

⌋

w(2) + (r2 mod 2)Δw(∣S∣)
}

.
This leads to the following set of recurrence relations:

∀ ∣S∣ ≥ 3, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + r2(v(2) + w(2)) +

min
{

r2Δw(∣S∣),
⌊r2
2

⌋

w(2) + (r2 mod 2)Δw(∣S∣)
}

We obtain a solution of N(k) ≤ 1.29001k on the recurrence relations using the
following set of weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.127612 0.432499 0.544653 0.587649 0.602649 0.606354 0.606354
w(i) 0.000000 0.364485 0.728970 0.881959 0.953804 0.987224 0.999820 1.000000

This leads to an upper bound of O
(

1.29001(0.606354+1)n
)

= O(1.50541n) on the running
time of the algorithm. The bounding cases of numerical optimisation problem are:

∣S∣ = r2 = 3 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r4 = 4 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7 ∣S∣ = r8 = 7 ∣S∣ = r8 = 8

5.3.8. The Final Improvement: Folding Some Sets of Size Two

We now present the final improvement step. This improvement step leads to the
following result, where the associated Set Cover algorithm is Algorithm 5.4.

Theorem 5.1. There exists an algorithm that solves Dominating Set in O(1.4969n)
time and polynomial space.
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For this final improvement step, we again look at the case ∣S∣ = r2 = 3 and
closely inspect instances that are tight for the inequality with Δkdiscard of the previous
section. Currently, this corresponds to a set S = {e1, e2, e3} containing three elements
of frequency two whose second occurrences give rise to one of the following three
situations; see also Figure 5.2:

1. {e1, e4}, {e2, e5}, {e3, e6} with e4, e5 and e6 elements of frequency two that also
occur in a set {e4, e5, e6}.

2. {e1, e4}, {e2, e5}, {e3, e6} with e4, e5 and e6 elements of frequency two that also
occur in sets {e4, e5} and {e6, e7, e8}, where e7 and e8 are elements of any fre-
quency.

3. {e1, e4}, {e2, e5}, {e3, e4, e6} with e4, e5 and e6 elements of frequency two, and
where e5 and e6 also occur in a set {e5, e6}.

Notice that the optimal weights in the analysis of Section 5.3.7 satisfy 2w(2) = w(3),
i.e., w(2) = Δw(3). Hence, in all three cases, the measure is decreased by the same
amount in the branch where S is discarded: w(3) + 3v(2) for removing S plus an
additional 3v(2) + 5w(2) due to the reduction rules.

We add the following reduction rule that removes any set of cardinality two con-
taining two frequency-two elements to our algorithm and obtain Algorithm 5.4.

Reduction Rule 5.7.

if there exists a set R ∈ S, R = {e1, e2}, with f(e1) = f(e2) = 2 then
Let S(ei) = {R,Ri}, for i = 1, 2, and let Q = (R1 ∪R2) ∖R
Let C = MSC((S ∖ {R,R1, R2}) ∪ {Q},U ∖R)
if Q ∈ C then

return (C ∖ {Q}) ∪ {R1, R2}
else

return C ∪ {R}

If there exists a set R of cardinality two containing two frequency-two elements e1,
e2, such that ei occurs in R and Ri, then the reduction rule transforms this instance
into an instance where R, R1 and R2 have been replaced by the set Q = (R1∪R2)∖R.

Lemma 5.2. Reduction Rule 5.7 is correct.

Proof. Let S, R, R1, and R2 be as in the formulation of Reduction Rule 5.7. Notice
that there exist a minimum set cover of (S,U) that either contains R, or contains
both R1 and R2. This is true because if we take only one set from R, R1 and R2,
then this must be R since we must cover e1 and e2; if we take two, then it is of no
use to take R since the other two cover more elements; and, if we take all three, then
the set cover is not minimal. The rule postpones the choice between the first two
possibilities, taking Q in the minimum set cover of the transformed problem if both
R1 and R2 are in a minimum set cover, or taking no set in the minimum set cover
of the transformed problem is R is in a minimum set cover. This works because the
transformation preserves the fact that the difference between both possibilities in the
number of sets we take in the set cover is one. Hence, Reduction Rule 5.7 is correct.
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Algorithm 5.4. Our final algorithm for the set cover modelling of dominating set.

Input: a set cover instance (S,U)
Output: a minimum set cover of (S,U)
MSC(S,U):
1: if S = ∅ then return ∅
2: Let S ∈ S be a set of maximum cardinality among the sets in S

3: if there exists an element e ∈ U of frequency one then
4: return {R} ∪MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R), where R is such that e ∈ R
5: else if there exist sets Q,R ∈ S such that R ⊆ Q then
6: return MSC(S ∖ {R},U)
7: else if there exist two elements e1 and e2 such that S(e1) ⊆ S(e2) then
8: return MSC({R ∖ {e2} ∣ R ∈ S},U ∖ {e2}) with e2 put back in the sets in S(e2)

9: else if there exists a set R ∈ S such that
∣

∣

∣

(

∪

e∈R,f(e)=2,Q∈S(e) Q
)

∖R
∣

∣

∣ <

∣{e ∈ R ∣ f(e) = 2}∣ then
10: return {R} ∪ MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R)
11: else if there exists a set R ∈ S, R = {e1, e2}, with f(e1) = f(e2) = 2 then
12: Let S(ei) = {R,Ri}, for i = 1, 2, and let Q = (R1 ∪R2) ∖R
13: Let C = MSC((S ∖ {R,R1, R2}) ∪ {Q},U ∖R)
14: if Q ∈ C then
15: return (C ∖ {Q}) ∪ {R1, R2}
16: else
17: return C ∪ {R}
18: else if ∣S∣ ≤ 2 then
19: return a minimum set cover computed by using maximum matching
20: Let C1 = {S} ∪ MSC({S′ ∖ S ∣ S′ ∈ S ∖ {S}},U ∖ S) and C2 = MSC(S ∖ {S},U)
21: return the smallest set cover from C1 and C2

We note that this reduction rule is similar to the vertex folding rule used in many
papers on Independent Set, see for example Chapter 7 or [144].

Notice that we need additional constraints on the weights to analyse Algorithm 5.4.
Namely, this reduction rule should not be allowed to increase the measure of an in-
stance. For the moment, we forget that the elements e1, e2 and S are removed, and
demand that the measure is not increased by removing R1 and R2 and adding Q. To
this end, we impose the following additional constraint for all i, j ≥ 2:

∀i, j ≥ 2 : w(i) + w(j) ≥ w(i+ j − 2)

For a proper analysis, we need to further subdivide our case analysis by differen-
tiating between different kinds of elements of frequency two depending on the kind of
set their second occurrence is in. This leads to a tedious case analysis that we dele-
gated to Appendix A.2. This case analysis again results in a numerical optimisation
problem whose optimum gives an upper bound on the running time of Algorithm 5.4.
Theorem 5.1 is proved as a result. For the details, see Appendix A.2.
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5.4. Intuition Why Further Improvement is Hard

In the step-by-step design process of Section 5.3, we obtained improved algorithms
by adding polynomial-time reduction rules that deal with worst-case instances of a
previous algorithm. We stopped with this design process after obtaining Algorithm 5.4.
We stopped here because it seems hard to further improve the algorithm significantly
using the same approach. In this section, we will give some considerations as to why
this is so.

Adding New Reduction Rules for Cases with Frequency-Two Elements. We ac-
knowledge that it is possible to improve one of the new ‘small’ worst cases, namely,
∣S∣ = 4, r2 = re≥4 = 4 (for the meaning of re≥4 see the analysis in Appendix A.2).
We tried to do so by introducing the following reduction rule that deals with each
connected component separately.

Reduction Rule 5.8.

if S contains multiple connected components C1,C2, . . . ,Cl then
return

∪l
i=1 MSC(Ci,

∪

S∈Ci
S)

Here, a connected component C of a set cover instance (S,U) is an inclusion-minimal,
non-empty subset C ⊆ S for which all elements in the sets in C do not occur in S ∖ C.
Note that this definition of a connected component is a natural extension of the same
concept for graphs.

However, introducing this new reduction rule helps only marginally in obtaining
better bounds with our current type of analysis. To see this, consider what we have
been doing in the last few improvement steps. In each of these steps, the ‘smallest’
worst case involved frequency-two elements, and we looked for new reduction rules
dealing with these elements more efficiently. In Proposition 5.3 below, we will see that
it is most likely not possible to completely remove frequency-two elements. But what
if we could formulate sufficiently powerful reduction rules such that they never occur
in any of the worst cases of the algorithm? We may not have such an algorithm, but
we can analyse such an algorithm in the same way as we did in Section 5.3.

The best upper bound on the running time we could prove for such an algorithm
in exactly the same way as in the previous section corresponds to the solution of
the numerical optimisation problem associated with the following set of recurrence
relations:

∀ ∣S∣ ≥ 3, ∀ ri :
∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1) + [r2 > 0]∞

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + r2(v(2) + w(2)) + [r2 > 0]∞

In this set of recurrences, we use the value ∞ to make Δktake and Δkdiscard large
enough not to appear as a bounding case whenever r2 > 0. We note that we do so
under the convention that [r2 > 0]∞ = 0 if r2 = 0.
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We obtain a solution of N(k) ≤ 1.26853k on the recurrence relations using the
following set of weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.000000 0.426641 0.607747 0.671526 0.687122 0.690966 0.690966
w(i) 0.000000 0.353283 0.706566 0.866101 0.948043 0.985899 1.000000 1.000000

This leads to an upper bound on the running time of such a hypothetical algorithm
proven by these methods of O

(

1.26853(0.690966+1)n
)

= O(1.4952n). The bounding cases
of the numerical optimisation problem are

∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r5 = 4 ∣S∣ = r6 = 4 ∣S∣ = r6 = 5 ∣S∣ = r6 = 6
∣S∣ = r7 = 6 ∣S∣ = r7 = 7 ∣S∣ = r>7 = 7 ∣S∣ = r>7 = 8

Of course, this is not a lower bound on the complexity of Dominating Set. This
is a lower bound on the upper bounds on running times we can get by improving only
on the cases involving elements of frequency two on algorithms using the set cover
formulation of dominating set that considers to branch on a single set only. It shows
that if we put in a lot of effort to try and improve Algorithm 5.4 in exactly the same
way as in Section 5.3 by doing an extensive case analysis, then we can improve the
running time only marginally.

Removing Frequency-Two Elements Completely. A case analysis to improve the
cases containing frequency-two elements may help only marginally, but why can we
not remove these cases completely? If all sets have size two, then we can solve the
problem in polynomial time using maximum matching (Section 5.3.5); can we not do
something similar for elements of frequency two? There are reasons to believe that it
is necessary to consider these elements of frequency two: we most likely cannot remove
them completely by reduction rules, nor is it likely that we can solve the instance in
which all elements have frequency two in subexponential time. This is for the following
reason.

Proposition 5.3. There is no polynomial-time algorithm that solves minimum set cover
where all elements have frequency at most two and all sets have cardinality at most
three, unless P = NP. Moreover, under the Exponential-Time Hypothesis, there is not
even an algorithm for the problem that runs in subexponential time.

Proof. Consider an instance G = (V,E) of the Vertex Cover problem with maxi-
mum degree three. From this instance, we build an equivalent Set Cover instance:
for each edge introduce an element of frequency two, and for each vertex introduce a
set containing the elements representing the edges it is incident to. Notice that the
sets have cardinality at most three. It is easy to see that a minimum set cover of the
constructed instance corresponds to a minimum vertex cover in G.

Therefore, a polynomial-time algorithm as in the statement of the proposition
would solve minimum vertex cover on graphs of maximum degree three in polynomial
time, which is impossible unless P = NP. And, such an algorithm running in subex-
ponential time would solve Vertex Cover restricted to graphs of maximum degree
three in subexponential time. Johnson and Szegedy showed that this is impossible
unless the Exponential-Time Hypothesis fails [197].
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Changing the Branching Rules. Another possibility to improve the worst-case be-
haviour of the algorithm is not to iteratively introduce new reduction rules, but to
iteratively change the branching rule on specific local structures instead. In this chap-
ter, we did try to modify the branching rule. This is because branching on a set S
of maximum cardinality has two advantages. Firstly, a set of maximal cardinality has
maximal impact on the instance in the sense that the maximum number of other sets
and elements are removed or reduced. Secondly, it allows us to use the cardinality of S
as an upper bound on the cardinality of any other set in the instance.

Of course, we could use different branching rules that, for example, branch on
larger local configurations. This could improve the algorithm but would also lead
to an analysis involving many more subcases. In this case, we could not deal with
these many more subcases manually, but it would be interesting to see if such analysis
can be done using new techniques involving, for example, automated case analysis.
In Chapter 6, we show that changing the branching rules in a similar step-by-step
improvement procedure gives good results for a series of edge-domination problems:
Edge Dominating Set, Minimum Maximal Matching, Matrix Dominating

Set, and weighted version of these problems.

5.5. Additional Results on Related Problems

In this section, we show that the algorithm of Theorem 5.1 can be used to obtain faster
algorithms for more problems than only Dominating Set. The applications that we
give include some in the field of parameterised algorithms.

The algorithm of Theorem 5.1 is the currently fastest algorithm for Dominating

Set. This algorithm uses the modelling of Dominating Set as a Set Cover pre-
sented in Section 5.1.1 and then applies Algorithm 5.4. Because of this construction,
we can obtain similar results for other graph domination problems that can be mod-
elled in this way as well. We note that this does not lead to a general result on Set

Cover, but only on Set Cover instances with ∣S∣ = ∣U∣ = n, as the weights in the
analysis are chosen to minimise �vmax+wmax .

Probably, the most well-known other graph domination problem to which this
applies is Total Dominating Set. We recall its definition from Chapter 1. A total
dominating set D ⊆ V in a graph G is a set of vertices such that every vertex v ∈ V
is adjacent to some vertex in D, i.e.,

∪

v∈D N(v) = V . Different to a dominating set,
vertices in the set D also need to have a neighbour in D.

Total Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a total dominating set D ⊆ V in G of size at

most k?

Corollary 5.4. There exists an algorithm that solves Total Dominating Set in
O(1.4969n) time and polynomial space.

Proof. An instance of Total Dominating Set can also be modelled as an instance
of Set Cover as follows. Let the universe U of the instance equal V , i.e., U = V .
Now, introduce a set Sv with Sv = N(v) for every v ∈ V , i.e., S = {N(v) ∣ v ∈ V }.
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Clearly, a set cover of the instance (S,U) corresponds to a total dominating set in G of
equal size. We prove the result by applying Algorithm 5.4 to this instance and using
the same analysis as in the proof of Theorem 5.1.

Remark 5.1. There exist many more variants of Dominating Set that can be mod-
elled as a Set Cover instance with at most n sets and at most n elements and that
can consequently be solved in O(1.4969n) time and polynomial space. Examples in-
clude Directed Dominating Set (the equivalent in directed graphs), Distance-r
Dominating Set (where vertices must be at distance at most ℓ from a vertex in the
dominating set), Strong Dominating Set (where vertices can be dominated only
by vertices of equal or larger degree), and Weak Dominating Set (where vertices
can be dominated only by vertices of equal or smaller degree).

Besides graph domination problems that can be modelled as Set Cover in such a
way that the resulting Set Cover instances satisfy ∣S∣ = ∣U∣ = n, there are also graph
domination problems whose equivalent Set Cover instances have different sizes. We
now give an example of such a problem, namely Red-Blue Dominating Set, and
show that we can also use Algorithm 5.4 to obtain a faster algorithm for this problem.
We note that we will improve this result at the cost of using exponential space in
Section 8.5.

A red-blue dominating set in a (bipartite) graph G = (ℛ∪ℬ, E) with red vertices ℛ
and blue vertices ℬ is a subset D ⊆ ℛ such that N(D) ⊇ ℬ.

Red-Blue Dominating Set

Input: A bipartite graph G = (ℛ ∪ ℬ, E) with red vertices ℛ and blue
vertices ℬ, and an integer k ∈ ℕ.

Question: Does there exist a red-blue dominating set D ⊆ ℛ in G of size at
most k?

The previous fastest algorithms for this problem are the O(1.2354n)-time and
polynomial-space algorithm and the O(1.2303n)-time and exponential-space algorithm
that can both easily be derived from the results in [144].

Corollary 5.5. There exists an algorithm that solves Red-Blue Dominating Set in
O(1.2279n) time and polynomial space.

Proof. It is not hard to see that an instance G = (ℛ∪ℬ, E) of Red-Blue Dominating

Set can be transformed into an equivalent instance (S,U) of Set Cover by setting
U = ℬ and S = {N(v) ∣ v ∈ ℛ}. We solve the instance (S,U) resulting from this
transformation using Algorithm 5.4.

To prove an upper bound on the running time of this algorithm, we consider the
same set of recurrence relations that are associated with the result in Theorem 5.1.
Different to the proof of Theorem 5.1, we now solve the associated numerical problem
while minimising �max{vmax,wmax} instead of �vmax+wmax . Because the instance (S,U)
satisfies ∣S∣ + ∣U∣ = n, the instance has a measure k of at most max{vmax, wmax}n.
Hence, a running time of O(�max{vmax,wmax}n) follows from the computed value of �.

We solve the described numerical problem and obtain a solution of N(k) ≤ 1.22781k

using the following set of weights:
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i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.100936 0.606876 0.837893 0.933923 0.976152 0.996215 1.000000
w(i) 0.000000 0.374675 0.749351 0.903955 0.969394 0.996281 1.000000 1.000000

This leads to an upper bound of O
(

1.22781max{1,1}n) = O(1.2279n) on the running
time of the algorithm.

The exact exponential-time algorithm of Theorem 5.1 also has applications in pa-
rameterised algorithms. Because the parameterised problem k-Dominating Set is
W[2]-complete [116], we cannot expect to find an ℱPT-algorithm for this problem.
However, we can obtain a faster algorithm for the closely related parameterised prob-
lem k-Nonblocker. This algorithm is obtained by using a small kernel for this
problem and then applying Theorem 5.1.

We first define the problem formally and then give our results. A non-blocking
vertex set B ⊆ V is a set of vertices of G such that V ∖B is a dominating set in G.

k-Nonblocker

Input: A graph G = (V,E).
Parameter: An integer k ∈ ℕ.
Question: Does there exist a non-blocking set D ⊆ V in G of size at least k?

Alternatively, this problem asks whether there exists a dominating set of size at
most n−k in G. I.e., k-Nonblocker equals k-Dominating Set with the parameter k
replaced by n − k. A pair of problems that can be transformed into each other by
changing the parameter from k to n−k (all minus k) are called parametric duals [201,
233]. That is, k-Nonblocker is the parametric dual of k-Dominating Set.

To obtain the currently fastest parameterised algorithm for this problem we use the
following result of Dehne et al. [104]2 which is a corollary of a graph-theoretic result
by McCuaig and Shepherd [234].

Proposition 5.6 ([104]). k-Nonblocker admits a kernel of size at most 5
3k.

Combining Proposition 5.6 and Theorem 5.1 gives the following result.

Corollary 5.7. There exists an algorithm that solves k-Nonblocker in O∗(1.9588k)
time and polynomial space.

Proof. Apply the kernelisation algorithm of Proposition 5.6. This algorithm uses poly-
nomial time and either outputs that the instance is a Yes-instance, or obtains an equi-
valent instance H with n ≤ 5

3k. In the second case, we solve the new instance H by
computing a minimum dominating set in H using Theorem 5.1. The resulting running
time equals O(1.4969n) = O∗(1.4969

5
3k) = O∗(1.9588k).

Remark 5.2. We note that the same result can be obtained in the following way. First,
apply all the reduction rules of Algorithm 5.4 to a Set Cover instance obtained from
the k-Nonblocker instance. Then, solve the instance in constant time if ∣S∣+∣U∣<16.

2This paper also claims a O(1.4123k)-time algorithm for k-Nonblocker. However, this result is
incorrect as the authors forgot to square a cited result from [144]. We improve their result even after
correcting this running time.
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Otherwise, output that the instance is a Yes-instance if ∣S∣ > 5
3k and ∣U∣ > 5

3k.
Finally, solve any remaining instance using Algorithm 5.4. This also correctly gives
an O∗(1.9588k)-time and polynomial-space algorithm for k-Nonblocker.

Correctness follows from combining Theorem 5.1 with the proof from [299] that
the graph-theoretic result by McCuaig and Shepherd [234] can be translated to corre-
sponding set-cover instances.

5.6. Practical Issues Related to Solving the Associated
Numerical Optimisation Problems

We notice that in order to apply the iterative improvement method to any problem, it is
vital to have an efficient solver for the numerical optimisation programs associated with
a measure-and-conquer analysis: having to wait for a very long time for an analysis
to be completed and for the new bounding cases to be known at every iteration is
not an option. Solvers for these numerical optimisation problems can be obtained in
many ways, for example by means of random search. However, random search does
not converge to the optimum quickly enough to handle larger problems involving more
than ten variables and hundreds of thousands of subcases. For example, the numerical
optimisation problem associated with Algorithm 5.4 is of this form.

In this section, we describe the algorithm that we have used to solve most3 numer-
ical optimisation problems that arise from the measure-and-conquer analyses in this
thesis. This algorithm is a modification of Eppstein’s smooth quasiconvex program-
ming algorithm [124]. We implemented this algorithm in C++. Before going into more
details, we note that an alternative way to solve these problems was found by Gaspers
and Sorkin in [167], who rewrote the measure in such a way that a convex program is
obtained. We note that when the research in this chapter was done, the approach of
Gaspers and Sorkin was not yet known.

To describe our algorithm, we first introduce some notation. Let w⃗ be a finite
dimensional vector of weights used for the weight functions in a measure-and-conquer
analysis. Let D be the feasible polytope D = {w⃗ ∈ ℝ

d ∣ Aw⃗ ≤ b⃗} of all feasible
weight vectors w⃗ defined by the constraints that we imposed on the weights in the
analysis. Examples of these constraints are the constraints that require the weights to
be monotone, or the steepness inequalities. We denote row i of the constraint matrix A
by a⃗i, and the ith component of the right-hand-side vector b⃗ by bi.

Let R be the set of recurrence relations involved in the measure-and-conquer anal-
ysis. For a given weight vector w⃗, we can compute a minimal solution �r(w⃗) to each of
the recurrence relations r ∈ R by computing the root of a polynomial; this is similar
to the case where no weights are involved, see Section 2.1. Given these values �r(w⃗),
we can compute an upper bound on the running time of the algorithm that we are
analysing in the following way. First, we take the largest minimum solution �(w⃗) over
all recurrence relations in R: �(w⃗) = maxr∈R �r(w⃗). Then, we output f(�(w⃗), w⃗) for
some function f that is monotone in �(w⃗) and that translates the upper bound on the
recurrence relations to the base of the exponent in the upper bound on the running time

3The only exception is the numerical optimisation problem associated with the algorithms in
Proposition 7.12. This analysis has been performed by N. Bourgeois, B. Escoffier and V. Th. Paschos.
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of the algorithm we are analysing. To illustrate the purpose of the function f , consider
an analysis of an algorithm for Dominating Set in Section 5.3. Here, we have the
weight vectors v⃗ and w⃗, and the function f is the function f(�, v⃗, w⃗) = �vmax+wmax

since O(�(vmax+wmax)n) is the corresponding upper bound on the running time. Notice
that the fact that we use two weight vectors here makes no difference as they are finite
dimensional and thus can be concatenated to one weight vector.

Notice that, instead of first computing the maximum over all recurrence relations
and then evaluating f , one can also first evaluate f(�r(w⃗), w⃗) for each minimum
solution �r(w⃗) to a recurrence relation r ∈ R, and then compute the corresponding
maximum. This change of order does not influence the outcome as the weights w⃗ are
fixed during the evaluation, and the function f(�, w⃗) is monotone in the parameter �.

Now, we are ready to describe our algorithm. This algorithm is given an initial
weight vector w⃗ ∈ D. For some initial tolerance level l, and until some desired tolerance
level ld is obtained, our algorithm repeats the following steps.

1. For each r ∈ R, compute �r(w⃗) using the Newton-Raphson method.
2. Find �(w⃗) = maxr∈R �r(w⃗), and compute f(�r(w⃗), w⃗) for each r ∈ R.
3. Compute the set R′ ⊆ R of recurrences r ∈ R with f(�r(w⃗), w⃗) ≥ f(�(w⃗), w⃗)− l.
4. For all r ∈ R′, compute the gradient ∇f(�r(w⃗), w⃗).
5. Compute the set C of constraints (rows i from A) for which a⃗i ⋅ w⃗ ≥ bi − c ⋅ l,

for some fixed constant 0 < c < 1 (our implementation uses c = 0.01).
6. Compute the vector v⃗ that maximises 
 under the following set of constraints:

(a) v⃗ ⋅ ∇f(�r(w⃗), w⃗) ≥ 
 for all r ∈ R′.
(b) a⃗i ⋅ v⃗ ≤ 0 for all constraints i ∈ C.
(c) v⃗ lies in the unit ball in ℝ

d.

This can be done by solving a small quadratically constrained program. For this
many solvers are available (e.g., CPLEX or MOSEK).

7. If no such vector exists, lower the tolerance (we set l := 0.62l), and restart from
Step 3.

8. Otherwise, minimise f(�(w⃗ + �v⃗), w⃗ + �v⃗) over all � > 0 such that (w⃗ + �v⃗) ∈ D
by a line search based on standard one-dimensional optimisation techniques.
We initially set � = l; then, we perform a doubling search (iteratively double �)
to find a point beyond the optimum (or on the boundary of D) on the half-line
of the search direction; finally, we bisect the obtained interval of the line until
we are sufficiently close to the optimum on this half-line.

9. Repeat from Step 1 using w⃗ := w⃗+�v⃗ while lowering the tolerance if the difference
between f(�(w⃗), w⃗) and f(�(w⃗ + �v⃗), w⃗ + �v⃗) is very small (less than 0.01 ⋅ l).

This algorithm tries to minimise f(�(w⃗), w⃗) over all w⃗ ∈ D. It does so by iteratively
looking at the recurrences r ∈ R′ for which f(�r(w⃗), w⃗) is sufficiently close to the cur-
rent maximum value f(�(w⃗), w⃗). Then, it looks for a vector v⃗ such that (�(w⃗+�v⃗) ∈ D
and f(�(w⃗ + �v⃗), w⃗ + �v⃗) is smaller than f(�(w⃗), w⃗) for some � > 0. The search di-
rection v⃗ is chosen in such a way that it points maximally into the direction of the
gradients ∇f(�r(w⃗), w⃗) for all r ∈ R′. We note that these gradients can be found by
means of implicit differentiation. Also, if w⃗ is very close to a boundary of D (repre-
sented by a constraint in C), the line search will not directly go towards this boundary
because the constraints in C force v⃗ to point away from this boundary, or be parallel
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to it. These two objectives are enforced by maximising 
 under the conditions (a) and
(b) when searching for this vector v⃗ in Step 6. After searching for a smaller value for
f(�(w⃗), w⃗) from w⃗ in the direction v⃗ by means of a bisecting line search, the algorithm
repeats the process from Step 1. If the improvement in the last iteration was too
small, then the algorithm lowers its tolerance level l. The algorithm terminates if l
drops below some desired tolerance level ld, then it outputs w⃗ and f(�(w⃗), w⃗).

The main ideas behind this algorithm come from Eppstein’s smooth quasiconvex
programming algorithm [124]. Eppstein’s algorithm is designed to solve quasiconvex
optimisation problems that arise from analyses of branch-and-reduce algorithms. His
algorithm tries to perform line searches in directions that are chosen based on gradients
derived from recurrence relations whose solutions are sufficiently close to the current
maximum value of these solutions. Compared to Eppstein, we have introduced three
mayor modifications that we will outline below.

First of all, we added the function f that translates the upper bound on the re-
currence relations in terms of the measure into an upper bound on the running time
of the algorithm that is being analysed. This allows us to optimise the value of for
example f�vmax+wmax . In earlier work, one could require only that vmax = wmax = 1,
and then optimise �2. This modification explains why we obtain faster running times
for Algorithm 5.3 when compared to [144], and for the algorithm in Section 5.3.7 when
compared to [299, 302]. We note that a similar change in the objective function of the
optimisation was also used in [146].

A disadvantage of this modification is that we no longer have a proof that the
function f(�(w⃗), w⃗) is a quasiconvex function. This is a useful property since, by
definition, a function g(w⃗) is quasiconvex if all its level sets L� = {w⃗ ∈ D ∣ g(w⃗) ≤ �}
are convex, and as a result, such a function has no local optima except for the global
optimum. Eppstein’s algorithm uses this property to guarantee that the optimum
weights are found. Since we use this additional function f , we can guarantee only that
the objective function f(�(w⃗), w⃗) is a quasiconvex function if f(�, w⃗) does not depend
on w⃗. This holds because we demand f(�, w⃗) to be monotone in the parameter �
and the composition of a quasiconvex function with a monotone function is again a
quasiconvex function, and because the maximum over the solutions of the recurrence
relations is a quasiconvex function [124].

For our purposes where we are primarily interested in upper bounds on the running
times of exact exponential-time algorithms, we do not care too much for the fact that
the objective function f(�(w⃗), w⃗) may not necessarily be quasiconvex. Whether the
function is quasiconvex or not, we want to find good (possibly optimal for a given
type of analysis) upper bounds on running times. Our algorithm appears to perform
satisfactory. This may be explained by the fact that the objective functions f(�(w⃗), w⃗)
behave nicely near the optimal weights w⃗ in our analyses.

We now consider the second modification to Eppstein’s algorithm. Our algorithm
uses a small quadratically constrained program to find the next search direction in
which it will perform a line search. That is, the computed search direction is a vector v⃗
in the unit ball with the property that its minimum inner product with any of the
gradients ∇f(�r(w⃗), w⃗) with r ∈ R′ is maximised. Because the objective function
forces the vector v⃗ to have unit length, this approach has no bias for any direction.
This in contrast to Eppstein’s approach that uses linear programming to find the
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vector v⃗. Because of this, the search for v⃗ can be restricted only to a convex set
defined through linear constraints that approximates the unit ball, for example, the
d-dimensional hypercube. Since not all vectors have the same length in such a convex
set, this introduces a bias for certain directions. As a result, many more iterations can
be required before the algorithm terminates.

Finally, we consider the third and last modification to Eppstein’s algorithm. Our
algorithm uses the description of the feasible set of weights D by inequalities to deter-
mine the next direction used for a line search if the current point w⃗ is sufficiently close
to the boundary of D. This is different from Eppstein, who incorporated the feasible
set D in the functions that represent the recurrence relations by setting �r(w⃗) = ∞,
for all r ∈ R, if w ∕∈ D. This modification allows our algorithm to smoothly follow
these boundaries without getting stuck at such a boundary, or again needing many
more iterations.

5.7. Concluding Remarks

In this chapter, we considered exact exponential-time algorithms for the Dominat-

ing Set problem. We used the measure-and-conquer technique that is often used
to analyse exact exponential-time algorithms as a guiding tool in the design of these
algorithms. More specifically, we iteratively identified the bounding cases of the nu-
merical optimisation problems associated with a measure-and-conquer analysis, and
we used these bounding cases to formulate new reduction rules to improve the algo-
rithm and the corresponding upper bound on the running time. This resulted in a
form of computer-aided algorithm design. We note that we use a similar approach to
find improved branching rules for an algorithm instead of finding new reduction rules
in Chapter 6 (details in Appendix A.3).

Parts of instances that correspond to ‘small’ bounding cases in the numerical opti-
misation problem associated with a measure-and-conquer analysis are generally small:
they involve few sets and elements, and these sets and elements in general have small
cardinality or frequency, respectively. Therefore, it may be possible to look for new
reduction rules or improved branching rules in an automated way. This would result
in a form of measure-and-conquer-driven automated algorithm design. It would be
interesting to see if such ideas can be used to obtain faster exact-exponential time algo-
rithms for a series of NP-hard problems. For an example of automated design of exact
exponential-time algorithms that does not involve measure and conquer, see [170].
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6
Designing Algorithms for

Edge-Domination Problems

After studying algorithms for vertex-domination problems such as Dominating Set

and Total Dominating Set in the previous chapter, we now turn our attention
to edge-domination problems. The most notable edge-domination problem is Edge

Dominating Set. This problem is identical to Dominating Set in line graphs.
While both Edge Dominating Set and Dominating Set are NP-hard [326],

in some ways Edge Dominating Set is easier. For instance, Dominating Set

is hard to approximate [127], while Edge Dominating Set is constant-factor ap-
proximable [69]. In parameterised algorithms, k-Dominating Set most likely is not
fixed-parameter tractable as it is W[2]-complete [116], while k-Edge Dominating

Set is fixed-parameter tractable [131]. In the setting of exact exponential-time algo-
rithms, it also seems that Edge Dominating Set is somewhat easier; the currently
fastest exact algorithm for Dominating Set has a running time of O(1.4969n) time
(Chapter 5), while in this chapter we present an O(1.3226n)-time algorithm for Edge

Dominating Set.
Previous results on Edge Dominating Set use the idea of enumerating minimal

vertex covers in order to compute a minimum edge dominating set. In this chapter,
we further investigate this approach and derive a powerful reduction rule that can
be used in this setting to obtain far more effective algorithms. Our first algorithm
already improves on the algorithms in the literature by using this reduction rule, but no
further complicated techniques at all. The time bound for this algorithm is tightened
considerably by analysing it with measure and conquer. Furthermore, we derive faster

†This chapter is joint work with Hans L. Bodlaender. The chapter contains results of which
a preliminary version has been presented at the 3th International Workshop on Parameterized and
Exact Computation (IWPEC 2008) [303]. The full version is also available as technical report UU-
CS-2007-051 [301].



98 Chap. 6: Designing Algorithms for Edge-Domination Problems

algorithms by using the step-by-step improvement procedure from Section 5.3.
We will also show that our ideas for Edge Dominating Set extend to Minimum

Maximal Matching and Matrix Dominating Set, and with some more modifi-
cations also to weighted versions of these problems. As a consequence of our results,
we also solve an open problem of Fernau in [131]. He asked whether vertex cover
enumeration techniques can be used to solve the parameterised problem k-Minimum

Weight Maximal Matching. We answer his question affirmatively by giving an
O∗(2.4006k)-time algorithm for this problem.

We first introduce some notation, recall the definitions of the problems involved,
and survey known results in Section 6.1. Then, in Section 6.2, we show how minimal
vertex covers can be used to obtain an exact algorithm for Edge Dominating Set

with a running time exponential in the number of vertices (not edges). In Section 6.3,
we improve upon this algorithm by introducing a new reduction rule and a change in
the branching rule of the algorithm. We then analyse this algorithm using measure
and conquer in Section 6.4. In Section 6.5, we further change the branching rules of the
algorithm in a step-by-step fashion and obtain an O(1.3226n)-time and polynomial-
space algorithm. We extend our results to weighted edge-domination problems in
Section 6.6. Finally, we give our efficient parameterised algorithm for k-Minimum

Weight Maximal Matching in Section 6.7.

6.1. Edge-Domination Problems

We first recall the definition of Edge Dominating Set and some related problems,
and then survey some previous results. A subset D ⊆ E of the edges in a graph G is
called an edge dominating set if every edge e ∈ E is either in D or dominated by an
edge f in D, where f dominates e if e and f have an end point in common.

Edge Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist an edge dominating set D ⊆ E in G of size at

most k?

Compare this definition to the definition of Dominating Set: a (minimum) edge
dominating set is a (minimum) dominating set in the line graph L(G) of G.

The first exact algorithm for Edge Dominating Set is due to Randerath and
Schiermeyer in 2005 [279]. They gave an algorithm with time complexity O(1.4423m)
that uses polynomial space. This was improved by Raman et al. to O(1.4423n) time
and polynomial space [259]. Recently by Fomin et al. gave an algorithm requiring
O(1.4082n) time and space [138].

An interesting related problem is Minimum Maximal Matching. Recall that a
matching M is maximal if there is no edge e ∈ E such that M∪{e} also is a matching.

Minimum Maximal Matching

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a maximal matching M ⊆ E in G of size at

most k?

It is not hard to see that this problem is equivalent to Minimum Independent Edge
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Algorithm 6.1. A simple algorithm for Edge Dominating Set.

Input: a graph G = (V,E)
Output: a minimum edge dominating set in G
1: Compute the set C of all minimal vertex covers in G
2: for each minimal vertex covers C ∈ C do
3: Let Ci be the set of all isolated vertices in G[C]
4: Compute a minimum edge cover C ′ in G[C∖Ci]
5: Let DC be C ′ plus an extra edge for each vertex in Ci containing this vertex
6: return the DC encountered of minimum cardinality

Dominating Set, where independence between edges is interpreted in terms of the
line graph, i.e., the edges involved may not have any end point in common.

Another interesting related problem is Matrix Dominating Set.

Matrix Dominating Set

Input: An n×m 0-1 matrix and an integer k ∈ ℕ.
Question: Does there exist a set S of 1-entries in M of size at most k such

that every 1-entry is on the same row or column as an entry in S?

As noted in [326], this problem is equivalent to Edge Dominating Set on bipartite
graphs: any matrix M that is an instance of Matrix Dominating Set corresponds
to the instance Edge Dominating Set on bipartite graphs in which there is a vertex
for each row and each column, and an edge between a row vertex and a column vertex
if and only if its corresponding entry in M is a 1.

6.2. Using Matchings and Minimal Vertex Covers

We start by first giving a simple exact algorithm for Edge Dominating Set. For
this algorithm, we first need the notion of an edge cover. An edge cover is a subset
C ′ ⊆ E such that every vertex v ∈ V is incident to an edge e ∈ C ′. Because maximum
matchings can be computed in polynomial time [120], a minimum cardinality edge
cover in a graph G (minimum edge covers) can also be computed in polynomial time
in the following way. First, compute a maximum matching M in G. Then, for each
unmatched vertex v, add an edge incident to v to M . It is not hard to see that the
resulting edge set M is a minimum edge cover.

Our first algorithm is based upon the following observation [259]; see Algorithm 6.1.

Proposition 6.1. If D ⊆ E is an edge dominating set in G = (V,E), then C = {v ∈ V ∣
∃e∈D v ∈ e} is a vertex cover in G.

Proof. For each e ∈ E, there is an edge f ∈ D that dominates e, i.e., e and f have
an end point in common. This endpoint belongs to C and therefore C is a vertex
cover.

Theorem 6.2. Algorithm 6.1 solves Edge Dominating Set in O(1.4423n) time.

Proof. We prove that the minimum size of an edge dominating set in G equals the



100 Chap. 6: Designing Algorithms for Edge-Domination Problems

minimum cardinality of DC as computed by Algorithm 6.1 over all minimal vertex
covers C in G. From this the correctness follows.

If C is a minimal vertex cover, then DC is an edge dominating set since if any
edge is not dominated then both endpoints are not in C which contradicts C being a
vertex cover. Therefore, the algorithm returns an edge dominating set. To see that
it is minimal, consider a minimum edge dominating set D in G. By Proposition 6.1,
its endpoints form a vertex cover C in G. From this vertex cover C, a minimum edge
dominating set can be reconstructed by computing a minimum edge cover in G[C].
The vertex cover C does not need to be minimal, but, for any minimal vertex cover
C1 ⊆ C, the edges incident to a vertex v ∈ C∖C1 are all dominated by any choice of
edges incident to the vertices in C1. Thus, DC1

constructed by Algorithm 6.1 from the
minimal vertex cover C1 dominates the same edges as D. And, it is not larger than D
since the edge cover DC1

needs to cover only a subset of the vertices in C. Hence, DC1

is a minimum edge dominating set.
The running time is derived from the Moon-Moser bound [235, 241] on the number

of maximal independent sets, and hence minimal vertex covers in G: this number
is bounded by 3n/3 < 1.4423n. Enumerating all minimal vertex covers can be done
with only polynomial delay [196, 221], therefore Algorithm 6.1 has a running time of
O(1.4423n).

Following the notation of the proof of Property 6.1, the smallest edge dominating set
which contains C ⊆ V as endpoints will be denoted by DC from now on.

By using a standard technique from [177], Theorem 6.2 also gives an algorithm for
Minimum Maximal Matching.

Corollary 6.3. Minimum Maximal Matching can be solved by a modification of
Algorithm 6.1 in O(1.4423n) time.

Proof. Take the minimum edge dominating set computed by Algorithm 6.1. Let {u, v},
{v, w} be a pair of dominating edges incident to the same vertex v. By minimality,
there cannot be another dominating edge incident to w (remove {v, w} for a smaller
edge dominating set). Also, there must be a vertex x adjacent to w without any
incident dominating edge; otherwise, the edge dominating set without {v, w} would
be a smaller edge dominating set. Hence, we can replace {v, w} by {w, x} obtaining
an edge dominating set with one pair of not independent dominating edges less and
repeating this process results in a minimum maximal matching.

6.3. A Reduction Rule for Edge Dominating Set

The 3n/3 upper bound on the number of minimal vertex covers in a graph G is tight;
consider the family of graphs consisting of l triangles: these graphs have 3l vertices
and 3l minimal vertex covers. However, from the perspective of computing a minimum
edge dominating set, this class of graphs is trivial: just pick an edge from each triangle.

In this section, we use properties of edge dominating sets in order to enumerate
fewer minimal vertex covers, avoiding situations of the type we just described. In this
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way, we obtain a faster algorithm than the simple algorithm of Section 6.2. The modifi-
cations are very simple, yet powerful enough to already improve upon the algorithm by
Fomin et al. [138] which uses far more complicated techniques. First, we will introduce
a reduction rule, and secondly, we will introduce a more efficient branching strategy.
Like Algorithm 6.1, the new algorithm enumerates a series of minimal vertex covers,
and computes for each of these minimal vertex covers C the smallest edge dominating
set DC that contains the vertices C in its set of endpoints. To this end, it continuously
keeps track of a partitioning of the vertices of G in three sets: a set C of vertices that
must become part of the minimal vertex cover, a set I of vertices that may not become
part of the minimal vertex cover (they are in the complementing maximal independent
set), and a set U of vertices, which we call the set of undecided vertices. We denote
such a state by the four-tuple (G,C, I, U).

We introduce the following rule:

Reduction Rule 6.1.

if G[U ] has a connected component H that is a clique then

Let G̃ be the result of adding a vertex v connected to all vertices in H to G
Let C̃ := C ∪H ∪ {v} and Ũ := U∖H
Recursively solve the problem (G̃, C̃, I, Ũ) and denote its solution by D
if D contains two distinct edges {u, v}, {v, w} incident to v then

return (D∖{{u, v}, {v, w}}) ∪ {{u,w}}
return D∖{{u, v}}, where {u, v} is the unique edge in D incident to v

Proof of correctness. After the recursive call the extra vertex v is incident to at least
one edge in D, since v ∈ C̃. Also, v is incident to at most two edges in D. This is
because two such edges can be replaced by the edge joining the other endpoints; this
gives a smaller edge dominating set with C̃ as a subset of the set of endpoints.

All clique edges in the original graph are dominated if at most one clique vertex
is not incident to a dominating edge. Therefore, if D contains only one edge incident
to v, then removing this edge results in an edge dominating set in the original graph G
with C as a subset of its set of endpoints. Because D is of minimum cardinality
(in G̃) and the returned set is one smaller, this returned set must also be of minimum
cardinality (in G). Namely, if it is not, then adding the edge between the unique
vertex of the clique that is not an endpoint in the edge dominating set and v results
in a smaller alternative for D.

If D contains two edges incident to v, replacing these by the edge joining the other
endpoints also results in such an edge dominating set in the original graph. This edge
dominating set is also of minimal cardinality because adding any edge incident to v
gives an alternative for D.

We note that a simpler rule can be used for connected components that form
a clique of size one or two. Namely, isolated vertices in G[U ] can be put into I.
Furthermore, K2 components in G[U ] can be put into C if they have no neighbours
in C in G, and they can be contracted otherwise, after which can we put the resulting
vertex into C.

Recall that, for a vertex set U , the U -degree of a vertex v ∈ U is defined to be the
degree of v in G[U ].
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Algorithm 6.2. A faster algorithm for Edge Dominating Set.

Input: a graph G = (V,E), and three vertex sets C, I, and U
Initially, C := ∅, I := ∅, U := V

Output: a minimum edge dominating set in G
1: if G[U ] has a connected component H that is a clique then
2: Apply Reduction Rule 6.1
3: else if a vertex v of maximum degree in G[U ] has U -degree at least three then
4: Create two subproblems and solve each one recursively:
5: 1: (G,C ∪NU (v), I ∪ {v}, U∖NU [v]) 2: (G,C ∪ {v}, I, U∖{v})
6: else
7: for each minimal vertex covers Ĉ on G[U ] do
8: Compute the candidate edge dominating set DC∪Ĉ

9: return the smallest edge dominating set encountered

If Reduction Rule 6.1 does not apply, Algorithm 6.2 picks any undecided vertex
v ∈ U of maximum degree in G[U ] (maximum number of undecided neighbours in G).
If v has U -degree at least three, we branch on this vertex, generating two subproblems.
In one subproblem, v is put in the independent set I; because no neighbour of v can
also be in the independent set I, these neighbours (at least three) are all put in the
vertex cover C. In the other subproblem, v is put the vertex cover C. We note that
this may result in the construction of vertex covers which are not minimal, but all
minimal vertex covers are enumerated in this way.

If v has U -degree smaller than three, G[U ] is of maximum degree at most two and,
due to Reduction Rule 6.1, G[U ] does not contain a connected component that is a
clique. Therefore, G[U ] now consists of a collection of paths on at least three vertices
and cycles on at least four vertices. In this case, Algorithm 6.2 enumerates all minimal
vertex covers on these paths and cycles.

For each resulting partition of V in an independent set I and a vertex cover C,
Algorithm 6.2 computes a candidate for the minimum edge dominating set DC in the
same way as Algorithm 6.1 and returns the candidate of minimum cardinality.

Theorem 6.4. Algorithm 6.2 solves Edge Dominating Set in O(1.3803n) time and
polynomial space.

Proof. Correctness of the algorithm follows directly from the proof of Theorem 6.2 and
the correctness of Reduction Rule 6.1.

Let P (l) be the number of maximal independent sets on a path on l vertices, and
let C(l) be the number of maximal independent sets on a cycle on l vertices. For each
vertex in a maximal independent set I in a path, the next vertex in I must be at
distance two or three; hence:

P (1) = 1 P (2) = 2 P (3) = 2 ∀l≥4 : P (l) = P (l − 2) + P (l − 3)

We can use this recurrence to inductively prove the following upper bound on P (l) for
all l ≥ 3 after noticing that it holds for l ∈ {3, 4, 5}.

l ≥ 3 : P (l) ≤ �l where � < 1.33 is the root of 1 = �−2 + �−3
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We now determine C(l) for cycles on l vertices. For l ≤ 6 C(l) is determined by a
simple enumeration. For l ≥ 7, consider an arbitrary vertex v on a cycle on l vertices.
If v is in a maximal independent set I, then neither of its neighbours are, leaving
P (l − 3) possibilities. If v ∕∈ I, then one or both of its neighbours is in I. Each of the
cases where one neighbour is in I leaves P (l − 6) possibilities because by maximality
of I the neighbour of the neighbour of v that is not in I must belong to I. In the
case that both neighbours are in I, five vertices are fixed leaving P (l− 5) possibilities.
Hence, we obtain:

C(4) = 2 C(5) = 5 C(6) = 5 ∀l≥7 : C(l) = P (l− 3) + P (l− 5) + 2P (l− 6)

Let u be the number of undecided vertices in our problem instance (initially u = n),
and let S(u) be the number of subproblems generated to solve an instance with ∣U ∣ = u.
We have the following recurrence relation:

S(u) ≤

⎧

⎨

⎩

S(u− 1) + S(u− 4) branch on a vertex of U -degree at least three
P (l)S(u− l) minimal vertex covers in a path on l vertices
C(l)S(u− l) minimal vertex covers in a cycle on l vertices

Because of the branching on a vertex of degree three, we have that S(u) ≤ �u where �
is the solution of 1 = �−1+�−4. For the enumeration of minimal vertex covers in paths,
we have S(u) ≤ �lS(u − l) ≤ �l�u−l < �u because � < �. And, for the enumeration
of minimal vertex covers in cycles, we have S(u) < �u. This last inequality holds
because the solution to 
u = C(l)
u−l converges to 
 = � when l → ∞ and reaches
its maximum on l ≥ 4 when l = 5; here 
 < 1.379 < � < 1.3803. We note the the
convergences to 
 = � is due to the fact that, in the recurrence for C(l), the number
of maximal independent sets on a path on l vertices increases in influence when l
increases. The worst case over these three possibilities gives S(u) ≤ �u which results
in the running time of O∗(�n) or O(1.3803n).

The collection of minimal vertex covers constructed is not being stored, the enume-
ration search tree is traversed, therefore the algorithm uses only polynomial space.

We conclude this section, with the remark that we cannot improve the algorithm
by putting more paths or cycles in the polynomial part of the algorithm (assuming
P ∕= NP). This follows from the following proposition.

Proposition 6.5. Finding a minimum edge dominating set in a graph G with marked
vertices C, that contains all marked vertices as endpoints, and where G[V ∖C] (this is
G[U ] in our algorithms) is a collection of paths on at most three vertices is NP-hard.

Proof. Consider a Satisfiability instance with variables x1, x2, . . . , xn and clauses
c1, c2, . . . , cm. We safely assume that all variables xi occur at least once as a positive
literal and at least once as a negative literal.

Introduce a marked vertex (a vertex in C) for each clause. We will connect this
clause vertex to gadgets representing the variables; this will be done in such a way that
the edge between the gadget and this clause vertex will be selected in the minimum
edge dominating set if and only if the corresponding literal is set to True in some
given satisfying assignment. Notice that because the clause vertex is marked it must
be an endpoint of at least one edge in the required minimum edge dominating set.
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Next, introduce a marked vertex (a vertex in C) incident to two edges for each
variable. One of both edges must be selected since the variable vertex is a marked
vertex, and which one is selected represents whether the variable is set to True or
False. If the variable occurs only once as a positive or only once as a negative literal, we
directly connect the corresponding edge to the vertex representing the corresponding
clauses. Otherwise, we let the edge be incident to the middle vertex of an unmarked
path on three vertices; these are the only unmarked vertices in our construction and
these are of length at most tree as claimed. Each of the two endpoints of this path will
be connected to a new marked vertex v1 and v2. These vertices v1 and v2 are both
incident to one more edge which other endpoint we will assign soon. Suppose that the
path is connected to the True edge of a variable vertex while this variable is set to
True. In this case, the edges of the path are dominated by the selected edge of the
variable vertex, and it is always optimal to pick the second edge (with so far unassigned
other endpoint) of v1 and v2. If the current variable xi occurs twice as a positive literal,
we can now connect v1 and v2 to the corresponding clause vertices. Otherwise, we can
add more of these path gadgets to increase the number of occurrences to any positive
number. We repeat the same construction for the negative literals of the variable, and
for all variables.

Since all marked vertices that are not clause vertices are non-adjacent, any mini-
mum edge dominating set that contains all marked vertices as endpoints uses at least
∣C∣−m edges. It is not hard to see that such an minimum edge dominating set of size
∣C∣ −m exists if and only if the corresponding Satisfiability instance is satisfiable.

In this NP-hardness proof, the paths on three vertices can easily be replaced by
cycles on four vertices.

6.4. Analysis Using Measure and Conquer

When we branch on a vertex v of large degree in G[U ], then the removal of v from
G[U ] in one branch, and the removal of NU [v] from G[U ] in the other branch, will
reduce the degree of some of the remaining vertices in G[U ]. Since we can deal with
vertices of U -degree at most two (collections of paths and cycles in G[U ]) in less time
than we need for vertices of U -degree three or four, this reduction of the degrees means
additional progress for the algorithm. In this section, we show how we can keep track
of this additional progress by using the measure-and-conquer technique [142, 144]; see
also Section 5.2. In combination with a slightly changed branching strategy on paths
and cycles in G[U ], this leads to an improved time bound.

We first modify the enumeration of minimal vertex covers on paths and cycles:
Algorithm 6.3 no longer enumerates all minimal vertex covers, but instead branches
on the third vertex v of a path on at least four vertices and applies Reduction Rule 6.1.
In one branch, v is put in the independent set resulting in the removal of four vertices: v,
its neighbours, and the remaining isolated vertex. In the other branch, v is put in the
vertex cover resulting in the removal of three vertices: v and the first two vertices
of the path, since they now form a 2-clique in G[U ]. Using this branching strategy
on paths, we break cycles on at least five vertices by branching in two subproblems:
pick any vertex v and put v in the vertex cover or put v in the independent set and
its neighbours in the vertex cover. Finally, we still enumerate all minimal vertex
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Algorithm 6.3. A third algorithm for Edge Dominating Set.

Input: a graph G = (V,E), and three vertex sets C, I, and U
Initially, C := ∅, I := ∅, U := V

Output: a minimum edge dominating set in G
1: if G[U ] has a connected component H that is a clique then
2: Apply Reduction Rule 6.1
3: else if a vertex v of maximum degree in G[U ] has U -degree at least three

or G[U ] has a connected component H that is a cycle on l ≥ 5 vertices then
4: Pick any v ∈ H and recursively solve the following two subproblems:
5: 1: (G,C ∪NU (v), I ∪ {v}, U∖NU [v]) 2: (G,C ∪ {v}, I, U∖{v})
6: else if G[U ] has a connected component H that is a cycle on four vertices then
7: Let H be the cycle v1, v2, v3, v4, v1. Recursively solve the subproblems:
8: 1: (G,C ∪ {v1, v3}, I ∪ {v2, v4}, U∖{v1, v2, v3, v4})

2: (G,C ∪ {v2, v4}, I ∪ {v1, v3}, U∖{v1, v2, v3, v4})
9: else if G[U ] has a connected component H that is a path on l ≥ 4 vertices then

10: Let v1, v2, v3, v4 be the end of the path. Recursively solve the subproblems:
11: 1: (G,C∪{v2, v4}, I∪{v1, v3}, U∖{v1, v2, v3, v4}) 2: (G,C∪{v3}, I, U∖{v3})
12: else if G[U ] had a connected component H that is a path on three vertices then
13: Let v be the middle vertex of the path. Recursively solve the subproblems:
14: 1: (G,C ∪NU (v), I ∪ {v}, U∖NU [v]) 2: (G,C ∪ {v}, I ∪NU (v), U∖NU [v])
15: else // Now: U = ∅, C ∪̇ I = V
16: Compute the candidate edge dominating set DC

17: return the smallest edge dominating set encountered

covers on remaining paths on three vertices or cycles on four vertices. This results in
Algorithm 6.3.

We estimate the number of subproblems generated by branching on paths and
cycles:

Lemma 6.6. For Algorithm 6.3 and l ≥ 4:

1. A cycle component Cl in G[U ] gives rise to at most 4l/6 subproblems.
2. A path component Pl in G[U ] gives rise to at most 4(l−1)/6 subproblems.

Proof. (1.) Let P ′(l), C ′(l) be the number of subproblems generated by Algorithm 6.3
when dealing with a path or cycle on l vertices, respectively. We derive the values
of P ′(l) and C ′(l) for l ≤ 4 directly and for l ≥ 5 we have the following recurrence
relation that follows from the branching of the algorithm:

P ′(1) = P ′(2) = C ′(3) = 1 P ′(3) = P ′(4) = C ′(4) = 2

∀l≥5 : P ′(l) = P ′(l − 3) + P ′(l − 4) C ′(l) = P ′(l − 1) + P ′(l − 3)

Let 
 be the solution of 1 = 
−3 + 
−4. For l ≥ 4, P ′(l) < 
l follows by induction
after noting that it holds for l ∈ {4, 5, 6, 7}. For l ≥ 10 we have:

C ′(l) < 
l−1 + 
l−3 = 
l(
−1 + 
−3) =
(


 l
√


−1 + 
−3
)l

< (41/6)l
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using the fact that l
√


−1 + 
−3 is decreasing and smaller than 41/6 if l ≥ 10. Direct
computation shows that for l < 10: C ′(l) ≤ 4l/6.

(2.) For l ≥ 8, 
l/(l−1) is decreasing and smaller than 41/6, therefore:

P ′(l) < 
l =
(


l/(l−1)
)l−1

< (41/6)l−1

For 4 ≤ l ≤ 7: P ′(l) ≤ 4(l−1)/6, by direct computation.

These estimates are tight: when Algorithm 6.3 branches on a C6 component in G[U ]
(l = 6), we indeed generate 4 = 4l/6 subproblems.

For the measure-and-conquer analysis, we need a weight function w : ℕ → [0, 1]
assigning weights w(d) to vertices of degree d in G[U ]. Instead of counting the number
of undecided vertices to measure the progress of our algorithm, we will now use their
total weight k :=

∑

v∈U w(degG[U ](v)) as a measure. This is justified by the fact that
if we can show that our algorithm runs in O(�k) time using weight function w, it will
also run in O(�n) time, since for any problem instance k ≤ n.

Theorem 6.7. Algorithm 6.3 solves Edge Dominating Set in O(1.3323n) time and
polynomial space.

Proof. Let w : ℕ → [0, 1] be the weight function assigning weight w(degG[U ](v)) to
vertices v ∈ G[U ]. The algorithm removes all vertices of U -degree zero, therefore
w(0) = 0. Let Δw(i) = w(i) − w(i − 1). Vertices with a larger U -degree should be
given a larger weight, hence we demand: ∀n≥1 Δw(n) ≥ 0. Furthermore we impose
non-restricting steepness inequalities: ∀n≥1 Δw(n) ≥ Δw(n+ 1).

Consider an instance where the algorithm branches on a vertex v of maximum
U -degree d ≥ 3 with ri neighbours of degree i in G[U ] (d =

∑d
i=1 ri). If v is put in

the vertex cover, it is removed from U and the U -degrees of all its neighbours in G[U ]
are decreased by one. If v is placed in the independent set then NU [v] is removed
from U , and the total sum of the degrees of the remaining vertices is reduced by at
least d2; here d2 is a lower bound on the number of edges between NU [v] and vertices
at distance two from v in G[U ]:

d2 =

(

d
∑

i=1

(i− 1)ri

)

mod 2 except when d = r3 = 3 then: d2 = 2

This follows from a parity argument: there must be an edge in G[U ] with only one
endpoint in NU [v] if 1 ≡ ∑d

i=1(i − 1)ri (mod 2). Also NU [v] cannot be a clique by
Reduction Rule 6.1, hence if d = rd there must be at least two edges in G[U ] with only
one endpoint in NU [v].

Altogether, we conclude that the algorithm recurses on two instances, one in which
the measures decreases by Δindep, and one in which the measure decreases by Δvc,
with Δindep and Δvc satisfying:

Δindep ≥ w(d) +

d
∑

i=1

riw(i) + d2Δw(d) Δvc ≥ w(d) +

d
∑

i=1

riΔw(i)
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Figure 6.1. Graph corresponding to a worst case for Algorithm 6.3.

Let S(k) be the number of subproblems generated to solve a problem with measure k.
For all d ≥ 3 and (d =

∑d
i=1 ri), we have a recurrence relation of the form:

S(k) ≤ S(k −Δindep) + S(k −Δvc)

We define q(w) to be the functional mapping a weight function to the solution of this
entire set of recurrence relations.

By Lemma 6.6, an l-cycle or l-path generates at most 4l/6, respectively 4(l−1)/6,
subproblems. An l-cycle has a measure of at least l ⋅w(2) and a path on l vertices has
a measure of at least (l − 1) ⋅ w(2), since Δw(1) ≥ Δw(2) and hence 2w(1) ≥ w(2).
Therefore, in an instance where the vertices in cycle components and path components
on at least four vertices in G[U ] have measure k′, the removal of these vertices from U
by Algorithm 6.3 results in at most 4k

′/6w(2) subproblems.
We now look for the optimal weight function w : ℕ → [0, 1], satisfying the restric-

tions, such that the following maximum over the worst case behaviours of the different
branch cases is minimum. We distinguish between the case where the maximum U -
degree is three or more, the case where cycles and paths on at least four vertices are
removed from G[U ], and the case where a path on three vertices is removed from G[U ].

S(k) ≤
(

min
w:ℕ→[0,1]

max
{

q(w), 41/6w(2) , 21/(w(2)+2w(1))
}

)k

For some large enough integer p ≥ 3, we set set ∀i≥pw(i) = 1 to obtain a finite
numerical optimisation problem involving the solutions to the recurrence relations for
3 ≤ d ≤ p+ 1 and d =

∑d
i=1 ri. In this finite problem, all recurrences with d > p+ 1

are dominated by those with d = p + 1. Solving this finite problem numerically (see
Section 5.6), we obtain the optimal weights and a solution � < 1.3323:

w(1) = 0.750724 w(2) = 0.914953 ∀i≥3 w(i) = 1

Therefore, an instance of measure k generates less than 1.3323k subproblems, leading
to the upper bound on the running time of O(1.3323n). Since we do not store any
subproblems, but just traverse an enumeration tree, we use only polynomial space.

Since measure-and-conquer analyses provide only upper bounds on the running
time of an algorithm, it is useful to consider lower bounds also.

Proposition 6.8. The worst case running time of Algorithm 6.3 is Ω(1.3160n).

Proof. Consider the class of graphs consisting of l disjoint copies of the graph in Figure
6.1. On each individual copy, Algorithm 6.3 can branch on the leftmost vertex resulting
in two subproblems: one where this entire copy is removed from U and one where a
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path of length three remains in G[U ]. This leads to a total of three subproblems
for each copy of the graph. Therefore, Algorithm 6.3 generates 3l = 3n/4 > 1.3160n

subproblems on this class of graphs. This proves the Ω(1.3160n) lower bound.

6.5. Step-by-Step Improvement of the Worst Cases

As we have seen in Section 5.3, it is often a good idea to reconsider the numerical
optimisation problem obtained from a measure-and-conquer analysis. The function
optimised in the proof of Theorem 6.7 equals the maximum over the solutions to a
series of recurrence relations: one for each subcase considered. The solution to this
numerical optimisation problem is an optimal point x ∈ ℝ

p. In x, or any other feasible
point in ℝ

p, some of the solutions to the individual recurrence relations are tight to
the maximum. If one slightly varies the weights at this optimum x, the solutions to
these tight recurrence relations increase (by optimality of x). If we now change our
algorithm in such a way that it handles such a tight subcase in a more efficient way,
the corresponding recurrence relation changes: its solution becomes smaller. In this
case we can move out of x to a new optimum, with a necessarily smaller maximum
over the solutions of the recurrence relations. This results in a smaller upper bound
on the running time. This approach will be used in this section to improve upon
Algorithm 6.3. However, since this approach requires a lot of technical case analysis,
we moved large parts to Appendix A.3 and only sketch the most important ideas here.

The numerical optimisation problem associated with Algorithm 6.3 (see the proof
of Theorem 6.7) gives the following tight worst cases:

1. d = 3, r2 = 2, r3 = 1, i.e., we have a vertex of maximum U -degree three, with
two neighbours in G[U ] of U -degree two and one neighbour in G[U ] of U -degree
three.

2. d = 3, r3 = 3: we have a vertex of maximum U -degree three, with three neigh-
bours in G[U ] of U -degree three.

3. a connected component in G[U ] is a path on three vertices.

We can improve upon the first two cases, while improving upon the third seems hard
(see the remark above Proposition 6.5).

Consider the first case. In this case, v is a vertex of maximum U -degree where the
algorithm branches on. It has degree three with two neighbours u1, u2 ∈ U of U -degree
two and one neighbour u3 ∈ U of U -degree three. In our analysis of Section 6.4, we
had a lower bound d2 on the number of edges between NU [v] and the vertices and
distance two from v; for this case, we had d2 = 0. We can now consider two subcases.

In the first subcase v, u1, u2 and u3 form a connected component in G[U ], isomor-
phic to the graph in Figure 6.1. Algorithm 6.3 branches on v. We modify this now, by
instead branching on one of the U -degree two vertices, e.g., u1. In both subproblems
that are obtained after branching on u1, the vertices of the subgraph that remain in U
form a clique in G[U ], and so are dealt with by Reduction Rule 6.1. Therefore, the
entire subgraph disappears from G[U ] after one branching step and the application
of Reduction Rule 6.1, while previously we had a path on three vertices remaining in
G[U ] in one subproblem that required another branching step.
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In the second subcase, u1, u2 and/or u3 are adjacent to vertices in U∖{v, u1, u2, u3}.
If we branch on v, then these vertices will have their U -degrees reduced by one in one
branch, implying a larger progress than estimated in Section 6.4: by a parity argument
we can use d2 = 2 as a new lower bound on the number of edges between NU [v] and
the rest of G[U ].

Thus, we modify the algorithm and split this case in two subcases in the measure-
and-conquer analysis. If we solve the resulting numerical optimisation problem (see
Section 5.6), this proves an upper bound on the running time of O(1.3315n) for this
modified algorithm.

Arguments, similar to the argument given above for the case d=3, r2=2, r3=1, can
be given in a large number of other cases as well. This leads to a series of improvement
steps and a series of algorithms, where each algorithm slightly improves upon the
previous one. In each improvement step, we formulate an alternative branching rule
for each of the cases tight to the optimum of the numerical optimisation problem
associated with the previous algorithm. This process leads to a large case analysis
which we moved to Appendix A.3.

This approach leads to the following result.

Theorem 6.9. There exists a polynomial-space algorithm that solves Edge Dominat-

ing Set in O(1.3226n) time.

Proof. See Appendix A.3.

We note that we also derived a lower bound of Ω(1.2753n) on the running time
of the algorithm corresponding to Theorem 6.9. Since this lower bound requires the
details of this algorithm, this result can also be found in Appendix A.3.

Remark 6.1. Considering more subcases and deriving more alternative branching rules
could further reduce the running time of the algorithm. But, if we continue in the same
fashion as in Appendix A.3, we cannot improve beyond O(1.3214n). This is because,
in each improvement step, we increased the lower bound d2 on the number of edges
between NU [v] and the rest of G[U ]; if we branch on a vertex of maximum degree d,
then this lower bound d2 is bounded from above by d2 ≤∑d

i=1(i−1)ri. If we solve our
numerical optimisation problem (see Section 5.6) using these maximum values for d2,
we obtain the running time bound of O(1.3214n).

As a consequence of Theorem 6.9, we also obtain the following results (see Sec-
tion 6.1 and Corollary 6.3):

Corollary 6.10. There exists an algorithm that solves Minimum Maximal Matching

in O(1.3226n) time and polynomial space.

Corollary 6.11. There exists an algorithm that solves Matrix Dominating Set in
O(1.3226n+m) time and polynomial space.

For Matrix Dominating Set a slightly simpler algorithm would suffice since
there cannot be any odd cycles in a bipartite graph; therefore, Reduction Rule 6.1 can
be replaced by a reduction rule that removes isolated vertices and 2-cliques from G[U ].



110 Chap. 6: Designing Algorithms for Edge-Domination Problems

We note that the previously fastest algorithm for Matrix Dominating Set by
Fomin et al. is faster than the algorithm for Edge Dominating Set on which it was
based [138]. Fomin et al. obtain this improvement by noticing that a bipartite graph
contains less that 3n/3 minimal vertex covers. We cannot use this improvement here,
because our approach does not use a subroutine that enumerates all minimal vertex
covers.

6.6. Results on Weighted Edge-Domination Problems

Next, we will consider the weighted variants of Edge Dominating Set and Minimum

Maximal Matching. Proposition 6.1 still applies to these weighted problems, while
other properties exploited by our algorithms need more careful consideration. In this
section, we introduce modifications of the algorithm of the previous section that solve
these weighted problems with the same upper bound on running time. For both
variants, we need a slightly different approach.

6.6.1. Minimum Weight Edge Dominating Set

We start by formally introducing the problem.

Minimum Weight Edge Dominating Set

Input: A graph G = (V,E), a weight function ! : E → ℝ+, and a non-
negative real number k ∈ ℝ+.

Question: Does there exist an edge dominating set D ⊆ E in G of total
weight at most k?

We note that we use ℝ+ to denote the set of non-negative real numbers.
Let us first look at the polynomial-time procedure that we execute at at the leaves of

the search tree of the algorithm of Theorem 6.9. We note that we could also consider
Algorithm 6.3 since the algorithm of Theorem 6.9 is identical to the Algorithm 6.3
except for some changes in the branching rules. In the unweighted case, it is sufficient
to compute a minimum edge cover in G[C], but this does not extend to the weighted
case. This is because the use of edges between a vertex in the independent set I and a
vertex in the vertex cover C can lead to a smaller total weight. To deal with this, we
notice that the Minimum Weight Edge Cover problem is solvable in polynomial
(cubic) time [252].

First consider the Minimum Weight Generalised Edge Cover problem: in a
graph G cover a specified subset of the vertices C ⊆ V by a set of edges of minimum
total weight. This problem can also be solved in cubic time [253] in the following
way [131]. Create the graph G′ with vertex set C ∪ {v}, where v is a new vertex. G′

contains all edges from G[C] and some additional edges {u, v} between a vertex u ∈ C
and the new vertex v if the vertex u satisfies one of the following cases: u ∈ C has
degree zero in G[C]; or, u ∈ C has an edge in G whose weight is smaller than the
weight of any edge incident to u in G[C]. The weight of a new edge {u, v} will be the
minimum weight over all edges incident to u in G.

Proposition 6.12 ([131]). Let G be a graph, let C ⊆ V , and let G′ be the graph
obtained from G and C using the above construction. Then, the minimum weight
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generalised edge cover in G has weight equal to the minimum of the weights of the
minimum weight edge covers in G[C] and G′.

Proof. The minimum weight generalised edge cover in G has weight equal to the min-
imum weight edge cover in G[C] or G′ depending on whether edges with endpoints in
V ∖C are used. This will equal the one with smallest weight, since if no edges incident
to a vertex in V ∖C are used in the minimum weight generalised edge cover in G then
the minimum weight edge cover in G′ will have greater weight than the one in G[C]
(more needs to be covered). Equivalently, if some of these edges are used, then we
obtain a solution with smaller weight by using them and hence the minimum weight
edge cover in G[C] will have larger weight than the one in G′.

We now consider Reduction Rule 6.1. Reduction Rule 6.1 no longer applies to the
weighted case, and cannot be easily adapted to this case, as it is not possible to assign
weights to the new edges it introduces such that we obtain an equivalent instance.
However, in the case of cliques of size at most three, the following modified rules can
be used. Note that these reduction rules are applied in a setting where the vertices
in G are partitioned into tree sets: a set C of vertices that must become part of the
minimal vertex cover, a set I of vertices that may not become part of the minimal
vertex cover (they are in the complementing maximal independent set), and a set U
of undecided vertices.

Reduction Rule 6.2. Put isolated vertices in G[U ] in the independent set I.

Proof of correctness. The rule is correct because all edges incident to an isolated vertex
in G[U ] have their other endpoint in C, and hence will be dominated by an edge
incident to this endpoint.

Reduction Rule 6.3.

if G[U ] has a connected component H that is a clique of size two or three then
Let e be an edge of minimum weight in H with weight !(e)
Let G̃ be a copy of G with a new vertex v connected to all vertices in H
Let C̃ := C ∪H ∪ {v}, Ũ := U∖H, and let the new edges in G̃ have weight !(e)
Recursively solve the problem (G̃, C̃, I, Ũ) with resulting edge dominating set D
if D contains two distinct edges f, g incident to v then

return (D∖{f, g}) ∪ {e}
return D∖{f}, where f is the unique edge in D incident to v

Proof of correctness. Observe that the edges of the clique H are dominated in G if
at most one vertex in H is not incident to a dominating edge. Thus, if one edge
in D is incident to v, the returned set is an edge dominating set in G. If two edges
{u, v}, {v, w} in D are incident to v, then e is incident to u or w because H consists of
no more than three vertices. Therefore, as the returned set contains e, we have that
it is an edge dominating set in G also.

The returned set is of total weight
(
∑

d∈D !(d)
)

− !(e), and therefore it has min-
imum weight. This is because if there is an edge dominating set D′ in G of smaller
weight then we can add an edge e′ with weight !(e) to D′ obtaining a minimum weight
edge dominating set in G̃ of smaller total weight than D. Here, e′ is the edge joining



112 Chap. 6: Designing Algorithms for Edge-Domination Problems

the one vertex in H not incident to an edge in D′ with v, or any edge incident to v if
no such vertex exists.

Notice that for 2-cliques, this is equivalent to contracting the edge and connecting
the new vertex by an edge of weight equal to the contracted edge’s weight to a new
vertex. This new vertex does not need to be covered by the generalised edge cover.

Theorem 6.13. There exists an algorithm that solves Minimum Weight Edge Dom-

inating Set in O(1.3226n) time and polynomial space.

Proof. Consider Algorithm 6.3 and modify it in the following way. Replace Reduction
Rule 6.1 by Reduction Rules 6.2 and 6.3. Moreover, in the leaves of the search tree, use
Proposition 6.12 to compute the minimum weight edge dominating set that contains
the vertices in C in its set of endpoints.

That this algorithm is correct follows in exactly the same way as in Theorem 6.4,
based on Theorem 6.2, and the correctness of Reduction Rules 6.2 and 6.3.

The running time is dominated by the exponential number of subproblems gen-
erated. This is because for each partitioning of V in a minimal vertex cover and a
maximal independent set in a leaf of the search tree, the algorithm computes the min-
imum weight edge dominating set containing the vertex cover in its set of endpoints
in polynomial time. The only thing that can change the number of subproblems gen-
erated compared to the proof of Theorem 6.7 is the removal of cliques of size at least
four by a reduction rule. However, the analysis in the proof of Theorem 6.7 does not
require that cliques of size at least four are removed by a reduction rule. Hence, the
running time of O(1.3323n) follows.

We can improve the running time to O(1.3226n) by using the modified branching
rules introduced in the proof of Theorem 6.9 in Appendix A.3.

6.6.2. Minimum Weight Maximal Matching

We have given O(1.3226n)-time algorithms for Minimum Maximal Matching and
Minimum Weight Edge Dominating Set based on modifications of the algorithm
of Theorem 6.9. These modifications cannot be combined to construct an algorithm for
Minimum Weight Maximal Matching (Minimum Weight Independent Edge

Dominating Set) since the transformation of Corollary 6.3 does not preserve edge
weights. We will now give another modification of the algorithm of Theorem 6.9 that
allows us to solve Minimum Weight Maximal Matching in the same time.

Let us first introduce the problem formally.

Minimum Weight Maximal Matching

Input: A graph G = (V,E), a weight function ! : E → ℝ+ and a non-
negative real number k ∈ ℝ+.

Question: Does there exist a maximal matching M ⊆ E in G of total weight
at most k?

Our algorithm for this problem is based on the fact that, similar to the other
edge-domination problems considered, we can construct the minimum weight maximal
matching containing a minimal vertex cover in its set of endpoints. To this end, we
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Algorithm 6.4. Minimum Weight Generalised Independent Edge Cover.

Input: a graph G = (V,E) and a subset of its vertices C ⊆ V
Output: a minimum weight generalised independent edge cover of C in G if one exists
1: if G has an odd number of vertices then
2: Add a new vertex v to G (v ∕∈ C)
3: for each v, w ∈ V ∖C, v ∕= w do
4: Add a new edge between v and w to G with zero weight
5: if there exists a minimum weight perfect matching P in G then
6: return P with all edges between vertices not in C removed
7: return false

consider the Minimum Weight Generalised Independent Edge Cover problem:
cover a specified subset of the vertices C ⊆ V in a graph G by a set of edges of minimum
total weight such that no two edges are incident to the same vertex.

Proposition 6.14. Algorithm 6.4 solves the Minimum Weight Generalised Inde-

pendent Edge Cover problem in polynomial time.

Proof. The returned edge set is a generalised independent edge cover of C in G since
it is a matching and it contains all vertices in C in its set of endpoints.

Let G′ be the graph obtained from G by adding edges and the possibly adding a
vertex, as done in lines 1-4 of Algorithm 6.4. Consider any generalised independent
edge cover D of C in G. We notice that we can extend D to a perfect matching P ′

in G′ because all vertices not incident to an edge in D are adjacent as they are not
in C, and there is an even number of vertices in G′ This perfect matching P ′ has the
same total weight as D since the added edges all have zero weight.

The returned generalised independent edge cover has the same weight as the com-
puted perfect matching P in G′. Because P is of minimum total weight, and all
generalised independent edge covers of C in G can be transformed into a matching
of equal total weight by using the above construction, the returned set is a minimum
weight generalised independent edge cover of C in G. False is only returned if no
generalised independent edge cover of C exists in G.

We again give a modified reduction rule suited for the new problem.

Reduction Rule 6.4.

if G[U ] has a connected component H that is a clique then

Let G̃ be a copy of G with a new vertex v connected to all vertices in H
Let C̃ := C ∪H, Ĩ := I ∪ {v}, Ũ := U∖H, and let the new edge have weight zero
Recursively solve the problem (G̃, C̃, Ĩ, Ũ) with resulting edge dominating set D
if D contains an edge e incident to v then

return D∖{e}
return D

Proof of correctness. In a clique, a maximum of one vertex is allowed not to be incident
to a dominating edge. Since all vertices in H are put in C̃, and in C̃ at most one edge
can be incident to v, the returned edge set is an independent edge dominating set. This
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returned independent edge dominating set has the same total weight as D. Therefore,
it is of minimal total weight: if an independent edge dominating set of smaller weight
would exist, then a minimum weight maximal matching in G̃ with smaller weight
than D can be constructed.

Theorem 6.15. There exists an algorithm that solves Minimum Weight Maximal

Matching in O(1.3226n) time and polynomial space.

Proof. Identical to Theorem 6.13 using Proposition 6.14 and the proof of correctness
of Reduction Rule 6.4.

6.7. An FPT–Algorithm for k-Minimum Weight Maxi-
mal Matching

The results on Minimum Weight Maximal Matching from Section 6.6.2 also allow
us to solve an open problem raised by Fernau in [131]. In this paper, Fernau asks
whether vertex covers can be exploited to obtain efficient parametrised algorithms for
k-Minimum Weight Maximal Matching as well. Because Algorithm 6.4 allows us
to compute the minimum weight maximal matching containing any vertex cover in its
set of endpoints, and any minimum weight maximal matching must contain a minimal
vertex cover in its set of endpoints since it is an edge dominating set, the answer to
Fernau’s question must be positive.

In this section, we will give an O∗(2.4006k)-time algorithm for k-Minimum Weight

Maximal Matching. If we would use any of the modifications presented in this chap-
ter, this would also give an O∗(2.4006k)-time algorithm for the parameterised version
of the other edge-domination problems. We restrict ourselves to this problem, as this
section functions only to show that it possible to obtain a parameterised algorithm in
this way, not to give the currently fastest algorithms.

For the parameterised versions of variants of Edge Dominating Set, the first
non-trivial algorithm is due to Prieto in her PhD thesis [256]: she gives an O∗(24k(k+2))-
time and polynomial-space algorithm for k-Minimum Maximal Matching. Fernau
improved this to O∗(2.6162k) time and polynomial space in [131] and extended the
results to k-Edge Dominating Set and k-Minimum Weight Edge Dominating

Set. Fomin et al. improved the running time at the cost of exponential space to
O∗(2.4168k). We will give a modification of this algorithm that uses ideas from [97] that
runs in O∗(2.4006k) time and exponential space. Very recently, Raible and Fernau [23]
improved the running time to O∗(2.3819k) and polynomial space using a parameterised
version of measure and conquer.

Let us first formally introduce the parameterised problem.

k-Minimum Weight Maximal Matching

Input: A graph G = (V,E) and a weight function ! : E → ℝ≥1.
Parameter: A non-negative real number k ∈ ℝ+.
Question: Does there exist a maximal matching M ⊆ E in G of total

weight at most k?
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Algorithm 6.5. An algorithm for k-Minimum Weight Maximal Matching.

Input: a graph G = (V,E), three vertex sets C, I, and U , and a parameter k
Initially, C := ∅, I := ∅, U := V

Output: a minimum weight maximal matching of weight at most k in G if one exists
1: if ∣C∣ > 2k or ( Δ(G[U ]) = 3 and ∣{v ∣ v ∈ U, dU (v) = 3}∣ > 4k− 2∣C∣ ) then
2: return false
3: else if ( Δ(G[U ]) = 3 and ∣C∣ ≤ 0.130444k )

or ( Δ(G[U ]) = 2 and ∣C∣ ≤ 0.797110k ) then
4: Construct a path decomposition of G using Lemma 6.17
5: Compute a minimum weight maximal matching M in G using Proposition 6.16
6: Stop the algorithm: do not backtrack!
7: return M if it is of total weight at most k, or false otherwise
8: else if a vertex v of maximum degree in G[U ] has U -degree at least two then
9: Create two subproblems and solve each one recursively:

10: 1: (G,C ∪NU (v), I ∪ {v}, U∖NU [v]) 2: (G,C ∪ {v}, I, U∖{v})
11: else // Δ(G[U ]) ≤ 1
12: Exhaustively apply Reduction Rule 6.4 // this results in: U = ∅
13: Let M be a minimum weight generalised independent edge cover of (G,C)
14: return M if it is of total weight at most k, or false otherwise

Notice that, in order to compare weights to the parameter, it is required that for every
input edge e: !(e) ≥ 1. Alternatively one could ask for a minimum weight maximal
matching that consists of at most k edges.

Recall the definitions of pathwidth and a path decompositions; see Section 2.2.2
or for example [44, 202]. Also, recall Proposition 2.13 that shows that, given a path
decomposition of a graph G of width k, we can solve Edge Dominating Set on G
in O∗(3k) time. The proof of this proposition can easily be adapted to obtain the
following result.

Proposition 6.16. There is an algorithm that, given a path decomposition of a graph G
of width k, solves Minimum Maximal Matching on G in O∗(3k).

Proof. We notice that the algorithm of Proposition 2.13 computes a minimum maximal
matching in G (which equals a minimum edge dominating set because of the standard
replacement technique from [177], used in for example Corollary 6.3). It is not hard to
see that the recurrences used for dynamic programming by the algorithm of Proposi-
tion 2.13 need only a slight modification to compute the weight of a minimum weight
maximal matching instead of the number of edges in a minimum maximal matching.
The result then follows.

Now, consider Algorithm 6.5. This algorithm also uses branching and a reduc-
tion rules to enumerate relevant minimal vertex covers to solve k-Minimum Weight

Maximal Matching. Different to before, this algorithm sometimes switches to a
dynamic programming approach on path decompositions, and it has two rules based
on which it decides that in some branches no solution can be found.

Before going into the details, we first need the following lemma which is a combi-
nations of simple results from [97, 138, 147].
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Lemma 6.17. Let � > 0. There exist a constant c� such that we can bound the
pathwidth pw(G) of G by the following quantities in any node of the search tree of
Algorithm 6.5:

1. If Δ(G[U ]) ≤ 2, then pw(G) ≤ ∣C∣+ 2.
2. If Δ(G[U ]) ≤ 3, then pw(G) ≤ ( 16 + �)x+ ∣C∣+ c�, where x = ∣{v ∣ v ∈ U,

dU (v) = 3}∣.

Path decompositions of the appropriated width can be found in polynomial time.

Proof. Let C, I, U be the partitioning of the vertices of G in a node of the search tree.
For both cases, we will first show that we can obtain path decompositions of G[U ]
which width equals the above formulas where the term ∣C∣ is omitted.

(1.) If G[U ] has maximum degree two, it is a collection of paths and cycles. It
is easy to construct a path decomposition of width at most two for such a graph in
polynomial time. For a path, let the ith bag of the path decomposition contain exactly
the two endpoint of the ith edge on the path (starting from any side). For a cycle,
remove one vertex that we put in every bag of the path decomposition, and then treat
the remaining vertices as a path.

(2.) If G[U ] has maximum degree three, then x ≤ 4k because the algorithm will
not consider the subproblem otherwise. In this case, Theorem 2.14 tells us that there
exists a c� such that we can construct a path decomposition of G of width at most
( 16 + �)x+ c� in polynomial time.

Because I is an independent set, and non of the neighbours of the vertices in I
are in U , the pathwidth of G[U ∪ I] equals the pathwidth of G[U ]. Then, the claimed
results follow by adding the vertices in C to every bag of the path decomposition.

Now, we are ready to give the main result of this section.

Theorem 6.18. Algorithm 6.5 solves k-Minimum Weight Maximal Matching in
O∗(2.4006k) time and space.

Proof. Correctness is trivial if a path decomposition is constructed by the algorithm:
it then ignores any branching done and outputs a minimum weight maximal matching
of G if it is of small enough weight. If no path decomposition is constructed, then
the algorithm enumerates minimal vertex covers through branching similar to Algo-
rithm 6.2 whose correctness follows from Theorem 6.4. The only difference is that
Algorithm 6.5 discards certain branches: we will now show that these branches will
never lead to a vertex cover of size at most 2k and hence never lead to a solution of
size at most k. Correctness of the algorithm then follows.

In the case that the algorithm finds that ∣C∣ > 2k, then this is trivially true. In
the other case, G[U ] is of maximum degree three and x > 4k − 2∣C∣ where x is the
number of vertices of degree three in G[U ]. G[U ] contains at least 1 1

2x edges (three
edges incident to at most two degree three vertices), and each vertex in G[U ] can cover
at most three of them as the maximum degree in G[U ] is three. Hence, we can only
find a minimal vertex cover of size at most 2k if 3(2k − ∣C∣) ≥ 1 1

2x. Dividing both
sides by 1 1

2 shows that this is not the case when x > 4k − 2∣C∣.
For the running time, let S(k) be the number of subproblems generated to solve a

problem with parameter k, and let � = 0.398555, � = 0.065222. We use � = k − 1
2 ∣C∣
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as a measure of progress for the algorithm which is justified by the fact that the
algorithm stops if ∣C∣ > 2k: initially � = k. If we branch on a vertex of U -degree
at least four, the behaviour of the algorithm corresponds to the recurrence relation
S(�) ≤ S(� − 1

2 ) + S(� − 2). This holds because ∣C∣ increases by one in one branch
and by at least four in the other. Solving the recurrence relation leads to a running
time of this part of the algorithm of O∗(1.9052�).

Now suppose that during the execution of the algorithm a path decomposition of
width p is computed while Δ(G[U ]) = 3. This happens when the maximum degree
in G[U ] first drops to three, ∣C∣ ≤ 2�k, and x ≤ 4k − 2∣C∣ ≤ 4k. Then, using
some small enough � > 0, a minimum weight maximal matching in G is computed
in O∗(3∣C∣+( 1

6+�)x) ≤ O∗(3(2�+
2
3+4�)k) = O∗(2.4006k) time. Note that the factors in

the running time that depends on � disappear in the rounding of the bases of the
exponent when using some small enough � > 0. This leads to a total running time of
O∗(1.9052k + 2.4006k) = O∗(2.4006k).

If we branch on a vertex of U -degree at least three, then ∣C∣ > 2�k in every branch
in which the maximum degree in G[U ] first becomes three as 2� = 0.130444. The
behaviour of the algorithm corresponds to the recurrence relation S(�) ≤ S(�− 1

2 ) +
S(�− 1 1

2 ) (∣C∣ increases by one or three) which leads to a running time of this part of
the algorithm of O(2.1480�). In the first branching steps until ∣C∣ > 2�k, the algorithm
generates at most 1.9052�k subproblems with large enough C such that � is at most
k − �k. Hereafter, it branches on other vertices solving these subproblems in time at
most O∗(2.1480k−�k). This leads to a total running time of O∗(1.9052�k2.1480k−�k) =
O∗(2.1312k).

Now, suppose that during the execution of the algorithm a path decomposition of
width p is computed while Δ(G[U ]) = 2. This happens when the maximum degree in
G[U ] first becomes at most two and ∣C∣ ≤ 2�k as 2� = 0.797110. Then, a minimum
weight maximal matching in G is computed in O∗(3∣C∣) ≤ O∗(32�k) ≤ O∗(2.4006k)
time. This leads to a total running time of O∗(2.1312k + 2.4006k) = O∗(2.4006k).

Finally, if no path decomposition is computed, we have that ∣C∣ > 2�k in every
branch in which the maximum degree in G[U ] first becomes at most two. Hereafter,
the algorithm performs a series of branchings on U -degree two vertices according to
the recurrence relation S(�) ≤ S(� − 1

2 ) + S(� − 1) (∣C∣ increases by one or two).
This recurrence relation solves to O∗(2.6180�). When the maximum degree in G[U ]
becomes one, the minimum weight maximal matching for this branch is computed in
polynomial time. The first branching steps until ∣C∣ > 2�k as executed such that
at most 1.9052�k2.1480�k−�k subproblems are generated. Hereafter, it branches on
vertices of U -degree two solving these subproblems in time at most O∗(2.6180k−�k).
Together, this leads to a total running time of O∗(1.9052�k2.1480�k−�k2.6180k−�k) =
O∗(2.4006k).

We note that, in the above proof, � and � are chosen in such a way that:

1.9052�k2.1480�k−�k2.6180k−�k = 32�k = 3(2�+
2
3 )k

This balances the three different components in the running time of the algorithm.
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6.8. Concluding Remarks

In this chapter, we have presented O(1.3226n)-time and polynomial-space algorithms
for Edge Dominating Set, Minimum Weight Edge Dominating Set, Mini-

mum Maximal Matching (Minimum Independent Edge Dominating Set), and
Minimum Weight Maximal Matching. These algorithms are obtained by using a
vertex cover structure on the input graph. Furthermore, the iterative improvement of a
measure and conquer analysis is used to improve the branching rules of the algorithm.
We also applied a variant of our algorithms to the parameterised problem k-Minimum

Weight Maximal Matching.
There are many more edge-domination problems. For example, one can define a

general class of edge-domination problems in a similar way as the [�, �]-domination
problem (see Section 1.6) are defined for vertex-domination problem. It would be
interesting to see which of these problems, or other edge-domination problems, can be
solved in time exponential in the number of vertices n as well, maybe using similar
techniques.
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7
Exact Exponential-Time Algorithms

for Independent Set in
Sparse Graphs

Independent Set is one of the most intensively studied problems in the field of exact
exponential-time algorithms. In 1972 Tarjan gave an algorithm solving the problem in
O(1.2852n) time and polynomial space [291]. The first improvement of this algorithm
is due to Tarjan and Trojanowski [292], who improved the running time in 1977 to
O(1.2600n) while still using polynomial space. This bound has been improved often
since; see Table 7.1.

In this chapter, we will give a faster exact exponential-time algorithm for Inde-

pendent Set restricted to graphs in which each connected component has average
degree at most three. Notice that this includes graphs of maximum degree three.
For algorithms for Independent Set, this is a natural class of graphs to consider.
Namely, it is well known that Independent Set is linear-time solvable on graphs
of maximum degree two, while the problem is NP-complete on graphs of maximum
degree [163]. Also, Johnson and Szegedy have shown that subexponential-time al-
gorithms for Independent Set on general graphs exist if and only if they exist for
the problem on graphs of maximum degree three [197]. Therefore, Independent Set

on graphs of maximum degree three most likely requires exponential time to solve,
as under the Exponential-Time Hypothesis the general problem requires exponential
time [189]. To summarise, on graphs of maximum degree d, the problem seems to

†This chapter is joint work with Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos.
The chapter contains results which have been accepted for publication in Algorithmica [59]. Preli-
minary versions have been presented at the 7th Annual Conference on Theory and Applications of
Models of Computation (TAMC 2010) [60] and the 12th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2010) [58]. A preliminary version of some of the results is also available
as technical report: Cahier du LAMSADE 277 [57].
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Authors Polynomial space Exponential space

Tarjan [291] O(1.2852n)
Tarjan and Trojanowski [292] O(1.2600n)
Jian [195] O(1.2346n)
Robson [270] O(1.2278n) O(1.2109n)
Robson [271] O(1.2025n) O(1.1889n)
Fomin, Grandoni, Kratsch [144] O(1.2202n)
Kneis, Langer, Rossmanith [203] O(1.2132n)
This chapter O(1.2114n)

Table 7.1. Exact exponential-time algorithms for Independent Set.

require exponential-time algorithms if d ≥ 3: this makes the problem on graphs of
maximum degree three an interesting problem on its own.

Another reason to study this problem is that current algorithms for Independent

Set on general graphs often rely on techniques that allow the generally faster results
on Independent Set restricted to sparse graphs to be used to prove faster running
times on general graphs [59, 144, 203]. An example of such a technique is measure and
conquer [144], see also Section 5.2.

This chapter is organised as follows. We first recall some basic definitions and sur-
vey known results in Section 7.1. Then, we give the faster algorithm for Independent

Set on graphs in which each connected component has average degree at most three
in Section 7.2. Some of the proofs in this section can be found in Appendix A.4. In
Section 7.3, we state some of the results that we have obtained on general graphs and
on graphs of larger average or maximum degree. The proofs of these results can be
found in [57]. Finally, we give some concluding remarks in Section 7.4

7.1. Independent Set

We first recall the definition of Independent Set and then survey some previous
results on the problem both on general graphs and on graphs of maximum degree (or
average degree at most) three. A subset I ⊆ V of the vertices in a graph G is an
independent set if no two vertices from I are adjacent in G.

Independent Set

Input: A graph G = (V,E), and an integer k ∈ ℕ.
Question: Does there exist an independent set I ⊆ V in G of size at least k?

This problem is a classical NP-complete problem [162, 199], and there exists no
subexponential-time algorithm for this problem unless the Exponential-Time Hypo-
thesis fails [189], as we already discussed in the introduction to this chapter.

An overview of exact exponential-time algorithms for Independent Set on general
graphs can be found in Table 7.1. We note that the O(1.2202n)-time algorithm of
Fomin et al. [144], the O(1.2132n)-time algorithm by Kneis et al. [203], and our own



7.2. The Algorithm for Graphs of Average Degree at Most Three 121

Authors Running time

Chen, Kanj, Jia [72] O(1.1740n)
Beigel [15] O(1.1259n)
Chen, Liu, Jia [75] O(1.1504n)
Chen, Kanj, Xia [73] O(1.1255n)
Fomin and Høie [147] O(1.1225n)
Kojevnikov and Kulikov [210] O(1.1225n)

Fürer† [158] O(1.1120n)
Razgon [260] O(1.1034n)

Bourgeois, Escoffier, Paschos† [55] O(1.0977n)
Xiao [322] O(1.0919n)
Razgon [261] O(1.0892n)
Xiao [325] O(1.0885n)

This chapter† O(1.0854n)
† These results are on the broader class of graphs where each

connected component has average degree at most three.

Table 7.2. Previous result on Independent Set on graphs of
maximum degree three.

result are all obtained after the faster results that Robson claims1 [271]. We also note
that many details of the algorithm by Kneis et al. [203] can be found in [246, 263].

For an overview of exact exponential-time algorithms for Independent Set on
graphs of maximum degree three, see Table 7.2. Apparently many authors have
been working on this problem at the same time. At the time when we obtained our
O(1.08537n)-time algorithm for Independent Set on graphs in which each connected
component has average degree at most three, the previously fastest algorithm for this
problem (and the problem on graphs of maximum degree three) was the algorithm of
Bourgeois et al. running in time O(1.0977n).

7.2. The Algorithm for Connected Graphs of Average
Degree at Most Three

In this section, we will give the main result of this chapter: an O(1.08537n)-time and
polynomial-space algorithm for Independent Set on connected graphs of average
degree at most three. As this algorithm can be applied to each separate connected
component in a graph, this gives an O(1.08537n)-time and polynomial-space algorithm
on graphs in which each connected component has average degree at most three. In
Section 7.3, this algorithm will be used to obtain faster algorithms on general graphs
and on graphs of larger average or maximum degree.

Our algorithm is a branch-and-reduce algorithm and has the following form. First,
it applies a series of well-known reduction rules that simplify the instance. Secondly,

1The results from [271] have not been independently verified since its appearance in 2001, and
thus are not generally accepted. Although, we were unable to verify the correctness of these results,
we believe that this technical report contains ideas that are powerful enough to obtain significantly
faster algorithms than, for example, the algorithms in [144, 203].



122 Chap. 7: Exact Algorithms for Independent Set in Sparse Graphs

it follows the approach of Fürer [158] and looks for vertex separators of size one or
two in the graph, which it uses to further simplify the instance. Thirdly, if the graph
is of maximum degree four, then it exploits any separators that consist of the closed
neighbourhood of a single degree-three vertex that separate a tree from the rest of the
graph. Finally, the algorithm looks for a suitable structure in the graph and branches
on it: it generates a series of subproblems that are solved recursively and from which
the largest solution is returned.

Different from earlier chapters, we will analyse this algorithm using a measure
based on average degrees. The measure that we use is m− n: the number of edges m
minus the number of vertices n in the graph; this is similar to [55, 158]. The resulting
upper bound on the running time of O(�m−n) implies an O(�0.5n)-time algorithm on
connected graphs of average degree at most three. We require the input graph to be
connected (or the average degree requirement to apply to each connected component)
because trees have measure m − n = −1: these trees are removed by the reduction
rules and thus can increase m − n to over 0.5n for the remaining graph, while not
simplifying the connected components in this remaining graph.

The rest of this section is divided into two parts. We first introduce all the reduction
rules of our algorithm in Section 7.2.1. Then, we give four lemmas that describe the
branching rules of our algorithm in Section 7.2.2. We will prove only two of these
lemmas here; the proofs of the other two lemmas are based on an extensive case
analysis and are deferred to Appendix A.4.

7.2.1. Simple Reduction Rules and Small Separators

We will now give the reduction rules used by our algorithm. First, we give some simple
well-known reduction rules. Then, we state a reduction rule based on small separators
due to Fürer [158], whose details can be found in Appendix A.4.3 for completeness.
Finally, we will a new reduction rule for dealing with situations in graphs of maximum
degree four where the neighbourhood of a single degree-three vertex separates a tree
from the rest of the graph.

The following well-known reduction rules are used by our algorithm. Although
these are thoroughly described in many publications, for example in [55, 144, 158], we
will prove their correctness below.

1. Degree 0, 1: Take any vertices of degree zero or one in the independent set; in
case of a degree-one vertex, remove its neighbour.

2. Connected components: If G is disconnected, solve each connected component
separately and return the union of the maximum independent sets over all con-
nected components.

3. Domination: If the closed neighbourhood of a vertex u ∈ V is contained in
the closed neighbourhood of a vertex v ∈ V , N [u] ⊆ N [v], then we say that u
dominates v, and we remove v from the graph.

4. Vertex folding: If there exists a vertex v ∈ V of degree two with non-adjacent
neighbours u, w, the algorithm removes v, merges u and w to a single vertex,
and adds one to the size of the maximum independent set.

Lemma 7.1. The above four reduction rules for Independent Set are correct and
remove any vertices of degree at most two.
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Proof. (1.) A vertex v of degree zero is in any maximum independent set, because any
independent set that does not contain v can be turned into a larger independent set by
adding v. The same holds for a vertex v of degree one, unless its unique neighbour u
is in the maximum independent set. In this case, we can replace u by v to obtain an
independent set of the same size that contains v.

(2.) If the maximum independent set I in a graph G is not the union of maximum
independent sets of the connected components of G, then there is an independent set I ′

in some connected component G[C] of G that is larger than I ∩C. However, the set I
is not a maximum independent in this case since we can construct a larger independent
set in G by replacing the vertices in I ∩ C by I ′.

(3.) In any maximum independent set containing v, we can replace v by u without
increasing the size of the independent set because the neighbours of u are a subset of
the neighbours of v. Hence, there always exists a maximum independent set that does
not contain v.

(4.) We can require that either v is in the independent set I, or both neighbours of v
are in I. This holds because because taking v in I is an alternative of the same size to
taking only one neighbour of v. The choice between these two options is equivalent to
either taking the merged vertex in the maximum independent set, which correspond to
taking both neighbours, or discarding it, which corresponds to taking v. The difference
in the number of vertices taken in I remains one after merging the vertices, and the
size of the set remains the same as we artificially add one to the size of the maximum
independent set when we perform this operation.

These reduction rules remove any vertices of degree at most two because Rule 1
applies to vertices of degree zero or one, Rule 3 applies to vertices of degree two with
adjacent neighbours, and Rule 4 applies to vertices of degree two with non-adjacent
neighbours.

If the given reduction rules do not apply, the graph is of minimum degree three.
The algorithm then uses the following reduction rule due to Fürer [158] that exploits
vertex separators of size at most two. We give the details of this small separators
reduction rule in Appendix A.4.3 for completeness.

Lemma 7.2. If a graph G contains a vertex separator S of size one or two, then
we can simplify the instance in the following way. We recursively solve two or four
subproblems that correspond to the smallest associated connected component C with
each possible combination of vertices from S added. Given the solutions computed by
the recursive calls, we can remove S and C from G and adjust the remaining graph
to obtain an equivalent instance. If C has size at most some constant c, then this
operation can be done in polynomial time.

We note that using this small separators rule is always beneficial to the running
time, also when the smallest associated connected component does not have constant
size. However, we do not go into these details as we need the rule only on constant-size
associated connected components to prove our claimed running time.

We are now ready to give our new reduction rule that, in a graph of maximum
degree four, looks at local configurations in which the closed neighbourhood of a vertex
of degree three separates a tree from the rest of the graph. We call this rule the tree
separators rule.
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Lemma 7.3. If, after application of the reduction rules of Lemmas 7.1 and 7.2, the
graph G is of maximum degree four, and G contains a vertex v of degree three whose
closed neighbourhood separates a tree T from the rest of G, then we can replace this
local configuration with a smaller equivalent one in polynomial time.

Proof. First, notice that since none of the reduction rules of Lemmas 7.1 and 7.2 are
applicable, G is of minimum degree three and has no separators of size at most two.

Let a, b, and c be the neighbours of v. Notice that they all have at least one edge
incident to the tree T because otherwise there would exist a small vertex separator.
Also notice that, because of the same reason, a, b, and c all have at least one edge not
incident to v or to the tree T . Hence, because G is of maximum degree four, there are
at least three and at most six edges between N(v) and T , and there exists at most one
edge in G[N(v)].

First, consider the case where there exists an edge in N(v) and hence ∣T ∣ ≤ 2. In
this case, the maximum independent set in G[N [v] ∪ T ] is of size two as we will see
below. Because of this, we can safely pick v and one vertex from T in the maximum
independent set I: these are the vertices that, when taken in I, pose no restrictions
on which vertices we can still take in I in the remaining graph. That this holds is
easy to see if T is a single vertex, namely taking v or T in I forbids taking a, b and c,
and because of the edge in N(v) it is not possible to take all tree vertices of N(v).
Otherwise, if ∣T ∣ = 2 and without loss of generality a is connected to both vertices
in T , then we cannot take three vertices if we take v because this forbids taking a,
b and c and there is an edge in T . Also, we cannot take three vertices if we take a
because this forbids taking v and T while there is an edge between b and c. The
remaining vertices form a four cycle, and thus I can have at most two vertices from
N(v) ∪ T from which correctness follows.

Secondly, if there is no edge in N(v) and ∣T ∣ ≤ 2, then we merge N(v) ∪ T to a
single vertex and add two to the size of I. This is similar to vertex folding. Namely,
the only maximum independent set in G[N [v]∪T ] equals N(v), while if we do not take
these three vertices we can safely pick the non-restricting size two option consisting
of v and one vertex from T . Merging the local structure to a single vertex postpones
this choice. This is clearly correct if ∣T ∣ = 1 since taking v or T in I forbids taking
any vertex in N(v). Also, if ∣T ∣ = 2, then taking v in I again forbids taking any vertex
from N(v), and taking any vertex from T in I forbids taking anything except for v
and one of its neighbours again not allowing three vertices to be picked.

Thirdly, we consider the case where ∣T ∣ = 3; see Figure 7.1. In this case, we can
safely pick v and a maximum independent set in G[T ]. This is correct because of the
following reasoning. At least two neighbours of v, say a and b, have two neighbours

b

v

T

c a

Figure 7.1. T consists of three vertices and at least two neighbours of v have
two neighbours in T . In this case, we take the white vertices in I.
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in T . If we would have taken a in I, then we would forbid all vertices in N(v) ∪ T
except for b, c and one vertex in T . By adjacencies, we can take only two of these
vertices making our initial choice a safe alternative. The same argument holds when
taking b in I. With a and b discarded, it is easy to see that picking the degree-one
vertex v and the maximum independent set in T in the maximum independent set is
optimal.

What remains is the case ∣T ∣ = 4. In this case, we can also safely pick v and a
maximum independent set in G[T ] by similar reasoning. If T has three leaves, then
there is only one way to pick four vertices from G[N [v]∪T ] in I: v and the three leaves
of T . This does not restrict any choices in the rest of the graph and hence is optimal.
Otherwise, T is a four vertex path and all local configurations of G[N [v] ∪ T ] have a
maximum independent set of size three. Again, picking v and a maximum independent
set in G[T ] is a safe and optimal choice.

Before considering the branching of our algorithm, we look at the effect of each of
the reduction rules on the m − n measure. We notice that this measure is invariant
under the vertex folding rule: this rule removes as much edges as it removes vertices.
The same holds for the degree one rule unless the neighbour of the removed degree-
one vertex is of degree one also. It is not so hard to see that, after the application
of the degree zero and one rules and the vertex folding rule, each application of the
domination rule, the small separators rule, or the tree separator rule decreases the
measure m− n by at least two. This is because at least one vertex of degree three is
removed in each of these cases.

There are only two cases in which the measure can increase. This is when the
degree two rule is applied, and when the degree one rule is applied to a degree-one
vertex with a degree-one neighbour. In these cases, the measure increases by one.
Since a connected component in the graph that is a tree will be reduced to one of
these two cases by the degree one and two rules, these rules causes the measure to
increase by one for every such tree.

We note that when we apply the reduction rules to an input graph before the
first application of a branching rule, then it is not a problem that the measure can
increase. This is because we require that each connected component in the input
graph has average degree at most three: this causes the measure of each remaining
connected component to be at most 0.5n. The fact that the measure can increase
becomes problematic when a tree is separated from the rest of the graph after applying
a branching rule of the algorithm. In this case, we have to be careful not to remove
too much measure in the analysis. Therefore, we will be very careful when removing a
set of vertices that can separate a tree from the rest of the graph in the analysis of our
algorithm. For this purpose, the tree separators rule is a useful tool. Namely, when
the graph is of maximum degree four and we remove the closed neighbourhood of a
degree-three vertex, then no trees can be separated since otherwise the tree separators
rule could have been applied. We note that the branching rules of the next section,
in most cases, precisely remove such a closed neighbourhood of a degree-three vertex
from the graph; this makes the tree separators rule a useful tool.
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7.2.2. The Branching Rules of the Algorithm

Having introduced the reduction rules, we proceed to the branching rules of the algo-
rithm. These branching rules are described in the proofs of the four lemmas below:
Lemmas 7.5-7.8. We will give the proofs of two of these lemmas in this section. The
proofs of the other two lemmas are based on extensive case analyses and can be found
in Appendices A.4.1 and A.4.2.

Let us start by giving the main idea as to why our algorithm is faster than previous
algorithms for Independent Set on graphs of maximum degree three or average
degree at most three. On maximum degree three graphs, most previous branching
algorithms first branch on vertices that are in a cycle of length three or four, as one
easily observes that this leads to a relatively small number of generated subproblems.
Thereafter, these algorithms give a long subcase analysis to prove that sufficiently
efficient branchings exist for graphs without such cycles.

We use these cycles not only to restrict the worst case to small-cycle-free graphs,
but to improve the branching on these graphs as well. As we use reduction rules
for low-degree vertices, the only maximum degree three graphs that our algorithm
considers are 3-regular graphs. If no small cycles exist and we are forced to perform
a relatively inefficient branching on a vertex v in such a 3-regular graph, then vertices
near v get degree two in the subproblems that are generated. These vertices are folded,
resulting in new vertices of degree at least four. If new small cycles emerge by this
folding, they must contain the new higher degree vertices: this combination allows for
very good branching, counterbalancing the inefficient branching we started with. In
the other case in which no new small cycles emerge, the new higher degree vertices can
exists in only a relatively small number local configurations. We prove that we can
use the new higher degree vertices in these configurations such that branchings can be
obtained that counterbalances the initial inefficient branching even more.

One of the basis principles that we use to obtain good branchings on graphs with
small cycles is to exploit mirrors in the graph; this was also done in [144, 203].

Definition 7.4. A vertex m ∈ V is a mirror of v ∈ V if G[N(v) ∖N(m)] is a clique.

Note that this definition is equivalent to requiring that every pair of two non-adjacent
vertices in N(v) contains at least one vertex from N(m). Whenever the algorithm
branches on v and discards it, it can discard all its mirrors as well. This holds because of
the following argument. Consider any independent set containing only one neighbour u
of v. This independent set can be transformed into another independent set of equal
size by removing u and adding v. Because such an independent set is already considered
in the branch where we take v in I, we can ignore independent sets containing only
one neighbour of v in the branch where we discard v. We conclude that a mirror of v
cannot be in I when we must take at least two neighbours of v in I by Definition 7.4.

We will now give the branching rules of our branch-and-reduce algorithm. These
branching rules are applied only when none of the reduction rules can be applied.
In most cases, the branching rules generate two subproblems based on taking some
selected vertex v in the maximum independent set I that is being constructed, or not.
In one branch, the vertex v is taken in I and hence it is removed together with its
neighbourhood. In the other branch, the vertex v is decided not to be in I and hence
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t
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Figure 7.2. A vertex of degree five in which the removal of its neighbourhood
leads to the removal of 13 edges and separates a tree.

it is removed (discarded). In the resulting analysis, we let T (k) be the number of
subproblems generated when branching on a graph G with measure k = m− n.

Our first branching lemma deals with graphs that are not of maximum degree four.

Lemma 7.5. Let T (k) be the number of subproblems generated when branching on a
graph G with measure k = m − n. If G has a vertex of degree at least five, then we
can branch such that T (k) satisfies T (k) ≤ T (k − 4) + T (k − 7), or a better sequence
of branchings exists.

Proof. Let v be the vertex of degree at least five and assume that we branch on it. If v
is discarded, one vertex is removed and at least five edges are removed giving T (k− 4)
to the recurrence. If v is taken in I, N [v] is removed. All vertices in N(v) have at least
one neighbour outside of N [v] because of the domination rule. In the worst case, N(v)
consists only of degree-three vertices, hence there are at most two edges in G[N(v)]
and at least six edges between N [v] and the rest of G; see also Figure 7.2. If no trees
are created, this sums to 13 edges and 6 vertices giving T (k − 7) to the recurrence.
We note that with six edges between N [v] and the rest of G at most one tree can be
separated because each tree requires at least three of these edges, and at least three
of these edges must remain to make sure that there does not exist a vertex separator
of size at most two.

In the case that there are more than six edges between N [v] and the rest of G
because either a vertex in N(v) has degree four or more, or there are fewer edges in
G[N(v)], then these extra removed edges compensate for the possible trees that can
be separated, still giving T (k − 7) to the recurrence, or even better.

Remains is the special case in Figure 7.2 where the minimum number of 13 edges is
removed and a separate tree is created. This tree will be a single degree-three vertex t
since otherwise there are sufficiently many edges between N(v) and T such that there
exists a separator in N(v) of size at most two. In this special case depicted in Figure 7.2,
v is a mirror of t. We now branch on t instead of v. Taking t in I leads to the removal
of 4 vertices and 9 edges: T (k− 5). Discarding t and its mirror v leads to the removal
of 8 edges and 2 vertices: T (k − 6). This branching with T (k) ≤ T (k − 5) + T (k − 6)
leads to a smaller branching number than the required T (k) ≤ T (k−4)+T (k−7).

The second branching lemma deals with graphs that have a vertex of degree four.
Here, extra attention is given to small cycles.

Lemma 7.6. Let T (k) be the number of subproblems generated when branching on a
graph G with measure k = m− n. If G is of maximum degree four but not 3-regular,
then we can branch such that T (k) satisfies the following recurrence relations, or a
better sequence of branchings exists.
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1. if G has a degree-four vertex that is part of a 3- or 4-cycle also containing at least
one degree-three vertex, and there are no 3- or 4-cycles containing only degree-
three vertices, then T (k) ≤ T (k−5)+T (k−6) or T (k) ≤ 2T (k−8)+2T (k−12).

2. if G has a degree-four vertex that is part of a 3- or 4-cycle also containing at
least one degree-three vertex, and the constraint on the degree-three vertices
from the previous case does not apply, then T (k) ≤ T (k − 4) + T (k − 6) or
T (k) ≤ 2T (k − 8) + 2T (k − 12).

3. if the above cases do not apply, then T (k) ≤ T (k − 3) + T (k − 7).

Proof. The proof can be found in Appendix A.4.2. The proof is based on an extensive
case analysis of the local structures involved. In essence, we try to exploit any 3- or
4-cycle available, similarly to the proof of Lemma 7.7 below, and we try to exploit the
degree-four vertices (that give a larger reduction in the measure) as much as possible,
similarly to branching on degree-five vertices in the proof of Lemma 7.5.

The third branching lemma deals with 3-regular graphs that contain 3- or 4-cycles.
In this case, we find efficient branchings without looking at many cases.

Lemma 7.7. Let T (k) be the number of subproblems generated when branching on
a graph G with measure k = m − n. If G is 3-regular and contains a 3- or 4-cycle,
then we can branch such that T (k) satisfies T (k) ≤ T (k − 4) + T (k − 5), or a better
sequence of branchings exists.

Proof. Let a, b, c form a 3-cycle in G. Assume that one of these vertices, say a, has a
third neighbour v that is not part of a 3-cycle. The algorithm branches on v. In one
branch, v is taken in I and 9 edges and 4 vertices are removed: T (k− 5). In the other
branch, v is discarded and by domination a is taken in I resulting in the removal of 8
edges and 4 vertices: T (k − 4). No trees can be separated in both branches because
of the tree separators rule.

This covers the 3-cycles, unless all third neighbours of a, b and c are in a 3-cycle
also. Observe that all three third neighbours are in different 3-cycles because otherwise
there would exist a vertex separator of size at most two. In this case, we branch on a. In
the branch where a is discarded, domination results in its third neighbour to be taken
in I giving T (k− 4) as before. In the other branch, a is taken in I, and by domination
the third neighbours of b and c are taken in I. This removes their corresponding 3-
cycles completely, removing a total number of 10 vertices. Depending on how many
edges exist between the corresponding 3-cycles, at least 16 edges are removed also. We
notice that a tree can be separated from G, but we still have T (k − 5) or better when
this happens.

Finally, suppose that G is 3-cycle free and let v be a vertex on a 4-cycle. Any
vertex opposite to c on a 4-cycle is a mirror of v. We branch on v. In one branch,
we take v in I and 3-cycle freeness results in the removal of 9 edges and 4 vertices:
T (k − 5). In the other, we discard v and all its mirrors. This results in the removal
of 6 edges and 2 vertices if v has only one mirror and possibly more if v has two or
three mirrors: T (k − 4). Again trees can be separated from G, but this can happen
only if v has three mirrors. There is only one local configuration representing this case
in which 12 edges and 7 vertices are removed, which is more than enough.
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The last branching lemma deals with 3-regular graphs that are 3- and 4-cycle free.
In these graphs, we have to perform a less efficient branching. However, we can use the
very efficient branching of Lemma 7.6 in both generated subproblems to counterbalance
this effect and obtain the claimed running time.

Lemma 7.8. Let T (k) be the number of subproblems generated when branching on a
graph G with measure k = m − n. If G is 3-regular and 3- and 4-cycle free, then we
can branch such that T (k) satisfies T (k) ≤ T1(k− 2)+ T3(k− 5), or a better sequence
of branchings exists. Here, we denote by T1(k) and T3(k) the recurrences from Cases 1
and 3 from Lemma 7.6 applied to an instance of measure k, respectively.

Proof. The proof can be found in Appendix A.4.1. The proof goes along the following
lines. In both subproblems generated by the less efficient (2, 5) branching, degree-two
vertices are created that are folded creating new vertices of degree at least four. This
allows for more efficient branchings to counterbalance the less efficient branching by
using these higher degree vertices. If these higher degree vertices now lie on newly
created 3- or 4-cycles, this allows the application of Lemma 7.6. Otherwise, these
higher degree vertices exist in only a relatively small number local configurations.
Finding the claimed sequences of branchings for these local configurations requires
quite some case analysis.

Taking all four Lemmas together proves the following result.

Theorem 7.9. There exists an algorithm solving Independent Set on connected
graphs of average degree at most three in O(1.08537n) time and polynomial space.

Proof. If we look at all the recurrence relations that correspond to the behaviour
of the algorithm as given in Lemmas 7.5-7.8, we find that the recurrence relation
corresponding to the worst case of all branchings is T (k) ≤ T1(k − 2) + T3(k − 5) ≤
2T (k − 2 − 8) + 2T (k − 2 − 12) + T (k − 5 − 3) + T (k − 5 − 7). Here, T1 and T3

have the same meaning as defined in Lemma 7.8: the recurrence relation is formed by
combining Lemmas 7.6 and 7.8. We note that the solution to the recurrence T1(k) ≤
T (k−5)+T (k−6) is larger than the solution of T1(k) ≤ 2T (k−8)+2T (k−12), however,
when composed with the recurrence corresponding to the branching of Lemma 7.8, the
latter leads to a larger solution. The given recurrence relation gives us a running time of
O(�(8, 10, 10, 12, 14, 14)k) = O(1.17802k), which equals O(1.178020.5n) = O(1.08537n)
on graphs of average degree at most three.

As separate connected components can be solved independently, this algorithm
solves Independent Set on graphs in which each connected component has average
degree at most three within the same running time.

Corollary 7.10. There exists an algorithm solving Independent Set on graphs of
maximum degree three in O(1.08537n) time and polynomial space.

Proof. In a graph of maximum degree three, each connected component has average
degree at most three.

Another result that can directly be obtained from Theorem 7.9 comes from the
field of parameterised complexity. In this field, the k-Vertex Cover problem is a
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benchmark. For the special case where we strict this parameterised problem to graphs
of maximum degree three, we obtain the following result.

Corollary 7.11. There exists an algorithm solving k-Vertex Cover on graphs of
maximum degree three in O∗(1.1781k) time and polynomial space.

Proof. The k-Vertex Cover problem restricted to graphs of maximum degree three
admits a kernel of size 2k [73]. This allows us to transform the problem in polynomial
time into an equivalent instance G on n ≤ 2k vertices. Because the complement of
a vertex cover is an independent set, we can use the algorithm of Corollary 7.10 to
test whether G has an independent set of size at least n− k which is equivalent to G
having a vertex cover of size at most k. This is done in O∗(1.085372k) = O∗(1.1781k)
time and polynomial space.

This improves the O∗(1.1940k) algorithm by Chen et al. [73] (see also [72]) and
the O∗(1.1864k) algorithm of Razgon [261]. We note that this result has very recently
been improved by Xiao to O∗(1.1616k) [324].

7.3. Applications to Graphs of Larger Average Degree

The algorithm of the previous section can be used to obtain faster algorithms for
Independent Set in graphs of larger average (or maximum) degree also. We have
done this in [58, 59] by using our own bottom-up method based on the average degree
of a graph [58, 59], and by using measure and conquer [144] (see also Section 5.2). In
this section, we will state the obtained results without giving the details.

We start by considering Independent Set on graphs of average degree d, with
3 < d ≤ 4. For d at most 3 3

7 , 3 3
5 , or 4, we used our bottom-up method [58, 59] to

obtain faster algorithms for Independent Set on graphs in which each connected
component has average degree at most d. We have obtained the following results [59].

Proposition 7.12 ([59]). There exists polynomial-space algorithms for Independent

Set on graphs of average degree at most d, for different values of d with the following
running times:

d ≤ 3 3
7 ≤ 3 3

5 ≤ 4
running time O(1.1243n) O(1.1396n) O(1.1571n)

To obtain our result on general graphs and graphs of larger maximum degree, we
combine this algorithm with the algorithm for Independent Set by Fomin et al. [144].
This is an O(1.2202n)-time algorithm whose running time is based on a measure-and-
conquer analysis. The combined algorithm is a branch-and-reduce algorithm that has
the following form: if the maximum degree in the graph is larger than four, then apply
the reduction rules and branching rule of the algorithm by Fomin et al.; otherwise,
apply the algorithm for graphs of maximum degree four of Proposition 7.12. If we
analyse this combined algorithm using measure and conquer in exactly the same way
as in [144], then we obtain the following result; for more details see [59].

Theorem 7.13 ([59]). There exists an algorithm that solves Independent Set in
O(1.2114n) time and polynomial space.
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In the measure-and-conquer analysis associated with Theorem 7.13, we used a
weight function w : ℕ → ℝ giving a vertex of degree d weight w(d) (similar to [144]).
Because the total weight of a graph of maximum degree Δ is at most w(Δ)n, we also
obtain fast algorithms on graphs of maximum degree five and six.

Proposition 7.14 ([59]). There exists an O(1.1859n)-time and polynomial-space algo-
rithms for Independent Set on graphs of maximum degree five, and an O(1.2050n)-
time and polynomial-space algorithms for Independent Set on graphs of maximum
degree six.

7.4. Concluding Remarks

In this chapter, we have given a faster algorithm for Independent Set restricted to
graphs in which each connected component has average degree at most three. As a
result, we have obtained faster polynomial-space algorithms for Independent Set

on graphs of maximum degree three, four, five, and six. We have also obtained a fast
algorithm for the problem on general graphs; the only faster known algorithm is the
algorithm claimed by Robson [271].

We have compared the approaches used in the more recent algorithms for Inde-

pendent Set in Table 7.3. As one can see, our algorithm uses a very different ap-
proach when compared to the algorithm by Robson, and has some similarities to the
other two algorithms. However, we should note that one of the ideas that is repeatedly
used in the case analysis of our algorithm (Appendix A.4) is based on Robson’s algo-
rithm. This is the idea to continuously use the fact that when a vertex is discarded,
then at least two of its neighbours must be selected; this follow by the replacement
argument the can be found under Definition 7.4.

It should be possible to combine the approaches using much faster algorithms on
sparse graphs and using a measure-and-conquer, or average-degree-based, analysis,
with the approach of Robson that continuously propagates the fact that if a vertex
is discarded at least two of its neighbours must be taken in the independent set.
Furthermore, it should be possible to combine this approach with memorisation, even
though reduction rules such as the vertex folding rule cause subproblems to no longer
be induced subgraphs of the original input instance.

algorithm
property Robson Fomin et al. Kneis et al. Our result

[271] [144] [203] [59]
running time (poly. space) O(1.2025n) O(1.2202n) O(1.2132) O(1.2114n)
running time (exp. space) O(1.1889n)

fast small-degree algorithm X X
measure-and-conquer analysis X X X

computer-verified case analysis X X
partly computer generated X
memorisation (exp. space) X

Table 7.3. A comparison of recent algorithms for Independent Set.
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However, such a combined approach would most probably result in a much more
complex, partly computer-generated algorithm whose case analysis will probably also
be mostly computer verified. To create such an algorithm, new ideas need to be
developed as to when an algorithm with such an analysis is considered to be correct:
how do we verify that all cases are treated correctly, and how do we verify that no
cases are missing in the analysis? This may be done by computer verification. We
note that initial steps in this direction are already present in the work by Kneis et
al. [203]; see also the technical reports [246, 263].
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8
Inclusion/Exclusion Branching for

Counting Dominating Sets

One could argue that the two most important recent new developments in the field
of exponential-time algorithms are the use of inclusion/exclusion by Björklund et
al. [27, 33] (see also Section 2.3) and measure and conquer by Fomin et al. [144] (see
also Section 5.2). We have already seen many recent applications of measure and
conquer in Chapters 5-7. On inclusion/exclusion, we note that, although the use of
this technique was introduced to the field of exact exponential-time algorithms on the
Travelling Salesman Problem by Kohn et al. [207], Karp [200], and Bax [14]
much earlier, only recently Björklund et al. popularised it by using it to solve many
covering and partitioning problems [27, 33].

In this chapter, we will show that both approaches can be used in a single algorithm.
Similar to Bax [14], we observe that inclusion/exclusion can be interpreted as branch-
ing. In this way, we can combine traditional branching (as in Chapters 4-7) with inclu-
sion/exclusion-based branching, and we can analyse such an algorithm using measure
and conquer. We will use this approach to obtain two algorithms that count set covers.
Given a set cover instance (S,U), these algorithms count the number of set covers of
each size � with 0 ≤ � ≤ ∣S∣. These algorithms are then used to obtain a series of
results. The results include faster polynomial-space and exponential-space algorithms
for #Dominating Set (counting minimum dominating sets), a faster polynomial
space algorithm for Domatic Number, and faster exponential space algorithms for

†This chapter is joint work with Jesper Nederlof and Thomas C. van Dijk. This research started
as joint work in Nederlof’s master’s thesis [243] supervised by Hans L. Bodlaender, INF/SCR-2007-
084. The results have changed much since that time. The chapter contains results for which a
preliminary version has been presented at the 17th Annual European Symposium on Algorithms (ESA
2009) [307] and results that have been presented at the 7th International Conference on Algorithms
and Complexity (CIAC 2010) [300]. A preliminary version of the results published at ESA 2009 is
also available as technical report UU-CS-2008-043 [306].
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Dominating Set restricted to some graph classes (see also [165]). We also give faster
algorithms for Minimum Weight Dominating Set under the restriction that the
number of possible weight sums is bounded by a polynomial in n.

We will introduce the concept of inclusion/exclusion-based branching in Section 8.1.
Then, we use inclusion/exclusion-based branching combined with traditional branching
and treewidth-based techniques to obtain a polynomial-space algorithm for counting
set covers in Section 8.2. In Section 8.3, we use this algorithm to obtain an O(1.5673n)-
time and polynomial-space algorithm for #Dominating Set. The same algorithm is
used as a subroutine in Section 8.4 to obtain an O(2.7139n)-time and polynomial-space
algorithm for Domatic Number. Hereafter, we consider using exponential space and
give the second algorithm for counting set covers in Section 8.5. Here, we also give
an O(1.5002n)-time and exponential-space algorithm for #Dominating Set. Finally,
we use this algorithm to obtain faster exponential-space algorithms for Dominating

Set restricted to some graph classes in Section 8.6.

8.1. Inclusion/Exclusion-Based Branching

We will begin by showing that one can look at inclusion/exclusion from a branching
perspective; see also [14]. In this way, we can use inclusion/exclusion-based branching
to branch on an element in a Set Cover instance in the same way as one would
normally branch on a set.

The canonical branching rule for Set Cover is branching on a set, as used in the
algorithms in Chapter 5. Sets are optional in a solution: either a set is in a solution, or
it is not. If we branch on this optional property, we obtain two branches in which the
problem is simplified. If we discard the set, we decrease the number of sets. If we take
the set, we decrease the number of sets, and, since this set covers all its elements, its
elements can also be removed from the instance, decreasing the number of elements. A
minimum set cover of the instance is either returned by the discard branch or returned
by the take branch with the set we branched on added to it.

The counting problem can also be handled by branching steps of this type because
the total number of solutions is the sum of the number of solutions obtained from each
branch. We can do this because sets are optional in a solution. Branching on a set
can be denoted as adding up the number of solutions where it is required to take the
set and the number of solutions where it is forbidden to take the set:

optional = required + forbidden

If we are counting set covers of size �, and we branch to take a set (that is, in the
required branch), then we should count set covers of size �− 1 in that branch. In the
forbidden branch, we do not need to decrease �.

We now consider branching on an element. Such a branching step is unusual, and
may appear strange at first sight, as elements are not optional; elements represent a
requirement: the requirement to cover the element. Inspired by inclusion/exclusion
techniques and because we count the number of solutions, we can, however, rearrange
the above formula to give:

required = optional − forbidden



8.1. Inclusion/Exclusion-Based Branching 137

That is, the number of ways to cover a certain element is equal to the number of ways
to optionally cover it, i.e., in which we are indifferent about covering it, minus the
number of ways in which it is forbidden to cover it. This is interesting because this
branching rule also simplifies the instance in both branches. If we choose to make
it optional to cover a certain element, we can remove the element from the instance:
this removes an element and also reduces the size of the sets in which it occurs. If we
choose to make the element forbidden, then we have to remove the element and every
set in which the element occurs. This is an even greater reduction in the size of the
instance. We have not selected a set to be in the cover in both branches, so in both
branches we are looking for set covers of size �.

Consider a branching algorithm without reduction rules and without employing
branch and bound. If the branching rule is based on an optional property of the
problem, as is typically the case, the algorithm is an exhaustive search algorithm.
A similar concept exists for an algorithm in which branching is based on a required
property, which we call inclusion/exclusion-based branching or simply IE-branching :
without reduction rules, this is an inclusion/exclusion algorithm; see also Section 2.3.

To see this, consider a Set Cover instance (S,U). Let c′� be the number of set
covers of cardinality �, and let a(X) be the number of sets in S that do not include any
element of X. Consider the branching tree (search tree) after exhaustively applying
inclusion/exclusion-based branching. In each subproblem in a leaf of this tree, each
element is either optional or forbidden. We look at the contribution of a leaf, where X
is the set of forbidden elements in this leaf, to the total number computed in the root
of the tree. Notice that the 2∣U∣ leaves represent the subsets X ⊆ U. A minus sign is
added for each time we have entered a forbidden branch, so the contribution of this leaf
will be (−1)∣X∣ times

(

a(X)
�

)

. This last number equals the number of ways to pick �
sets from the a(X) available sets, i.e., the number of set covers of cardinality � where
it is optional to cover each element not in X and forbidden to cover an element in X.
All together, this gives us the following expression for c′�:

c′� =
∑

X⊆U

(−1)∣X∣
(

a(X)

�

)

Compare this to the following expression for c� given by Björklund et al. [33] (see
also Section 2.3):

c� =
∑

X⊆U

(−1)∣X∣a(X)�

These expressions are identical except for the fact that the formula of Björklund et
al. counts the number of set covers c� where they allow a single set to be picked
multiple times while we do not allow this.

The advantage of inclusion/exclusion-based branching over using the inclusion/ex-
clusion formula is that we can use reduction rules to improve upon the standard running
time of O∗(2∣U∣). A standard method of obtaining similar improvements is trimming ,
where one predicts which summands in the inclusion/exclusion formula are non-zero
in order to be able to skip the other summands. This method found applications for
Travelling Salesman Problem and Graph Colouring in graphs of bounded
degree [29, 32]. In our setting, trimming is equivalent to IE-branching in combination
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with a halting rule (see Section 2.1) that returns zero when it can be predicted that
all summands enumerated from the current branch are zero. The main advantage of
our approach over trimming is that inclusion/exclusion-based branching can easily be
used interchangeably with traditional branching rules, and that standard methods of
analysing such algorithm, such as measure and conquer, can be applied directly.

We conclude this introductionary section by comparing the effects of both branch-
ing rules on the incidence graph of Set Cover instances.

Definition 8.1 (Incidence Graph). The incidence graph of a Set Cover instance
(S,U), is the graph G = (V,E) with a vertex for each S ∈ S and each e ∈ U and an
edge between a vertex representing a set S and a vertex representing an element e if
and only if e ∈ S, i.e., V = (S ∪ U) and {e, S} ∈ E if and only if e ∈ S.

Taking a set results in exactly the same operation on the graph as making an
element forbidden, only the former is on a set vertex while the latter is on a element
vertex; namely, the vertex and its neighbours are removed from the incidence graph.
The same relation holds between discarding a set and making an element optional; in
this case, the selected vertex is removed. The effects of both operations are symmetric
to each other on the incidence graph. However, this symmetry is not complete since
for other purposes the set and element vertices are not equivalent. That is, element
vertices must be dominated by set vertices. This difference leads, for example, to
different reduction rules for vertices of different types in Section 8.5.

Note that when considering the incidence graph of a Set Cover instance, then Set

Cover becomes equivalent to Red-Blue Dominating Set where the set vertices of
the instance are considered red vertices and the element vertices are considered blue
vertices.

8.2. A Polynomial Space Algorithm for Counting Set
Covers

In this section, we give an exponential-time and polynomial-space algorithm for count-
ing the number of set covers of each size �, 0 ≤ � ≤ ∣S∣, of a Set Cover instance (S,U)
where S is a multiset over the universe U. This algorithm combines the traditional
branching approach that branches on sets (used in for example Chapter 5) with the
inclusion/exclusion-based branching approach introduced in Section 8.1 that branches
on elements. On sparse instances, the algorithm will switch to a treewidth-based dy-
namic programming approach. This algorithm will be used to prove the main results
of Sections 8.3 and 8.4.

The combination of branching with treewidth-based dynamic programming to solve
sparse instances has been used before. Examples include results by Kneis et al. for
Maximum Cut, Maximum 2-Satisfiability, Maximum Exact 2-Satisfiability

and Dominating Set on cubic graphs [204], and by Fomin et al. for k-Edge Domi-

nating Set (see also Section 6.7) and to count dominating sets [138]. In this section,
we introduce a combination of branching with a novel treewidth-based approach that,
in contrast to the work by Fomin et al. [138], requires only polynomial space while
being much simpler than the approach of Kneis et al. [204].
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Algorithm 8.1. An algorithm for counting the number of set covers of each size �.

Input: the incidence graph I = (S∪U, E) of (S,U) and a set of annotated vertices A
Output: a list containing the number of set covers of (S,U) of each cardinality �
CSC(I, A):
1: if there exists a vertex v ∈ (S∪U)∖A of degree at most one in I[(S∪U)∖A] then
2: return CSC(I, A ∪ {v})
3: else if there exist two vertices v1, v2 ∈ (S∪U)∖A both of degree two in I[(S∪U)∖A]

that have the same two neighbours then
4: return CSC(I, A ∪ {v1})
5: else
6: Let s ∈ S ∖A be a vertex such that d(S∪U)∖A(s) is maximal
7: Let e ∈ U ∖A be a vertex such that d(S∪U)∖A(e) is maximal
8: if d(S∪U)∖A(s) ≤ 2 and d(S∪U)∖A(e) ≤ 2 then
9: return CSC-DP(I)

10: else if d(S∪U)∖A(s) > d(S∪U)∖A(e) then
11: Let Ltake = CSC(I[(S∪U) ∖N [s]], A ∖N(s)) and increase cardinalities by one
12: Let Ldiscard = CSC(I[(S ∪ U) ∖ {s}], A)
13: return Ltake + Ldiscard

14: else
15: Let Loptional = CSC(I[(S ∪ U) ∖ {e}], A)
16: Let Lforbidden = CSC(I[(S ∪ U) ∖N [e]], A ∖N(e))
17: return Loptional − Lforbidden

Our approach is based on an annotation procedure that allows us to deal with
sparse instances in polynomial space with reasonable efficiency. This procedure acts
as a set of reduction rules while it does not remove anything from the instance: it just
annotates parts of it. When the unannotated part of the instance is simple enough,
we remove the annotations. Because of the specific way used to annotate vertices, we
can prove that the resulting instance has treewidth at most two, i.e., it is a generalised
series-parallel graph. On such graphs, the problem can be solved in polynomial time.

We will begin by describing our polynomial-space algorithm for counting set cov-
ers: Algorithm 8.1. This algorithm considers the incidence graph I of the Set Cover

instance (S,U). It uses a set of annotated vertices A which is initially empty. Intui-
tively, annotating a vertex corresponds to ignoring the vertex when selecting a vertex
to branch on, not only by not considering it for branching, but also by ignoring it
as a neighbour for vertices that can be branched on. Annotated vertices, however,
are not ignored when the algorithm branches: here they are treated as ordinary ver-
tices. During the execution of the algorithm, Algorithm 8.1 annotates any vertex of
degree at most one in I[(S∪U) ∖A]. Furthermore, it annotates a degree two vertex in
I[(S∪U) ∖A] if there exists another degree two vertex in I[(S∪U) ∖A] with the same
two neighbours.

If no vertex can be annotated, Algorithm 8.1 selects an element vertex and a set ver-
tex that are both of maximum degree among the vertices of their type in I[(S ∪ U) ∖ A].
If the degree in I[(S∪U)∖A] of any vertex is at most two, then the algorithm switches
to a different approach and solves the problem by dynamic programming by calling
the procedure CSC-DP(I). This procedure generates a list containing the number of
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set covers of (S,U) of each cardinality �, 0 ≤ � ≤ n, in polynomial time and will be de-
scribed later. For now, it suffices to say that the annotation procedure guarantees that
any incidence graph I on which CSC-DP(I) is called is simple enough to be dealt with
in polynomial time. Otherwise, the maximum degree in I[(S∪U) ∖A] is at least three.
In this case, Algorithm 8.1 branches on a vertex of maximum degree in I[(S ∪ U) ∖A]
while it prefers an element vertex if vertices of maximum degree of both types exist.

If Algorithm 8.1 decides to branch on a set vertex s ∈ S, then it considers two
subproblems: one in which it takes the set corresponding to s in the set cover, and
one in which it discards it. We have seen in Section 8.1 that the number of set covers
of cardinality � corresponds to the sum of the numbers computed in both branches:
it is the sum of the number of set covers containing the set corresponding to s and
the number of set covers that do not contain this set. In the first subproblem, s can
be removed together with all vertices corresponding to elements contained in the set
corresponding to s since they are now covered; this corresponds to removing N [s]
from I. In the second subproblem, only s can be removed. The algorithm computes
the required values by a component-wise summation of the lists returned from both
branches. Notice, that this works only if we increase the cardinalities in the first branch
by one because we have taken a set in the set cover: this is done by the algorithm
accordingly.

If Algorithm 8.1 decides to branch on an element vertex e ∈ U, then we perform in-
clusion/exclusion-based branching; see Section 8.1. The number of sets covers of (S,U)
equals the number of set covers of the subproblem in which we remove e, i.e. the total
number of covers that either cover the element or not (optional), minus the number of
sets covers of the subproblem in which we remove e and all sets containing it, i.e., the
the number of covers that do not cover the element corresponding to e (forbidden).
In one branch, e is removed. In the other branch, e and all vertices representing sets
containing the element represented by e are removed, i.e., N [e] is removed. For each
cardinality �, the algorithm subtracts the result from the second branch from the result
of the first branch, correctly computing the number of set covers of each size �. Again,
this is done by component-wise operations on the lists returned from both branches.

This concludes the description of the branching of the algorithm. Since the anno-
tation procedure does not affect the output of the Algorithm 8.1, we can conclude that
the algorithm is correct based on the correctness of the branching procedure.

We will now further explain the function of the annotation procedure and give the
details on the procedure CSC-DP(I). To this end, we need the following well-known
fact on the treewidth of a graph, e.g., see [39].

Proposition 8.2. Let G be a graph of treewidth at least two. The following operations
do not increase the treewidth of G:

∙ duplicating an edge,
∙ adding a vertex of degree one,
∙ subdividing an edge,
∙ contracting an edge incident to a vertex of degree two.

Using this proposition, we can prove the following lemma on the structure of the
incidence graph I when the algorithm uses the procedure CSC-DP(I).
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Lemma 8.3. When Algorithm 8.1 makes a call to CSC-DP(I), then the treewidth of I
is bounded by two.

Proof. Let A be the set of annotated vertices maintained by Algorithm 8.1 when calling
CSC-DP(I). At this point, all vertices in I[(S∪U)∖A] are of degree two vertices because
it is of maximum degree two and any vertex of degree at most one would have been
annotated. Hence, I[(S ∪ U) ∖ A] has treewidth at most two since it is a (possibly
empty) collection of cycles (also see the proof of Lemma 6.17).

We remove the annotations from the remaining vertices of I in reverse order of
their moment of annotation. By doing so, each step consists of either adding a vertex
of degree at most one to I[(S∪U)∖A], or adding a degree two vertex v to I[(S∪U)∖A]
for which there exist another degree two vertex u ∕∈ A with N(u) = N(v) in I[(S ∪
U) ∖ A]. We notice that the operation of adding the degree two vertex is identical to
first contracting an edge incident to v, then doubling the contracted edge, and then
subdividing both copies of the edge again. Hence, both operations do not increase
the treewidth of I[(S ∪ U) ∖A] above two by Proposition 8.2. We conclude that I has
treewidth at most two.

Alternatively, one could say that when Algorithm 8.1 calls CSC-DP(I), then the
incidence graph I is a generalised series-parallel graph.

Corollary 8.4. The procedure CSC-DP(I) in Algorithm 8.1 can be implemented in
polynomial time.

Proof. Standard dynamic programming on tree decompositions or generalised series-
parallel graphs. For an idea of how such an algorithm works see Chapter 11 or [44].

We will use Algorithm 8.1 to both count the number of dominating sets in a graph
and as a subroutine to compute the domatic number. In both cases, the input to
Algorithm 8.1 is different compared to the number of vertices in the graph of a problem
instance. Therefore, we postpone the running-time analysis to Sections 8.3 and 8.4.

8.3. Counting Dominating Sets in Polynomial Space

In this section, we give the first application of Algorithm 8.1: we use it to compute the
number of dominating sets of each size � with 0 ≤ � ≤ n. We also give the currently
fastest polynomial-space algorithms for #Dominating Set and Minimum Weight

Dominating Set for the case where the set of possible weight sums is polynomially
bounded. We note that the annotation procedure used in the algorithm plays an
important role in the running-time analyses of these algorithms.

We will start by introducing the #Dominating Set problem formally.

#Dominating Set

Input: A graph G = (V,E).
Question: How many dominating sets D ⊆ V in G exist of minimum size?

We note that although this problem concerns the counting of minimum dominating
sets, we consider the more general problem of counting the number of dominating sets
of each size � with 0 ≤ � ≤ n.
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Theorem 8.5. There exists an algorithm that counts the number of dominating sets
of each size �, 0 ≤ � ≤ n, in a graph G in O(1.5673n) time and polynomial space.

Proof. We use Algorithm 8.1 to count the number of set covers of (S,U) of each cardi-
nality � where S = {N [v] ∣v ∈ V } and U = V . Recall that these numbers correspond
to the number of dominating sets of each cardinality � in G; see Section 5.1.1.

For the running-time analysis, we use measure and conquer [144] (see Section 5.2).
To this end, we use a variant of the measure used in Section 5.2 (and in [144]) on
the size of a subproblem. We introduce weight functions v, w : ℕ → ℝ+ and use the
following measure k on a subproblem (I, A) with I = (S ∪ U, E):

k :=
∑

e∈U,e∕∈A

v(d(S∪U)∖A(e)) +
∑

s∈S,s ∕∈A

w(d(S∪U)∖A(s))

Here, dX(v) denotes, for a vertex set X ⊆ V , the degree of a vertex v ∈ X in the
induced subgraph G[X].

We also define Δv(i) = v(i) − v(i − 1), Δw(i) = w(i) − w(i − 1), and impose the
following constraints on the weights functions v, w:

1. v(0) = v(1) = 0
2. Δv(i) ≥ 0 for all i ≥ 2
3. Δv(i) ≥ Δv(i+ 1) for all i ≥ 2
4. 2Δv(3) ≤ v(2)

5. w(0) = w(1) = 0
6. Δw(i) ≥ 0 for all i ≥ 2
7. Δw(i) ≥ Δw(i+ 1) for all i ≥ 2
8. 2Δw(4) ≤ w(2)

Notice that annotating a vertex reduces the measure, and that annotated vertices
have zero measure. Constraints 1 and 5 represent the fact that if a vertex gets degree
at most one in I[(S∪U) ∖A], then it is annotated; hence, we can give it zero measure.
Constraints 2 and 6 represent the fact that we want vertices with a higher degree to
contribute more to the measure of an instance. Furthermore, Constraints 3 and 7 are
non-restricting steepness inequalities that make the formulation of the problem easier,
and the function of Constraints 4 and 8 is explained later.

We will now formulate a series of recurrence relations representing the branching of
the algorithm. Consider branching on a vertex s ∈ S representing a set in I[(S∪U)∖A]
and with ri neighbours of degree i in I[(S ∪ U) ∖A].

In the branch where we take the set corresponding to s in the set cover, we remove s
decreasing the measure by w(d(S∪U)∖A(s)), we remove all its neighbours decreasing the
measure by

∑∞
i=2 riv(i), and we reduce the degrees of all vertices at distance two from s.

If d(S∪U)∖A(s) ≥ 4, we can bound the decrease in measure due to this last reduction
by Δw(d(S∪U)∖A(s))

∑∞
i=2 ri(i − 1) because of Constraint 7 and the fact that s is of

maximum degree. Notice that if we reduce another set vertex to degree at most one
in this way, then we do not remove too much measure because of Constraints 7 and 8.
If d(S∪U)∖A(s) = 3, then the situation is different. Because Algorithm 8.1 prefers to
branch on elements vertices, all neighbours of v are of degree two. When branching on
the set vertex, no two of its degree two neighbours in I[(S∪U) ∖A] can have the same
neighbours by the annotation procedure. This also leads to a decrease in measure of
Δw(d(S∪U)∖A(s))

∑∞
i=2 ri(i− 1).

In the other branch, we remove s decreasing the measure by w(d(S∪U)∖A(s)), and
we reduce the degrees of the neighbours of s decreasing the measure by

∑∞
i=2 riΔv(i).
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Let Δktake and Δkdiscard be the decrease of the measure in the branch where we
take the set corresponding to s and where we discard it, respectively. We have shown
that:

Δktake ≥ w(d(S∪U)∖A(s)) +
∞
∑

i=2

riv(i) + Δw(d(S∪U)∖A(s))
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(d(S∪U)∖A(s)) +
∞
∑

i=2

riΔv(i)

Now, consider branching on an element vertex e in I[(S∪U)∖A] with ri neighbours
of degree i in I[(S ∪ U) ∖ A]. Let Δkoptional and Δkforbidden be the decrease of the
measure in the branch where it is optional of cover the element corresponding to e and
forbidden to cover it, respectively. In almost the same way, we deduce:

Δkoptional ≥ v(d(S∪U)∖A(s)) +
∞
∑

i=2

riΔw(i)

Δkforbidden ≥ v(d(S∪U)∖A(s)) +
∞
∑

i=2

riw(i) + Δv(d(S∪U)∖A(s))
∞
∑

i=2

ri(i− 1)

We now consider all possible cases in which Algorithm 8.1 can branch. As a result,
we obtain the following set of recurrence relations. Let N(k) be the number of sub-
problems generated on a problem of measure k. For all d(S∪U)∖A(s), d(S∪U)∖A(e) ≥ 3

and ri such that,
∑d(S∪U)∖A(s)−1

i=2 ri = d(S∪U)∖A(s) if we consider branching on vertex s

representing a set, and
∑d(S∪U)∖A(e)

i=2 ri = d(S∪U)∖A(e) if we consider branching on a
vertex e representing an element, we have:

N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

N(k) ≤ N(k −Δkoptional) +N(k −Δkforbidden)

An upper bound on the solution to this set of recurrence relations is of the form �k.
Let vmax = maxi∈ℕ v(i) and wmax = maxi∈ℕ w(i). The graph G is transformed

into a Set Cover instance (S,U) of measure at most (vmax +wmax)n. Therefore, we
have proven that Algorithm 8.1 can be used to count the number of dominating sets
of each cardinality � in G in O(�(vmax+wmax)n) time and polynomial space.

We compute the weight functions v and w minimising �vmax+wmax by computer (see
Section 5.6). In this way, we have obtained � = 1.205693 using the following weights:

i 2 3 4 5 6 > 6

v(i) 0.640171 0.888601 0.969491 0.998628 1.000000 1.000000
w(i) 0.819150 1.218997 1.362801 1.402265 1.402265 1.402265

This proves a running time of O(1.205693(1+1.402265)n) = O(1.5673n).

Notice that the analysis of the running time is very similar to the analysis of the
algorithms in Section 5.3.

We conclude this section with a remark on the weighted versions of Dominating

Set and #Dominating Set.
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Minimum Weight Dominating Set

Input: A graph G = (V,E) and a weight function ! : V → ℝ+ and a
number k ∈ ℝ+.

Question: Does there exist a dominating set D ⊆ V in G of total weight at
most k?

The counting variant of the above problem, #Minimum Weight Dominating

Set, is defined analogously.
For Minimum Weight Dominating Set the fastest polynomial-space algorithm

is due to Fomin et al. and uses O(1.5780n) time [145]. Later, Fomin et al. improved this
at the cost of using exponential space to O(1.5535n) time by giving an exponential-
space algorithm for #Minimum Weight Dominating Set [138].

As a corollary of Theorem 8.5, we can improve the polynomial-space results for
Minimum Weight Dominating Set and #Minimum Weight Dominating Set if
the set of possible weight sums, i.e., the set of possible weights that a vertex set can
have, is polynomially bounded. This is the case, for example, when using a finite set
of weights. We note that, under the same condition, we will also improve the above
exponential-space results for Minimum Weight Dominating Set and #Minimum

Weight Dominating Set in Section 8.5.

Corollary 8.6. For Minimum Weight Dominating Set and #Minimum Weight

Dominating Set with weight functions such that the set of possible weight sums is
polynomially bounded, there are algorithms solving these problems in O(1.5673n) time
and polynomial space.

Proof. We can modify Algorithm 8.1 such that it returns a polynomial size list con-
taining the number of set covers of each weight � instead of a linear size list containing
the number of set covers of each cardinality. The running time follows from Theo-
rem 8.5.

8.4. Computing the Domatic Number in Polynomial
Space

The second problem for which we use Algorithm 8.1 is Domatic Number. For this
problem, we cannot apply the algorithm as direct as in Theorem 8.5 to obtain our re-
sult. Instead, we will use the algorithm as a subroutine in the inclusion/exclusion
framework of Björklund et al. [33]. In this way, we obtain the currently fastest
polynomial-space algorithm for Domatic Number.

Let us first introduce this problem formally. A domatic k-partition of a graph G
is a partition V1, V2, . . . , Vk of the vertices V such that each Vi is a dominating set
in G. The domatic number of G is the largest k ∈ ℕ for which there exists a domatic
k-partition, that is, it is the maximum number of disjoint dominating sets in G.

Domatic Number

Input: A graph G = (V,E) and an integer k.
Question: Can G be partitioned into at least k dominating sets?
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Every graph has domatic number at least one, since the set of all vertices V is a
dominating set in G. Moreover, every graph that has no isolated vertices has domatic
number of at least two. This follows from the following simple observation: take any
maximal independent set I in G (such a set must clearly exist); now, I is a dominating
set because I is maximal (Proposition 1.1), and V ∖ I is a dominating set because I is
an independent set and there are no isolated vertices. Deciding whether the domatic
number of G is at least k, for k ≥ 3, is NP-hard [162].

The first exponential-time algorithm related to this problem is due to Reige and
Rothe: they gave an O(2.9416n)-time and polynomial-space algorithm to decide wheth-
er the domatic number of a graph is at least three [265] (this problem is also known as
3-Domatic Number). Later, Fomin et al. gave an O(2.8718n)-time and exponential-
space algorithm for Domatic Number in [146]. Using the set partitioning via in-
clusion/exclusion framework, Björklund et al. have improved this to O∗(2n) time and
space [33], and later to O∗(2n) time and O(1.7159n) space [31]. Using only polynomial
space, they also gave an O(2.8718n)-time algorithm that uses the minimal dominating
set enumeration procedure of Fomin et al. [146]. Finally, Reige et al. show that the
3-Domatic Number can be computed in O(2.695n) time and polynomial space [266].

In this section, we will give an O(2.7139n)-time and polynomial-space algorithm
for Domatic Number. This improves previous results using polynomial space, and
its running time nears that of the best known polynomial space result on the special
case of 3-Domatic Number [266].

We will first introduce the reader to the set partitioning via inclusion/exclusion
framework of Björklund et al. [33]. They use the following result to compute the
domatic number.

Proposition 8.7 ([33]). Let D be a set of sets over the universe V, and let k ∈ ℕ. The
number of ways p�(D) to partition V into k sets from D equals:

pk(D) =
∑

X⊆V

(−1)∣X∣ak(X)

where ak(X) equals the number of k-tuples (S1, S2, . . . , Sk) with Si ∈ {D ∈ D ∣ D ∩
X = ∅} and for which

∑k
i=1 ∣Si∣ = ∣V∣.

Proof. Direct application the inclusion/exclusion formula, see Section 2.3 or [33].

If we let V = V and let D be the set of dominating sets in G, then Proposition 8.7
can be used to check whether there exists a domatic k-partition, i.e., whether the
domatic number of a graph is at least k, by checking whether pk(D) > 0 or not.
To do so, we would need to compute the numbers ak(X). In other words, for every
X ⊆ V , we would need to compute the number of k-tuples (S1, S2, . . . , Sk) with
Si ∈ {D ∈ D ∣ D ∩X = ∅} and for which

∑k
i=1 ∣Si∣ = n.

Let d�(V
′) be the number of dominating sets of size � in G using only vertices

from V ′ ⊆ V . Björklund et al. [33] show how to compute the values ak(X) required
to use Proposition 8.7 from the numbers d�(V

′). To this end, they give the following
recurrence that can be used for dynamic programming.

Let aX(i, j) be the number of i-tuples (S1, S2, . . . , Si) where each Si is a dominating
set in G using only vertices from V ∖X and such that

∑k
i=1 ∣Si∣ = j. The values aX(i, j)
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can be computed by dynamic programming over the following recurrence summing over
the possible sizes for the i-th element of the i-tuple (S1, S2, . . . , Si):

aX(i, j) =

j
∑

l=0

aX(i− 1, j − l) ⋅ dl(V ∖X)

Björklund et al. obtain the required values by observing that ak(X) = aX(k, n).

We are now ready to prove the main result of this section.

Theorem 8.8. The domatic number of a graph can be computed in O(2.7139n) time
and polynomial space.

Proof. We can use Proposition 8.7 for increasing k = 3, 4, . . . to find the domatic
number of G. To do so, we need to compute the required values ak(X).

For each V ′ ⊆ V , we use Algorithm 8.1 on (S,U) where S = {N [v] ∣ v ∈ V ′} and
U = V to produce a list containing, for each �, 0 ≤ � ≤ n, the number of dominating
sets in G of size � using only vertices in V ′. We observe that each such list can be used
to compute a single value ak(X) from the formula in Proposition 8.7 by the dynamic
programming procedure shown above.

We obtain a polynomial-space algorithm for the domatic number by producing
these lists one at a time and summing their corresponding contributions to the formula.
Since the 2n calls to Algorithm 8.1 are on instances of different sizes, the total number
of subproblems generated by Algorithm 8.1 over all 2n calls can be bounded from
above by:

n
∑

i=0

(

n

i

)

�vmaxn+wmaxi = (�vmax(1 + �wmax))
n

Here, we use the notation from the proof of Theorem 8.5. Because this number of
subproblems equals the exponential factor in the running time, we conclude that the
algorithm runs in O∗((�vmax(1+�wmax))n) time.

We recompute the weight functions used in Theorem 8.5 minimising �vmax(1 +
�wmax) and obtain � = 1.099437 using the following set of weights:

i 2 3 4 5 6 7 > 7

v(i) 0.822647 0.971653 1.000000 1.000000 1.000000 1.000000 1.000000
w(i) 2.039702 3.220610 3.711808 3.919500 4.016990 4.052718 4.052729

The running time is O
(

(1.099437(1+1.0994374.052729))n
)

=O(2.7139n).

We notice that one can construct the associated domatic partitions (or dominating
sets) by repeating the counting algorithms a polynomial number of times in the fol-
lowing way. First compute the maximum size k of a domatic partition. Then, assign
a vertex to a partition and test if this alters the domatic number: this can be done by
cleverly merging the output of calls to Algorithm 8.1 on a different input corresponding
to each of the k thus far constructed partitions. If the domatic number changes, we
try assigning the vertex to another partition, otherwise, we repeat this process.
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8.5. Counting Dominating Sets in Exponential Space

We now drop the constraint of using only polynomial space and give an exponential-
space algorithm for #Dominating Set. This algorithm will be similar to the one in
Section 8.3 but it will switch to a dynamic programming approach on tree decompo-
sitions at an earlier stage. This causes the dynamic programming to use exponential
time and space, while it allows the branching phase of the algorithm to avoid the less
efficient branchings on lower degree vertices in the incidence graph.

If we would directly apply this modification to Algorithm 8.1, then this would re-
sult in an O(1.5014n)-time algorithm for #Dominating Set: the construction would
be identical to the exponential-space algorithm for Partial Dominating Set in Sec-
tion 9.2 in the next chapter. Here, we will use a slightly different approach that mixes
the dynamic programming on tree decompositions with a standard branch-and-reduce
algorithm. This will give a slightly better result: an O(1.5002n)-time algorithm.

This result is again based on an algorithm that counts the number of set covers
of each size � (0 ≤ � ≤ n) and that uses the combination of the two branching rules
from Section 8.1 with dynamic programming on tree decompositions: Algorithm 8.2.
Different from previous algorithms is that the algorithm takes as input the incidence
graph of a Set Cover instance (S,U) and a multiplicity function m : S → ℕ. Initially,
this function takes the value 1 for each set, i.e, for all s ∈ S: m(s) = 1. The purpose of
this multiplicity function will become clear from the discussion of the reduction rules.

We will start by considering the reduction rules of Algorithm 8.2. First, observe
that not all reduction rules from the branch-and-reduce algorithm in Section 5.3.8 can
be used in the setting where we count the number of solutions. For example, consider
the subsets rule from Section 5.3.4: if there exist two sets S,R ∈ S with R ⊆ S, then
remove R. This works to find a minimum set cover, but not for counting them as a
set cover containing R and not S could very well be a minimum set cover.

As an alternative to the subsets rule, we introduce the identical sets rule that
uses the multiplicity function. Here, we replace multiple vertices in I that represent
different sets that contain the same elements by a single vertex and keep track of their
total number by storing this number in the multiplicity function. In other words, the
multiplicity function stores, for each vertex s ∈ S that represents a set, the number
m(s) of identical copies of this set that are represented by the vertex. This leads to
the following reduction rule (lines 1-3 in Algorithm 8.2):

Reduction Rule 8.1.

if there exist two vertices s1, s2 ∈ S with N(s1) = N(s2) then
Modify m such that m(s1) := m(s1) +m(s2)
return ExpCSC(I[(S ∪ U) ∖ {s2}],m)

If we select a set to be in the set covers that we are counting at a later stage in the
algorithm, for example at lines 6 or 14, then we have to correct the computed numbers
for the fact that multiple sets are represented by this vertex. This can be done using
the following proposition.

Proposition 8.9. Let x� be the number of set covers of size � computed in a recursive
call to the algorithm where a set represented by a vertex s ∈ S is decided to be in



148 Chap. 8: Inclusion/Exclusion Branching for Counting Dominating Sets

Algorithm 8.2. An exponential-space algorithm for counting set covers of each size.

Input: the incidence graph I = (S∪U, E) of (S,U), a multiplicity function m : S → ℕ

Output: a list containing the number of set covers of (S,U) of each cardinality �
ExpCSC(I,m):
1: if there exist two vertices s1, s2 ∈ S with N(s1) = N(s2) then
2: Modify m such that m(s1) := m(s1) +m(s2)
3: return ExpCSC(I[(S ∪ U) ∖ {s2}],m)
4: else if there exists a vertex e ∈ U of degree one then
5: Let Ltake = ExpCSC(I[(S ∪ U) ∖N [s]],m) with s the unique neighbour of e
6: return Ltake after updating it using Proposition 8.9
7: else if there exist two vertices e1, e2 ∈ U such that N [e1] ⊆ N [e2] then
8: return ExpCSC(I[(S ∪ U) ∖ {e2},m)
9: else

10: Let s ∈ S and e ∈ U be two vertices with maximum degrees from the set of
vertices of I that are not an exceptional case as defined in Overview 8.1

11: if d(s) ≤ 3 and d(e) ≤ 4 then
12: return ExpCSC-DP(I,m)
13: else if d(s) > d(e) or d(e) ≤ 4 then
14: Let Ltake = ExpCSC(I[(S ∪ U) ∖N [s]],m)
15: Let Ldiscard = ExpCSC(I[(S ∪ U) ∖ {s}],m)
16: Update Ltake using Proposition 8.9
17: return Ltake + Ldiscard

18: else
19: Let Loptional = ExpCSC(I[(S ∪ U) ∖ {e}],m)
20: Let Lforbidden = ExpCSC(I[(S ∪ U) ∖N [e]],m)
21: return Loptional − Lforbidden
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every set cover. That is, in a recursive call where we have decided to take at least
one of the m(s) copies of the set represented by s in the set cover, but where we have
not yet taken this into account in the values x�: we have removed only N [s] from the
incidence graph. Also, let x′

� be the number of set covers of size � when adjusted for
the fact that we could have taken any number (but at least one) of the m(s) copies of
the set represented by s. Then:

x′
� =

m(s)
∑

i=1

(

m

i

)

x�−i

Proof. We sum over the different number of copies i of the set represented by s that
we can take. The binomial gives the number of ways to pick these i copies from the
total of m(s) copies.

We note that, in the above formula, we assume that xi = 0 for i outside the range
0 ≤ i ≤ n.

As a consequence of Proposition 8.9, we can update the values in the list containing
the number of set covers of each size � maintained by the algorithm in polynomial time
whenever we decide to take at least one copy of some set s ∈ S in all set covers that we
are counting. Algorithm 8.2 uses this proposition whenever it decides to count only
set covers containing (a copy of) a certain set: see lines 6 and 14.

The second reduction rule of Algorithm 8.2 is the following (lines 4-6):

Reduction Rule 8.2.

if there exists a vertex e ∈ U of degree one then
Let Ltake = ExpCSC(I[(S ∪ U) ∖N [s]],m) with s the unique neighbour of e
return Ltake after updating it using Proposition 8.9

This reduction rule is almost identical the unique elements rule in Section 5.3.2.
The only difference is that, due to the multiplicities of the sets, the unique set con-
taining the element may occur as multiple copies. In this case, we still must take at
least one of these copies. We recursively solve the problem where we take such a set
and use Proposition 8.9 to correct the computed values for the fact that we could also
have taken a number of copies of the set.

What remains is the third reduction rule (lines 7-8), which is identical to the
subsumption rule in Section 5.3.6. Here, the multiplicities of the sets do not play any
role: if an element e1 occurs in all sets (with or without multiplicities) in which another
element e2 occurs, then any subset C ⊆ S that covers e1 also covers e2; hence, we can
remove e2.

Reduction Rule 8.3.

if there exist two vertices e1, e2 ∈ U such that N [e1] ⊆ N [e2] then
return ExpCSC(I[(S ∪ U) ∖ {e2},m)

Having treated the reduction rules, we now continue with the branching rules of the
algorithm. Similar to Algorithm 8.1 the algorithm branches on a vertex of maximum
degree and in general prefers to branch on a vertex that represents an element if degrees
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There are exceptional cases on which Algorithm 8.2 does not branch. These cases represent
local configurations of vertices which would increase the running time of the algorithm when
branched on, and that can be handled by the dynamic programming on path decompositions
quite effectively. The exceptional cases are:

1. Vertices of degree five that represent elements that occur in many sets of small car-
dinality. More specifically, if we let a 5-tuple (s1, s2, s3, s4, s5) represent a vertex e of
degree five representing an element with si neighbours of degree i that represent a set,
then our special cases can be denoted as:

(1, 4, 0, 0, 0) (1, 3, 1, 0, 0) (1, 2, 2, 0, 0) (1, 1, 3, 0, 0) (1, 0, 4, 0, 0)
(1, 3, 0, 1, 0) (1, 2, 1, 1, 0) (0, 5, 0, 0, 0) (0, 4, 1, 0, 0) (0, 3, 2, 0, 0)
(0, 2, 3, 0, 0) (0, 1, 4, 0, 0) (0, 4, 0, 1, 0) (0, 3, 1, 1, 0)

Note that e can have at most one neighbour of degree one due to Reduction Rule 8.1.

2. Vertices of degree four or five representing sets that contain an element represented by
a vertex that corresponds to one of the exceptional cases defined above.

Overview 8.1. Exceptional Cases for Algorithm 8.2

are equal. A small difference is that because of the use of the multiplicity function m,
the algorithm uses Proposition 8.9 to update the list containing the number of set
covers of each size � whenever it decides to take (at least one copy of) a set in the set
covers it is counting.

There are also some big differences between Algorithm 8.2 and Algorithm 8.1. First
of all, the algorithm never branches on vertices of degree at most three, and it never
branches on vertices of degree four that represent an element: these are left for the
dynamic programming phase of the algorithm. This means that if the maximum degree
in I is four and there exist vertices of degree four representing sets, then these are used
for branching whether vertices of degree four representing elements exist or not. Also,
the algorithm does not branch on vertices that are considered an exceptional case as
defined in Overview 8.1. These are vertices of degree five representing elements that
have specific local configurations, and vertices representing sets that contain elements
represented by vertices with such a specific local configuration.

These exceptional cases exist because, in the analysis in Lemmas 8.11 and 8.12, we
often know the local configuration of a vertex representing a set or an element in the
incidence graph. Such neighbourhoods are important for the worst-case behaviour of
the algorithm; for some neighbourhoods it is more efficient to handle them in the dy-
namic programming phase of our algorithm than by branching. These neighbourhoods
are our exceptional cases. How this influences the running time of our algorithms will
become more clear from the proofs of Lemmas 8.11 and 8.12.

We conclude the description of the algorithm by considering the dynamic program-
ming subroutine ExpCSC-DP(I,m). This subroutine first uses the pathwidth bounds
due to Fomin et al. [138] in Proposition 2.16 to construct a path decomposition of
small pathwidth. Hereafter, it applies the following result. For the definition of a path
decomposition and some related concepts, see Section 2.2.2.

Proposition 8.10. Let I be the incidence graph of a set cover instance (S,U) given with
a path decomposition X of I of width at most p, and let m : S → ℕ be a multiplicity
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function. The number of set covers of (S,U) of each size �, 0 ≤ � ≤ n, can be computed
in O∗(2p) time.

Proof. If m is the all-1 function, then the problem is equivalent to counting red-blue
dominating sets in I. This can be done in O∗(2p) on path decompositions of width p
by applying two modifications to the algorithm in Proposition 2.12. First, we let the
algorithm consider red-blue dominating sets instead of dominating sets. As a result it
runs in O∗(2p) time instead of O∗(3p) time; for details see Proposition 11.11. Secondly,
the algorithm is modified such that it counts the number of solutions instead of com-
puting the size of a solutions; for an example, see Theorem 11.7. This modification
can be done in such a way that the multiplicity of sets stored in m is respected by
using the formula given in Proposition 8.9 in each introduce bag.

Remark 8.1. Consider the pathwidth bound of Proposition 2.16. If our incidence
graph I has a vertex of degree d with a neighbour of degree one, then this vertex
can be considered to be of degree d − 1 in the formula of Proposition 2.16. Namely,
if we remove all degree one vertices from I and then compute a path decomposition,
then we can reintroduce these vertices in the following way. Let (X1, X2, . . . , Xl) the
path decomposition constructed by Proposition 2.16, and let Xi be a bag containing
the neighbour of the degree one vertex v. Now, we can add v by inserting the bag
Xi ∪ {v} between the bags Xi and Xi+1. Repeating this for all degree one vertices
increases the pathwidth by at most one.

We now give a bound on the running time of Algorithm 8.2. To this end, we give
two lemmas: the first one will deal with the branching phase of the algorithm, and
the second one will deal with the dynamic programming phase. Since both lemmas
use the same measure on the size of the subproblems, we will introduce it first. The
measure was chosen to minimise the resulting running time; see Section 5.6.

Let k be the following measure:

k :=
∑

e∈U

v(d(e)) +
∑

s∈S

w(d(s))

using fixed weight functions v, w : ℕ → ℝ+ with the weights given below.

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.275603 0.551206 0.658484 0.719009 0.745509 0.749538 0.749538
w(i) 0.354816 0.625964 0.785112 0.923325 0.986711 1.000000 1.000000 1.000000

We again use the quantities Δv(i) = v(i) − v(i − 1) and Δw(i) = w(i) − w(i − 1)
and observe that the measure satisfies the following constraints:

1. v(0) = v(1) = w(0) = 0
2. Δv(i) ≥ 0 for all i ≤ 1
3. Δw(i) ≥ 0 for all i ≤ 1

4. Δv(i) ≥ Δv(i+ 1) for all i ≥ 1
5. Δw(i) ≥ Δw(i+ 1) for all i ≥ 1
6. 2Δv(5) ≤ v(2)

The roles of these constraints are identical to their roles in the proof of Theorem 8.5.
We start the analysis of the running time of Algorithm 8.2 by bounding the number

of subproblems generated by branching.



152 Chap. 8: Inclusion/Exclusion Branching for Counting Dominating Sets

Lemma 8.11. Let Nℎ(k) be the number of subproblems of measure ℎ generated by
Algorithm 8.2 on an input of measure k. Then:

Nℎ(k) < 1.26089k−ℎ

Proof. Similar to the proof of Theorem 8.5, we derive a set of recurrence relations of
the following form:

Nℎ(k) ≤ Nℎ(k −Δkoptional) +Nℎ(k −Δkforbidden)

Nℎ(k) ≤ Nℎ(k −Δkdiscard) +Nℎ(k −Δktake)

with the appropriate values of Δkoptional and Δkforbidden for every possible branching
on a vertex representing an element, and the appropriate values Δkdiscard and Δktake

for every possible branching on a vertex representing a set.
The difference here is that Nℎ(k) is defined to be number of subproblems of meas-

ure ℎ, instead of the total number of subproblems, generated on an input of measure k.
An upper bound on the solution of this set of recurrence relations is of the form �k−ℎ.

If we branch on a vertex representing an element, this leads to almost the same
recurrence relations as in Theorem 8.5. Let e be a vertex representing an element
with si neighbours of degree i, and let Δkoptional and Δkforbidden be the decrease in
the measure in the branch where we make it optional to cover the element represented
by e, or forbidden to cover the element represented by e, respectively.

Δkoptional ≥ v(d(e)) +

∞
∑

i=1

siΔw(i)

Δkforbidden ≥ v(d(e)) +

∞
∑

i=1

siw(i) + Δv(d(e))

∞
∑

i=1

(i− 1)si

The only difference with the same recurrence relations in Theorem 8.5 is that we now
also consider neighbours of degree one.

If we branch on a vertex s representing a set, then the changes are somewhat larger.
Let s be a vertex representing a set with ei neighbours of degree i, and let Δkdiscard

and Δktake be the decrease in the measure in the branch where we take some of the
m(s) sets represented by s in a set cover, or where we discard them, respectively.
Different to the formula for Δkdiscard given in Theorem 8.5, reduction rules now fire
when neighbours of degree two are involved. In the branch where the sets represented
by s are discarded, these vertices get degree one and are removed by the reduction
rules. As these degree two neighbours all represent elements, they cannot have any
common neighbour besides s as Reduction Rule 8.3 would otherwise have fired before
branching. Therefore, Reduction Rule 8.2 removes at least one additional set of weight
at least w(1) per neighbour of degree two.

In this way, we obtain the following bounds on Δkdiscard and Δktake:

Δkdiscard ≥ w(d(s)) +
∞
∑

i=2

eiΔv(i) + e2w(1)

Δktake ≥ w(d(s)) +

∞
∑

i=2

eiv(i) + Δw(d(S))

∞
∑

i=2

(i− 1)ei
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Notice that the exact branching rules and, in particular, the exceptional cases in
Overview 8.1 play an important role in the analysis as they restrict the generated set
of recurrence relations. Using the measure defined above this lemma, we solve the
recurrence relations in the same way as in previous measure-and-conquer analyses and
obtain an upper bound on their solution of Nℎ(k) ≤ 1.26089k−ℎ.

Next, we prove a bound on the running time of a call to ExpCSC-DP(I,m). We
note that, although being slightly more complicated, the analysis is almost identical
to a similar analysis in [138].

Lemma 8.12. ExpCSC-DP(I,m) runs in time O(1.25334k) when called on a set cover
instance of measure k.

Proof. We will prove an upper bound on the pathwidth of an incidence graphs of
measure k that is an input of ExpCSC-DP(I,m). To this end, we formulate a linear
program in which all variables have the domain [0,∞).

We start by stating the first part of the linear program:

max z =
1

6
n3 +

1

3
n4 +

13

30
n5 such that:

1 =

5
∑

i=1

w(i)xi +

5
∑

i=2

v(i)yi (8.1)

5
∑

i=1

ixi =
5
∑

i=2

iyi (8.2)

Here, xi and yi represent the number of vertices of degree i that represent a set or
an element per unit of measure in a worst-case instance, respectively. Using these
variables, Constraint 8.1 guarantees that these xk and yk use exactly one unit of
measure, and Constraint 8.2 guarantees that both partitions of the bipartite incidence
graph have an equal number of edges.

The objective function, however, is formulated in terms of the variables ni. It is
based on Proposition 2.16 and represents the maximum pathwidth z of a graph per
unit of measure up to the term �n. The variables ni represent the number of vertices of
degree i in the input graph per unit of measure. Following Remark 8.1, these degrees
are taken after removing any vertices of degree one that represent sets. Any such vertex
of degree one that represents a set will use measure and not increase the pathwidth,
so we can assume that they will exist only if involved in an exceptional case.

Let C be the set of exceptional cases for vertices of degree five representing ele-
ments defined in Overview 8.1, and let ci be the number of neighbours of degree i of
exceptional case c ∈ C. We introduce the variables pc for the number of occurrences
of each exceptional case c ∈ C per unit of measure. These definitions directly give us
the following additional constraints that can be added to the linear program:

n3 = x3 + y3 (8.3)

n4 = x4 + y4 +
∑

c∈C,c1>0

pc (8.4)
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n5 = x5 +
∑

c∈C,c1=0

pc (8.5)

y5 =
∑

c∈C

pc (8.6)

Notice that we use here that, in a subproblem on which ExpCSC-DP(I,m) is called, a
vertex can have degree at most five. We also use that, in such a subproblem, vertices
of degree five exist only if they are exceptional cases (Overview 8.1).

The next thing to do is to add additional constraints justified by the exceptional
cases. Observe that whenever pc > 0 for some c ∈ C, then there exist further re-
strictions on the instance because we know the cardinalities of the sets in which these
exceptional elements occur. We impose a lower bound on the number of sets of car-
dinalities one, two, and three in the instance by introducing Constraint 8.7. Also, we
impose an upper bound on the number of sets of cardinality four, five, and six by
using that there can be at most one such set per exceptional frequency five element
contained in it. This is done in Constraint 8.8.

xi ≥
∑

c∈C

ci
i
pc for i ∈ {1, 2, 3} (8.7)

xi ≤
∑

c∈C

cipc for i ∈ {4, 5} (8.8)

The solution to this linear program is z = 0.325782 with all variables equal to zero,
except: x3 = n3 = 0.781876 and n4 = y4 = 0.586407. As a result the dynamic pro-
gramming on the path decomposition can be done in time O∗(2(z+�)k) = O(1.25334k).

We complete the proof by noting that although Proposition 2.16 applies only to
graphs of size at least n�, the result holds because we can fix � to be small enough to
disappear in the rounding of the running time and consider all smaller graphs than n�

to be handled in constant time.

Combining Lemma 8.11 and Lemma 8.12 gives the main result of this section.

Theorem 8.13. There exists an algorithm that counts the number of dominating sets
of each size �, 0 ≤ � ≤ n, in a graph G in O(1.5002n) time and space.

Proof. Let T (k) be the time used on a problem of measure k, and let Hk be the set of
all possible measures that subproblems of a problem of measures k can have. Then,
by Lemma 8.11 and Lemma 8.12:

T (k) ≤
∑

ℎ∈Hk

Nℎ(k) ⋅ 1.25334ℎ ≤
∑

ℎ∈Hk

1.26089k−ℎ ⋅ 1.25334ℎ ≤
∑

ℎ∈Hk

1.26089k

Because we use only a finite number of weights, ∣Hk∣ is polynomially bounded. There-
fore, Algorithm 8.2 runs in O(1.26089k) time.

Using the transformation between dominating sets and set covers from Section 5.1.1
(also used in Theorem 8.5), this proves a running time of O(1.26089(vmax+wmax)n) =
O(1.26089(0.749538+1)n) = O(1.5002n).
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Similar to Corollary 8.6 in Section 8.3, we can also use a modification of Algo-
rithm 8.2 to solve the weighted problems Minimum Weight Dominating Set and
#Minimum Weight Dominating Set when restricted to instances in which the set
of possible weight sums is polynomially bounded.

Corollary 8.14. There exist algorithms that solve Minimum Weight Dominating

Set and #Minimum Weight Dominating Set in O(1.5002n) time and space when
the problems are restricted to using weight functions with the property that the set of
possible weight sums is polynomially bounded.

Proof. Identical to Corollary 8.6 using Theorem 8.13 instead of Theorem 8.5.

Another problem that we can solve using Algorithm 8.2 is Red-Blue Dominating

Set. For this problem, we will now give a faster algorithm than in Corollary 5.5. We
improve the running time in this corollary at the cost of using exponential space.

Corollary 8.15. There exists an algorithm that solves Red-Blue Dominating Set

in O(1.2252n) time and space.

Proof. We repeat the proof of Theorem 8.13 using a different set of weights. We
chose these weights in order to minimise �max{vmax,wmax}n instead of �(vmax+wmax)n);
this is similar to Corollary 5.5. Because an instance of Red-Blue Dominating Set

can be transformed into an instance of Set Cover that satisfies ∣S∣ + ∣U∣ = n, the
instance has a measure k of at most max{vmax, wmax}n. Hence, a running time of
O(�max{vmax,wmax}n) follows from the computed value of �.

Since the proof is entirely analogous to the proof of Theorem 8.13, including the
analyses in Lemmas 8.11 and 8.12, we will give only the main differences here.

We use the following new set of weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.357141 0.714281 0.861804 0.947324 0.991880 1.000000 1.000000
w(i) 0.000000 0.421168 0.684691 0.840134 0.953577 0.998175 0.999999 1.000000

Using these weights, we again solve the recurrence relations given in the proof of
Lemma 8.11. This results in an upper bound on the number of subproblems Nℎ(k) of
measure ℎ generated to solve an instance of measure k of Nℎ(k) ≤ 1.22519k.

Next, we again solve the linear program from the proof of Lemma 8.12 to prove
an upper bound on the pathwidth of the instances that are solved by dynamic pro-
gramming on path decompositions. Notice that some of the coefficients in the linear
constraints of the linear program are changed because we now use different weights.
The solution to this new linear program is z = 0.280303 with all variables equal to
zero, except: x3 = n3 = 0.672727 and n4 = y4 = 0.504545. As a result, the dynamic
programming on the path decomposition can be done using Proposition 8.10 in time
O∗(2(z+�)k) = O(1.21445k).

The O(1.2252n) upper bound on the running time now follows in the same way as
in the proof of Theorem 8.13.
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graph class result of Gaspers et al. [165] our result
c-dense graphs O(1.5063(

1
2+

1
2

√
1−2c)n) O(1.5002(

1
4+

1
4

√
9−16c)n)

chordal graphs O(1.4124n) O(1.3687n)
weakly chordal graphs O(1.4776n) O(1.4590n)
4-chordal graphs O(1.4845n) O(1.4700n)
circle graphs O(1.4887n) O(1.4764n)

Table 8.1. Results for Dominating Set on five different graph classes.

8.6. Dominating Set Restricted to Some Graph Classes

We conclude this chapter with another application of inclusion/exclusion-based branch-
ing. Namely, we study Dominating Set restricted to some graph classes. We consider
the algorithms for these problems by Gaspers et al. [165]. We improve their algo-
rithms by applying both the traditional branching rule that branches on sets and our
inclusion/exclusion-based branching rule that branches on elements in this setting.
The series of subproblems that is generated by this approach will be solved using
Algorithm 8.2.

Gaspers et al. consider exact exponential-time algorithms for Dominating Set on
some graph classes on which this problem remains NP-complete [165]. They consider
c-dense graphs, circle graphs, chordal graphs, 4-chordal graphs, and weakly chordal
graphs. They show that if we restrict ourselves to such a graph class, then either there
are many vertices of high degree allowing more efficient branching, or the graph has
low treewidth allowing us to efficiently solve the problem by dynamic programming on
a tree decomposition.

In this section, we show that we can do with fewer vertices of high degree to obtain
the same effect by using our two branching rules. In this way, we improving the
results on four of these graph classes. See Table 8.1 for an overview of the results. We
note that, on some graph classes, part of the improvement comes from using faster
algorithms to solve the problem on tree decompositions; details on these algorithms
will be presented in Chapter 11.

We begin by showing that having many vertices of high degree can be beneficial
to the running time of an algorithm. First, consider the following result of Gaspers et
al. [165]:

Proposition 8.16 ([165]). Let t ≥ 1 be a fixed integer, and let � be such that there
exists an O(�n)-time algorithm for Red-Blue Dominating Set. If Gt is a class
of graphs with, for all G ∈ Gt, ∣{v ∈ V : d(v) ≥ t − 2}∣ ≥ t, then there is an
O(�2n−t)-time algorithm to solve Dominating Set on graphs in Gt.

We now give and prove a stronger variant of this proposition; the resulting lemma
uses Algorithm 8.2 and its running-time analysis that we have given in Section 8.5.

Lemma 8.17. Let, for each integer t ≥ 1, Gt be the class of graphs with ∣{v ∈ V :
d(v) ≥ t− 2}∣ ≥ 1

2 t. There is an algorithm that counts the number of dominating sets

of each size �, 0 ≤ � ≤ n, in a graph G ∈ Gt in O(1.5002n−
1
2 t) time.
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Proof. Given a graph G, we determine the largest integer t ≥ 1 such that G ∈ Gt. It
is easy to see that this can be done in polynomial time. Let H be the set of vertices
of degree at least t− 2 in G from the definition of Gt.

Consider the set cover formulation (S,U) with incidence graph I of the dominating
set problem on G. Also, let � be the base of the exponent of the running time of
Algorithm 8.2 using the measure given in Section 8.5 with maximum weights vmax

and wmax for a vertex representing an element and a set, respectively. We will prove
the lemma by giving a procedure that generates t + 1 instances of measure at most
(vmax+wmax)(n− 1

2 t) from which the result can be computed. We solve these instances
using Algorithm 8.2. Since the number of instances generated is at most linear in n,
this gives an algorithm running in O∗(�(vmax+wmax)(n− 1

2 t)) = O(1.5002n−
1
2 t) time.

Let e be a vertex corresponding to an element in U constructed for a vertex in H.
Our procedure first uses inclusion/exclusion-based branching on e: in the optional
branch, we remove e; and in the forbidden branch, we remove N [e]. Because N [e]
contains at least t−1 neighbours representing sets constructed for v and its neighbours,
the instance generated in the forbidden branch has measure at most (n − 1)vmax +
(n− t+ 1)wmax < (vmax +wmax)(n− 1

2 t) as wmax ≥ vmax. In the optional branch, we
branch on the next vertex corresponding to an element in U constructed for a vertex
in H. We repeat this process until all vertices in H are used. This gives a series of
1
2 t instances of measure at most (vmax + wmax)(n − 1

2 t) and one instance of measure
at most vmax(n− 1

2 t) + wmaxn in which all vertices corresponding to an element in U

constructed for a vertex in H are exhausted.
In this last instance, we branch on vertices corresponding to sets. These vertices

still have at least 1
2 t − 1 neighbours in I, since only 1

2 t vertices have been removed
in optional branches. Let s be a vertex corresponding to a set in S corresponding to
a vertex in H. When branching on s and taking the corresponding set in a solution,
again a subproblem of measure at most (vmax + wmax)(n − 1

2 t) is generated as N [s]
is removed. In the branch where we discard the set corresponding to s, we continue
by branching on the next set corresponding to a vertex in H. In this way, we again
generate a series of 1

2 t instances of measure at most (vmax + wmax)(n − 1
2 t) and one

instance in which all vertices to branch on are exhausted.
In the remaining instance, 1

2 t vertices corresponding to elements are removed and
1
2 t vertices corresponding to sets are removed. This results in an instance that also
has measure at most (vmax + wmax)(n− 1

2 t) proving the lemma.

We note that the same result could have been obtained if wmax < vmax by switching
the order of the branching rules: then, we would first branch on vertices representing
sets, and thereafter on vertices representing elements.

We now continue by defining the different graph classes and giving the results on
these graph classes by using Lemma 8.17.

Definition 8.18 (c-Dense Graph). A graph G = (V,E) is said to be c-dense if ∣E∣ ≥ cn2

where c is a constant with 0 < c < 1
2 .

Gaspers et al. have given an O(1.5063(
1
2+

1
2

√
1−2c)n)-time algorithm for Dominating

Set on c-dense graphs [165]. We will improve this below. A graphical comparison of
both results can be found in Figure 8.1. Note that if c is very small, then Theorem 5.1
can give a slightly faster algorithm.
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Base of the exponent of the running time

The solid line represents the base of the exponent of the upper bound on the running time

of our algorithm. The dashed line represents the base of the exponent of the upper bounds

from [165].

Figure 8.1. Comparison of bounds on the running time on c-dense graphs.

Corollary 8.19. The number of dominating sets of each size �, 0 ≤ � ≤ n, in a c-dense
graph can be counted in O(1.5002(

1
4+

1
4

√
9−16c)n) time.

Proof. By a counting argument in [165], any graph with sufficiently many edges has
a set of high degree vertices that allow application of Lemma 8.17 with parameter t.
For c-dense graphs this occurs when:

∣E∣ ≥ cn2 ≥ 1

2

(

1

2
t− 1

)

(n− 1) +
1

2

(

n− 1

2
t+ 1

)

(t− 3)

If t ≤ 1
2 (4 + 3n)− 1

2

√
−8n+ 9n2 − 16cn2, then this is the case. By taking t maximal

in this inequality and removing all factors that disappear in the big-O notation, we
obtain a running time of O(1.5002(

1
4+

1
4

√
9−16c)n).

Corollary 8.19 gives the currently fastest algorithm for Dominating Set on c-
dense graphs.

We now proceed by giving faster algorithms on circle graphs, 4-chordal graphs,
and weakly chordal graphs. We first define these graphs classes. We also define one
additional graph class, namely chordal graphs, for which we will give a faster algorithm
at the end of the section.

Definition 8.20 (Circle Graph). A circle graph is an intersection graph of chords in a
circle: every vertex represents a chord, and vertices are adjacent if their corresponding
chords intersect.

A chordless cycle in a graph G is a sequence of vertices (v1, v2, . . . , vl, v1) such that
G[
∪l

i=1{vi}] is an induced cycle in G, that is, the only edges of G[
∪l

i=1{vi}] are the
edges that form the cycle.
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Definition 8.21 (Chordal Graph). A graph is chordal if it has no chordless cycle of
length more than three.

Definition 8.22 (4-Chordal Graph). A graph is 4-chordal if it has no chordless cycle
of length more than four.

Definition 8.23 (Weakly Chordal Graph). A graph G is weakly chordal if both G and
its complement are 4-chordal.

On these graph classes Gaspers et al. balance dynamic programming on tree de-
compositions to the many vertices of high degree approach [165]. For the dynamic
programming, we need Theorem 11.7. This theorem states that we can count the
number of dominating sets of each size �, 0 ≤ � ≤ n, in G in O∗(3k) time when G is
given with a tree decomposition of width k.

The following lemma is based on [165] and gives our running times on circle graphs,
4-chordal graphs, and weakly chordal graphs. Note that a graph class G is a hereditary
class if all induced subgraphs of any graph G ∈ G are in G also.

Lemma 8.24. Let G be a hereditary class of graphs such that all G ∈ G have the prop-
erties that tw(G) ≤ cΔ(G) and that a tree decomposition of G of width at most cΔ(G)
can be computed in polynomial time. For any t′ ≥ 1, there exists an algorithm running
in O(max{1.5002(1− 1

2 t
′)n, 3(c+

1
2 )t

′n}) time that counts the number of dominating sets
of each size �, 0 ≤ � ≤ n, in a graph G ∈ G.

Proof. Let X be the set of vertices of degree at least t′n. If ∣X∣ ≥ 1
2 t

′n, then we can

apply Lemma 8.17 with t = t′n giving a running time of O(1.5002(1−
1
2 t

′)n).
Otherwise, ∣X∣ < 1

2 t
′n. Since G[V ∖X] belongs to G, we know that:

tw(G) ≤ tw(G[V ∖X]) + ∣X∣ ≤ cΔ(G[V ∖X]) + ∣X∣ < ct′n+
1

2
t′n =

(

c+
1

2

)

t′n

Note that the first inequality is based on the fact that we can add all vertices in X to
all bags of a tree decomposition of G[V ∖X]): this increases its width by at most ∣X∣.

Now, we can apply the O∗(3k)-time algorithm of Theorem 11.7. This gives us a
running time of O(3(c+

1
2 )t

′n).

The running times follow from using the following values for c on the different
graph classes.

Proposition 8.25 ([165]). The following graph classes are hereditary graph classes
with tw(G) ≤ cΔ(G) for all G ∈ G using the indicated values of c:

∙ Weakly Chordal graphs (c = 2).
∙ 4-Chordal graphs (c = 3).
∙ Circle graphs (c = 4).

The corresponding tree decompositions can be computed in polynomial time.

Corollary 8.26. There exist algorithms that count the number of dominating sets of
each size �, 0 ≤ � ≤ n, in a weakly chordal graph in O(1.4590n) time, in a 4-chordal
graph in O(1.4700n) time, and in a circle graph in time O(1.4764n) time.
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Proof. Combine Lemma 8.24 and Proposition 8.25, and compute t′ such that both
running times in Lemma 8.24 are balanced.

We conclude this section by considering chordal graphs. For this graph class,
we cannot use the improvement of Lemma 8.17 over Proposition 8.16. That is, we
do not benefit from the fact that we need only 1

2 t vertices of degree at least t − 2
instead of at least t vertices of degree at least t − 2. However, we can improve the
result of Gaspers et al. on this graph class by using both a faster branch-and-reduce
algorithm that is used if the graph is dense (the algorithm of Theorem 8.13), and a
faster tree-decomposition-based dynamic programming algorithm that is used if the
graph is sparse. The faster tree-decomposition-based dynamic programming algorithm
is given by Proposition 8.27 below.

We use that a chordal graph can be represented as a clique tree [168]. A clique
tree T of a chordal graph G is a tree such that there exists a bijection between the
nodes of the tree T and the maximal cliques in G and such that, for each vertex v ∈ V ,
all nodes in T corresponding to a clique that contains v form a connected subtree. It
is well known that a clique tree of a chordal graph is an optimal tree decomposition
of G whose width equals the size of the largest clique in G minus one.

Proposition 8.27. There is an algorithm that, given a clique tree of a chordal graph G
of treewidth k, computes the number of dominating sets in G of each size �, 0 ≤ � ≤ n,
in O∗(2k) time.

Proof. To prove this proposition, we combine the techniques that we will introduce
in Chapter 11 to obtain faster algorithms on tree decompositions with an observa-
tion of Gasper et al. on solving Dominating Set on tree decompositions of chordal
graphs [165]. For the proof below, we require the reader to be familiar with the details
of the proof of Theorem 11.7.

In the algorithm in the proof of Theorem 11.7, a table Ax is computed for each
node x in the nice tree decomposition T . Let Xx be the vertices in the bag associated
with the node x in T . The table Ax has entries Ax(c, �) containing the number of
partial solutions of Dominating Set of size exactly � in Gx satisfying the requirements
defined by the states in the at most 3k colourings c of Xx using states 1, 00 and 0?.
Recall from Table 11.1 that each table entry Ax(c, �) counts only partial solutions
whose vertex set contains exactly those vertices from Xx with state 1 in c; also, it
counts only partial solutions that do not yet dominate the vertices in Xx with state 00
in c; and, it is indifferent about whether vertices with state 0? are dominated or not.

Translating the observation of Gaspers et al. [165] to this situation, we observe that
if the tree decomposition that is given as input is a clique tree of a chordal graph, then,
for each node x of the nice tree decomposition T , the vertices the bag Xx form a clique
in G. Consequently, an entry in Ax corresponding to a colouring c that contains both
the state 1 and the state 00 will always have the value zero. This is because no partial
solution can exist that contains a vertex from Xx in the vertex set of the dominating
set and still has that a vertex from Xx is undominated.

Consequently, the algorithm has to compute only the values Ax(c, �) for the at
most 2 ⋅ 2k remaining colourings of Xx. It is not hard to verify that the dynamic
programming recurrences in the proof of Theorem 11.7 can be used to compute all
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these O∗(2k) values in Ax for each type of node of T in O∗(2k) time per node. In these
computations, all values that have not been computed, i.e., entries Ax(c, �) with both
a 1 and a 00 state in c, are considered to be zero. As a result, the modified algorithms
runs in O∗(2k) time.

Our result on chordal graphs now follows.

Corollary 8.28. There exists an algorithm that counts the number of dominating sets
of each size �, 0 ≤ � ≤ n, in a chordal graph in O(1.3687n) time.

Proof. Compute a clique tree T of the chordal graph G; this can be done in polynomial
time [293]. Find a largest clique C in G by considering the cliques corresponding to
each node of T .

If ∣C∣ ≥ 0.452704n, then there exists at least 0.452704n vertices of degree at least
0.452704n − 1. Hence, we can apply Lemma 8.17 using t = 0.452704n and solve the
instance in O(1.5002n−

1
2 0.452704n) = O(1.3687n) time. Otherwise, ∣C∣ < 0.452704n. In

this case, T is a tree decomposition of width at most 0.452704n. Now, we solve the
instance in O(20.452704n) = O(1.3687n) time using Proposition 8.27.

8.7. Concluding Remarks

In this chapter, we have shown that the principle of inclusion/exclusion can be used
as a branching rule in a branch-and-reduce algorithm. We combined the use of such
an inclusion/exclusion-based branching rule with different series of reduction rules
and standard (non-inclusion/exclusion-based) branching rules. This resulted in non-
trivial branch-and-reduce algorithms that we analysed using measure and conquer.
In this way, we obtained, amongst others, the currently fastest polynomial and ex-
ponential space algorithms for #Dominating Set, the currently fastest polynomial
space algorithm for Domatic Number, the currently fastest algorithm for Red-Blue

Dominating Set, and the currently fastest algorithms for Dominating Set on some
graph classes.

We note that our approach has further applications. Namely, any inclusion/exclu-
sion algorithm (for example those in Section 2.3) can be turned into a branch-and-re-
duce algorithm without reduction rules. For example, the algorithm for #Perfect

Matching in Corollary 2.20 is essentially an algorithm that counts set covers on
instances with m sets of size two and n elements. One can easily add reduction rules
similar to those used in this chapter to this algorithm. The resulting algorithm will
possibly not have a faster worst-case running time, but will certainly generate less
subproblems on a given instance possibly improving its running time in practice.

There are more techniques to prove good upper bounds on branch-and-reduce
algorithms, for example techniques based on average degrees in a graphs; see for
example [59]. Our branch-and-reduce algorithms can also be analysed by such means.
The general idea of interpreting an inclusion/exclusion algorithm as branch-and-re-
duce algorithm is a nice approach to get better upper bounds on the running time of
an inclusion/exclusion algorithm than the usual running times of O∗(2n); an upper
bound on the running time present in, for example, all examples in Section 2.3.
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We conclude with an observation on the currently fastest algorithm for Red-Blue

Dominating Set given in this chapter (Corollary 8.15). Notice that the currently fast-
est algorithm for Dominating Set (Theorem 5.1) does not use inclusion/exclusion-
based branching and is based on an algorithm for Set Cover. Also notice that the
same set-cover-based algorithm is used to give the currently fastest polynomial-space
algorithm for Red-Blue Dominating Set (Corollary 5.5). Although this set-cover-
based algorithm is faster for Dominating Set, it is slower for Red-Blue Dominat-

ing Set when compared to the results in this chapter. That is, the exponential-space
algorithm for Red-Blue Dominating Set of Corollary 8.15 is faster than the one
of Corollary 5.5, while the underlying algorithm that counts set covers is slower when
used for Dominating Set.

This difference can be explained from the different functions that are minimised
in the two measure-and-conquer analyses. When minimising �(vmax+wmax)n, as for
Dominating Set, different values of vmax and wmax can be used while still giving
good running times. The fact that these values can be different can be beneficial if
the sets of reduction rules for sets is very different from the set of reduction rules for
elements. When minimising �max{vmax,wmax}n, as for Red-Blue Dominating Set, a
lower value for either vmax or wmax does not directly give a better bound on the running
time. In this case, we can benefit only little from the asymmetry. The extra power
given by the inclusion/exclusion-based branching rule now leads to a faster algorithm.
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9
Inclusion/Exclusion Branching for

Partial Requirements: Partial
Dominating Set and k-Set Splitting

In the previous chapter, we have introduced inclusion/exclusion-based branching. We
used branching rules based on the principle of inclusion/exclusion to construct algo-
rithms that count the number of set covers of each size � with 0 ≤ � ≤ n. This led
to faster algorithms for #Dominating Set and several related problems. In a more
abstract sense where we speak of requirements instead of covering elements or dom-
inating vertices, we can say that these algorithms count the number of solutions of
each size that satisfy all requirements that are imposed by their respective problems.

In this chapter, we continue studying this approach in a slightly different setting:
we will count the number of solutions that satisfy exactly (or at least) t requirements.
E.g., we will count the number of partial set covers of each size � that cover exactly t
elements. In this setting, we introduce a new inclusion/exclusion-based branching
rule that we call extended inclusion/exclusion-based branching or simply extended IE-
branching . We give two applications of this branching rule. First, we consider Partial

Dominating Set. This is a natural extension of Dominating Set where we are asked
to compute a vertex set of minimum size that dominates at least t vertices. Second,
we consider the parameterised problem k-Set Splitting. For both problems, we will
present new exact algorithms that improve upon previous results.

This chapter is organised in the following way. We introduce extended inclusion/ex-
clusion-based branching in Section 9.1. This branching rule will then be used in an

†This chapter is joint work with Jesper Nederlof. The chapter contains results of which a preli-
minary version has been presented at the 5th International Symposium on Parameterized and Exact
Computation (IPEC 2010) [245]. The paper received the ’Excellent Student Paper Award’ at this
conference.
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algorithm for Partial Dominating Set in Section 9.2. In this section, we first
show that the usual set cover modelling of Partial Dominating Set equals the
Partial Red-Blue Dominating Set problem. This will be followed by a result
showing that the counting variant of this problem has some interesting symmetry
properties. We conclude the section by giving faster polynomial-space and exponential-
space algorithms for Partial Dominating Set. In Section 9.3, we give another
application of the extended inclusion/exclusion-based branching by giving a faster
algorithm for the parameterised problems k-Set Splitting and k-Not-All-Equal

Satisfiability. Finally, we give some concluding remarks in Section 9.4

9.1. Extended Inclusion/Exclusion Branching

We start by introducing our extended inclusion/exclusion-based branching rule. We
will do so in a slightly more formal setting compared to the introduction of inclu-
sion/exclusion-based branching in Section 8.1.

Let A be a set and let P1,P2 . . . ,Pn be subsets of A. In the context of this chapter,
the sets P1,P2, . . . ,Pn can be thought of as properties. These properties can represent
parts of a problem instance. For an example, consider the Set Cover problem; this
example will be analogous to the setting in which we introduced inclusion/exclusion-
based branching in Section 8.1. Given a Set Cover instance (S,U) where S is a
collection of sets over the universe U, we let A contain all possible collections of sets
from S, ie.e., A = 2S. Here, we have a property PS for every set S ∈ S and a property Pe

for every element e ∈ U. For a property associated with a set S ∈ S, we let PS contain
the collections of sets in A that contain the set S, i.e., PS = {C ∈ A ∣ S ∈ C}. For a
property associated with an element e ∈ U, we let Pe contain the collections of sets
in A that cover e, i.e., PS = {C ∈ A ∣ e ∈ ∪S∈C

S}.
Given A and a series of properties P1,P2 . . . ,Pn, we let a partitioning (R,O, F ) of

{1, 2, . . . , n} define whether a property Pi is a required property (i ∈ R), an optional
property (i ∈ O), or a forbidden property (i ∈ F ).

Following Bax [14], we define for a partitioning (R,O, F ) of {1, 2, . . . , n}:

a(R,O, F ) =

∣

∣

∣

∣

∣

(

∩

i∈R

Pi

)

∖
(

∪

i∈F

Pi

)∣

∣

∣

∣

∣

That is, a(R,O, F ) counts the number of C ∈ A that have all the required properties
(C ∈ Pi is counted when i ∈ R), and none of the forbidden properties (C ∈ Pi is not
counted when i ∈ F ). Since (R,O, F ) partitions {1, 2, . . . , n}, all optional properties
are ignored, i.e., a C ∈ A is counted both if C ∈ Pi and if C ∕∈ Pi, for any i ∈ O.

Recall that in a Set Cover instance (S,U), initially, every set S ∈ S corresponds
to an optional property since it can either be taken in a solution or not, and that every
element e ∈ U corresponds to a required property since it must be covered. In this
initial case, a(R,O, F ) counts the number of set covers of (S,U).

Through branching, the role of a property can change between being required,
optional, and forbidden. It is easy to see that the branching rules that are based on
branching on an optional property (a set S ∈ S) or a required property (an element
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e ∈ U) correspond to the following formulas:

optional: a(R,O ∪ {i}, F ) = a(R ∪ {i}, O, F ) + a(R,O, F ∪ {i})
required: a(R ∪ {i}, O, F ) = a(R,O ∪ {i}, F )− a(R,O, F ∪ {i})

In this setting, a(R,O, F ) counts the number of covers C ⊆ S that satisfy the following
properties:

∙ for an element e ∈ U, C covers e if Pe is associated with R, C does not cover e
if Pe is associated with F , and C is indifferent about covering e if Pe is associated
with O.

∙ for a set S ∈ S, C contains S if PS is associated with R, C does not contain S
if PS is associated with F , and C may contain S if PS is associated with O.

Let us now extend these ideas to the setting of this chapter. Here, we are interested
in counting all C ∈ A that have exactly t of the properties associated with R. In a
similar way as above, we define:

at(R,O, F ) = ∣{C ∈ A : ∣R[C]∣ = t ∧ ∣F [C]∣ = 0}∣

where we denote R[C] = {i ∈ R ∣ C ∈ Pi} and F [C] = {i ∈ F ∣ C ∈ Pi}. We can say
that C ∈ A is counted in at(R,O, F ) if it is counted in a(R,O, F ) and satisfies exactly t
of the required properties. Notice that if we now consider a required property Pi, then
C ∈ A can be counted in at(R,O, F ) both when the required property is satisfied and
when the required property is not satisfied. This is so because at(R,O, F ) counts all
C ∈ A that satisfy exactly t of the properties in R instead of all these properties.

We can branch on the choice whether a required property (now using the parame-
ter t) will be satisfied or not. This leads to the following recurrence:

at(R ∪ {i}, O, F ) = at(R,O, F ∪ {i}) + ∣{C ∈ Pi : ∣R[C]∣ = t ∧ ∣F [C]∣ = 0}∣

Note that the second term on the right hand side represents the number of C ∈ A

counted in at(R ∪ {i}, O, F ) that also satisfy the property Pi.
Since any C ∈ A counted in the second term on the right hand side must be in Pi, we

can now apply the familiar inclusion/exclusion-based branching rule from Section 8.1
to the required property Pi. That is, the number of C ∈ A counted in at(R,O, F )
that are also in Pi, equals the total number of C ∈ A counted in at(R,O, F ), minus
those that are not in Pi. The composition of these two branching rules results in the
extended inclusion/exclusion-based branching rule that we will use in this chapter:

at(R ∪ {i}, O, F ) = at(R,O, F ∪ {i}) +
(at−1(R,O ∪ {i}, F )− at−1(R,O, F ∪ {i}))

where we set at(R,O, F ) = 0 if t > ∣R∣ or t < 0. The parameter t is decreased in
the last two terms on the right hand side because the subtraction guarantees that
the requirement Pi will be satisfied; therefore, we need to satisfy t − 1 remaining
requirements from R. In the case that we no longer have the possibility to choose to
satisfy a requirement or not, because t = 0 or t = ∣R∣, then the rule is correct because
we set at(R,O, F ) = 0 for any t < 0 or t > ∣R∣.
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At first, the above branching rule does not look particularly efficient since the
branch-and-reduce algorithm has to solve three instances recursively for each applica-
tion of the branching rule. However, we will now show that two recursive calls suffice.
Observe that the first and last recursive call differ only in the subscript parameter t.
We can exploit this by computing as for all 0 ≤ s ≤ n simultaneously whenever we
need to compute at. Although this will slow down the algorithm by only a factor n,
this allows us to consider only the cases at(R,O, F ∪{i}) and at−1(R,O∪{i}, F ) since
at−1(R,O, F ∪ {i}) will be computed when the algorithm computes at(R,O, F ∪ {i}).

If one expands the recurrence that defines the extended inclusion/exclusion-based
branching rule, then the following natural variation on the inclusion/exclusion formula
can be obtained for computing at(R,O, F ):

at(R,O, F ) =
∑

X⊆R

(−1)∣X∣−∣R∣+t

( ∣X∣
∣R∣ − t

)

a0(∅, O ∪ (R ∖X), F ∪X)

To see this, consider the branching tree (search tree) after exhaustively applying the
extended inclusion/exclusion-based branching rule. Let X be a set of forbidden prop-
erties, i.e., the set of properties that go into the first or third branch when branching.
We consider the set of leaves of this tree where X is the set of forbidden properties.
For each such leaf, we have lowered the parameter t exactly t times, thus we have
taken ∣R∣ − t times the first branch and ∣X∣ − ∣R∣ + t times the second branch. As a
result, we have

( ∣X∣
∣R∣−t

)

such leaves, and the contribution of each leaf to the sum in the
root is multiplied exactly ∣X∣ − ∣R∣+ t times by −1.

9.2. Exact Algorithms for Partial Dominating Set

As a first application of our new branching rule, we will give faster algorithms for
Partial Dominating Set. This problem is a natural extension of Dominating

Set where we need to dominate only a given number of vertices. In this section, we
give an O(1.5673n)-time algorithm for this problem that uses polynomial space and an
O(1.5014n)-time algorithm that uses exponential space.

Let us first define the problem formally. Any vertex set D ⊆ V is a partial domi-
nating set, and such a partial dominating set D dominates all vertices in N [D].

Partial Dominating Set

Input: A graph G = (V,E), an integer t ∈ ℕ, and an integer k ∈ ℕ.
Question: Does there exist a partial dominating set D ⊆ V in G of size at

most k that dominates at least t vertices?

Let us first consider some previous results on Partial Dominating Set. The
previously fastest exact exponential-time algorithm for this problem is due to Liedloff
[223]; this algorithm runs in O(1.6183n) time and polynomial space. When considering
the parameterised version of the problem, parameterised by the parameter t, Kneis et
al. have shown that the problem is Fixed-Parameter Tractable [205]. The fastest known
parameterised algorithm is due to Koutis and Williams and runs in O∗(2t) time [213].
When parameterised by the size of the partial dominating set and restricted to planar
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graphs, Amin et al. have shown that the problem is Fixed-Parameter Tractable [4],
and Fomin et al. have given a subexponential-time algorithm [152].

The rest of this section is divided into three parts. First, we give a transformation
from Partial Dominating Set to Partial Red-Blue Dominating Set in Sec-
tion 9.2.1 and show that this problem has an interesting symmetry relation between the
red and the blue vertices. Secondly, we give our polynomial-space algorithm for Par-

tial Dominating Set in Section 9.2.2. We conclude by giving our exponential-space
algorithm for this problem in Section 9.2.3.

9.2.1. Symmetry in the Partial Red-Blue Dominating Set Problem

The algorithms for Partial Dominating Set in this chapter are based on algorithms
for a variant of Set Cover on the instance (S,U) where S = {N [v] ∣ v ∈ V } and
U = V . This is similar to the approach in Chapters 5 and 8 where we considered
different variants of the Dominating Set problem.

In this chapter, we will mainly consider the incidence graph I of (S,U) as defined
in Section 8.1. On this incidence graph, the problem is equivalent to Partial Red-

Blue Dominating Set where the red vertices are the vertices representing the sets
and the blue vertices are the vertices representing the elements. We note that any
vertex set D ⊆ ℛ in a bipartite graph G = (ℛ∪ℬ, E) with a red partition ℛ and blue
partition ℬ is a partial red-blue dominating set , and such a partial red-blue dominating
set D dominates all vertices in N(D).

Partial Red-Blue Dominating Set

Input: A bipartite graph G = (ℛ ∪ ℬ, E) with red vertices ℛ and blue
vertices ℬ, an integer t ∈ ℕ, and an integer k ∈ ℕ.

Question: Does there exist a partial red-blue dominating set D ⊆ ℛ in G of
size at most k that dominates at least t vertices in ℬ?

Note that we obtain the Red-Blue Dominating Set problem when we take t = ∣ℬ∣.
Given a graph G = (ℛ ∪ ℬ, E) with red vertex set ℛ and blue vertex set ℬ, we

define for any 0 ≤ i ≤ ∣ℛ∣ and 0 ≤ j ≤ ∣ℬ∣:

bi,j(ℛ,ℬ) = ∣{X ⊆ ℛ : ∣X∣ = i ∧ ∣N [X] ∩ℬ∣ = j}∣

In words, bi,j(ℛ,ℬ) is the number of partial red-blue dominating sets of size i that
dominate exactly j blue vertices. Clearly, an instance of Partial Red-Blue Dom-

inating Set is a Yes-instance if and only if there exist i ≤ k and j ≥ t such that
bi,j(ℛ,ℬ) > 0.

The algorithms in this chapter will compute, for a given graph G = (ℛ ∪ ℬ, E),
a matrix MG with bi,j(ℛ,ℬ) for all 0 ≤ i ≤ ∣ℛ∣ and 0 ≤ j ≤ ∣ℬ∣. There is a lot of
symmetry present in the relation between the two colour classes in this approach. The
remainder of this section will be used to illustrate this symmetry relation and give a
nice property of it. This property is given by Proposition 9.1.

Given a graph G = (ℛ ∪ ℬ, E) with red vertex set ℛ and blue vertex set ℬ, we
define its flipped graph G′ to be G with the colours of every vertex flipped between red
and blue, i,e., G′ is the graph G with red vertex set ℬ and blue vertex set ℛ. We now
show that the matrix MG that contains the values bi,j(ℛ,ℬ), for all i and j, associated
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with the graph G can be transformed into the matrix MG′ associated with the flipped
graph G′ in polynomial time.

Proposition 9.1. Given a graph G = (ℛ∪ℬ, E) with red vertex set ℛ and blue vertex
set ℬ, let the values bi,j(ℛ,ℬ) associated with G for 0 ≤ i ≤ ∣ℛ∣ and 0 ≤ j ≤ ∣ℬ∣ be as
defined above, and let bj,i(ℬ,ℛ) be the same values associated to the flipped graph G′

of G. We have that:

bi,j(ℛ,ℬ) =

∣ℛ∣
∑

k=0

∣ℬ∣
∑

l=0

(−1)l+j−∣ℬ∣
(

l

∣ℬ∣ − j

)(∣ℛ∣ − k

i

)

bl,k(ℬ,ℛ)

Proof. In section 9.1, we gave the following formula obtained by expanding the recur-
rence of the extended inclusion/exclusion-based branching rule:

at(R,O, F ) =
∑

X⊆R

(−1)∣X∣−∣R∣+t

( ∣X∣
∣R∣ − t

)

a0(∅, O ∪ (R ∖X), F ∪X)

We will give a similar formula here, where at(R,O, F ) is replaced by bi,j(ℛ,ℬ).
Note that ℬ now corresponds to the set of properties that initially are required prop-
erties. If we choose to make a subset X ⊆ ℬ of these properties forbidden, then ℛ is
influenced by this choice of X as no subsets of ℛ containing a vertex that is a neighbour
of a forbidden vertex may be selected. In this way, we obtain the following formula
summing over all sets of vertices X ⊆ ℬ that correspond to the blue vertices that we
forbid to be dominated:

bi,j(ℛ,ℬ) =
∑

X⊆ℬ

(−1)∣X∣−∣ℬ∣+j

( ∣X∣
∣ℬ∣ − j

)

bi,0(ℛ ∖N(X), ∅)

=
∑

X⊆ℬ

(−1)∣X∣−∣ℬ∣+j

( ∣X∣
∣ℬ∣ − j

)(∣ℛ ∖N(X)∣
i

)

The second equality here follows from the definition of bi,j(ℛ,ℬ):
(∣ℛ∖N(X)∣

i

)

equals
the number of ways to choose i red vertices that have no forbidden neighbours.

If we now group the summands of the summation by the size of ℛ∩N(X) and the
size of X, then we obtain the following equation:

bi,j(ℛ,ℬ) =

∣ℛ∣
∑

k=0

∣ℬ∣
∑

l=0

∑

X⊆ℬ

∣ℛ∩N(X)∣=k,∣X∣=l

(−1)l−∣ℬ∣+j

(

l

∣ℬ∣ − j

)(∣ℛ∣ − k

i

)

=

∣ℛ∣
∑

k=0

∣ℬ∣
∑

l=0

(−1)l−∣ℬ∣+j

(

l

∣ℬ∣ − j

)(∣ℛ∣ − k

i

)

∑

X⊆ℬ

∣ℛ∩N(X)∣=k,∣X∣=l

1

=

∣ℛ∣
∑

k=0

∣ℬ∣
∑

l=0

(−1)l+j−∣ℬ∣
(

l

∣ℬ∣ − j

)(∣ℛ∣ − k

i

)

bl,k(ℬ,ℛ)

The last equality follows again from the definition of bj,i(ℬ,ℛ).
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This result is stated here mainly for aesthetic reasons: we will not use it in any of
our algorithms. The symmetry, however, can be found in our algorithms. Namely, the
presented algorithms will treat sets and elements (red and blue vertices) completely
symmetric. This is different from, for example, Algorithm 8.2.

9.2.2. A Polynomial-Space Algorithm for Partial Dominating Set

We will now give a small modification of the polynomial-space algorithm for #Domi-

nating Set in Section 8.3 to obtain a polynomial-space algorithm for Partial Dom-

inating Set. The resulting algorithm computes the number of vertex sets of size �
that dominate exactly t vertices for each 0 ≤ � ≤ n and 0 ≤ t ≤ n. A curious fact
is that the new algorithm solves a problem that is a more general problem (which is
mostly studied separately) than #Dominating Set within the same running time as
the algorithm for #Dominating Set, up to a polynomial (linear) factor.

Let us first consider the effect of the extended inclusion/exclusion-based branching
rule when applied to compute the values bi,j(ℛ,ℬ) defined in Section 9.2.1. Using the
definition of the extended inclusion/exclusion-based branching rule, we directly obtain
the following recurrence where bi,j(ℛ,ℬ) = 0 if j < 0 or j > ∣ℬ∣:

bi,j(ℛ,ℬ) = bi,j(ℛ ∖N(v),ℬ ∖ {v}) +
(bi,j−1(ℛ,ℬ ∖ {v})− bi,j−1(ℛ ∖N(v),ℬ ∖ {v}))

Theorem 9.2. There exists an algorithm that solves Partial Dominating Set in
O(1.5673n) time and polynomial space.

Proof. Consider the algorithm used in the proof of Theorem 8.5. This algorithm
counts the number of dominating sets of each size � with 0 ≤ � ≤ n. From an instance
of #Dominating Set, the algorithm constructs the incidence graph of the related
problem of counting the number of set covers of size � and then applies Algorithm 8.1.

We will construct a very similar algorithm for Partial Dominating Set. Our
algorithm will count the number of vertex sets of size � that dominate exactly t vertices
for each 0 ≤ � ≤ n and 0 ≤ t ≤ n. It will do so by counting the number of partial
red-blue dominating sets of size � that dominate exactly t vertices on the incidence
graph I of the related variant of Set Cover, for each � and t. This counting is done
by a modification of Algorithm 8.1 applied to the incidence graph I: Algorithm 9.1.

First, notice that the annotation procedure of Algorithm 9.1 is identical to the same
procedure in Algorithm 8.1. Because the annotations do not influence the counting,
we can treat them in the same way as in Algorithm 8.1. Hence, any graph given to the
procedure CPSC-DP has treewidth at most two by Lemma 8.3, and the annotations
do not influence the correctness of the branching rules. As a result, CPSC-DP can be
implemented in polynomial time using a standard dynamic programming algorithm
on tree decompositions. For an idea of how such a dynamic programming algorithm
computes the required values, see Chapter 11.

Next, consider the branching rules of Algorithm 9.1. When branching on a red
vertex, the branching rule adds the numbers of partial red-blue dominating sets that
contain the red vertex to the number of such sets that do not contain the vertex. The
algorithm does so for all � and t by adding up the two corresponding matrices after
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Algorithm 9.1. An algorithm counting the number of partial red-blue dominating sets.

Input: a bipartite graph G = (ℛ ∪ℬ, E) and a set of annotated vertices A
Output: a matrix containing the number of partial red-blue dominating sets of size �

dominating exactly t blue vertices for each 0 ≤ � ≤ ∣ℛ∣ and 0 ≤ t ≤ ∣ℬ∣
CPSC(G,A):
1: if there exists a vertex v ∈ (ℛ∪ℬ)∖A of degree at most one in G[(ℛ∪ℬ)∖A] then
2: return CPSC(G,A ∪ {v})
3: else if there exist two vertices v1, v2 ∈ (ℛ∪ℬ)∖A both of degree two in G[(ℛ∪ℬ)∖A]

that have the same two neighbours then
4: return CPSC(G,A ∪ {v1})
5: else
6: Let r ∈ ℛ ∖A be a vertex such that d(ℛ∪ℬ)∖A(r) is maximal
7: Let b ∈ ℬ ∖A be a vertex such that d(ℛ∪ℬ)∖A(b) is maximal
8: if d(ℛ∪ℬ)∖A(r) ≤ 2 and d(ℛ∪ℬ)∖A(b) ≤ 2 then
9: return CPSC-DP(G)

10: else if d(ℛ∪ℬ)∖A(r) > d(ℛ∪ℬ)∖A(b) then
11: Let Mtake = CPSC(G[(ℛ ∪ℬ) ∖N [r]], A ∖N(r))
12: Let Mdiscard = CPSC(G[(ℛ ∪ℬ) ∖ {r}], A)
13: Increase the cardinalities � in Mtake by one
14: return Mtake +Mdiscard

15: else
16: Let Moptional = CPSC(G[(ℛ ∪ℬ) ∖ {b}], A)
17: Let Mnot = Mforbidden = CPSC(G[(ℛ ∪ℬ) ∖N [b]], A ∖N(e))
18: Decrease the parameter t by one in Moptional and Mforbidden

19: return Mnot +Moptional −Mforbidden
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shifting the values in Mtake in order to take into account the fact that we have taken a
red vertex. This is very similar to Algorithm 8.1. When branching on a blue vertex, the
algorithm uses the extended inclusion/exclusion-based branching rule. The resulting
matrix with the required values is computed through matrix additions and subtrac-
tions. Note that the extended inclusion/exclusion-based branching rule generates the
same induced subgraphs as subproblems as the branching rule of Algorithm 8.1 does.

Because both modified branching rules generate the same subproblems as Algo-
rithm 8.1, the same branching tree emerges from applying either algorithm. Therefore,
we conclude that our algorithm for Partial Dominating Set runs in O(1.5673n) time
by the proof of Theorem 8.5.

We now argue that we can also use the algorithm of Theorem 9.2 to construct a
partial dominating set as follows. After finding the size of a minimum partial dom-
inating set, select a vertex and put it in the partial dominating set. Then, repeat
the algorithm on the corresponding Partial Red-Blue Dominating Set instance
where the red vertex and all neighbouring blue vertices corresponding to the selected
vertex are removed and where we update � and t to account for the fact that we have
taken this vertex in a solution. If this does not increase the size of the minimum size
set that dominates at least t vertices, then repeat this approach by selecting the next
vertex. Otherwise, the size of the minimum size set that dominates at least t vertices
has increased. In this case, we conclude that the selected vertex is not part of the
solution. Then, one puts the blue vertices back in the graph, but not the red vertex as
we will no longer use it, and again update � and t. Hereafter, we continue by selecting
the next red vertex. By repeating this process, we construct a solution while using the
algorithm a linear number of times.

9.2.3. An Exponential-Space Algorithm for Partial Dominating Set

We can improve the running time of the algorithm in Theorem 9.2 at the cost of
using exponential space in a way similar to our improvement to the algorithm for
#Dominating Set in Section 8.5. We do so by letting the algorithm that counts
partial red-blue dominating sets (Algorithm 9.1) used in Theorem 9.2 switch to a
dynamic-programming-based approach when the maximum degree in the incidence
graph is low, yet larger than two. As a result, we will obtain an algorithm for Partial

Dominating Set using O(1.5014n) time and space.
We note that the algorithm is only slightly slower than the exponential-space al-

gorithm for #Dominating Set in Section 8.5 while solving a more general counting
problem. The main cause of the difference in running times is the fact that one reduc-
tion rule (subsumption) is no longer applicable in the new setting.

Consider Algorithm 9.1 applied to bipartite graphs G with red vertex partition ℛ

and blue vertex partition ℬ. We modify this algorithm such that it uses dynamic
programming on a tree decomposition of G at an earlier stage; as a result, we obtain
Algorithm 9.2. More precisely, we let Algorithm 9.2 switch to this dynamic program-
ming approach when G is of maximum degree four and has no blue vertices in ℬ that
have a degree four neighbour in G[(ℛ ∪ ℬ)∖A] nor blue vertices in ℬ that have four
degree three neighbours in G[(ℛ ∪ℬ)∖A].

The rest of this section is very similar to the analysis of Algorithm 8.2 in Section 8.5.
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Algorithm 9.2. An exponential-space algorithm counting partial red-blue dominating sets.

Input: a bipartite graph G = (ℛ ∪ℬ, E) and a set of annotated vertices A
Output: a matrix containing the number of partial red-blue dominating sets of size �

dominating exactly t blue vertices for each 0 ≤ � ≤ ∣ℛ∣ and 0 ≤ t ≤ ∣ℬ∣
CPSC(G,A):
1: if there exists a vertex v ∈ (ℛ∪ℬ)∖A of degree at most one in G[(ℛ∪ℬ)∖A] then
2: return CPSC(G,A ∪ {v})
3: else if there exist two vertices v1, v2 ∈ (ℛ∪ℬ)∖A both of degree two in G[(ℛ∪ℬ)∖A]

that have the same two neighbours then
4: return CPSC(G,A ∪ {v1})
5: else
6: Let r ∈ ℛ ∖A be a vertex such that d(ℛ∪ℬ)∖A(r) is maximal
7: Let b ∈ ℬ ∖A be a vertex such that d(ℛ∪ℬ)∖A(b) is maximal
8: if d(ℛ∪ℬ)∖A(r) ≤ 4 and d(ℛ∪ℬ)∖A(b) ≤ 4 and there exist no vertex b ∈ ℬ with a

neighbour of degree four in G[(ℛ ∪ℬ)∖A] and there exist no vertex b ∈ ℬ with
four neighbours of degree three then

9: return CPSC-DP(G)
10: else if d(ℛ∪ℬ)∖A(r) > d(ℛ∪ℬ)∖A(b) then
11: Let Mtake = CPSC(G[(ℛ ∪ℬ) ∖N [r]], A ∖N(r))
12: Let Mdiscard = CPSC(G[(ℛ ∪ℬ) ∖ {r}], A)
13: Increase the cardinalities � in Mtake by one
14: return Mtake +Mdiscard

15: else
16: Let Moptional = CPSC(G[(ℛ ∪ℬ) ∖ {b}], A)
17: Let Mnot = Mforbidden = CPSC(G[(ℛ ∪ℬ) ∖N [b]], A ∖N(e))
18: Decrease the parameter t by one in Moptional and Mforbidden

19: return Mnot +Moptional −Mforbidden
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We first give the measure and weight functions used to analyse the algorithm. Then,
we prove an upper bound on the treewidth of the graph of any subproblem to which
we apply the dynamic programming phase of the algorithm. Finally, we prove the
running time of O(1.5014n) in Theorem 9.4.

To prove the bound on the running time, we again use measure and conquer [144]
(see Section 5.2). To this end, we use the measure k used in the proof of Theorem 8.5
(implicitly also in Theorem 9.2) with different weights:

k :=
∑

b∈ℬ,b∕∈A

v(d(ℛ∪ℬ)∖A(b)) +
∑

r∈ℛ,r ∕∈A

w(d(ℛ∪ℬ)∖A(r))

In this case, we use the following weight functions:
i 2 3 4 5 6 > 6

v(i) 0.498964 0.750629 0.913191 0.975726 0.999999 1.000000
w(i) 0.673168 1.046831 1.261070 1.352496 1.382025 1.386987

Now, we will give a bound on the treewidth of any generated subproblem that will
be solved by dynamic programming by Algorithm 9.2.

Lemma 9.3. For any � > 0, there exists an integer n� such that the following holds for
any graph G = (ℛ ∪ ℬ, E) associated with a subproblem of measure at most k that
Algorithm 9.2 solves by dynamic programming: if ∣ℛ ∪ ℬ∣ > n�, then the treewidth
of G is at most (0.245614 + �)k. A tree decomposition of this width can be computed
in polynomial time.

Proof. Let A be the set of annotated vertices in a subproblem with bipartite graph
G = (ℛ ∪ℬ, E). Furthermore, let � > 0 be fixed, and let n� be as in Proposition 2.16.
Below, we will show that the pathwidth of G[(ℛ ∪ ℬ) ∖ A] is at most (0.245614 + �)k
and that a path decomposition of this width can be obtained in polynomial time using
Proposition 2.16. The result then follows because a path decomposition also is a
tree decomposition, and because we can add all vertices in A without increasing the
treewidth by the argument in the proof of Lemma 8.3.

In a way similar to the proof of Lemma 8.12 (and [138]), we construct a linear
program that computes the maximum width of a tree decomposition of G obtained in
the above way. In this linear program, all variables have the domain [0,∞).

max z =
1

6
(x3 + y3) +

1

3
(x4 + y4) such that:

1 =
4
∑

i=2

w(i)xi +
4
∑

i=2

v(i)yi (9.1)

4
∑

i=2

ixi =

4
∑

i=2

iyi (9.2)

y4 = p0 + p1 + p2 + p3 (9.3)

x2 ≥ 4

2
p0 +

3

2
p1 +

2

2
p2 +

1

2
p3 (9.4)

x3 ≥ 1

3
p1 +

2

3
p2 +

3

3
p3 (9.5)
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The objective function represents the maximum pathwidth z of the graph G[(ℛ∪ℬ)∖A]
per unit of the measure obtained using Proposition 2.16. Notice that, in a subproblem
on which we start dynamic programming, G[(ℛ∪ℬ)∖A] can have vertices of degree at
most four. The variables xi and yi represent the number of red vertices of degree i and
blue vertices of degree i per unit of the measure in G[(ℛ ∪ℬ) ∖A], respectively. Since
blue vertices of degree four can exist only if their neighbours have specific combinations
of degrees, we introduce the variables pi. Such a variable pi represents the number of
blue vertices of degree four that have i neighbours of degree three and 4− i neighbours
of degree two per unit of the measure in G[(ℛ ∪ℬ) ∖ A]. Form the branching rules of
Algorithm 9.2, we can directly see that we need pi only for i ∈ {0, 1, 2, 3}.

Consider the constraints of the above linear program. Constraint 9.1 guarantees
that the variables xk and yk use exactly one unit of measure. Constraint 9.2 guarantees
that the vertices in both partitions of the bipartite graph are incident to the same
number of edges. Constraint 9.3 makes sure that the pi sum up to y4, which the total
number of blue vertices for degree four per unit of the measure in G[(ℛ ∪ ℬ) ∖ A].
Finally, Constraints 9.4 and 9.5 make sure that if any blue vertices of degree four
exists in G[(ℛ ∪ ℬ) ∖ A], then sufficiently many red neighbours of the appropriate
degrees the exists as required by definition of the variables pi. That is, by definition
of the variables pi, a corresponding blue vertex of degree four in G[(ℛ ∪ℬ) ∖ A] has i
neighbours of degree three and 4− i neighbours of degree two per unit of the measure
in G[(ℛ ∪ ℬ) ∖ A]. Therefore, the number of edges incident to a degree two vertex
G[(ℛ∪ℬ) ∖A] is at least 4p0 + 3p1 + 2p2 + 1p3. Since, each such vertex of degree two
has two endpoints, Constraints 9.4 follows. Constraint 9.5 follows similarly.

The solution to this linear program is z = 0.245614 with all variables equal to zero,
except: x4 = 0.589473 and y3 = 0.442104. The bound of (0.245614 + �)k now follows
from Proposition 2.16 and the argument in the first paragraph of this proof.

Theorem 9.4. There exists an algorithm that solves Partial Dominating Set in
O(1.5014n) time and space.

Proof. We use the same construction as in Theorem 9.2 that allows us to count partial
red-blue dominating sets in order to solve Partial Dominating Set. More precisely,
we count the number of of partial red-blue dominating sets of size � that dominate
exactly t vertices on the incidence graph I of the related variant of Set Cover, for
each � and t. To solve this counting problem, we use Algorithm 9.2.

Let Nℎ(k) be the number of subproblems of measure ℎ generated by Algorithm 9.2
through branching when starting from an input with measure k. Notice that due to
Lemma 9.3, any subproblem of measure ℎ that is solved by dynamic programming is
solved in O∗(2(0.245614+�)ℎ) = O(1.1856ℎ) time, if we fix � > 0 small enough.

To bound the number of subproblems generated by branching, we use the same
recurrence relations as used in the proof of the running time of the polynomial-space
algorithm; see Theorem 9.2 (we note that the recurrence relations are not given in
the proof of Theorem 9.2 as they are identical to those in the proof of Theorem 8.5;
they can be found there). Because we now consider using Algorithm 9.2 instead of
Algorithms 9.1, we remove those recurrence relations that do not correspond to the
modified branching rule. I.e., we remove any recurrence corresponding to branching
on a vertex of degree three or four, unless it corresponds to branching on a blue vertex



9.3. A Parameterised Algorithm for k-Set Splitting 175

of degree four with either a red neighbour of degree four or only red neighbours of
degree three. If we solve the resulting set of recurrences with the measure defined
above Lemma 9.3, we obtain: Nℎ(k) ≤ 1.1856k−ℎ.

We now combine the analysis of the branching of the algorithm and the analysis
of the dynamic programming and find that the total running time T (k) on an input
of measure k satisfies:

T (k) ≤
∑

ℎ∈Hk

Nℎ(k) ⋅ 1.1856ℎ ≤
∑

ℎ∈Hk

1.1856k−ℎ ⋅ 1.1856ℎ =
∑

ℎ∈Hk

1.1856k

where Hk is the set of all possible measures of generated subproblems starting from a
problem with measure k. We conclude that T (k) = O(1.1856k) because we use only a
finite number of weights, which makes ∣Hk∣ polynomially bounded.

Let vmax = maxi∈ℕ v(i) and wmax = maxi∈ℕ w(i). As the input instance given to
Algorithm 9.2 used to solve an instance of Partial Dominating Set contains n red
vertices and n blue vertices, this proves a running time of O(1.1856(vmax+wmax)n) =
O(1.1856(1+1.386987)n) = O(1.5014n).

9.3. A Parameterised Algorithm for k-Set Splitting

As a second application of extended inclusion/exclusion-based branching, we will give a
faster parameterised algorithm for k-Set Splitting. Both the parameterised and the
unparameterised versions of this problem have been studied extensively, both combina-
torially and algorithmically; see [7, 77, 106, 107, 125, 126, 229, 230, 231, 258, 327, 330].

Let us first define the problem formally. Consider a collection of sets S over a
universe U. In the k-Set Splitting problem, we are asked to divide the elements
of U into two colour classes: red and green. In this setting, a set S ∈ S is said to be
split if S contain at least one element of each of the two colour classes, i.e., at least
one red element and at least one green element.

k-Set Splitting

Input: A collection of sets S over a universe U.
Parameter: An integer k ∈ ℕ.
Question: Can U be partitioned into two colour classes such that at least k

sets from S are split?

This problem is also known as k-Maximum Hypergraph 2-Colouring. Another
related problem is the slightly more general k-Not-All-Equal Satisfiability. We
note that our results also extend to this problem.

For the parameterised problem k-Set Splitting, there exists a long sequence of
algorithms that each improve upon previous publications, see Table 9.1. Recently,
an efficient kernel for this problem has been found by Lokshtanov and Saurabh [229].
This kernel has been used to obtain the previously fastest algorithms for this problem,
namely an O∗(2k)-time algorithm using polynomial space and an O∗(1.9630k)-time
algorithm using exponential space. We will use the same kernel and apply an algorithm
based on our new branching rule to obtain our faster O∗(1.8213k)-time and polynomial-
space algorithm.

Our algorithm uses the following result from [229]:
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Authors Time Space usage

Dehne, Fellows, Rosamond [106] O
∗(72k) polynomial

Dehne, Fellows, Rosamond, Shaw [107] O
∗(8k) polynomial

Lokshtanov and Sloper [230] O
∗(2.6499k) polynomial

Chen and Lu (randomized algorithm) [77] O
∗(2k) polynomial

Lokshtanov and Saurabh [229] O
∗(2k) polynomial

Lokshtanov and Saurabh [229] O
∗(1.9630k) exponential

This chapter O
∗(1.8213k) polynomial

Table 9.1. List of known results for k-Set Splitting.

Proposition 9.5 ([229]). k-Set Splitting admits a kernel with at most 2k sets and
a universe of at most k elements.

This result allows us to perform the following preprocessing step in polynomial
time: either we solve the instance directly, or we can transform it into an equivalent
instance that has at most 2k sets and k elements.

After this first preprocessing step, we apply the following test that allows us to
directly decide that instances containing sufficiently many large sets are Yes-instances.

Proposition 9.6 ([77]). Let si be the number of sets of cardinality i in a given k-Set

Splitting instance. The instance is a Yes-instance if:

k ≤ 1

2
s2 +

3

4
s3 +

7

8
s4 +

15

16
s5 +

31

32
s6 +

63

64
s7 + ⋅ ⋅ ⋅+

(

1− 1

2i−1

)

si + ⋅ ⋅ ⋅

Proof. Consider colouring the elements of the instance either red or green, both with
probability 1

2 for each element independently. For any set of cardinality i, we consider
the probability that it is not split by this random colouring. This probability is inde-
pendent of the colour of the first element in the set, and, for each additional element,
this probability is multiplied by 1

2 . Hence, a set of cardinality i has a probability of
1

2i−1 of not being split and a probability of 1− 1
2i−1 of being split.

By linearity of expectation, we see that the right hand side of the inequality in the
proposition is the expected number of sets that will be split by this random colouring.
Because there must exist a colouring that splits at least this expected number of sets,
we can correctly decide that we have a Yes-instance if this instance satisfies the stated
inequality.

If the two described preprocessing steps do not solve our instance, then we apply a
branch-and-reduce algorithm: Algorithm 9.3. This algorithm computes a list contain-
ing the number of ways to colour the elements such that exactly l sets are split, for each
0 ≤ l ≤ 2k. Similar to our algorithms for variants of Dominating Set, Algorithm 9.3
will be applied to the incidence graph of a remaining k-Set Splitting instance. In
this setting, the incidence graph is defined in the same way as the incidence graph of
a Set Cover instance (see Section 5.1.1): we introduce a vertex for every set S ∈ S

and every element e ∈ U, and we add an edge between a vertex representing the set S
and a vertex representing the element e if and only if e ∈ S.
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Besides the incidence graph I = (S∪U, E) of the k-Set Splitting instance and a
set of annotated vertices A, Algorithm 9.3 takes as input a partitioning of the vertices
that represent sets into three sets ℛ, G, and W. This partitioning of S into these three
sets is used to allow the algorithm to remove a vertex that represents an element as
soon as the colour of this element is fixed by the algorithm. When a vertex representing
an element e ∈ U is removed from I, then the partitioning will be updated to keep
track of the fact that all sets that contained e now have an element of the colour given
to e. More precisely, vertices that represent sets S ∈ S are put in ℛ (red) or in G (green)
if S now has an element that is given the colour red or green, respectively. Initially,
all sets S ∈ S are in W (white); this partition contains all vertices corresponding to
sets which elements have not been coloured thus far. If a set S ∈ S is split and thus
contains elements of both colours, then the vertex that represents S is removed from I.

Algorithm 9.3 strongly resembles the polynomial-space algorithm that counts par-
tial dominating sets from Section 9.2.2 (Algorithm 9.1). It uses the same annotation
procedure that marks low degree vertices such that they will be ignored by the branch-
ing rules. Because this procedure is identical, we know by Lemma 8.3 that the subrou-
tine SetSpl-DP(I,ℛ,G,W, A) can be implemented in polynomial time using dynamic
programming on tree decompositions (for more details, see Chapter 11).

Our algorithm uses three different branching rules, two of which use extended in-
clusion/exclusion-based branching as defined in Section 9.1.

1. Branching on a vertex representing an element (lines 11-15 of Algo-
rithm 9.3). We recursively solve two subproblems, one in which the element
is coloured red and one where the element is coloured green. After this, we shift
the computed lists of numbers to update the number of split sets. Finally, we
compute the required results by adding the two computed lists component wise.

2. Branching on a vertex representing a set without coloured elements
(lines 16-21 of Algorithm 9.3). We apply the extended inclusion/exclusion-based
branching rule as defined in Section 9.1. Because we are computing lists of
numbers with the number of colourings splitting exactly l sets, for each 0 ≤
l ≤ 2k, we need to compute only two of these lists: one corresponding to the
subproblem where it is optional to split the set, and one corresponding to the
subproblem where it is forbidden to split the set.

In the optional branch, we remove the vertex representing the set. As a result,
we are indifferent about splitting the corresponding set in this branch. In the
forbidden branch, we remove the vertex representing the set and merge all ver-
tices that represent the elements in the set to a single vertex. A solution to this
instance corresponds to a solution of the original instance in which all elements
in the set have the same colour, i.e., in which the set is not split.

3. Branching on vertex representing a set with coloured elements (lines 22-
30 of Algorithm 9.3). Similar to branching on vertices that represent sets without
coloured elements, we use the extended inclusion/exclusion-based branching rule
and generate two subproblems. In the optional branch, we again remove the
vertex corresponding to the set as we are indifferent about splitting it. In the
forbidden branch, we generate an instance equivalent to making sure that the
corresponding set will not be split. Since the vertex representing the set is already
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Algorithm 9.3. An algorithm for counting two colourings that split exactly k sets.

Input: the incidence graph I = (S ∪ U, E) of a k-Set Splitting instance (S,U), a
partitioning of the sets S = ℛ∪G∪W where ℛ and G contain sets that contained an
element that is coloured red and green, respectively, and W contains sets without
coloured elements, and a set A ⊂ (S ∪ U) of annotated vertices

Output: a list with, for each k, the number of colourings of U splitting exactly k sets
SetSpl(I,ℛ,G,W, A):
1: if there exists a vertex v ∈ (S∪U)∖A of degree at most one in I[(S∪U)∖A] then
2: return SetSpl(I,ℛ,G,W, A ∪ {v})
3: else if there exist two vertices v1, v2 ∈ (S∪U)∖A both of degree two in I[(S∪U)∖A]

that have the same two neighbours then
4: return SetSpl(I,ℛ,G,W, A ∪ {v1})
5: else
6: Let e ∈ U ∖A be a vertex such that d(S∪U)∖A(e) is maximal
7: Let w ∈ W ∖A be a vertex such that d(S∪U)∖A(w) is maximal
8: Let c ∈ (ℛ ∪ G) ∖A be a vertex such that d(S∪U)∖A(c) is maximal
9: if max{d(S∪U)∖A(e), d(S∪U)∖A(w), d(S∪U)∖A(c)} ≤ 2 then

10: return SetSpl-DP(I,ℛ,G,W, A)
11: else if d(S∪U)∖A(e) = max{d(S∪U)∖A(e), d(S∪U)∖A(w), d(S∪U)∖A(c)} then
12: Let Lred =

SetSpl(I[(S ∪ U) ∖NG∪U[e]],ℛ ∪NW(e),G ∖N(e),W ∖N(e), A ∖NG(e))
13: Let Lgreen =

SetSpl(I[(S ∪ U) ∖Nℛ∪U[e]],ℛ ∖N(e),G ∪NW(e),W ∖N(e), A ∖Nℛ(e))
14: Update the number of split sets in Lred and Lgreen

15: return Lred + Lgreen

16: else if d(S∪U)∖A(w) = max{d(S∪U)∖A(e), d(S∪U)∖A(w), d(S∪U)∖A(c)} then
17: Loptional = SetSpl(I[(S ∪ U) ∖ {w}],ℛ,G,W ∖ {w}, A)
18: Merge all neighbours of w in I to a single vertex.
19: Lnot = Lforbidden = SetSpl(I[(S ∪ U) ∖ {w}],ℛ,G,W ∖ {w}, A ∖N(w))
20: Decrease the parameter k by one in Loptional and Lforbidden

21: return Lnot + Loptional − Lforbidden

22: else // d(S∪U)∖A(c) > d(S∪U)∖A(e), d(S∪U)∖A(w)
23: Loptional = SetSpl(I[(S ∪ U) ∖ {c}],ℛ ∖ {c},G ∖ {c},W, A)
24: if c ∈ ℛ then
25: Lnot = Lforbidden =

SetSpl(I[(S∪U)∖N2
U∪G[c]], (ℛ∖{c})∪N2

W(c),G∖N2(c),W∖N2(c), A∖N2
U∪G[c])

26: else // c ∈ G

27: Lnot = Lforbidden =
SetSpl(I[(S∪U)∖N2

U∪ℛ[c]],ℛ∖N2(c), (G∖{c})∪N2
W(c),W∖N2(c), A∖N2

U∪ℛ[c])
28: Update the number of split sets in Lnot and Lforbidden

29: Decrease the parameter k by one in Loptional and Lforbidden

30: return Lnot + Loptional − Lforbidden
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coloured, either red or green, this means that we must colour all elements in the
set with the colour that is already present in this set. Note that other sets can
be split as a result of this colouring operation.

For the running time analysis, we again use measure and conquer [144] (see Sec-
tion 5.2). To analyse this k-Set Splitting algorithm, we use the following measure �
on a subproblem (I,ℛ,G,W, A). Note that, in contrast to the rest of this thesis, we
use � instead of k for the measure to avoid confusion with the parameter k of k-Set

Splitting.

� :=
∑

e∈U,e∕∈A

v(d(S∪U)∖A(e))+
∑

w∈W,w ∕∈A

x(d(S∪U)∖A(w))+
∑

c∈(ℛ∪G),c ∕∈A

y(d(S∪U)∖A(c))

Here, we use the following values for the weights:
i ≤ 1 2 3 4 5 6 > 6

v(i) 0.000000 0.726515 1.000000 1.000000 1.000000 1.000000 1.000000
x(i) 0.000000 0.525781 0.903938 1.054594 1.084859 1.084885 1.084885
y(i) 0.000000 0.387401 0.617482 0.758071 0.792826 0.792852 0.792852

We remind the reader that, similar to previous analyses, the weight functions v, x,
and y have been chosen in such a way that the running time claimed in Theorem 9.8
is as fast as possible. See Section 5.6, for a general discussion of how we computed
these weight functions.

Lemma 9.7. Algorithm 9.3 runs in time O(1.31242�) on an input of measure �.

Proof. Let N(�) be the number of subproblem generated on an input of measure �. We
generate a large set of recurrence relations of the form N(�) ≤ N(�−Δ�1)+N(�−Δ�2)
representing all possible cases in which Algorithm 9.3 can branch.

Analogous to previous measure-and-conquer analyses in this thesis, we let Δv(i) =
v(i) − v(i − 1), Δx(i) = x(i) − x(i − 1), and Δy(i) = y(i) − y(i − 1), and notice that
the weight functions v, x, and y satisfy the following constraints:

1. Δv(i),Δx(i),Δy(i) ≥ 0 for all i
2. y(i) ≤ x(i) for all i
3. Δv(i) ≥ Δv(i+ 1) for all i ≥ 2
4. Δx(i) ≥ Δx(i+ 1) for all i ≥ 2

5. Δy(i) ≥ Δy(i+ 1) for all i ≥ 2
6. 2Δv(3) ≤ v(2)
7. 2min{Δy(4), Δx(3)} ≤ y(2)

Notice that annotating a vertex reduces the measure, and that annotated vertices
have zero measure. Constraint 1 represents the fact that we want vertices with a
higher degree in I[(S ∪ U) ∖ A] to contribute more to the measure of an instance.
Constraint 2 represents the fact that moving a set from W to either ℛ or G decreases
the measure of an instance. Furthermore, Constraints 3, 4 and 5 are non-restricting
steepness inequalities that make the formulation of the problem easier. Finally, the
function of Constraints 6 and 7 is technical; this is explained in the proof below.

We first consider branching on a vertex e that represents an element. Let this
vertex have wi, ri and gi neighbours of degree i in I[(S ∪ U) ∖ A] that is contained in
W, ℛ, and G, respectively.

Consider the branch where we colour the element green. In this branch, the measure
decreases by v(d(S∪U)∖A(e)) due to the fact that the vertex representing the element
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is removed. Because the ri sets in ℛ containing the element are split, the measure
decreases by an additional riy(i). The gi vertices of degree i in I[(S ∪ U) ∖ A] that
represent sets in G that contain the element have their sizes reduced which decreases
the measure by giΔy(i). Furthermore, the wi vertices of degree i in I[(S∪U) ∖A] that
represent sets in W are now put in G and reduced in size; this decreases the measure by
an additional wi(x(i)−y(i−1)). Finally, since the ri vertices of degree i in I[(S∪U)∖A]
that represent sets in ℛ containing the element are removed, other elements are reduced
in frequency: this reduces the measure by an additional Δv(d(S∪U)∖A(e))

∑∞
i=2 ri(i−1)

by Constraints 3 and 6 and the fact that e is of maximum degree among the vertices
that represent elements. Constraint 6 is used here to prevent that we remove too much
measure in the following case. Notice that vertices of degree one have zero measure as
they are annotated. Therefore, it could be the case that when we reduce the degree of
a vertex of degree i at total of i times, then all its measure is removed after reducing
it i−1 times. Constraint 6 prevents this by making sure that enough measure remains.

Let Δ�red and Δ�green be the decrease of the measure in the subproblem where the
element is coloured red and green, respectively. Since the above analysis is symmetric
if we colour e red instead of green, we have deduced the following inequalities:

Δ�green ≥ v(d(S∪U)∖A(e)) +
∞
∑

i=2

(riy(i) + giΔy(i) + wi(x(i)− y(i− 1)))

+Δv(d(S∪U)∖A(e))
∞
∑

i=2

ri(i− 1)

Δ�red ≥ v(d(S∪U)∖A(e)) +
∞
∑

i=2

(giy(i) + riΔy(i) + wi(x(i)− y(i− 1)))

+Δv(d(S∪U)∖A(e))
∞
∑

i=2

gi(i− 1)

Now, consider branching on a vertex s representing a set in ℛ or G containing ei
elements whose corresponding vertices have degree i in I[(S ∪ U) ∖ A]. In the op-
tional branch, s is removed and the vertices representing the elements contained in
the set have their degrees reduced: this decreases the measure by y(d(S∪U)∖A(s)) +
∑∞

i=2 eiΔv(i). In the forbidden branch, s is removed together with the vertices re-
presenting the elements contained in the set: this decreases the measure by y(s) +
∑∞

i=2 eiv(i). Furthermore, removing the vertices that represent these elements reduces
the degrees of other vertices that represent sets. Because of the branching order and
Constraints 4 and 5, this decreases the measure by either at least Δy(d(S∪U)∖A(s)) if the
set is in ℛ or G and by at least Δx(d(S∪U)∖A(s)−1) if the set is in W. In total, this gives
a decrease in the measure of at least min{Δy(d(S∪U)∖A(s)), Δx(d(S∪U)∖A(s)− 1)} for
each time the degree of a vertex is reduced. Similar to how we used Constraint 6 when
deriving the formula associated with branching on an element e, we use Constraint 7
here to make sure that we do not remove too much measure if we reduce the degree a
vertex of degree i a total of i times.

Let Δ�optional and Δ�forbidden be the decrease of the measure in the subproblem
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where splitting the set is made optional or forbidden, respectively. We have deduced:

Δ�optional ≥ y(d(S∪U)∖A(s)) +
∞
∑

i=2

eiΔv(i)

Δ�forbidden ≥ y(d(S∪U)∖A(s)) +
∞
∑

i=2

eiv(i)

+min{Δy(d(S∪U)∖A(s)), Δx(d(S∪U)∖A(s)− 1)} ⋅
∞
∑

i=2

ei(i− 1)

Finally, we consider branching on a vertex representing a set in W. Analogous to
the above, we derive:

Δ�optional ≥ x(d(S∪U)∖A(s) +
∞
∑

i=2

eiΔv(i)

Δ�forbidden ≥ x(d(S∪U)∖A(s)) +
∞
∑

i=2

eiv(i)− v(
∞
∑

i=2

ei(i− 1))

The main difference in the derivation compared to the case where we branch on a
vertex representing a set in G or ℛ is the term −v(

∑∞
i=2 ei(i−1)). This term accounts

for the fact that if we decide that it is forbidden to split a set from W, then we do not
remove the vertices representing the elements in this set, but merge these elements to a
single vertex instead. This causes a new vertex of degree degree at most

∑∞
i=2 ei(i−1)

to be created which has measure at most v(
∑∞

i=2 ei(i− 1)).
Having lower bounds on the decrease of the measure in every subproblem, we can

now solve the resulting large set of recurrence relations with the given weights. We
notice that we have to use only a finite set of recurrence relations since we use only
a finite number of weights which causes recurrences corresponding to branching on
large degree vertices to be dominated by recurrences corresponding to smaller degree
vertices. We solve this set of recurrence relations and find that N(�) ≤ 1.31242�.

Since both the annotation procedure and the procedure SetSpl-DP(I,ℛ,G,W, A)
can be implemented in polynomial time, the running time is dominated by the expo-
nentially number of generated subproblems. We conclude that the algorithm runs in
O(1.31242�) time.

We are now ready to prove the main result of this section.

Theorem 9.8. There exists an O∗(1.8213k)-time and polynomial-space algorithm for
k-Set Splitting.

Proof. The claimed algorithm executes the following steps. First, it applies the pre-
processing given by Propositions 9.5 and 9.6. Then, it applies Algorithm 9.3 to the
incidence graph of the resulting instance (S,U). Algorithm 9.3 then produces a list
containing the number of colourings of the elements in U that split exactly l sets
from S, for each 0 ≤ l ≤ 2k. From this list, the algorithm can directly see if there exist
a colouring splitting at least k sets.

The exponential part of the running time of this algorithm comes from the call to
Algorithm 9.3 since the preprocessing is done in polynomial time. We use Lemma 9.7
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to compute this running time. By Proposition 9.5, an instance that is given to
Algorithm 9.3 can have at most k elements; these elements each have measure at
most 1. By Proposition 9.6, an instance that is given to Algorithm 9.3 must sat-
isfy k >

∑∞
i=2

(

1− 1
2i−1

)

si where si is the number of sets of cardinality i. Therefore,
the maximum measure z of such an instance is bounded by the solution of:

z = k +max

∞
∑

i=2

x(i)si with the restriction
∞
∑

i=2

(

1− 1

2i−1

)

si < k

We find that the maximum equals z < 2.205251k. The claimed running time follows
from Lemma 9.7 since 1.31242z < 1.312422.205251k < 1.8213k.

We now show that our results extend to the slightly more general problem k-Not-

All-Equal Satisfiability.

k-Not-All-Equal Satisfiability

Input: A set of clauses C using a set of variables X.
Parameter: An integer k ∈ ℕ.
Question: Does there exist a truth assignment of the variables X such that

at least k clauses in C contain a literal set to true and a literal
set to false?

Notice that this problem extends k-Set Splitting if one identifies clauses with sets
and variables with elements. The difference is that variables can occur both as positive
literals and as negative literals in the clauses of a k-Not-All-Equal Satisfiability

instance.

Corollary 9.9. There exists an O∗(1.8213k)-time and polynomial-space algorithm for
k-Not-All-Equal Satisfiability.

Proof. We note that the kernel of size 2k of Proposition 9.5 can be extended to k-
Not-All-Equal Satisfiability, as claimed in [229]. Consider the proof of Proposi-
tion 9.6. The probabilistic argument here does not change due to the signs of literals,
therefore the statement remains valid for instances of k-Not-All-Equal Satisfi-

ability with si clauses of size i. From these two facts, we conclude that the claimed
result follows from the proof of Theorem 9.8 if we can give a branch-and-reduce algo-
rithm for k-Not-All-Equal Satisfiability whose branching behaviour equals that
of Algorithm 9.3 when applied after these two preprocessing steps.

To create such an algorithm, we first notice that we can define the incidence graph
of a k-Not-All-Equal Satisfiability instance analogous to the incidence graph
of a k-Set Splitting instance: introduce a vertex for every variable x ∈ X and
every clause c ∈ C and connect a vertex representing a variable x and a clause c
if and only if x ∈ c or ¬x ∈ c. Notice that the incidence graph of a k-Not-All-

Equal Satisfiability instance is identical to the incidence graph of the related
k-Set Splitting instance that is obtained through removing the negations from the
literals and then replacing variables and clauses by elements and sets, respectively.

We will treat incidence graphs of k-Not-All-Equal Satisfiability instances in
the same way as those of k-Set Splitting instances. That is, we remove any vertex
representing a variable if the algorithm sets this variable to True or False. We keep
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track of these values in the clauses by letting the algorithm maintain a partitioning of
the clauses into tree sets: the clauses that contain a variable set to True, the clauses
that contain a variable set to False, and the clauses that contain no variables that
are given an assignment thus far. Furthermore, we remove any vertex representing a
clause that is satisfied, i.e., a clause that contains at least one literal that is set to
True and at least one literal that is set to False.

We will now continue by treating each aspect of the branch-and-reduce algorithm
that we use to prove this corollary. This algorithm will closely resemble Algorithm 9.3.
We will show that we can use the same annotation procedure as Algorithm 9.3, and
branching rules with a behaviour that is similar to that of Algorithm 9.3.

The annotation procedure. We can use the same annotation procedure on incidence
graphs as used in Algorithm 9.3 (and Algorithms 8.1, 9.1, and 9.2) because this pro-
cedure does not influence the correctness of the algorithm. Since the incidence graphs
are equal to those of k-Set Splitting instances, the effect of this procedure will be
identical to that of the procedure in Algorithm 9.3. Furthermore, if we let A be the
set of annotated vertices, then we can solve subproblems corresponding to incidence
graphs I = (V,E) in which I[V ∖ A] has maximum degree two in polynomial time
by dynamic programming on a tree decomposition. This follows by Lemma 8.3 and
standard dynamic programming algorithms on tree decompositions (see Chapter 11).

Branching rules - general introduction. It remains to show that we can give branch-
ing rules that cause the algorithm to generate at most O(1.8213k) subproblems. We
will give these branching rules below: one branching rule that branches on variables
and two branching rules that branch on clauses. The branching rules are almost iden-
tical to those in Algorithm 9.3. Because of this analogy between the branching rules,
we can let our algorithm use the same procedure for choosing which branching rule to
apply as Algorithm 9.3 does for the branching rule on corresponding k-Set Splitting

instances.
Below, we will show that the effect of these branching rules on the incidence graph of

the k-Not-All-Equal Satisfiability instance is similar to the effect of the branch-
ing rules of Algorithm 9.3 on incidence graphs of k-Set Splitting instances. We note
that the branching rules below will not give the same incidence graphs as generated
subproblems when applied to a k-Not-All-Equal Satisfiability instance (C,X)
compared to the subproblems that are generated by Algorithm 9.3 when applied to
the k-Set Splitting instance obtained from (C,X) by removing the negations from
all negative literals. The branching rules are similar only in the sense that we can use
the same set of recurrence relations to prove an upper bound on the number of sub-
problems that they generate. The claimed running time then follows from the analysis
of Algorithm 9.3 in the proof of Theorem 9.8.

Branching on a variable. Consider branching on a variable x in a k-Not-All-

Equal Satisfiability instance: we set the variable to True in one branch, and to
False in the other branch. In both branches, we perform the following operations
to the incidence graph. First, we remove the vertex representing the variable x; as
a result, vertices representing clauses that contain a literal of x have their degrees
decreased by one. Secondly, we move vertices representing clauses that now contain
literals with an assigned truth value to the partition that corresponds to the new
assignment. Notice that, in this case, the sign of the literals of x have no effect on
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the incidence graphs of the generated subproblems: the only thing that changes if we
negate a literal is the partition in which the vertex representing the corresponding
clause is put. Finally, vertices representing clauses containing literals with an assigned
truth value are removed if the assignment causes the clause to be satisfied. For these
clauses, the incidence graphs of the generated subproblems are affected by the sign of
the literal of x occurring in C.

One can check that the set of recurrence relations in Theorem 9.8 that corresponds
to branching on an element remains valid for this branching rule. The only real
difference is the effect of the signs of the literals. However, the same set of recurrence
relations can be used because changing the sign of a literal corresponds to considering
a different recurrence relation where the partition of the clause is flipped between
already having the value True and already having the value False.

Branching on a set without literals with an assigned value. We now consider branch-
ing on a vertex representing a clause C that is in the partition corresponding to the
fact that C does not contain literals with an assigned truth value. Now, we apply
a form of extended inclusion/exclusion-based branching. In the optional branch, we
remove the vertex representing the clause as we are now indifferent about satisfying
it. In the forbidden branch, we prevent that the clause it satisfied by modifying the
instance in the following way. First, we make sure that all literals in C are positive
literals; this is done by flipping the sign of all literals of a variable in C if necessary.
Note that this results in an equivalent instance: the same number of truth assignments
satisfy exactly k clauses, for each k. Second, we replace all literals of the variables
in C by literals of the same sign of a single variable x from C. For example, when
we consider the clause (x, y,¬z), this results in (x, x, x) while all other clauses that
contain y or z are modified such that y is replaced by x (and ¬y by ¬x) and ¬z is
replaced by x (and z by ¬x). Notice that the effect of this modification is equal to
merging the elements in a set in a k-Set Splitting instance.

For the above branching rule, the effects on the incidence graph are identical to the
effects of the branching rule of Algorithm 9.3 that branches on a set in W. Therefore,
the set of recurrence relations in Theorem 9.8 that correspond to branching on a set
in W remains valid for this branching rule.

Branching on a set containing literals with an assigned value. Finally, consider
branching on a vertex representing a clause C that is in the partition corresponding to
the fact that C contains literals which are either set to True or False. For this case,
we can also give a branching rule whose effects on an incidence graph are identical to
the effects that a branching rule of Algorithm 9.8 has on the same graph if it would
be an incidence graph of a k-Set Splitting instance. This branching rule also uses
extended inclusion/exclusion-based branching and is similar to the branching rule of
Algorithm 9.8 that branches on a set S in ℛ or G. It works in the following way. In the
optional branch, the vertex representing the clause C is removed; this is identical to
the removal of the vertex representing S by Algorithm 9.8. In the forbidden branch,
the vertex representing the clause C is removed and all variables in C are given a
value such that their literals in C gain the value corresponding to the partition that
contains C. This results in the removal of the vertices representing these variables, and
possibly some additional vertices representing clauses that have now become satisfied.
We note that the effects on the incidence graph are identical to colouring all elements
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in S with colour corresponding to the partition (ℛ or G) that contains S.
Since the effects on the incidence graph are identical in both branches, the set of

recurrence relations in Theorem 9.8 that correspond to branching on a set in ℛ or G

remains valid for this branching rule.

We have proven that the number of subproblems generated by the algorithm satis-
fies the same recurrence relations as those used in the proof of Theorem 9.8. Hence, we
conclude that the running time satisfies the upper bound claimed in Theorem 9.8.

9.4. Concluding Remarks

In this chapter, we have shown that inclusion/exclusion-based branching can also be
used in the setting where only a fixed number of requirements need to be satisfied. This
resulted in our extended inclusion/exclusion-based branching rule. We demonstrated
this approach on two problems in different settings. First, we have given faster exact
exponential-time algorithms for Partial Dominating Set. Secondly, we have given
a faster parameterised algorithm for the well-studied parameterised problem k-Set

Splitting.
These two examples show that the extended inclusion/exclusion-based branching

rule is quite a powerful tool. It would be interesting to see whether more problems
exist for which this approach leads to faster algorithms, both in the field of exact
exponential-time algorithms as in the field of parameterised algorithms. One example
might be using extended inclusion/exclusion-based branching for faster algorithms for
Partial Dominating Set on some restricted graph classes; this is similar to what
we did in Section 8.6 for Dominating Set and #Dominating Set.
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10
Partitioning a Graph Into Two

Connected Subgraphs

There are several natural and elementary algorithmic problems that have the following
form: given a graph G, does the structure of some fixed graph H appear as a pattern
within G. One such structure that is well known is that of a minor : a graph H is a
minor of G if it can be obtained from G by a series of vertex or edge deletions and edge
contractions. The H-Minor Containment problem asks whether a given graph G
contains H as a minor. A celebrated result by Robertson and Seymour [269] states that
the H-Minor Containment problem can be solved in polynomial time for every fixed
pattern graph H. They obtain this result by designing an algorithm that solves the
following problem in polynomial time for instances with bounded ∣Z1∣+∣Z2∣+⋅ ⋅ ⋅+∣Zk∣.

Disjoint Connected Subgraphs

Input: A graph G = (V,E) and mutually disjoint non-empty sets
Z1, Z2, . . . , Zk ⊆ V .

Question: Do there exist mutually vertex-disjoint connected subgraphs
G1, G2, . . . , Gk of G (with Gi = (Vi, Ei)) such that Zi is contained
in Vi for every 1 ≤ i ≤ k?

In this chapter, we consider the 2-Disjoint Connected Subgraphs problem
which is a variant of Disjoint Connected Subgraphs where k = 2 and the vertex
sets Z1 and Z2 may have arbitrary size. For an example instance, see Figure 10.1.
One reason why this problem is interesting is that the technique of inclusion/exclu-
sion-based branching can be applied to it. Thus, we will take a short leave of the
main topic of this thesis, namely domination problems in graphs, to further explore

†This chapter is joint work with Daniel Paulusma. The chapter contains results of which a
preliminary version has been presented at the 20th International Symposium on Algorithms and
Computation (ISAAC 2009) [251].
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Figure 10.1. An instance of 2-Disjoint Connected Subgraphs. Z1 contains
the black vertices and Z2 contains the white vertices. The partitioning showing
that this is a Yes-instance is given by G1 and G2.

the inclusion/exclusion-based branching technique and give faster algorithms for 2-

Disjoint Connected Subgraphs on some graph classes.

We will do so by considering previous results on 2-Disjoint Connected Sub-

graphs by van ’t Hof et al. on some graph classes [313] and improve their algorithms
using our inclusion/exclusion-based branching technique. Among others, van ’t Hof et
al. give O(1.5790n)-time algorithms on P6-free graphs and split graphs. Here, we will
improve these results to O(1.2051n)-time algorithms. We obtain this result by giving
a faster algorithm for 2-Hypergraph 2-Colouring instances that arise from the
approach of van ’t Hof et al. [313] for 2-Disjoint Connected Subgraphs.

The result in this chapter demonstrates that it is sometimes useful to have two
branching phases in an algorithm, where the first phase considers the decision variant
of a problem and the second phase considers the counting variant of the same problem.
This is different to the previous two chapters. It has the advantage that we can use
more powerful reduction rules in the first phase since they need only to preserve the
existence of a solution and do not need to count all solutions. The disadvantage, namely
that we cannot use inclusion/exclusion-based branching, now holds only temporarily
since we start counting in the second phase. This second phase counts only the number
of solutions to the specific subproblem generated by the first phase. Although this helps
to design fast algorithms, we note that the number of solutions computed in the second
phase are not directly related to the number of solutions of the initial instance.

This chapter is organised as follows. First, we have a closer look at 2-Disjoint

Connected Subgraphs in Section 10.1. In this section, we show how this problem
relates to 2-Hypergraph 2-Colouring and state the main result of this chapter.
This result is based on the algorithm for 2-Hypergraph 2-Colouring given in
Section 10.2. Finally, we give some concluding remarks in Section 10.3.
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10.1. The 2-Disjoint Connected Subgraphs Problem

Let us first look at 2-Disjoint Connected Subgraphs more closely.

2-Disjoint Connected Subgraphs

Input: A graph G = (V,E) and two mutually disjoint non-empty sets
Z1, Z2 ⊆ V .

Question: Do there exist two mutually vertex-disjoint connected subgraphs
G1 = (V1, E1), G2 = (V2, E2) of G such that Z1 is contained in V1

and Z2 is contained in V2?

Besides being a variant of Disjoint Connected Subgraphs, this problem also
appears in other settings. For example, Gray et al. [173] motivate this problem from
an application in computational geometry, namely finding a realization of an imprecise
terrain that minimizes the total number of local minima and local maxima.

2-Disjoint Connected Subgraphs is NP-complete even if one of the sets Z1

and Z2 has cardinality two [313], or when restricted to planar graphs [173]. When
considering exact algorithms, no faster exact algorithm for 2-Disjoint Connected

Subgraphs is known than the trivial brute-force O∗(2n)-time algorithm.
In an attempt to design fast exact exponential-time algorithms for this problem,

van ’t Hof et al. focus on restrictions of the problem to certain graph classes [313].
They show that 2-Disjoint Connected Subgraphs is already NP-complete for P5-
free graphs and split graphs, whereas it is polynomially solvable for P4-free graphs.
They also give algorithms solving 2-Disjoint Connected Subgraphs faster than
O∗(2n) for graphs in the classes Gk,r which we define below. In particular, these classes
include all Pl-free graphs.

Definition 10.1 (Pl-Free Graph). For any l ≥ 2, a Pl-free graph is a graph that does
not contain the path on l vertices as a subgraph.

Definition 10.2 (Split Graph). A split graph G is a graph of which the set of vertices V
can be partitioned into two sets I and C such that I is an independent set and C is a
clique.

Definition 10.3 (Graph Class Gk,r). For any k ∈ ℕ and r ∈ ℕ, Gk,r is the class of
graphs in which all connected induced subgraphs have a connected distance-r domi-
nating set of size at most k.

In other words, for each G ∈ Gk,r and X ⊂ V such that G[X] is connected, G[X]
contains a vertex set Y ⊆ X with ∣Y ∣ ≤ k and G[Y ] connected such that each v ∈ X
lies at distance at most r from Y in G[X].

Somewhat surprisingly, for any fixed k, 2-Disjoint Connected Subgraphs on
Gk,r can be solved in polynomial time if r = 1 or if one of the given sets of vertices
Z1 and Z2 has fixed size [313]. However, for any fixed k and r ≥ 2, the 2-Disjoint

Connected Subgraphs on Gk,r problem is NP-complete. For these graph classes,
van ’t Hof et al. present an algorithm that solves 2-Disjoint Connected Subgraphs

in O∗(�n
r ) time [313], where:

�r = min
0<c<0.5

{

max

{

1

cc(1− c)1−c
, 21−

2c
r−1

}}
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In particular, their algorithm solves the problem in O(1.5790n) time on P6-free graphs
and in O(1.7737n) time on P7-free graphs. Also, this algorithm runs in O(1.5790n)
time on split graphs.

These results follow from the following observation that is a direct consequence of
the characterizations of Pl-free graphs for l = 6 [310] and for l ≥ 7 [12].

Proposition 10.4 ([12, 313]). The class of split graphs and the class of Pl-free graphs
for l ∈ {5, 6} belong to G4,2. The class of Pl-free graphs for l ≥ 7 belongs to G1,l−3.

10.1.1. Relation to 2-Hypergraph 2-Colouring

We will give an algorithm for 2-Disjoint Connected Subgraphs restricted to the
case where Z1 and Z2 both contain a set of vertices that is both connected in G and
that dominates V ∖ (Z1 ∪ Z2) in G. We then use this algorithm to obtain our results
on P6-free graphs and split graphs. Our approach is as follows: first, we translate 2-

Disjoint Connected Subgraphs to the 2-Hypergraph 2-Colouring problem;
then, we give an exact algorithm for the latter problem.

Let us first introduce the 2-Hypergraph 2-Colouring problem which is a variant
of Hypergraph 2-Colouring. A hypergraph H = (Q, S) consists of a set Q =
{q1, q2, . . . , qn} of elements together with a set S = {S1, S2, . . . , Sm} of subsets of Q
called hyperedges. A 2-colouring of H is a partition of Q into two sets Q1, Q2 such that
each set S ∈ S contains at least one element from each of the partitions. Notice the
equivalence to the k-Set Splitting problem, as defined in Section 9.3, with k = m.

These notions can be generalized as follows. A 2-hypergraph H = (Q,ℒ,ℛ) consists
of a set Q = {q1, q2, . . . , qn} of elements together with two (not necessarily disjoint)
sets ℒ = {L1, L2, . . . , Ls} and ℛ = {R1, R2 . . . , Rt} of subsets of Q. We call ℒ and ℛ

the hyperedge classes of H. With every 2-hypergraph H = (Q,ℒ,ℛ), we associate
an incidence graph I which is a bipartite graph on Q ∪ ℒ ∪ ℛ that contains an edge
between a vertex representing an element q ∈ Q and a vertex representing a hyperedge
S ∈ ℒ ∪ ℛ if and only if q ∈ S. Let the dimension d of a 2-hypergraph H = (Q,ℒ,ℛ)
be d = ∣Q∣ + ∣ℒ∣ + ∣ℛ∣, that is, the number of vertices in the incidence graph of H.
A 2-colouring of H is a partition of Q into two sets Ql, Qr such that each hyperedge
L ∈ ℒ contains an element from Ql and each hyperedge R ∈ ℛ contains an element
from Qr. This leads to the following decision problem.

2-Hypergraph 2-Colouring

Input: A 2-hypergraph H = (Q,ℒ,ℛ).
Question: Does H have a 2-colouring?

Note that a hypergraph H = (Q, S) is 2-colourable if and only if the 2-hypergraph
H ′ = (Q, S, S) is 2-colourable. The problem Hypergraph 2-Colouring asks if a
hypergraph is 2-colourable; this problem is NP-complete [162]. Thus, we can directly
observe that 2-Hypergraph 2-Colouring is NP-complete as well.

Observe that 2-Hypergraph 2-Colouring stays NP-complete if we require that
the 2-hypergraph H = (Q,ℒ,ℛ) contains a hyperedge equal to Q in both hyperedge
classes ℒ and ℛ. We consider the incidence graph I of such a 2-hypergraph that
contains a hyperedge equal to Q in both ℒ and ℛ. Notice that, in this incidence
graph, there exists a connected vertex set S ⊆ ℒ (and one S′ ⊆ ℛ) in I that dominates
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V ∖(ℒ∪ℛ): take the connected singleton vertex set containing the vertex corresponding
to the hyperedge that equals Q.

Now, let (G,Z1, Z2) be an instance of 2-Disjoint Connected Subgraphs where
Z1 and Z2 both contain a connected vertex set in G that dominates V ∖ (Z1 ∪ Z2).
The first observation we make is that this special case of 2-Disjoint Connected

Subgraphs stays NP-complete. This follows from the fact that if I is the incidence
graph of a 2-Hypergraph 2-Colouring instance with a hyperedge equal to Q in
both ℒ and ℛ, then this is a Yes-instance of 2-Hypergraph 2-Colouring if and
only if (I,ℒ,ℛ) is a Yes-instance of the given variant of 2-Disjoint Connected

Subgraphs.
In Section 10.2, we will give an O(1.2051d)-time algorithm for 2-Hypergraph 2-

Colouring instances of dimension d, see Lemma 10.10. Based on this result, we can
derive the following lemma.

Lemma 10.5. There is an algorithm that solves 2-Disjoint Connected Subgraphs

in O(1.2051n) time on instances (G,Z1, Z2) in which Z1 and Z2 both contain a con-
nected vertex set in G that dominates V ∖ (Z1 ∪ Z2).

Proof. Let n be the number of vertices in G, and let U = V ∖ (Z1 ∪Z2). We transform
each connected component of G[Z1] and G[Z2] into a single vertex by performing a
series of edge contractions in G. Let G′ be the resulting graph, with independent
vertex sets Z ′

1 and Z ′
2 obtained from Z1 and Z2, respectively. Now, there exist vertices

z1 ∈ Z ′
1 and z2 ∈ Z ′

2 that are adjacent to all vertices in U in G′, because both Z1

and Z2 contained a connected vertex set in G that dominates U .
Notice that the new instance G′ with Z ′

1 and Z ′
2 is equivalent to the instance G with

Z1 and Z2. Because both z1 and z2 are adjacent to every vertex in U , this equivalence
still holds after we remove all edges between different vertices in U from G′. The
resulting bipartite graph G′′ is the incidence graph of the 2-Hypergraph 2-Col-

ouring instance (U,Z ′
1, Z

′
2), and this instance has dimension at most n.

Now, the result follows by using the O(1.2051d)-time algorithm of Lemma 10.10 on
the 2-Hypergraph 2-Colouring instance (U,Z ′

1, Z
′
2), and noticing that d ≤ n.

10.1.2. Our Algorithm

We will now give our algorithm for 2-Disjoint Connected Subgraphs on graphs
in Gk,2 for any fixed k ∈ ℕ.

Theorem 10.6. For any fixed integer k ≥ 1, there exists an O(1.2051n)-time algorithm
for 2-Disjoint Connected Subgraphs on graphs in Gk,2.

Proof. Let (G,Z1, Z2) be an instance of 2-Disjoint Connected Subgraphs with
G ∈ Gk,2, and let U = V ∖ (Z1 ∪ Z2). By definition of Gk,2, any solution (G1, G2)
of this instance of 2-Disjoint Connected Subgraphs is such that G1 contains a
connected vertex set D1 of size at most k and G2 contains a connected vertex set D2

of size at most k such that any vertex v ∈ V lies at distance at most two from both D1

and D2.
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Our algorithm tries all combinations of the O(nk) sets D1 ⊆ Z1 ∪ U of up to k
vertices and all the O(nk) sets D2 ⊆ Z2∪U of up to k vertices. For such a combination,
the algorithm checks whether D1 ∩ D2 = ∅ and whether G[D1] and G[D2] are both
connected. If one of these conditions fails, we continue with the next combination of
sets. Otherwise, we keep D1 and D2 and form a new instance (G′, Z ′

1, Z
′
2), where:

∙ G′ is the subgraph of G obtained after removing all vertices from U that are
neither adjacent to D1 nor to D2.

The reason that we may remove these vertices is because they are redundant in
any possible solution (G1, G2) in which any vertex v ∈ V is at distance at most
two from both D1 and D2.

∙ Z ′
1 = Z1 ∪D1 ∪ {u ∈ U ∣ u is adjacent to D1 but not to D2} and

Z ′
2 = Z2 ∪D2 ∪ {u ∈ U ∣ u is adjacent to D2 but not to D1}.

This instance (G′, Z ′
1, Z

′
2) is equivalent to (G,Z1 ∪D1, Z2 ∪D2) while both Z ′

1 and Z ′
2

contain a connected vertex set of size at most k that lies at distance at most two from
any vertex in G′. As a result we can apply Lemma 10.5 to each generated instance.

Since, for any fixed k ∈ ℕ, the algorithm of Lemma 10.5 is executed on a polyno-
mially bounded number of instances with at most n vertices, the result follows.

Corollary 10.7. There exist an O(1.2051n)-time algorithm for 2-Disjoint Connected

Subgraphs on P6-free graphs and split graphs.

Proof. Combine Theorem 10.6 with Proposition 10.4.

10.2. A 2-Hypergraph 2-Colouring Algorithm

We will now give our algorithm for 2-Hypergraph 2-Colouring. This algorithm
has been used in Section 10.1.1 to prove Lemma 10.5 and Theorem 10.6. We present
this algorithm to illustrate the approach of using a branching algorithm that has two
phases; one where we consider the decision problem, and one where we consider the
associated counting problem. Because of these two phases, the first phase can use more
powerful reduction rules that preserve the existence of a solution but not the number
of solutions, while the second phase can use inclusion/exclusion-based branching.

Our algorithm will also use dynamic programming on tree decompositions to solve
sparse instances. This is similar to the approach used in our exponential-space al-
gorithms in Chapters 8 and 9. This can be seen as a third phase of our algorithm.
Consequently, we present the algorithm as an algorithm with three phases.

Throughout the description of the algorithm, we denote the 2-hypergraph under
consideration by H = (Q,ℒ,ℛ) and its incidence graph by I = (Q ∪ ℒ ∪ ℛ, E). Here,
H contains vertices for the elements which have no colour yet and vertices for the
hyperedges which have no element of the appropriate colour yet (colour l for L ∈ ℒ

and colour r for R ∈ ℛ); all other vertices representing elements and hyperedges are
removed. From now on, if we say that an element in Q or a hyperedge in ℒ ∪ℛ has a
certain degree, we mean its degree in I.
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Phase 1: Branch and Reduce on the Decision Problem. We exhaustively apply two
reduction rules and branch on the elements q ∈ Q: either give q colour l or colour r.
We go to Phase 2 with a 2-hypergraph if every remaining element appears in at most
three hyperedges in ℒ ∪ ℛ. We go into more details below.

Phase 1 uses the following two reduction rules which are clearly correct:

Reduction Rule 10.1 (Elements in Hyperedges of at Most One Hyperedge Class).
Let q be an element of H that occurs in at most one hyperedge class. If q has degree
zero, remove q. If q occurs only in ℒ, then colour it with l. Otherwise, if q occurs only
in ℛ, then colour it with r. Hereafter, remove q and all hyperedges containing q, and
if H becomes empty this way, return Yes.

Reduction Rule 10.2 (Hyperedges of Degree One). Let S = {q} be a hyperedge of
degree one. If S ∈ ℒ, colour q with colour l, otherwise, colour q with colour r. Next,
remove the element q, the hyperedge S, and all other hyperedges in ℒ ∪ ℛ that have
received their appropriate colour. If this results in ∅ ∈ ℒ ∪ ℛ, then return No.

When Rules 10.1 and 10.2 cannot be applied, we select an element q ∈ Q of
maximum degree in I. If q has degree at most three, then we send this subproblem to
Phase 2. Otherwise, we branch on q. In one branch, we colour q with l and remove q
and all hyperedges in ℒ containing q. In the other branch, we colour q with r and
remove q and all hyperedges in ℛ containing q. We solve both generated subproblems
recursively and return Yes if at least one of the recursive calls on the subproblems
returns Yes and No otherwise. If a subproblem is given to Phase 2, then we return Yes

if the recursive call returns that there exists at least one solution and No otherwise.

Phase 2: Inclusion/Exclusion-Based Branching on the Counting Problem. The al-
gorithm now switches to the counting variant of our problem: we compute the number
of 2-colourings of H = (Q,ℒ,ℛ). Because of this, we need to use a different set of
reduction rules as Reduction Rule 10.1 does not preserve the number of solutions. We
replace the reduction rules for this phase by an annotation procedure as used in the
algorithms in Chapters 8 and 9. If no vertex can be annotated, the algorithm applies
inclusion/exclusion-based branching to a hyperedge in ℒ or ℛ. If this results in an
instance that is sparse enough (as defined below), we go to Phase 3.

Let A be the set of annotated vertices in I. Note that all elements in Q in an
instance in Phase 2 have degree two or three.

Reduction Rule 10.3 (Annotation). If there exists a vertex v ∈ (Q ∪ ℒ ∪ ℛ) ∖A that
has degree one in I[(Q ∪ ℒ ∪ ℛ) ∖ A], then put this vertex in the set of annotated
vertices A.

Note that vertices that are annotated can correspond to elements in Q as well as
hyperedges in ℒ or ℛ. From now on, the degree of a vertex in I is considered to be its
degree in I[(Q ∪ ℒ ∪ ℛ) ∖A] unless explicitly specified otherwise.

When Reduction Rule 10.3 cannot be applied, the algorithm branches on a hy-
peredge. It uses the following order of selecting a hyperedge to branch on. Here, we
let si(S) be the number of elements in the hyperedge S of degree i in I[(Q∪ℒ∪ℛ)∖A],
and we let o(S) be the total number of appearances that elements in S have in the
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hyperedge class not containing S. Also, let ℰ ⊆ ℒ∪ℛ be the set of hyperedges S with
either d(Q∪ℒ∪ℛ)∖A(S) = 5 and s3(S) ≥ 3, or d(Q∪ℒ∪ℛ)∖A(S) = s3(S) = 4.

1. If the maximum degree in I[(Q ∪ ℒ ∪ ℛ) ∖ A] is at least six, then choose a
hyperedge S of maximum degree.

2. If the maximum degree in I[(Q ∪ ℒ ∪ ℛ) ∖ A] is at most five and ℰ ∕= ∅, choose
S ∈ ℰ with o(S) maximum over all S ∈ ℰ.

3. Otherwise, solve the subproblem in Phase 3.

The algorithm branches on the selected hyperedge S through inclusion/exclusion-
based branching, see Section 8.1. The optional branch computes the number of 2-
colourings that are indifferent about colouring S, i.e., in which S may or may not have
received its right colour. In this branch, we remove only S. The forbidden branch
computes the number of 2-colourings that do not colour S with the right colour. To
do so, we colour all elements of S with the colour of the hyperedge class that does not
contain S. As a result, we remove S, all elements of S, and all hyperedges that contain
an element of S and are in the hyperedge class not containing S: these hyperedges
have now received their corresponding colour.

After each branching, we solve both generated subproblems recursively. That is,
we recursively apply the procedure of Phase 2 to them. We now compute the number
of 2-colourings that correctly colour S by subtracting the result from the forbidden
branch from the result from the optional branch.

Phase 3: Dynamic Programming on a Tree Decomposition. The algorithm solves
generated subproblems of the counting variant of the problem by dynamic program-
ming on a tree decomposition of I.

Note that all elements have degree two or three and all hyperedges have degree at
most five, with some additional constraints on the elements contained in hyperedge
in case their degree is four or five. We now compute a tree decomposition of I[(Q ∪
ℒ ∪ ℛ) ∖ A] using Proposition 2.16 [138]. We then remove the annotations in reverse
order of the moment of annotation. By Proposition 8.2, this allows us to obtain a tree
decomposition of I of the same width. Using this tree decomposition, we can count
the number of 2-colourings and return these values to the appropriate leaves of the
branching tree generated by Phases 1 and 2.

10.2.1. Analysis of the Running Time

We analyse the described algorithm using measure and conquer [144]. To this end,
we introduce weight functions v, w : ℕ → ℝ+ and use the following measure k on a
subproblem (H,A) with H = (Q,ℒ,ℛ):

k :=
∑

q∈Q∖A
v(d(Q∪ℒ∪ℛ)∖A(q)) +

∑

S∈(ℒ∪ℛ)∖A
w(d(Q∪ℒ∪ℛ)∖A(S))

In this case, we use the following weight functions. We choose these weight functions
in order to minimise the running time resulting from the analysis below, that is, we
computed these values as described in Section 5.6.
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i 2 3 4 5 6 > 6

v(i) 0.448902 0.767484 0.934782 0.992583 1.000000 1.000000
w(i) 0.809607 0.963013 0.996566 1.000000 1.000000 1.000000

Similar to previous exponential-space inclusion/exclusion-based branching algo-
rithms, we divide the running-time analysis of the described algorithm over a series
of lemmas. First, Lemma 10.8 gives an upper bound on the number of subproblems
generated by the branching in Phases 1 and 2. Thereafter, Lemma 10.9 gives an upper
bound on the time that Phase 3 uses to solve such a generated subproblem. Finally,
Lemma 10.10 combines both lemmas and proves an upper bound on the running time
of the algorithm.

Lemma 10.8. Let d be the dimension of an instance to which we apply the described
algorithm. For each ℎ ≤ d, at most 1.20509d−ℎ subproblems of measure ℎ are solved
in Phase 3.

Proof. Let Δv(i) = v(i)− v(i− 1) and Δw(i) = w(i)−w(i− 1) as before. Notice that
the weight functions satisfy the following constraints:

1. v(0) = v(1) = 0
2. Δv(i) ≥ 0 for all i ≥ 2
3. Δv(i) ≥ Δv(i+ 1) for all i ≥ 2

4. w(0) = w(1) = 0
5. Δw(i) ≥ 0 for all i ≥ 2
6. Δw(i) ≥ Δw(i+ 1) for all i ≥ 2
7. w(2) ≥ 2Δw(5)

Constraints 1 and 4 set the weights of elements and hyperedges that are removed
or annotated by the reduction rules to zero. Constraints 2 and 5 ensure that the
measure of an instance does not increase when we decrease the degree of an element
or hyperedge during the branching in Phase 1 or 2, and Constraints 3 and 6 are the
steepness inequalities that make the formulation of the problem easier. The role of
Constraint 7 becomes clear from the analysis below.

Consider branching on an element q in an instance (Q,ℒ,ℛ) of measure k in
Phase 1. Let I be the incidence graph of (Q,ℒ,ℛ), and notice that we have A = ∅ in
this phase. Let li and ri be the number of hyperedges in ℒ and ℛ, respectively, that
are of degree i in I and that contain q. Let Δkl and Δkr be the decrease in measure
in the branch where we colour q with colour l and the branch where we colour q with
colour r, respectively. We derive the following lower bounds on Δkl and Δkr:

Δkl ≥ v(d(q)) +

∞
∑

i=2

(liw(i) + riΔw(i)) + Δv(d(q))

∞
∑

i=2

(i− 1)li

+[r2 > 0](v(2)−Δv(d(q)))

Δkr ≥ v(d(q)) +

∞
∑

i=2

(riw(i) + liΔw(i)) + Δv(d(q))

∞
∑

i=2

(i− 1)ri

+[l2 > 0](v(2)−Δv(d(q)))

We show how to derive the first lower bound below; the second one can be derived
similarly. In the branch where we assign colour l to q, the element q is removed, all
hyperedges in ℒ that contain q are removed, and all hyperedges in ℛ that contain q have
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their degree reduced. This explains the first two terms. Since we remove hyperedges
in ℒ, other elements may have their degrees reduced also. Because of the steepness
inequalities (Constraint 3) and the fact that q is of maximum degree, we can bound
the decrease of the measure for each time that we reduce the degree of an element by
Δv(d(q)). This gives an additional decrease of the measure of Δv(d(q))

∑∞
i=2(i− 1)li

explaining the third term.
The last term follows from the following arguments. If r2 > 0, then there are hy-

peredges in ℛ that get degree one after removing q. Consequently, Reduction Rule 10.2
will can be applied after q has been removed. Let q′ be the unique element remaining
in such a hyperedge and notice that q′ will be assigned colour r, and thus will be
removed. This leads to an additional decrease of the measure. In the worst case, all
other occurrences of q′ are in hyperedges in ℒ that also contained q and thus have been
removed already. Note that we have already included Δv(d(q)) per occurrence of q′ in
such a hyperedge in ℒ in the bound on the decrease of the measure. To better bound
the decrease in the measure due to removal of the element q′, we observe that at most
(d(q′)−1)Δv(d(q)) measure is already taken from the total measure of v(d(q′)) that q′

has. This leads to the additional decrease of the measure of v(2)−Δv(d(q)) since:

v(d(q′)) = v(2) + Δv(3) + . . .+Δv(d(q′))

which, due to Constraint 3, gives us:

v(d(q′))− (d(q′)− 1)Δv(d(q)) ≥ v(2)−Δv(d(q))

This completes the proof of the correctness of Δkl and Δkr.
In Phase 2, the algorithm branches on hyperedges S ∈ (ℒ ∪ ℛ). Recall that si(S)

denotes the elements in S of degree i in I[(Q ∪ ℒ ∪ ℛ) ∖ A]. For simplicity, we write
si = si(S). Let Δkoptional be the decrease in measure in the optional branch, and
Δkforbidden be the decrease in measure in the forbidden branch. Similar to the above,
we find that Δkoptional and Δkforbidden can be bounded by below as follows:

Δkoptional ≥ w(d(Q∪ℒ∪ℛ)∖A(S)) +
3
∑

i=2

siΔv(i)

Δkforbidden ≥ w(d(Q∪ℒ∪ℛ)∖A(S)) +
3
∑

i=2

siv(i) + Δw∗
3
∑

i=2

(i− 1)si

Here, Δw∗ = Δw(d(Q∪ℒ∪ℛ)∖A(S)) if d(Q∪ℒ∪ℛ)∖A(S) ≥ 6 and Δw∗ = Δv(5) if 4 ≤
d(Q∪ℒ∪ℛ)∖A(S) ≤ 5. We use this w∗ because if the algorithm branches on a hyper-
edge S of degree four in I[(Q∪ℒ∪ℛ)∖A], then S is not necessarily of maximum degree as
hyperedges of degree five may still exist. We note that, in the above inequalities, we use
Constraint 7 to obtain the third term in the formula with Δkforbidden; this constraint
makes sure that if the degree of a hyperedge S′ is reduced to zero, then we still obtain
w(d(S′))− w(0) = Δw(d(S′)) + . . .+Δw(2) ≥ (d(S′)− 2)Δw∗ +Δw(2) ≥ d(S′)Δw∗

as required.
For some specific cases, we will slightly increase the lower bound on Δkforbidden as

described above. This is based on the following argument. Since we are in Phase 2, it
may happen that elements in S occur only in hyperedges of the same hyperedge class
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as S. In that case, however, d(Q∪ℒ∪ℛ)∖A(S) ≥ 6 must hold by the selection criteria of
the branching rule. This can be seen as follows. Suppose that 4 ≤ d(Q∪ℒ∪ℛ)∖A(S) ≤ 5,
then S must contain elements of degree three and these elements must already have
been of degree three at the start of Phase 2. Consequently, they occur in hyperedges
of both hyperedge classes. Let T(S) be the set of hyperedges that contain elements
of S and that are in the hyperedge class that does not contain S. We conclude that
in this case, T(S) ∕= ∅.

This means that in these specific cases where 4 ≤ d(Q∪ℒ∪ℛ)∖A(S) ≤ 5, we can
increase the values of Δkforbidden. We remind the reader that o(S) is the total number
of appearances that elements in S have in the hyperedge class not containing S.

First, suppose d(Q∪ℒ∪ℛ)∖A(S) = 5. If s2 = 0 and s3 = 5, then T(S) cannot
consist of a single hyperedge T as this would give us 10 = o(T ) > 5 = o(S), and we
would have branched on T instead of on S. Because of this, T(S) contains at least
two hyperedges (that are all of degree at least two); Furthermore, if T(S) contains
exactly two hyperedges, then one hyperedge must be of degree at least three. Since
3w(2) = Δw(2) + 2w(2) ≥ Δw(3) + 2w(2) = w(2) + w(3), the latter case is the worst
case. If s2 = 1 and s3 = 4, then, by a similar argument as above, we find that T(S)
contains at least two hyperedges that are of degree at least two. If s2 = 2 and s3 = 3
then T(S) is guaranteed to have a hyperedge of degree at least three or two hyperedges
of degree at least two. Since 2w(2) = Δw(2) +w(2) ≥ Δw(3) +w(2) = w(3), the first
case is the worst case. We note that these three subcases form the complete collection
of cases that need to be considered with d(Q∪ℒ∪ℛ)∖A(S) = 5 as the branching rule will
not branch on any other cases.

Finally, suppose d(Q∪ℒ∪ℛ)∖A(S) = 4. By the selection criteria of the branching
rule, we must now have s2 = 0 and s3 = 4. We again find that T(S) is guaranteed to
contain two hyperedges of degree at least two.

Summarizing, after correcting the double counting, we can add the following quan-
tities to the lower bound for Δkforbidden in the following cases:

1. If d(S) = 5, s2 = 0, s3 = 5, then add w(2) + w(3)− 5w∗.
2. If d(S) = 5, s2 = 1, s3 = 4, then add w(2) + w(2)− 4w∗.
3. If d(q) = 5, s2 = 2, s3 = 3, then add w(3)− 3w∗.
4. If d(q) = 4, s2 = 0, s3 = 4, then add w(2) + w(2)− 4w∗.

This completes the description of the recurrence relations related to the branching.
Let Nℎ(k) denote the number of subproblems of measure ℎ created due to the

branching in Phases 1 and 2 on an instance of measure k. We have:

Nℎ(k) ≤ Nℎ(k −Δkl) +Nℎ(k −Δkr)

Nℎ(k) ≤ Nℎ(k −Δkoptional) +Nℎ(k −Δkforbidden).

Using the given weight functions, we find an upper bound on the solution of this set
of recurrence relations that satisfies Nℎ(k) < 1.20509k−ℎ.

Since k ≤ d, this proves the bound of 1.20509d−ℎ on the number of subproblems
of measure ℎ.

Next, we prove a bound on the running time used by Phase 3 to solve an instance
generated by the branching in Phases 1 and 2. Recall that, in Phase 3, instance are
solved by dynamic programming on a tree decomposition. This tree decomposition
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is obtained by applying Proposition 2.16 [138] to I[V ∖ A]. Thereafter, this tree de-
composition is modified to obtain a tree decomposition of I of the same width. This
is done by removing the annotations in reverse order of the moment of annotation
and using Proposition 8.2. Given such a tree decomposition of width t, we can solve
such an instance in O∗(2t) time by standard dynamic programming techniques on tree
decompositions; see for example Chapter 11.

To prove a bound on the width of this tree decomposition, we use the formula in
Proposition 2.16 [138] in a linear program to bound the pathwidth of I[V ∖ A] in a
generated instance with incidence graph I and set of annotated vertices A.

Lemma 10.9. The number of 2-colourings of each 2-hypergraph H of measure ℎ in
Phase 3 can be computed in O(1.1904ℎ) time.

Proof. As argued above, we can count the number of 2-colourings of H in O∗(2t) time
if we are given a tree decomposition of I[V ∖ A] of width t where I is the incidence
graph of an instance (H,A). Therefore, we prove this lemma by giving an upper bound
on the pathwidth computed using Proposition 2.16 on an instance in Phase 3. This is
done in a similar way as in Lemma 8.12 or in Theorem 9.4.

Let xi and yi represent the number of elements and hyperedges of degree i per unit
the measure k in a worst case instance, respectively. Using Proposition 2.16, we can
compute a path decomposition of I[V ∖ A] of pathwidth at most z ⋅ ℎ where z is the
solution to the following linear program:

max z =
1

6
(x3 + y3) +

1

3
y4 +

13

30
y5 such that:

1 =
3
∑

i=2

v(i)xi +
5
∑

i=2

w(i)yi (10.1)

3
∑

i=2

ixi =

5
∑

i=2

iyi (10.2)

x2 ≥ 1

2
y4 +

3

2
y5 (10.3)

In this linear program, all variables have the domain [0,∞). Recall that all unan-
notated elements are of degree 2 or 3 and that all unannotated hyperedges are of
degree 2, 3, 4, or 5 in Phase 3. Hence, the given set of variables and the given objec-
tive function suffice to compute the required upper bound.

We can impose the given constraints due to the following argument. Constraint 10.1
guarantees that the variables use exactly one unit of the measure. Constraint 10.2
guarantees that both partitions of the bipartite incidence graph I are incident to
the same number of edges, and Constraint 10.3 guarantees that the variables model
sufficiently many elements of small degree if hyperedges of degree four or five are
used. We can impose this constraint because certain hyperedges of degree four or five
in I[V ∖ A] are branched on in Phase 2 while others are allowed to pass to Phase 3
depending on the degrees of the elements contained in the hyperedge; see the definition
of the branching rule in Phase 2 in Section 10.2. The constraint corresponds to the
fact that every hyperedge of degree four contains at least one element of degree two,
and every hyperedge of degree five contains at least three elements of degree two.
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The solution to this linear program is z = 0.251446 with x2 = 0.251446, x3 =
0.502892, y4 = 0.502892 and y2 = y3 = y5 = 0. As a result, the computed tree
composition has width at most t ≤ (0.251446 + �)ℎ, for any fixed � > 0. We choose �
sufficiently small such that the term 2�ℎ can be neglected due to the decimal rounding.
We conclude that Phase 3 runs in O∗(2zℎ) = O(1.1904ℎ) time.

Combining Lemmas 10.8 and 10.9 gives the result we wanted to prove.

Lemma 10.10. There exists an algorithm that solves 2-Hypergraph 2-Colouring

instances of dimension d in O(1.2051d) time and space.

Proof. Let Nℎ(d) denote the number of subproblems of measure ℎ generated by the
branching of Phases 1 and 2 on an input of dimension d, and let Hd be the set of all
possible measures of the subproblems that exist at the start of Phase 3.

If we combine the analysis of the branching in Phases 1 and 2 of Lemma 10.8 with
the analysis of the dynamic programming in Phase 3 of Lemma 10.9, we find that the
total running time T (d) on an input of measure d equals:

T (d) ≤
∑

ℎ∈Hd

Nℎ(d) ⋅ 1.1904ℎ ≤
∑

ℎ∈Hk

1.2051d−ℎ ⋅ 1.1904ℎ =
∑

ℎ∈Hd

1.2051d

We conclude that T (d) = O(1.2051d) because we use only a finite number of weights
which makes ∣Hd∣ polynomially bounded.

10.3. Concluding Remarks

We have given an O(1.2051n)-time algorithm for the 2-Disjoint Connected Sub-

graphs problem restricted to instances (G,Z1, Z2) where both Z1 and Z2 contain a
connected set in G that dominates V ∖ (Z1∪Z2). We have also showed how to use this
algorithm to solve this problem within the same time bound on graphs in the class
Gk,2 for any fixed k ≥ 1 and, in particular, for split graphs and P6-free graphs

We leave it as an open question how to obtain a faster algorithm for graphs in the
classes Gk,r with r ≥ 3. Another natural question is to study the class of instances
(G,Z1, Z2) where only one of the subsets, say Z1, contains a connected set in G that
dominates U = V ∖ (Z1 ∪Z2). For solving this problem, a similar approach as in [313]
may be followed, where brute force techniques are applied depending on the size of Z1

and Z2. Another approach would be to apply an algorithm that lists all minimal set
covers (similar to [146]). By using such an approach one can enumerate all sets U ′ ⊆ U
that are minimal with respect to dominating Z1. For each choice of U ′ one can check
in polynomial time if G[Z2 ∪ (U ′ ∖ U)] is connected. We note that this approach also
works for instances where both Z1 and Z2 contain a connected set in G that dominates
V ∖(Z1∪Z2), but this leads to much worse running times than presented in this chapter.

The main open question is to find an exact algorithm for the 2-Disjoint Con-

nected Subgraphs problem on general graphs that is faster than the trivial O∗(2n)
algorithm. For solving this problem, new techniques that deal with the connectivity
issue are necessary.
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Another interesting issue is whether there are more problems for which we can give
faster exact exponential-time algorithms by using the two-phase approach used in this
chapter. That is, are there more problems for which it is beneficial to first consider a
branch-and-reduce procedure on the decision problem and, in a later phase, consider
a branch-and-reduce procedure on the counting problem using inclusion/exclusion-
based branching. This approach allows the combination of the use of more powerful
reduction rules that do not apply to the counting problem with the approach of using
inclusion/exclusion-based branching.
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11
Fast Dynamic Programming

on Tree Decompositions

Width parameters of graphs and their related graph decompositions are important in
the theory of graph algorithms. Many investigations show that problems that are NP-
hard on general graphs become polynomial or even linear-time solvable when restricted
to the class of graphs in which a given width parameter is bounded. However, the
constant factors involved in the upper bound on the running times of such algorithms
are often large and depend on the parameter. Therefore, it is often useful to find
algorithms where these factors grow as slow as possible as a function of the graph
parameter k.

In this thesis, we consider such algorithms involving three prominent graph-width
parameters and their related decompositions. We consider treewidth and tree decompo-
sitions in this chapter; Chapter 12 considers branchwidth and branch decompositions;
and, Chapter 13 considers cliquewidth and k-expressions or clique decompositions.
These three graph-width parameters are probably the most commonly used ones in
the literature. However, other parameters such as rankwidth [248] or booleanwidth [62]
and their related decompositions also exist.

Most algorithms solving combinatorial problems using a graph-width parameter
consist of two steps:

1. Find a graph decomposition of the input graph of small width.
2. Solve the problem by dynamic programming on this graph decomposition.

In this chapter and the next two, we will focus on the second of these steps and
improve the running time of many known algorithms on all three discussed types of
graph decomposition as a function of the width parameter.

†This chapter is joint work with Hans L. Bodlaender and Peter Rossmanith. The chapter contains
results of which a preliminary version has been presented at the 17th Annual European Symposium
on Algorithms (ESA 2009) [305].
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Algorithms for Tree Decompositions. Concerning the first step of the general two-
step approach above, we note that finding a tree decomposition of minimum treewidth
is NP-hard [10]. For fixed k, one can find a tree decomposition of width at most k in
linear time, if such a decomposition exists [37]. However, the constant factor involved
in this algorithm is very high. On the other hand, tree decompositions of small width
can be obtained efficiently for special graph classes [39], and there are also several good
heuristics that often work well in practice [45]. When tree decompositions need to be
constructed for obtaining fast exact exponential-time algorithms, Theorem 2.14 [147],
Proposition 2.16 [138], and Proposition 2.18 [204] can be used. Also, approximation
algorithms for treewidth that construct tree decompositions can be found in [6, 43, 52].

Concerning the second step of this two-step approach, many NP-hard problems can
be solved in polynomial time on a graph G whose treewidth is bounded by a constant.
If we assume that a graph G is given with a tree decomposition T of G of width k, then
the running time of such an algorithm is typically polynomial in the size of graph G,
but exponential in the treewidth k. Examples of such algorithms include many kinds
of vertex partitioning problems (including many graph domination problems such as
the [�, �]-domination problems) [296], edge colouring problems such as Chromatic

Index [35], or other problems such as Steiner Tree [211].
There are several recent results about the running time of algorithms on tree

decompositions, with special considerations for the running time as function of the
width of the tree decomposition k. For several vertex partitioning problems, Telle and
Proskurowski showed that there are algorithms that, given a graph with a tree decom-
position of width k, solve these problems in O(ckn) time [296], where c is a constant that
depends only on the problem at hand. For Dominating Set, Alber and Niedermeier
gave an improved algorithm that runs in O(4kn) time [3]. Similar results are given
in [2] for related problems: Independent Dominating Set, Total Dominating

Set, Perfect Dominating Set, Perfect Code, Total Perfect Dominating

Set, Red-Blue Dominating Set and weighted versions of these problems.
If the input graph is planar, then other improvements are possible. Dorn showed

that Dominating Set on planar graphs given with a tree decomposition of width k can
be solved in O∗(3k) time [112]; he also gave similar improvements for other problems.
We obtain the same result without requiring planarity.

Our Results. In this chapter, we show that the number of dominating sets of each
given size in any graph can be counted in O∗(3k) time. After some modifications, this
gives an O(nk23k)-time algorithm for Dominating Set. We also show that one can
count the number of perfect matchings in a graph in O∗(2k) time, and we generalise
these results to the [�, �]-domination problems (see Section 1.6).

For these [�, �]-domination problems, we show that they can be solved in O∗(sk)
time, where s is the natural number of states required to represent a partial solution.
The only restriction that we impose on these problems is that we require both � and �
to be either finite or cofinite. That such an assumption is necessary follows from
Chappelle’s recent result [70]: he shows that [�, �]-domination problems are W[1]-hard
when parameterised by the treewidth of the graph if � is allowed to have arbitrarily
large gaps between consecutive elements and � is cofinite. The problems to which our
results apply include Strong Stable Set, Independent Dominating Set, Total

Dominating Set, Total Perfect Dominating Set, Perfect Code, Induced
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p-Regular Subgraph, and many others. Our results also extend to other similar
problems such as Red-Blue Dominating Set.

Finally, we also define families of problems that we call 
-clique covering, packing,
or partitioning problems: these families generalise standard problems like Minimum

Clique Partition in the same way as the [�, �]-domination problems generalise Dom-

inating Set. The resulting families of problems include Maximum Triangle Pa-

cking, Partition Into l-Cliques for fixed l, the problem to determine the minimum
number of odd-size cliques required to cover G, and many others. For these 
-clique
covering, packing, or partitioning problems, we give O∗(2k)-time algorithms.

Optimality, Polynomial Factors, and Model of Computation. We note that our
results attain, or are very close to, intuitive natural lower bounds for the problems
considered, namely a polynomial times the amount of space used by any dynamic
programming algorithm for these problems on graph decompositions. Similarly, it
makes sense to think about the number of states necessary to represent partial solutions
as the best possible base of the exponent in the running time: this equals the space
requirements. Currently, this is O∗(3k) for Dominating Set on tree decompositions.

Very recently, this intuition has been strengthened by a result of Lokshtanov et
al. [227]. They prove that it is impossible to improve the exponential part of the
running time for a number of tree-decomposition-based algorithms that we present
in this chapter, unless the Strong Exponential-Time Hypothesis fails. That is, unless
there exist an algorithm for the general Satisfiability problem running in O((2−�)n)
time for any � > 0; see Section 3.2. In particular, this holds for our algorithms for
Dominating Set and Partition Into Triangles.

Because of these seemingly optimal exponential factors in the running times of our
algorithms, we spend quite some effort to make the polynomial factors involved as small
as possible. Also, because many of our algorithms use numbers which require more
than a constant number of bits to represent (often n-bit numbers are involved), the
time and space required to represent these numbers and perform arithmetic operations
on these numbers affects the polynomial factors in the running times of our algorithms.
We will always include these factors and highlight them using a special notation.

Notation (i+(n), i×(n)). We denote the time required to add and multiply n-bit
numbers by i+(n) and i×(n), respectively.

Currently, i×(n)=n log(n)2O(log∗(n)) due to Fürer’s algorithm [159], and i+(n)=O(n).
In this chapter and the next two, we use the Random Access Machine (RAM) model

with O(k)-bit word size [157] for the analysis of our algorithms. In this model, memory
access can performed in constant time for memory of size O(ck) for any constant c. We
consider addition and multiplication operations on O(k)-bit numbers to be unit-time
operations (i+(k) = i×(k) = 1). For an overview of this model, see for example [176].

We use this computational model because we do not want the table look-up oper-
ations to influence the polynomial factors of the running time. Since the tables have
size O∗(sk), for a problem-specific integer s ≥ 2, these operations are constant-time
operations in this model. We note that the word size used in the computational model
was not an issue before in this thesis, because we were not interested in the polynomial
factors involved in the exact exponential-time algorithms in previous chapters.
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Fast Subset Convolution. We obtain our results by using variants of the covering
product and the fast subset convolution algorithm [28] in conjunction with known
techniques on graph decompositions. An important aspect of our results is an implicit
generalisation of the fast subset convolution algorithm that is able to use multiple
states. This contrasts to the set formulation in which the covering product and subset
convolution are defined: this formulation is equivalent to using two states (in and
out). Moreover, the fast subset convolution algorithm uses ranked Möbius transforms,
while we obtain our results by using transformations that use multiple states and
multiple ranks. It is interesting to note that the state-based convolution technique
that we use reminds of the technique used in Strassen’s algorithm for fast matrix
multiplication [289].

Given a set U and functions f, g : 2U → ℤ, their subset convolution (f ∗g) is defined
as follows:

(f ∗ g)(S) =
∑

X⊆S

f(X)g(S ∖X)

The fast subset convolution algorithm by Björklund et al. can compute this convolution
using O(k22k) arithmetic operations [28].

Similarly, Björklund et al. define the covering product (f ∗c g) and the packing
product (f ∗p g) of f and g in the following way:

(f ∗c g)(S) =
∑

X,Y⊆S

X∪Y=S

f(X)g(Y ) (f ∗p g)(S) =
∑

X,Y⊆S

X∩Y=∅

f(X)g(Y )

These products can be computed using O(k2k) arithmetic operations [28].
The fast subset convolution algorithm and similar algorithms for the covering and

packing products have been used to speed up other dynamic programming algorithms
before, but not in the setting of graph-decompositions. Examples include Steiner

Tree [28, 244], graph motif problems [20], and graph recolouring problems [254].
In this thesis, we will not directly use the algorithms of Björklund et al. as subrou-

tines. Instead, we present their algorithms based on what we will call state changes.
This approach does exactly the same as using the algorithms by Björklund et al. as
subroutines. We choose to present it in our own way because this allows us to eas-
ily generalise the fast subset convolution algorithms to a more complex setting than
functions with domain 2U for some set U .

Organisation of the Chapter. This chapter is organised in the following way. We
begin with an introduction to dynamic programming on tree decompositions in Sec-
tion 11.1. In this section, we give some definitions and an example algorithm for
Dominating Set. Thereafter, we define what we call the de Fluiter property for
treewidth and discuss its relations to other properties given in the literature in Sec-
tion 11.2. In the following sections, we give a series of faster dynamic programming
algorithms on tree decompositions. We give a faster algorithm for Dominating Set

in Section 11.3, a faster algorithm for #Perfect Matching in Section 11.4, faster
algorithms for the [�, �]-domination problems in Section 11.5, and faster algorithms for
a series of clique covering, packing, and partitioning problems in Section 11.6. Finally,
we give some concluding remarks in Section 11.7.
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11.1. Introduction to Treewidth-Based Algorithms

Tree-decomposition-based algorithms can be used to effectively solve combinatorial
problems on graphs of small treewidth both in theory and in practice. Practical
algorithms exist for problems like partial constraint satisfaction [212]. Furthermore,
tree-decomposition-based algorithms are used as subroutines in many areas such as
approximation algorithms [109, 121], parameterised algorithms [108, 237, 297], exact
exponential-time algorithms [138, 284, 307] (see also Section 2.2.2 and Chapters 8-10),
and subexponential-time algorithms [51, 153]. For an overview of tree decompositions
and dynamic programming on tree decompositions, see [44, 184].

In this section, we introduce the reader to some important ideas of treewidth-
based algorithms. First, we give some definitions in Section 11.1.1. Thereafter, we
present an example of a dynamic programming algorithm of graphs given with a tree
decomposition of width k in Section 11.1.2. This example algorithm will be the basis
for all other algorithms presented in this chapter.

11.1.1. Definitions

The notions of tree decomposition and treewidth were introduced by Robertson and
Seymour [267]. We recall the definition of a tree decomposition from Section 2.2.2.
We note that, for a decomposition tree T , we often identify T with the set of nodes
in T , and we write E(T ) for the edges of T .

Definition 11.1 (Tree Decomposition). A tree decomposition of a graph G = (V,E)
consists of a tree T in which each node x ∈ T has an associated set of vertices Xx ⊆ V
(called a bag) such that

∪

x∈T Xx = V and the following properties hold:

1. for each {u, v} ∈ E, there exists an Xx such that {u, v} ⊆ Xx.
2. if v ∈ Xx and v ∈ Xy, then v ∈ Xz for all nodes z on the path from node x to

node y in T .

The width tw(T ) of a tree decomposition T is the size of the largest bag of T minus
one. The treewidth tw(G) of a graph G is the minimum width over all possible tree
decompositions of G. Note that treewidth of trees is one. In this chapter, we will
always assume that tree decompositions of the appropriate width are given.

Dynamic programming algorithms on tree decompositions are often presented on
nice tree decompositions, which were introduced by Kloks [202]. We give a slightly
different definition of a nice tree decomposition.

Definition 11.2 (Nice Tree Decomposition). A nice tree decomposition is a tree de-
composition with one special node z called the root with Xz = ∅ and in which each
node is of one of the following types:

1. Leaf node: a leaf x of T with Xx = {v} for some vertex v ∈ V .
2. Introduce node: an internal node x of T with one child node y; this type of node

has Xx = Xy ∪{v}, for some v /∈ Xy. The node is said to introduce the vertex v.
3. Forget node: an internal node x of T with one child node y; this type of node

has Xx = Xy ∖ {v}, for some v ∈ Xy. The node is said to forget the vertex v.
4. Join node: an internal node x with two child nodes l and r; this type of node

has Xx = Xr = Xl.
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We note that this definition is slightly different from the usual definition. In our
definition, we have the extra requirements that a bag Xx associated with a leaf x of T
consists of a single vertex v (Xx = {v}), and that the bag Xz associated with the root
node Z is empty (Xz = ∅).

Given a tree decomposition consisting of O(n) nodes, a nice tree decomposition of
equal width and also consisting of O(n) nodes can be found in O(n) time [202]. By
adding a series of forget nodes to the old root, and by adding a series of introduce
nodes below an old leaf node if its associated bag contains more than one vertex, we
can easily modify any nice tree decomposition to have our extra requirements within
the same running time.

By fixing the root of T , we associate with each node x in a tree decomposition T
a vertex set Vx ⊆ V : a vertex v belongs to Vx if and only if there exists a bag y
with v ∈ Xy such that either y = x or y is a descendant of x in T . Furthermore, we
associate with each node x of T the induced subgraph Gx = G[Vx] of G. I.e., Gx is
the following graph:

Gx = G
[

∪

{Xy ∣ y = x or y is a descendant of x}
]

In the algorithms given in this chapter, we often associate a table Ax with each
node x ∈ T . We denote the number of entries in Ax by ∣Ax∣.

11.1.2. An Example Algorithm for Dominating Set

Algorithms solving NP-hard problems in polynomial time on graphs of bounded tree-
width are often dynamic programming algorithms of the following form. The tree
decomposition T is traversed in a bottom-up manner. For each node x ∈ T visited,
the algorithm constructs a table with partial solutions on the subgraph Gx, that is, the
induced subgraph on all vertices that are in a bag Xy where y = x or y is a descendant
of x in T . Let an extension of such a partial solution be a solution on G that contains
the partial solution on Gx, and let two such partial solutions P1, P2 have the same
characteristic if any extension of P1 also is an extension of P2 and vice versa. The
table for a node x ∈ T does not store all possible partial solutions on Gx: it stores
a set of solutions such that it contains exactly one partial solution for each possible
characteristic. While traversing the tree T , the table for a node x ∈ T is computed
using the tables that had been constructed for the children of x in T .

This type of algorithm typically has a running time of the form O(f(k)poly(n)) or
even O(f(k)n), for some function f that grows at least exponentially. This is because
the size of the computed tables often is (at least) exponentially in the treewidth k
of T , but polynomial (or even constant) in the size of the graph G.

We now give a simple dynamic programming algorithm for Dominating Set; see
Proposition 11.3. We note that a faster algorithm for this problem exists [2, 3], and an
even faster algorithm will be given in Section 11.3. The presented algorithm follows
from standard techniques for treewidth-based algorithms. Many of the details of the
algorithm described below also apply to other algorithms described in this chapter.
We will not repeat these details: for the other algorithms, we will specify only how to
compute the tables associated with each node of a nice tree decomposition, for all four
kinds of nodes.
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state meaning

1 this vertex is in the dominating set.
01 this vertex is not in the dominating set and has already been dominated.
00 this vertex is not in the dominating set and has not yet been dominated.
0? this vertex is not in the dominating set and may or may not be dominated.

Table 11.1. Vertex states for the Dominating Set problem.

Proposition 11.3. There is an algorithm that, given a tree decomposition of a graph G
of width k, computes the size of a minimum dominating set in G in O(n5ki+(log(n)))
time.

Proof. First, we construct a nice tree decomposition T of G of width k from the given
tree decomposition in O(n) time.

Similar to Telle and Proskurowski [296], we introduce vertex states 1, 01, and 00
that characterise the ‘state’ of a vertex with respect to a vertex set D that is a partial
solution of the Dominating Set problem: v has state 1 if v ∈ D; v has state 01 if
v ∕∈ D but v is dominated by D, i.e., there is a d ∈ D with {v, d} ∈ E; and, v has
state 00 if v ∕∈ D and v is not dominated by D; see also Table 11.1.

For each node x in the nice tree decomposition T , we consider partial solutions
D ⊆ Vx, such that all vertices in Vx ∖ Xx are dominated by D. We characterise
these sets D by the states of the vertices in Xx and the size of D. More precisely,
we will compute a table Ax with an entry Ax(c) ∈ {0, 1, . . . , n} ∪ {∞} for each c ∈
{1, 01, 00}∣Xx∣. We call c ∈ {1, 01, 00}∣Xx∣ a colouring of the vertices in Xx. A table
entry Ax(c) represents the size of the partial solution D of Dominating Set in the
induced subgraph Gx associated with the node x of T that satisfies the requirements
defined by the states in the colouring c, or infinity if no such set exists. That is, the
table entry gives the size of the smallest partial solution D in Gx that contains all
vertices in Xx with state 1 in c and that dominates all vertices in Gx except those
in Xx with state 00 in c, or infinity if no such set exists. Notice that these 3∣Xx∣

colourings correspond to 3∣Xx∣ partial solutions with different characteristics, and that
it contains a partial solution for each possible characteristic.

We now show how to compute the table Ax for the next node x ∈ T while traversing
the nice tree decomposition T in a bottom-up manner. Depending on the type of the
node x (see Definition 11.2), we do the following:

Leaf node: Let x be a leaf node in T . The table consists of three entries, one for each
possible colouring c ∈ {1, 01, 00} of the single vertex v in Xx.

Ax({1}) = 1 Ax({01}) = ∞ Ax({00}) = 0

Here, Ax(c) corresponds to the size of the smallest partial solution satisfying the
requirements defined by the colouring c on the single vertex v.

Introduce node: Let x be an introduce node in T with child node y. We assume that
when the l-th coordinate of a colouring of Xx represents a vertex u, then the same
coordinate of a colouring of Xy also represents u, and that the last coordinate of a
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colouring of Xx represents the newly introduced vertex v. Now, for any colouring
c ∈ {1, 01, 00}∣Xy∣:

Ax(c× {01}) =

{

Ay(c) if v has a neighbour with state 1 in c
∞ otherwise

Ax(c× {00}) =

{

Ay(c) if v has no neighbour with state 1 in c
∞ otherwise

For colourings with state 1 for the introduced vertex, we say that a colouring cx of Xx

matches a colouring cy of Xy if:

∙ For all u ∈ Xy ∖N(v): cx(u) = cy(u).
∙ For all u ∈ Xy ∩N(v): either cx(u)=cy(u)=1, or cx(u)=01 and cy(u)∈{01, 00}.

Here, c(u) is the state of the vertex u in the colouring c. We compute Ax(c) by the
following formula:

Ax(c× {1}) =

{

∞ if c(u) = 00 for some u ∈ N(v)
1 + min{Ay(c

′) ∣ c′ matches c} otherwise

It is not hard to see that Ax(c) now corresponds to the size of the partial solution
satisfying the requirements imposed on Xx by the colouring c..

Forget node: Let x be a forget node in T with child node y. Again, we assume that
when the l-th coordinate of a colouring of Xx represents a vertex u, then the same
coordinate of a colouring of Xy also represents u, and that the last coordinate of a
colouring of Xy represents vertex v that we are forgetting.

Ax(c) = min{Ay(c× {1}), Ay(c× {01})}

Now, Ax(c) corresponds to the size of the smallest partial solution satisfying the re-
quirements imposed on Xx by the colouring c as we consider only partial solutions
that dominate the forgotten vertex.

Join node: Let x be a join node in T and let l and r be its child nodes. As Xx =
Xl = Xr, we can assume that the same coordinates represent the same vertices in a
colouring of each of the three bags.

Let cx(v) be the state that represents the vertex v in colouring cx of Xx. We say
that three colourings cx, cl, and cr of Xx, Xl, and Xr, respectively, match if for each
vertex v ∈ Xx:

∙ either cx(v) = cl(v) = cr(v) = 1,
∙ or cx(v) = cl(v) = cr(v) = 00,
∙ or cx(v) = 01 while cl(v) and cr(v) are 01 or 00, but not both 00.

Notice that three colourings cx, cl, and cr match if for each vertex v the requirements
imposed by the states are correctly combined from the states in the colourings on both
child bags cl and cr to the states in the colourings of the parent bag cx. That is, if
a vertex is required by cx to be in the vertex set of a partial solution, then it is also
required to be so in cl and cr; if a vertex is required to be undominated in cx, then it
is also required to be undominated in cl and cr; and, if a vertex is required to be not
in the partially constructed dominating set but it is required to be dominated in cx,
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then it is required not to be in the vertex sets of the partial solutions in both cl and cr,
but it must be dominated in one of both partial solutions.

The new table Ax can be computed by the following formula:

Ax(cx) = min
cx,cl,cr match

Al(cl) +Ar(cr)−#1(cx)

Here, #1(c) stands for the number of 1-states in the colouring c. This number needs
to be subtracted from the total size of the partial solution because the corresponding
vertices are counted in each entry of Al(cl) as well as in each entry of Ar(cr). One can
easily check that this gives a correct computation of Ax.

After traversing the nice tree decomposition T , we end up in the root node z ∈ T .
As Xz = ∅ and thus Gz = G, we find the size of the minimum dominating set in G in
the single entry of Az.

It is not hard to see that the algorithm stores the size of the smallest partial solution
of Dominating Set in Ax for each possible characteristic on Xx for every node x ∈ T .
Hence, the algorithm is correct.

For the running time, observe that, for a leaf or forget node, O(3∣Xx∣i+(log(n)))
time is required since we work with log(n)-bit numbers. In an introduce node, we
need more time as we need to inspect multiple entries from Ay to compute Ax. For a
vertex u outside N(v), we have three possible combinations of states, and for a vertex
u ∈ N(v) we have four possible combinations we need to inspect: the table entry with
cx(u) = cy(u) = 00, colourings with cx(u) = cy(u) = 1, and colourings with cx(u) = 01
while cy(u) = 00 or cy(u) = 01. This leads to a total time of O(4∣Xx∣i+(log(n))) for
an introduce node. In a join node, five combinations of states need to be inspected
per vertex requiring O(5∣Xx∣i+(log(n))) time in total. As the largest bag has size
at most k + 1 and the tree decomposition T has O(n) nodes, the running time is
O(n5ki+(log(n))).

We notice that the above algorithm computes only the size of a minimum domi-
nating set in G, not the dominating set itself. To construct a minimum dominating
set D, the tree decomposition T can be traversed in top-down order (reverse order
compared to the algorithm of Proposition 11.3). We start by selecting the single entry
in the table of the root node, and then, for each child node y of the current node x, we
select an the entry in Ay which was used to compute the selected entry of Ax. More
specifically, we select the entry that was either used to copy into the selected entry
of Ax, or we select one, or in a join node two, entries that lead to the minimum that
was computed for Ax. In this way, we trace back the computation path that computed
the size of D. During this process, we construct D by adding each vertex that is not
yet in D and that has state 1 in c to D. As we use only colourings that lead to a
minimum dominating set, this process gives us a minimum dominating set in G.

11.2. De Fluiter Property for Treewidth

Before we give a series of new, fast dynamic programming algorithms for a broad range
of problems, we need the following definition. We use it to improve the polynomial
factors involved in the running times of our algorithms in the rest of this chapter.
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Definition 11.4 (De Fluiter Property for Treewidth). Given a graph-optimisation
problem Π, consider a method to represent the different characteristics of partial solu-
tions used in an algorithm that performs dynamic programming on a tree decomposi-
tion to solve Π. Such a representation of partial solutions has the de Fluiter property
for treewidth if the difference between the objective values of any two partial solutions
of Π that are associated with a different characteristic and can both still be extended
to an optimal solution is at most f(k), for some non-negative function f that depends
only on treewidth k.

This property is named after Babette van Antwerpen-de Fluiter, as this property
implicitly plays an important role in her work reported in [49, 103]. Note that although
we use the value ∞ in our dynamic programming tables, we do not consider such entries
since they can never be extended to an optimal solution. Hence, these entries do not
influence the de Fluiter property. Furthermore, we say that a problem has the linear
de Fluiter property for treewidth if f is a linear function in k.

Consider the representation used in Proposition 11.3 for the Dominating Set

problem. This representation has the de Fluiter property for treewidth with f(k) =
k + 1 because any table entry that is more than k + 1 larger than the smallest value
stored in the table cannot lead to an optimal solution. This holds because any partial
solution of Dominating Set D that is more than k+1 larger than the smallest value
stored in the table cannot be part of a minimum dominating set. Namely, we can
obtain a partial solution that is smaller than D and that dominates the same vertices
or more by taking the partial solution corresponding to the smallest value stored in
the table and adding all vertices in Xx to it.

The de Fluiter property for treewidth is highly related to the concept finite integer
index as defined in [49]. Finite integer index is a property used in reduction algorithms
for optimisation problems on graphs of small treewidth [49] and is also used in meta-
results in the theory of kernelisation [42]. We will conclude this section by explaining
the relation between the de Fluiter property and finite integer index. We note that
we treat this relation only to link the de Fluiter property to the literature; one does
not need to understand the details of this relation to understand the new dynamic
programming algorithms on tree decompositions presented in this chapter.

Let a terminal graph be a graph G together with an ordered set of distinct vertices
X = {x1, x2, . . . , xl} with each xi ∈ V . The vertices xi ∈ X are called the terminals
of G. For two terminal graphs G1 and G2 with the same number of terminals, the
addition operation G1+G2 is defined to be the operation that takes the disjoint union
of both graphs, then identifies each pair of terminals with the same number 1, 2, . . . , t,
and finally removes any double edges created.

For a graph optimisation problem Π, Bodlaender and van Antwerpen-de Fluiter [49]
define an equivalence relation ∼Π,l on terminal graphs with l terminals: G1 ∼Π,l G2 if
and only if there exists an i ∈ ℤ such that for all terminal graphs H with l terminals:

�(G1 +H) = �(G2 +H) + i

Here, the function �(G) assigns the objective value of an optimal solution of the
optimisation problem Π to the input graph G.
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Definition 11.5 (Finite Integer Index). An optimisation problem Π is of finite integer
index if ∼Π,l has a finite number of equivalence classes for each fixed l.

When one proves that a problem has finite integer index, one often gives a repre-
sentation of partial solutions that has the de Fluiter property for treewidth; see for
example [103]. This is correct as one can see from the following proposition.

Proposition 11.6. If a problem Π has a representation of its partial solutions of dif-
ferent characteristics that can be used in an algorithm that performs dynamic pro-
gramming on tree decompositions and that has the de Fluiter property for treewidth,
then Π is of finite integer index.

Proof. Let l be fixed, and consider an l-terminal graph G. Construct a tree decom-
position T of G such that the bag associated with the root of T equals the set of
terminals X of G. Note that this is always possible since we have not specified a
bound on the treewidth of T . For an l-terminal graph H, one can construct a tree
decomposition of G+H by making a similar tree decomposition of H and identifying
the roots, which both have the same vertex set X.

Let G1, G2 be two l-terminal graphs to which we both add another l-terminal
graph H through addition, i.e, Gi +H, and let T1, T2 be tree decompositions of these
graphs obtained in the above way. For both graphs, consider the dynamic programming
table constructed for the node xX associated with the vertex set X by a dynamic
programming algorithm for Π that has the de Fluiter property for treewidth. For these
tables, we assume that the induced subgraph associated with xX of the decompositions
equals Gi, that is, the bags of the nodes below xX contain all vertices in Gi and vertices
in H occur only in bags associated with nodes that are not descendants of xX in Ti.

Clearly, �(G1 + H) = �(G2 + H) if both dynamic programming tables are the
same and G1[X] = G2[X], that is, if the tables are equal and both graphs have
the same edges between their terminals. Let us now consider a more general case
where we first normalise the dynamic programming tables such that the smallest-
valued entry equals zero, and all other entries contain the difference in value to this
smallest entry. In this case, it is not hard to see that if both normalised dynamic
programming tables are equal and G1[X] = G2[X], then there must exist an i ∈ ℤ

such that �(G1 +H) = �(G2 +H) + i.
The dynamic programming algorithm for the problem Π can compute only finite-

size tables. Moreover, as the representation used by the algorithm has the de
Fluiter property for treewidth, the normalised tables can have only values in the
range 0, 1, . . . , f(k). Therefore, there are only a finite number of different normal-
ised tables and a finite number of possible induced subgraphs on l vertices (terminals).
We conclude that the relation ∼Π,l has a finite number of equivalence classes.

The converse of Proposition 11.6 is not necessarily true.

An example of a problem for which there is no representation of partial solutions
that has the de Fluiter property for treewidth is Independent Dominating Set.
It is not hard to see that the equivalence relation ∼Π,l corresponding to this problem
can have an infinite amount of equivalence classes. That no representation of partial
solutions that has the de Fluiter property exists follows from this observation.



214 Chap. 11: Fast Dynamic Programming on Tree Decompositions

11.3. Minimum Dominating Set

Alber et al. showed that one can improve the classical result of Proposition 11.3 by
choosing a different set of states to represent characteristics of partial solutions [2, 3]:
they obtained an O∗(4k) algorithm using the set of states {1, 01, 0?} (see Table 11.1 in
Section 11.1.2). In this section, we obtain an O∗(3k) algorithm by using yet another
set of states, namely {1, 00, 0?}.

Note that 0? represents a vertex v that is not in the vertex set D of a partial
solution of Dominating Set, while we do not specify whether v is dominated, i.e.,
given D, vertices with state 01 and with state 00 could also have state 0?. In particular,
there is no longer a unique colouring of Xx with states for a specific partial solution: a
partial solution can correspond to several such colourings. Below, we discuss in detail
how we can handle this situation and how it can lead to faster algorithms.

Since the state 00 represents an undominated vertex and the state 0? represents
a vertex that may or may not be dominated, one may think that it is impossible to
guarantee that a vertex is dominated using these states. We circumvent this problem
by not just computing the size of a minimum dominating set, but by computing the
number of dominating sets of each fixed size � with 0 ≤ � ≤ n. This approach does
not store (the size of) a solution per characteristic of the partial solutions, but counts
the number of partial solutions of each possible size per characteristic. We note that
the algorithm of Proposition 11.3 can straightforwardly be modified to also count the
number of (minimum) dominating sets.

For our next algorithm, we use dynamic programming tables in which an entry
Ax(c, �) represents the number of partial solutions of Dominating Set on Gx of size
exactly � that satisfy the requirements defined by the states in the colouring c. That
is, the table entries give the number of partial solution in Gx of size � that dominate
all vertices in Vx ∖Xx and all vertices in Xx with state 01, and that do not dominate
the vertices in Xx with state 00. This approach leads to the following result.

Theorem 11.7. There is an algorithm that, given a tree decomposition of a graph G
of width k, computes the number of dominating sets in G of each size �, 0 ≤ � ≤ n,
in O(n33ki×(n)) time.

Proof. We will show how to compute the table Ax for each type of node x in a nice tree
decomposition T . Recall that an entry Ax(c, �) counts the number of partial solution
of Dominating Set of size exactly � in Gx satisfying the requirements defined by the
states in the colouring c.

Leaf node: Let x be a leaf node in T with Xx = {v}. We compute Ax in the following
way:

Ax({1}, �) =

{

1 if � = 1
0 otherwise

Ax({00}, �) =

{

1 if � = 0
0 otherwise

Ax({0?}, �) =

{

1 if � = 0
0 otherwise
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Notice that this is correct since there is exactly one partial solution of size one that
contains v, namely {v}, and exactly one partial solution of size zero that does not
contain v, namely ∅.
Introduce node: Let x be an introduce node in T with child node y that introduces the
vertex v, and let c ∈ {1, 01, 00}∣Xy∣. We compute Ax in the following way:

Ax(c× {1}, �) =

⎧

⎨

⎩

0 if v has a neighbour with state 00 in c
0 if � = 0
Ay(c, �− 1) otherwise

Ax(c× {00}, �) =

{

0 if v has a neighbour with state 1 in c
Ay(c, �) otherwise

Ax(c× {0?}, �) = Ay(c, �)

As the state 0? is indifferent about domination, we can copy the appropriate value
from Ay. With the other two states, we have to set Ax(c, �) to zero if a vertex with
state 00 can be dominated by a vertex with state 1. Moreover, we have to update the
size of the set if v gets state 1.

Forget node: Let x be a forget node in T with child node y that forgets the vertex v.
We compute Ax in the following way:

Ax(c, �) = Ay(c× {1}, �) +Ay(c× {0?}, �)−Ay(c× {00}, �)

The number of partial solutions of size � in Gx satisfying the requirements defined
by c equals the number of partial solutions of size � that contain v plus the number of
partial solutions of size � that do not contain v but where v is dominated. This last
number can be computed by subtracting the number of such solutions in which v is
not dominated (state 00) from the total number of partial solutions in which v may
be dominated or not (state 0?). This shows the correctness of the above formula.

The computation in the forget node is a simple illustration of the principle of
inclusion/exclusion and the related Möbius transform; see for example [33].

Join node: Let x be a join node in T and let l and r be its child nodes. Recall that
Xx = Xl = Xr.

If we are using the set of states {1, 00, 0?}, then we do not have the consider colour-
ings with matching states in order to compute the join. Namely, we can compute Ax

using the following formula:

Ax(c, �) =
∑

�l+�r=�+#1(c)

Al(c, �l) ⋅Ar(c, �r)

The fact that this formula does not need to consider multiple matching colourings per
colouring c (see Proposition 11.3) is the main reason why the algorithm of this theorem
is faster than previous results.

To see that the formula is correct, recall that any partial solution of Dominating

Set on Gx counted in the table Ax can be constructed from combining partial solu-
tions Gl and Gr that are counted in Al and Ar, respectively. Because an entry in Ax

where a vertex v that has state 1 in a colouring of Xx counts partial solutions with v
in the vertex set of the partial solution, this entry must count combinations of partial
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× 1 01 00

1 1
01 01 01
00 01 00

× 1 01 0?

1 1
01 01
0? 01 0?

× 1 0? 00

1 1
0? 0?
00 00

Figure 11.1. Join tables for the Dominating Set problem. From left to right
they correspond to Proposition 11.3, the algorithm from [2, 3], and Theorem 11.7.

solutions in Al and Ar where this vertex is also in the vertex set of these partial solu-
tions and thus also has state 1. Similarly, if a vertex v has state 00, we count partial
solutions in which v is undominated; hence v must be undominated in both partial
solutions we combine and also have state 00. And, if a vertex v has state 0?, we count
partial solutions in which v is not in the vertex set of the partial solution and we are
indifferent about domination; hence, we can get all combinations of partial solutions
from Gl and Gr if we also are indifferent about domination in Al and Ar which is
represented by the state 0?. All in all, if we fix the sizes of the solutions from Gl

and Gr that we use, then we only need to multiply the number of solutions from Ar

and Al of this size which have the same colouring on Xx. The formula is correct as
it combines all possible combinations by summing over all possible sizes of solutions
on Gl and Gr that lead to a solution on Gx of size �. Notice that the term #1(c) under
the summation sign corrects the double counting of the vertices with state 1 in c.

After the execution of this algorithm, the number of dominating sets of G of size �
can be found in the table entry Az(∅, �), where z is the root of T .

For the running time, we observe that in a leaf, introduce, or forget node x, the
time required to compute Ax is linear in the size of the table Ax. The computations
involve n-bit numbers because there can be up to 2n dominating sets in G. Since
c ∈ {1, 00, 0?}∣Xx∣ and 0 ≤ � ≤ n, we can compute each table Ax in O(n3ki+(n)) time.
In a join node x, we have to perform O(n) multiplications to compute an entry of Ax.
This gives a total of O(n23ki×(n)) time per join node. As the nice tree decomposition
has O(n) nodes, the total running time is O(n33ki×(n)).

The algorithm of Theorem 11.7 is exponentially faster in the treewidth k com-
pared to the previous fastest algorithm of Alber et al. [2, 3]. Also, no exponentially
faster algorithm exists unless the Strong Exponential-Time Hypothesis fails [227] (see
Section 3.2). The exponential speed-up comes from the fact that we use a different
set of states to represent the characteristics of partial solutions; a set of states that
allows us to perform the computations in a join node much faster. We note that al-
though the algorithm of Theorem 11.7 uses underlying ideas of the covering product,
no transformations associated with such an algorithm are used directly.

To represent the characteristics of the partial solutions of the Dominating Set

problem, we can use any of the following three sets of states: {1, 01, 00}, {1, 01, 0?},
{1, 00, 0?}. Depending on which set we choose, the number of combinations that we
need to inspect in a join node differ. We give an overview of this in Figure 11.1: each
table represents a join using a different set of states, and each state in an entry of
such a table represents a combination of the states in the left and right child nodes
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that need to be inspected the create this new state. The number of non-empty entries
now shows how many combinations have to be considered per vertex in a bag of a
join node. Therefore, one can easily see that a table in a join node can be computed
in O∗(5k), O∗(4k), and O∗(3k) time, respectively, depending on the set of states used.
These tables correspond to the algorithm of Proposition 11.3, the algorithm of Alber
et al. [2, 3], and the algorithm of Theorem 11.7, respectively.

The way in which we obtain the third table in Figure 11.1 from the first one
reminds us of Strassen’s algorithm for matrix multiplication [289]: the speed-up in
this algorithm comes from the fact that one multiplication can be omitted by using a
series of extra additions and subtractions. Here, we do something similar by adding
up all entries with a 01-state or 00-state together in the 0?-state and computing the
whole block of four combinations at once. We then reconstruct the values we need by
subtracting the combinations with two 00-states.

The exponential speed-up obtained by the algorithm of Theorem 11.7 comes at the
cost of extra polynomial factors in the running time. This is n2 times the factor due to
the fact that we work with n-bit numbers. Since we compute the number of dominating
sets of each size �, 0 ≤ � ≤ n, instead of computing a minimum dominating set, some
extra polynomial factors in n seem unavoidable. However, the ideas of Theorem 11.7
can also be used to count only minimum dominating sets. Using that Dominating

Set has the de Fluiter property for treewidth (see Section 11.2), this leads to the
following result, where the factor n2 is replaced by the much smaller factor k2.

Corollary 11.8. There is an algorithm that, given a tree decomposition of a graph G
of width k, computes the number of minimum dominating sets in G in O(nk23ki×(n))
time.

Proof. We notice that the representation of the different characteristics of partial so-
lutions used in Theorem 11.7 has the linear de Fluiter property when used to count
the number of minimum dominating sets. More explicitly, when counting the number
of minimum dominating sets, we need to store only the number of partial solutions
of each different characteristic that are at most k + 1 larger in size than the smallest
partial solution with a non-zero entry. This holds, as larger partial solutions can never
lead to a minimum dominating set since taking any set corresponding to this smallest
non-zero entry and adding all vertices in Xx leads to a smaller partial solution that
dominates at least the same vertices.

In this way, we can modify the algorithm of Theorem 11.7 such that, in each node
x ∈ T , we store a number �x representing the size of the smallest partial solution and
a table Ax with the number of partial solutions Ax(c, �) with �x ≤ � ≤ �x + k + 1.

In a leaf node x, we simply set �x = 0. In an introduce or forget node x with
child node y, we first compute the entries Ax(c, �) for �y ≤ � ≤ �y + k + 1 and
then set �x to the value of � corresponding to the smallest non-zero entry of Ax.
While computing Ax, the algorithm uses Ay(c, �) = 0 for any entry Ay(c, �) that falls
outside the given range of �. Finally, in a join node x with child nodes r and l, we
do the same as in Theorem 11.7, but we compute only the entries with � in the range
�l + �r − (k+ 1) ≤ � ≤ �l + �r + (k+ 1). Furthermore, as all terms of the sum with �l

or �r outside the range of Al and Ar evaluate to zero, we now have to evaluate only
O(k) terms of the sum. It is not hard to see that all relevant combinations of partial



218 Chap. 11: Fast Dynamic Programming on Tree Decompositions

solutions from the two child nodes l and r fall in this range of �.
The modified algorithm computes O(n) tables of size O(k3k), and the computation

of each entry requires at most O(k) multiplications of n-bit numbers. Therefore, the
running time is O(nk23ki×(n)).

A disadvantage of the direct use of the algorithm of Corollary 11.8 compared to
Proposition 11.3 is that we cannot reconstruct a minimum dominating set in G by
directly tracing back the computation that gave the size of a minimum domination set.
However, as we show below, we can transform the tables computed by Theorem 11.7
and Corollary 11.8 that use the states {1, 00, 0?} in O∗(3k) time into tables using any
of the other sets of states. These transformations have two applications. First of all,
they allow us to easily construct a minimum dominating set in G from the computation
of Corollary 11.8 by transforming the computed tables into different tables as used in
Proposition 11.3 and thereafter traverse the tree in a top-down fashion as we have
discussed earlier. Secondly, they can be used to switch from using n-bit numbers to
O(k)-bit numbers, further improving the polynomial factors of the running time if we
are interested only in solving the Dominating Set problem.

Lemma 11.9. Let x be a node of a tree decomposition T and let Ax be a table with
entries Ax(c, �) representing the number of partial solutions of Dominating Set of Gx

of each size �, for some range of �, corresponding to each colouring c of the bag Xx

with states from one of the following sets:

{1, 01, 00} {1, 01, 0?} {1, 00, 0?} (see Table 11.1)

The information represented in the table Ax does not depend on the choice of the set
of states from the options given above. Moreover, there exist transformations between
tables using representations with different sets of states using O(∣Xx∣∣Ax∣) arithmetic
operations.

Proof. We will transform Ax such that it represents the same information using a
different set of states. The transformation will be given for fixed � and can be repeated
for each � in the given range.

The transformations work in ∣Xx∣ steps. In step i, we assume that the first i − 1
coordinates of the colouring c in our table Ax use the initial set of states, and the last
∣Xx∣ − i coordinates use the set of states to which we want to transform. Using this
as an invariant, we change the set of states used for the i-th coordinate at step i.

Transforming from {1, 01, 00} to {1, 00, 0?} can be done using the following formula
in which Ax(c, �) represents our table for colouring c, c1 is a subcolouring of size i− 1
using states {1, 01, 00}, and c2 is a subcolouring of size ∣Xx∣− i using states {1, 00, 0?}.

Ax(c1 × {0?} × c2, �) = Ax(c1 × {01} × c2, �) +Ax(c1 × {00} × c2, �)

We keep entries with states 1 and 00 on the i-th vertex the same, and we remove entries
with state 01 on the i-th vertex after computing the new value. In words, the above
formula counts the number partial solutions that do not containing the i-th vertex v
in their vertex sets by adding the number of partial solutions that do not contain v
in their vertex sets and dominate it to the number of partial solutions that do not
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contain v in the vertex sets and do not dominate it. This completes the description of
the transformation.

To see that the new table contains the same information, we can apply the reverse
transformation from the set of states {1, 00, 0?} to the set {1, 01, 00} by using the same
transformation with a different formula to introduce the new state:

Ax(c1 × {01} × c2, �) = Ax(c1 × {0?} × c2, �)−Ax(c1 × {00} × c2, �)

A similar argument applies here: the number of partial solutions that dominate but
do not contain the i-th vertex v in their vertex sets equals the total number of partial
solutions that do not contain v in their vertex sets minus the number of partial solutions
in which v is undominated.

The other four transformations work similarly. Each transformation keeps the
entries of one of the three states 01, 00, and 0? intact, computes the entries for the
new state by a coordinate-wise addition or subtraction of the other two states, and
removes the entries using the third state from the table. To compute an entry with
the new state, either the above two formula can be used if the new state is 01 or 0?,
or the following formula can be used if the new state is 00:

Ax(c1 × {00} × c2, �) = Ax(c1 × {0?} × c2, �)−Ax(c1 × {01} × c2, �)

For the above transformations, we need ∣Xx∣ additions or subtractions for each
of the ∣Ax∣ table entries. Hence, a transformation requires O(∣Xx∣∣Ax∣) arithmetic
operations.

We are now ready to give our final improvement for Dominating Set.

Corollary 11.10. There is an algorithm that, given a tree decomposition of a graph G
of width k, computes the size of a minimum dominating set in G in O(nk23k) time.

We could give a slightly shorter proof than the one given below. This proof would
directly combine the algorithm of Proposition 11.3 with the ideas of Theorem 11.7
using the transformations from Lemma 11.9. However, combining our ideas with the
computations in the introduce and forget nodes in the algorithm of Alber et al. [2, 3]
gives a more elegant solution, which we prefer to present.

Proof. On leaf, introduce, and forget nodes, our algorithm is exactly the same as the
algorithm of Alber et al. [2, 3], while on a join node it is similar to Corollary 11.8. We
give the full algorithm for completeness.

For each node x ∈ T , we compute a table Ax with entries Ax(c) containing the
size of a smallest partial solution of Dominating Set that satisfies the requirements
defined by the colouring c using the set of states {1, 01, 0?}.
Leaf node: Let x be a leaf node in T . We compute Ax in the following way:

Ax({1}) = 1 Ax({01}) = ∞ Ax({0?}) = 0

Introduce node: Let x be an introduce node in T with child node y introducing the
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vertex v. We compute Ax in the following way:

Ax(c× {01}) =

{

Ay(c) if v has a neighbour with state 1 in c
∞ otherwise

Ax(c× {0?}) = Ay(c)

Ax(c× {1}) = 1 +Ay(�N(v):01→0?(c))

Here, �N(v):01→0?(c) is the colouring c with every occurrence of the state 01 on a vertex
in N(v) replaced by the state 0?.

Forget node: Let x be a forget node in T with child node y forgetting the vertex v.
We compute Ax in the following way:

Ax(c) = min{Ay(c× {1}), Ay(c× {01})}

Correctness of the operations on a leaf, introduce, and forget node are easy to verify
and follow from [2, 3].

Join node: Let x be a join node in T and let l and r be its child nodes. We first create
two tables A′

l and A′
r. For y ∈ {l, r}, we let �y = min

{

Ay(c
′) ∣ c′ ∈ {1, 01, 0?}∣Xy∣

}

and
let A′

y have entries A′
y(c, �) for all c ∈ {1, 01, 0?}∣Xy∣ and � with �y ≤ � ≤ �y + k + 1:

A′
y(c, �) =

{

1 if Ay(c) = �
0 otherwise

After creating the tables A′
l and A′

r, we use Lemma 11.9 to transform the tables A′
l

and A′
r such that they use colourings c with states from the set {1, 00, 0?}. The initial

tables A′
y do not contain the actual number of partial solutions; they contain a 1-entry

if a corresponding partial solution exists. In this case, the tables obtained after the
transformation count the number 1-entries in the tables before the transformation. In
the table A′

x computed for the join node x, we now count the number of combinations of
these 1-entries. This suffices since any smallest partial solution in Gx that is obtained
by joining partial solutions from both child nodes must consist of minimum solutions
in Gl and Gr.

We can compute A′
x by evaluating the formula for the join node in Theorem 11.7

for all � with �l+ �r − (k+1) ≤ � ≤ �l+ �r +(k+1) using the tables A′
l and A′

r. If we
do this in the same way as in Corollary 11.8, then we consider only the O(k) terms of
the formula where �l and �r fall in the specified ranges for Al and Ar, respectively, as
other terms evaluate to zero. In this way, we obtain the table A′

x in which entries are
marked by colourings with states from the set {1, 00, 0?}. Finally, we use Lemma 11.9
to transform the table A′

x such that it again uses colourings with states from the set
{1, 01, 0?}. This final table gives the number of combinations of 1-entries in Al and Ar

that lead to partial solutions of each size that satisfy the associated colourings. Since
we are interested only in the size of the smallest partial solution of Dominating Set

of each characteristic, we can extract these values in the following way:

Ax(c) = min{� ∣ A′
x(c, �) ≥ 1; �l + �r − (k + 1) ≤ � ≤ �l + �r + (k + 1)}

For the running time, we first consider the computations in a join node. Here,
each state transformation requires O(k23k) operations by Lemma 11.9 since the tables
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have size O(k3k). These operations involve O(k)-bit numbers since the number of 1-
entries in Al and Ar is at most 3k+1. Evaluating the formula that computes A′

x from
the tables A′

l and A′
r costs O(k23k) multiplications. If we do not store a log(n)-bit

number for each entry in the tables Ax in any of the four kinds of nodes of T , but store
only the smallest entry using a log(n)-bit number and let A′

x contain the difference
to this smallest entry, then all entries in any of the A′

x can also be represented using
O(k)-bit numbers. Since there are O(n) nodes in T , this gives a running time of
O(nk23k). Note that the time required to multiply the O(k)-bit numbers disappears
in the computational model with O(k)-bit word size that we use.

Corollary 11.10 gives the currently fastest algorithm for Dominating Set on
graphs given with a tree decomposition of width k. Essentially, what the algorithm
does is fixing the 1-states and applying the covering product of Björklund et al. [28] on
the 01-states and 0?-states, where the 01-states need to be covered by the same states
from both child nodes. We chose to present our algorithm in a way that does not use
the covering product directly, because reasoning with states allows us to generalise our
results in Section 11.5.

We conclude by stating that we can directly obtain similar results for similar prob-
lems using exactly the same techniques:

Proposition 11.11. For each of the following problems, there is an algorithm that
solves them, given a tree decomposition of a graph G of width k, using the following
running times:

∙ Independent Dominating Set in O(n33k) time.
∙ Total Dominating Set in O(nk24k) time.
∙ Red-Blue Dominating Set in O(nk22k) time.

Proof (Sketch). Use the same techniques as in the rest of this section. We emphasise
only the following details.

With Independent Dominating Set, the factor n3 comes from the fact that this
(minimisation) problem does not have the de Fluiter property for treewidth. However,
we can still use O(k)-bit numbers. This is because even though the expanded tables
A′

l and A′
r have size at most n3k, they still contain the value one only once for each

of the 3k characteristic before applying the state changes. Therefore, the total sum of
the values in the table, and thus also the maximum values of an entry in these tables
after the state transformations is 3k; these can be represented by O(k)-bit numbers.

With Total Dominating Set, the running time is linear in n while the extra
polynomial factor is k2. This is because this problem does have the linear de Fluiter
property for treewidth.

With Red-Blue Dominating Set, an exponential factor of 2k suffices as we can
use two states for the red vertices (in the red-blue dominating set or not) and two
different states on the blue vertices (dominated or not).
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× 0 1

0 0 1
1 1

× 0 ?

0 0
? ∕ ?

Figure 11.2. Join tables for counting the number of perfect matchings. We used
the symbol ∕ ? in the last table because the direct combination of two ?-states can
lead to matching a vertex twice.

11.4. Counting the Number of Perfect Matchings

The next problem we consider is the problem of computing the number of perfect
matchings in a graph. We give an O∗(2k) time algorithm for this problem. This
requires a slightly more complicated approach than the approach of the previous sec-
tion. The main difference is that here every vertex needs to be matched exactly once,
while previously we needed to dominate every vertex at least once. After introducing
state transformations similar to Lemma 11.9, we will introduce some extra counting
techniques to overcome this problem.

The obvious tree-decomposition-based dynamic programming algorithm uses the
set of states {0, 1}, where 1 means this vertex is matched and 0 means that it is not.
It then computes, for every node x ∈ T , a table Ax with entries Ax(c) containing
the number of matchings in Gx with the property that the only vertices that are
not matched are exactly the vertices in the current bag Xx with state 0 in c. This
algorithm will run in O∗(3k) time; this running time can be derived from the join table
in Figure 11.2. Similar to Lemma 11.9 in the previous section, we will prove that the
table Ax contains exactly the same information independent of whether we use the
set of states {0, 1} or {0, ?}, where ? represents a vertex for which we do not specify
whether it is matched or not. I.e., for a colouring c, we count the number of matchings
in Gx, where all vertices in Vx∖Xx and all vertices in Xx with state 1 in c are matched,
all vertices in Xx with state 0 in c are unmatched, and all vertices in Xx with state ?
can either be matched or not.

Lemma 11.12. Let x be a node of a tree decomposition T and let Ax be a table with
entries Ax(c) representing the number of matchings in Gx matching all vertices in
Vx ∖Xx and corresponding to each colouring c of the bag Xx with states from one of
the following sets:

{1, 0} {1, ?} {0, ?}

The information represented in the table Ax does not depend on the choice of the set
of states from the options given above. Moreover, there exist transformations between
tables using representations with different sets of states using O(∣Xx∣∣Ax∣) arithmetic
operations.

If one defines a vertex with state 1 or ? to be in a set S, and a vertex with state 0 not
to be in S, then the state changes essentially are Möbius transforms and inversions,
see [28]. The transformations in the proof below essentially are the fast evaluation
algorithms from [28].
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Proof. The transformations work almost identical to those in the proof of Lemma 11.9.
In step 1 ≤ i ≤ ∣Xx∣, we assume that the first i−1 coordinates of the colouring c in our
table use one set of states, and the last ∣Xx∣− i coordinates use the other set of states.
Using this as an invariant, we change the set of states used for the i-th coordinate at
step i.

Transforming from {0, 1} to {0, ?} or {1, ?} can be done using the following formula.
In this formula, Ax(c) represents our table for colouring c, c1 is a subcolouring of size
i− 1 using states {0, 1}, and c2 is a subcolouring of size ∣Xx∣ − i using states {0, ?}:

Ax(c1 × {?} × c2) = Ax(c1 × {0} × c2) +Ax(c1 × {1} × c2)

In words, the number of matchings that may contain some vertex v equals the sum of
the number of matchings that do and the number of matchings that do not contain v.

The following two similar formulas can be used for the other four transformations:

Ax(c1 × {1} × c2) = Ax(c1 × {?} × c2)−Ax(c1 × {0} × c2)

Ax(c1 × {0} × c2) = Ax(c1 × {?} × c2)−Ax(c1 × {1} × c2)

In these transformations, we need ∣Xx∣ additions or subtractions for each of the ∣Ax∣
table entries. Hence, a transformation requires O(∣Xx∣∣Ax∣) arithmetic operations.

Although we can transform our dynamic programming tables such that they use
different sets of states, this does not directly help us in obtaining a faster algorithm for
counting the number of perfect matchings. Namely, if we would combine two partial
solutions in which a vertex v has the ?-state in a join node, then it is possible that v
is matched twice in the combined solution: once in each child node. This would lead
to incorrect answers, and this is why we put a ∕ ? instead of a ? in the join table in
Figure 11.2. We overcome this problem by using some additional counting tricks that
can be found in the proof below.

Theorem 11.13. There is an algorithm that, given a tree decomposition of a graph G
of width k, computes the number of perfect matchings in G in O(nk22ki×(k log(n)))
time.

Proof. For each node x ∈ T , we compute a table Ax with entries Ax(c) containing the
number of matchings that match all vertices in Vx∖Xx and that satisfy the requirements
defined by the colouring c using states {1, 0}. We use the extra invariant that vertices
with state 1 are matched only with vertices outside the bag, i.e., vertices that have
already been forgotten by the algorithm. This prevents vertices being matched within
the bag and greatly simplifies the presentation of the algorithm.

Leaf node: Let x be a leaf node in T . We compute Ax in the following way:

Ax({1}) = 0 Ax({0}) = 1

The only matching in the single vertex graph is the empty matching.

Introduce node: Let x be an introduce node in T with child node y introducing the
vertex v. The invariant on vertices with state 1 makes the introduce operation trivial:

Ax(c× {1}) = 0 Ax(c× {0}) = Ay(c)
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Forget node: Let x be a forget node in T with child node y forgetting the vertex v. If
the vertex v is not matched already, then it must be matched to an available neighbour
at this point:

Ax(c) = Ay(c× {1}) +
∑

u∈N(v),c(u)=1

Ay(�u:1→0(c)× {0})

Here, c(u) is the state of u in c and �u:1→0(c) is the colouring c where the state of u is
changed from 1 to 0. This formula computes the number of matchings corresponding
to c, by adding the number of matchings in which v is matched already to the number
of matchings of all possibly ways of matching v to one of its neighbours. We note that,
because of our extra invariant, we have to consider only neighbours in the current
bag Xx. Namely, if we would match v to an already forgotten vertex u, then we could
have matched v to u in the node where u was forgotten.

Join node: Let x be a join node in T and let l and r be its child nodes.
The join is the most interesting operation. As discussed before, we cannot simply

change the set of states to {0, ?} and perform the join similar to Dominating Set

as suggested by Table 11.2. We use the following method: we expand the tables and
index them by the number of matched vertices in Xl or Xr, i.e., the number of vertices
with state 1. Let y ∈ {l, r}, then we compute tables A′

l and A′
r as follows:

A′
y(c, i) =

{

Ay(c) if #1(c) = i
0 otherwise

Next, we change the state representation in both tables A′
y to {0,?} using Lemma 11.12.

These tables do not use state 1, but are still indexed by the number of 1-states used
in the previous representation. Then, we join the tables by combining all possibilities
that arise from i 1-states in the previous representation using states {0, 1} (stored in
the index i) using the following formula:

A′
x(c, i) =

∑

il+ir=i

A′
l(c, il) ⋅A′

r(c, ir)

As a result, the entries A′
x(c, i) give us the total number of ways to combine partial

solutions from Gl and Gr such that the vertices with state 0 in c are unmatched, the
vertices with state ? in c can be matched in zero, one, or both partial solutions used,
and the total number of times the vertices with state ? are matched is i.

Next, we change the states in the table A′
x back to {0, 1} using Lemma 11.12. It is

important to note that the 1-state can now represent a vertex that is matched twice
because the ?-state used before this second transformation represented vertices that
could be matched twice as well. However, we can find those entries in which no vertex
is matched twice by applying the following observation: the total number of 1-states
in c should equal the sum of those in its child tables, and this sum is stored in the
index i. Therefore, we can extract the number of perfect matchings for each colouring c
using the following formula:

Ax(c) = A′
x(c,#1(c))

In this way, the algorithm correctly computes the tables Ax for a join node x ∈ T .
This completes the description of the algorithm.
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The computations in the join nodes again dominate the running time. In a join
node, the transformations of the states in the tables cost O(k22k) arithmetic operations
each, and the computations of A′

x from A′
l and A′

r also costs O(k22k) arithmetic
operations. We will now show that these arithmetic operations can be implemented
using O(k log(n))-bit numbers. For every vertex, we can say that the vertex is matched
to another vertex at the time when it is forgotten in T , or when its matching neighbour
is forgotten. When it is matched at the time that it is forgotten, then it is matched to
one of its at most k+1 neighbours. This leads to at most k+2 choices per vertex. As
a result, there are at most O(kn) perfect matchings in G, and the described operations
can be implemented using O(k log(n))-bit numbers.

Because a nice tree decomposition has O(n) nodes, the running time of the algo-
rithm is O(nk22ki×(k log(n))).

The above theorem gives the currently fastest algorithm for counting the number
of perfect matchings in graphs with a given tree decompositions of width k. The
algorithm uses ideas from the fast subset convolution algorithm of Björklund et al. [28]
to perform the computations in the join node.

11.5. [�, �]-Domination Problems

We have shown how to solve two elementary problems in O∗(sk) time on graphs of
treewidth k, where s is the number of states per vertex used in representations of
partial solutions. In this section, we generalise our result for Dominating Set to
the [�, �]-domination problems; for a definition of these problems, see Section 1.6. We
show that we can solve all [�, �]-domination problems with finite or cofinite � and � in
O∗(sk) time. This includes the existence (decision), minimisation, maximisation, and
counting variants of these problems.

For the [�, �]-domination problems, one can also use colourings with states to re-
present the different characteristics of partial solutions. Let D be the vertex set of a
partial solution of a [�, �]-domination problem. One set of states that we use involves
the states �j and �j , where �j and �j represent vertices not in D, or in D, that have j
neighbours in D, respectively. For finite �, �, we let p = max{�} and q = max{�}. In
this case, we have the following set of states: {�0, �1, . . . , �p, �0, �1, . . . , �q}. If � or �
are cofinite, we let p = 1+max{ℕ∖�} and q = 1+max{ℕ∖�}. In this case, we replace
the last state in the given sets by �≥p or �≥q, respectively. This state represents a
vertex in the vertex set D of the partial solution of the [�, �]-domination problem that
has at least p neighbours in D, or a vertex not in D with at least q neighbours in D,
respectively. Let s = p+ q + 2 be the number of states involved.

Dynamic programming tables for the [�, �]-domination problems can also be repre-
sented using different sets of states that contain the same information. In this section,
we will use three different sets of states. These sets are defined as follows.

Definition 11.14. Let State Set I, II, and III be the following sets of states:

∙ State Set I: {�0, �1, �2, . . . , �p−1, �p/�≥p, �0, �1, �2, . . . , �q−1, �q/�≥q}.
∙ StateSet II: {�0, �≤1, �≤2, . . . , �≤p−1, �≤p/�ℕ, �0, �≤1, �≤2, . . . , �≤q−1, �≤q/�ℕ}.
∙ State Set III: {�0, �1, �2, . . . �p−1, �p/�≥p−1, �0, �1, �2, . . . , �q−1, �q/�≥q−1}.
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The meaning of all the states is self-explanatory: �condition and �condition consider
the number of partial solutions of the [�, �]-domination problem that do not contain
(�-state) or do contain (�-state) this vertex with a number of neighbours in the corre-
sponding vertex sets satisfying the condition. The subscript ℕ stands for no condition
at all, i.e., �ℕ = �≥0: all possible number of neighbours in ℕ. We note that the nota-
tion �p/�≥p in Definition 11.14 is used to indicate that this set uses the state �p if �
is finite and �≥p if � is cofinite.

Lemma 11.15. Let x be a node of a tree decomposition T and let Ax be a table
with entries Ax(c, �) representing the number of partial solutions of size � to the
[�, �]-domination problem in Gx corresponding to each colouring c of the bag Xx with
states from any of the three sets from Definition 11.14. The information represented
in the table Ax does not depend on the choice of the set of states from the options
given in Definition 11.14. Moreover, there exist transformations between tables using
representations with different sets of states using O(s∣Xx∣∣Ax∣) arithmetic operations.

Proof. We apply transformations that work in ∣Xx∣ steps and are similar to those in
the proofs of Lemmas 11.9 and 11.12. In the i-th step, we replace the states at the
i-th coordinate of c. We use the following formulas to create entries with a new state.

We will give only the formulas for the �-states. The formulas for the �-states are
identical, but with � replaced by � and p replaced by q. We note that we slightly
abuse notation below since we use that �≤0 = �0.

To obtain states from State Set I not present in State Set II or III, we can use:

Ax(c1 × {�j} × c2, �) = Ax(c1 × {�≤j} × c2, �)−Ax(c1 × {�≤j−1} × c2, �)

Ax(c1 × {�≥p} × c2, �) = Ax(c1 × {�ℕ} × c2, �)−Ax(c1 × {�≤p−1} × c2, �)

Ax(c1 × {�≥p} × c2, �) = Ax(c1 × {�≥p−1} × c2, �)−Ax(c1 × {�p−1} × c2, �)

To obtain states from State Set II not present in State Set I or III, we can use:

Ax(c1 × {�≤j} × c2, �) =

j
∑

l=0

Ax(c1 × {�l} × c2, �)

Ax(c1 × {�ℕ} × c2, �) = Ax(c1 × {�≥p} × c2, �) +

p−1
∑

l=0

Ax(c1 × {�l} × c2, �)

Ax(c1 × {�ℕ} × c2, �) = Ax(c1 × {�≥p−1} × c2, �) +

p−2
∑

l=0

Ax(c1 × {�l} × c2, �)

To obtain states from State Set III not present in State Set I or II, we can use the
same formulas used to obtain states from State Set I in combination with the following
formulas:

Ax(c1 × {�≥p−1} × c2, �) = Ax(c1 × {�≥p} × c2, �) +Ax(c1 × {�p−1} × c2, �)

Ax(c1 × {�≥p−1} × c2, �) = Ax(c1 × {�ℕ} × c2, �)−Ax(c1 × {�≤p−2} × c2, �)

As the transformations use ∣Xx∣ steps in which each entry is computed by evalu-
ating a sum of less than s terms, the transformations require O(∣Xx∣∣Ax∣) arithmetic
operations.
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Remark 11.1. We note that similar transformations can also be used to transform a
table into a new table that uses different sets of states on different vertices in a bag Xx.
For example, we can use State Set I on the first two vertices (assuming some ordering)
and State Set III on the other ∣Xx∣ − 2 vertices. We will use a transformation of this
type in the proof of Theorem 11.17.

To prove our main result for the [�, �]-domination problems, we will also need more
involved state transformations than those given above. We need to generalise the ideas
of the proof of Theorem 11.13. In this proof, we expanded the tables Al and Ar of the
two child nodes l and r such that they contain entries Al(c, i) and Ar(c, i), where i
was an index indicating the number of 1-states used to create the ?-states in c. We
will generalise this to the states used for the [�, �]-domination problems.

Below, we often say that a colouring c of a bag Xx using State Set I from Defi-
nition 11.14 is counted in a colouring c′ of Xx using State Set II. We let this be the
case when, all partial solutions counted in the entry with colouring c in a table using
State Set I are also counted in the entry with colouring c′ in the same table when
transformed such that it uses State Set II. I.e., when, for each vertex v ∈ Xx, c(v) and
c′(v) are both �-states or both �-states, and if c(v) = �i or c(v) = �i, then c′(v) = �≤j

or c′(v) = �≤j for some j ≥ i.

Consider the case where � and � are finite. We introduce an index vector i⃗ =
(i�1, i�2, . . . , i�p, i�1, i�2, . . . , i�q) that is used in combination with states from State
Set II from Definition 11.14. In this index vector, i�j and i�j represent the sum over
all vertices with state �≤j and �≤j of the number of neighbours of the vertex in D,
respectively. We say that a solution corresponding to a colouring c using State Set I
from Definition 11.14 satisfies a combination of a colouring c′ using State Set II and
an index vector i⃗ if: c is counted in c′, and for each i�j or i�j , the sum over all vertices
with state �≤j and �≤j in c′ of the number of neighbours of the vertex in D equals i�j
or i�j , respectively.

We clarify this with an example. Suppose that we have a bag of size three
and a dynamic programming table indexed by colourings using the set of states
{�0, �1, �2, �0} (State Set I) that we want to transform to one using the set states
{�0, �≤1, �≤2, �0} (State Set II): thus i⃗ = (i�1, i�2). Notice that a partial solution cor-
responding to the colouring c = (�0, �1, �2) will be counted in both c′1 = (�0, �≤2, �≤2)

and c′2 = (�≤1, �≤1, �≤2). In this case, c satisfies the combination (c′1, i⃗ = (0, 3)) since
the sum of the subscripts of the states in c of the vertices with state �≤1 in c′1 equals
zero and this sum for the vertices with state �≤2 in c′1 equals three. Also, c satisfies
no combination of c′1 with an other index vector. Similarly, c satisfies the combination
(c′2, i⃗ = (1, 2)) and no other combination involving c′2.

In the case where � or � are cofinite, the index vectors are one shorter: we do not
count the sum of the number of neighbours in D of the vertices with state �ℕ and �ℕ.

What we will need is a table containing, for each possible combination of a colouring
using State Set II with an index vector, the number of partial solutions that satisfy
these. We can construct such a table using the following lemma.

Lemma 11.16. Let x be a node of a tree decomposition T of width k. There exists an
algorithm that, given a table Ax with entries Ax(c, �) containing the number of partial
solutions of size � to the [�, �]-domination problem corresponding to the colouring c on
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the bag Xx using State Set I from Definition 11.14, computes in O(n(sk)s−1sk+1i+(n))
time a table A′

x with entries A′
x(c, �, i⃗) containing the number partial solutions of size �

to the [�, �]-domination problem satisfying the combination of a colouring using State
Set II and the index vector i⃗.

Proof. We start with the following table A′
x using State Set I:

A′
x(c, �, i⃗) =

{

Ax(c, �) if i⃗ is the all-0 vector
0 otherwise

Since there are no colourings with states �≤j and �≤j yet, the sum of the number of
neighbours in the vertex set D of the partial solutions of vertices with these states is
zero.

Next, we change the states of the j-th coordinate at step j similar to Lemma 11.15,
but now we also updates the index vector i⃗:

A′
x(c1 × {�≤j} × c2, �, i⃗) =

j
∑

l=0

A′
x(c1 × {�l} × c2, �, i⃗i�j→(i�j−l))

A′
x(c1 × {�≤j} × c2, �, i⃗) =

j
∑

l=0

A′
x(c1 × {�l} × c2, �, i⃗i�j→(i�j−l))

Here, i⃗i�j→(i�j−l) denotes the index vector i⃗ with the value of i�j set to i�j − l.
If � or � are cofinite, we simply use the formula in Lemma 11.15 for every fixed

index vector i⃗ for the �ℕ-states and �ℕ-states. We do so because we do not need to
keep track of any index vectors for these states.

For the running time, note that each index i�j , i�j can have only values between
zero and sk because there can be at most k vertices in Xx that each have at most s
neighbours in D when considered for a state of the form �≤j or �≤j , as j < p or j < q,
respectively. The new table has O(n(sk)s−2sk+1) entries since we have sk+1 colourings,
n + 1 sizes �, and s − 2 indices that range over sk values. Since the algorithm uses
at most k + 1 steps in which it computes a sum with less than s terms for each entry
using n-bit numbers, this gives a running time of O(n(sk)s−1sk+1i+(n)).

We are now ready to prove our main result of this section.

Theorem 11.17. Let �, � ⊆ ℕ be finite or cofinite, and let p, q and s be the values
associated with the corresponding [�, �]-domination problem. There is an algorithm
that, given a tree decomposition of a graph G of width k, computes the number of
[�, �]-dominating sets in G of each size �, 0 ≤ � ≤ n, in O(n3(sk)2(s−2)sk+1i×(n))
time.

Notice that, for any given [�, �]-domination problem, s is a fixed constant. Hence,
Theorem 11.17 gives us O∗(sk)-time algorithms for these problems.

Proof. Before we give the computations involved for each type of node in a nice tree
decomposition T , we slightly change the meaning of the subscript of the states �condition
and �condition. In our algorithm, we let the subscripts of these states count only
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the number of neighbours in the vertex sets D of the partial solution of the [�, �]-
domination problem that have already been forgotten by the algorithm. This prevents
us from having to keep track of any adjacencies within a bag during a join operation.
We will update these subscripts in the forget nodes. This modification is similar to
the approach for counting perfect matchings in the proof of Theorem 11.13, where
we matched vertices in a forget node to make sure that we did not have to deal with
vertices that are matched within a bag when computing the table for a join node.

We will now give the computations for each type of node in a nice tree decom-
position T . For each node x ∈ T , we will compute a table Ax(c, �) containing the
number of partial solutions of size � in Gx corresponding to the colouring c on Xx for
all colourings c using State Set I from Definition 11.14 and all 0 ≤ � ≤ n. During
this computation, we will transform to different sets of states using Lemmas 11.15
and 11.16 when necessary.

Leaf node: Let x be a leaf node in T .
Because the subscripts of the states count only neighbours in the vertex set of the

partial solutions that have already been forgotten, we use only the states �0 and �0

on a leaf. Furthermore, the number of �-states must equal �. As a result, we can
compute Ax in the following way:

Ax(c, �) =

⎧

⎨

⎩

1 if c = {�0} and � = 0
1 if c = {�0} and � = 1
0 otherwise

Introduce node: Let x be an introduce node in T with child node y introducing the
vertex v.

Again, the entries where v has the states �j or �j , for j ≥ 1, will be zero due to
the definition of the (subscripts of) the states. Also, we must again keep track of the
size �. Let & be the state of the introduced vertex. We compute Ax in the following
way:

Ax(c× {&}, �) =

⎧

⎨

⎩

Ay(c, �) if & = �0
Ay(c, �− 1) if & = �0 and � ≥ 1
0 otherwise

Forget node: Let x be a forget node in T with child node y forgetting the vertex v.
The operations performed in the forget node are quite complicated. Here, we must

update the states such that they are correct after forgetting the vertex v, and we
must select those solutions that satisfy the constraints imposed on v by the specific
[�, �]-domination problem. We will do this in three steps: we compute intermediate
tables A1, A2 in the first two steps and finally Ax in step three. Let c(N(v)) be the
subcolouring of c restricted to vertices in N(v).

Step 1 : We update the states used on the vertex v. We do so to include the neigh-
bours in D that the vertex v has inside the bag Xx in the states used to represent the
different characteristics. Notice that after including these neighbours, the subscripts
of the states on v represent the total number of neighbours that v has in D. The re-
sult will be the table A1, which we compute using the following formulas where #�(c)
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stands for the number of �-states in the colouring c:

A1(c× {�j}, �) =

{

Ay(c× {�j−#�(c(N(v)))}, �) if j ≥ #�(c(N(v)))
0 otherwise

A1(c× {�j}, �) =

{

Ay(c× {�j−#�(c(N(v)))}, �) if j ≥ #�(c(N(v)))
0 otherwise

If � or � are cofinite, we also need the following formulas:

A1(c× {�≥p}, �) = Ay(c× {�≥p}, �) +
p−1
∑

i=p−#�(c(N(v)))

Ay(c× {�i}, �)

A1(c× {�≥q}, �) = Ay(c× {�≥q}, �) +
q−1
∑

i=q−#�(c(N(v)))

Ay(c× {�i}, �)

Correctness of these formulas is easy to verify.
Step 2 : We update the states representing the neighbours of v such that they are

according to their definitions after forgetting v. All the required information to do
this can again be read from the colouring c.

We apply Lemma 11.15 and change the state representation for the vertices in N(v)
to State Set III (Definition 11.14) obtaining the table A′

1(c, �); we do not change the
representation of other vertices in the bag. That is, if � or � are cofinite, we replace
the last state �≥p or �≥q by �≥p−1 or �≥q−1, respectively, on vertices in Xy ∩ N(v).
We can do so as discussed in Remark 11.1.

This state change allows us to extract the required values for the table A2, as we
will show next. We introduce the function � that will send a colouring using State
Set I to a colouring that uses State Set I on the vertices in Xy ∖N(v) and State Set III
on the vertices in Xy ∩N(v). This function updates the states used on N(v) assuming
that we would put v in the vertex set D of the partial solution. We define � in the
following way: it maps a colouring c to a new colouring with the same states on vertices
in Xy ∖N(v) while it applies the following replacement rules on the states on vertices
in Xy ∩ N(v): �1 7→ �0, �2 7→ �1, . . . , �p 7→ �p−1, �≥p 7→ �≥p−1, �1 7→ �0, �2 7→ �1,
. . . , �q 7→ �q−1, �≥q 7→ �≥q−1. Thus, � lowers the counters in the conditions that
index the states by one for states representing vertices in N(v). We note that �(c) is
defined only if �0, �0 ∕∈ c.

Using this function, we can easily update our states as required:

A2(c× {�j}, �) =

{

A′
1(�(c)× {�j}, �) if �0, �0 ∕∈ c(N(v))

0 otherwise

A2(c× {�j}, �) = A′
1(c× {�j}, �)

In words, for partial solutions on which the vertex v that we will forget has a �-state,
we update the states for vertices in Xy ∩ N(v) such that the vertex v is counted in
the subscript of the states. Entries in A2 are set to 0 if the states count no neighbours
in D while v has a �-state in c and thus a neighbour in D in this partial solution.

Notice that after updating the states using the above formula the colourings c in A2

again uses State Set I from Definition 11.14.
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Step 3 : We select the solutions that satisfy the constraints of the specific [�, �]-
domination problem on v and forget v.

Ax(c, �) =

⎛

⎝

∑

i∈�

A2(c× {�i}, �)

⎞

⎠+

(

∑

i∈�

A2(c× {�i}, �)
)

We slightly abuse our notation here when � or � are cofinite. Following the discussion
of the construction of the table Ax, we conclude that this correctly computes the
required values.

Join node: Let x be a join node in T and let l and r be its child nodes. Computing
the table Ax for the join node x is the most interesting operation.

First, we transform the tables Al and Ar of the child nodes such that they use
State Set II (Definition 11.14) and are indexed by index vectors using Lemma 11.16.
As a result, we obtain tables A′

l and A′
r with entries A′

l(c, �, g⃗) and A′
r(c, �, ℎ⃗). These

entries count the number of partial solutions of size � corresponding to the colouring c
such that the sum of the number of neighbours in D of the set of vertices with each
state equals the value that the index vectors g⃗ and ℎ⃗ indicate. Here, D is again the
vertex set of the partial solution involved. See the example above the statement of
Lemma 11.16.

Then, we compute the table Ax(c, �, i⃗) by combining identical states from A′
l and A′

r

using the formula below. In this formula, we sum over all ways of obtaining a partial
solution of size � by combining the sizes in the tables of the child nodes and all ways
of obtaining index vector i⃗ from i⃗ = g⃗ + ℎ⃗.

A′
x(c, �, i⃗) =

∑

�l+�r=�+#�(c)

⎛

⎝

∑

i�1=g�1+ℎ�1

⋅ ⋅ ⋅
∑

i�q=g�q+ℎ�q

A′
l(c, �l, g⃗) ⋅A′

r(c, �r, ℎ⃗)

⎞

⎠

We observe the following: a partial solution D in A′
x that is a combination of

partial solutions from A′
l and A′

r is counted in an entry in A′
x(c, �, i⃗) if and only if it

satisfies the following three conditions.

1. The sum over all vertices with state �≤j and �≤j of the number of neighbours of
the vertex in D of this combined partial solution equals i�j or i�j , respectively.

2. The number of neighbours in D of each vertex with state �≤j or �≤j of both
partial solutions used to create this combined solution is at most j.

3. The total number of vertices in D in this joined solution is �.

Let Σl
�(c), Σ

l
�(c) be the weighted sums of the number of �j-states and �j-states

with 0 ≤ j ≤ l in c, respectively, defined by:

Σl
�(c) =

l
∑

j=1

j ⋅#�j
(c) Σl

�(c) =

l
∑

j=1

j ⋅#�j
(c)

We note that Σ1
�(c) = #�1

(c) and Σ1
�(c) = #�1

(c).
Now, using Lemma 11.15, we change the states used in the table A′

x back to State
Set I. If � and � are finite, we extract the values computed for the final table Ax in
the following way:

Ax(c, �) = A′
x

(

c, �, (Σ1
�(c),Σ

2
�(c), . . . ,Σ

p
�(c),Σ

1
�(c),Σ

2
�(c), . . . ,Σ

q
�(c))

)
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If � or � are cofinite, we use the same formula but omit the components Σp
�(c) or Σq

�(c)
from the index vector of the extracted entries, respectively.

Below, we will prove that the entries in Ax are exactly the values that we want
to compute. We first give some intuition. In essence, the proof is a generalisation
of how we performed the join operation for #Perfect Matching in the proof of
Theorem 11.13. State Set II has the role of the ?-states in the proof of Theorem 11.13.
These states are used to count possible combinations of partial solutions from Al

and Ar. These combinations include incorrect combinations in the sense that a vertex
can have more neighbours in D than it should have; this is analogous to #Perfect

Matching, where combinations were incorrect if a vertex is matched twice. The values
Σl

�(c) and Σl
�(c) represent the total number of neighbours in D of the vertices with

a �j-states or �j-states with 0 ≤ j ≤ l in c, respectively. The above formula uses these
Σl

�(c) and Σl
�(c) to extract exactly those values from the table A′

x that correspond to
correct combinations. That is, in this case, correct combinations for which the number
of neighbours of a vertex in D is also correctly represented by the new states.

We will now prove that the computation of the entries in Ax gives the correct
values. An entry in Ax(c, �) with c ∈ {�0, �0}k is correct: these states are unaffected
by the state changes and the index vector is not used. The values of these entries
follow from combinations of partial solutions from both child nodes corresponding to
the same states on the vertices.

Now consider an entry in Ax(c, �) with c ∈ {�0, �1, �0}k. Each �1-state comes from
a �≤1-state in A′

x(c, �, i⃗) and is a combination of partial solutions from Al and Ar with
the following combinations of states on this vertex: (�0, �0), (�0, �1), (�1, �0), (�1, �1).
Because we have changed states back to State Set I, each (�0, �0) combination is
counted in the �0-state on this vertex, and thus subtracted from the combinations
used to form state �1: the other three combinations remain counted in the �1-state.
Since we consider only those solutions with index vector i�1

= Σ1
�(c), the total number

of �1-states used to form this joined solution equals Σ1
�(c) = #�1

(c). Therefore, no
(�1, �1) combination could have been used, and each partial solution counted in A(c, �)
has exactly one neighbour in D on each of the �1-states, as required.

We can now inductively repeat this argument for the other states. For c ∈
{�0, �1, �2, �0}k, we know that the entries with only �0-states and �1-states are correct.
Thus, when a �2-state is formed from a �≤2-state during the state transformation of
Lemma 11.15, all nine possibilities of getting the state �≤2 from the states �0, �1,
and �2 in the child bags are counted, and from this number all three combinations
that should lead to a �0 and �1 in the join are subtracted. What remains are the com-
binations (�0, �2), (�1, �2), (�2, �2), (�1, �1), (�1, �2), (�2, �0). Because of the index
vector of the specific the entry we extracted from A′

x, the total sum of the number of
neighbours in D of these vertices equals Σ2

�, and hence only the combinations (�0, �2),
(�1, �1), and (�2, �0) could have been used. Any other combination would raise the
component i�2 of i⃗ to a number larger than Σ2

�.
If we repeat this argument for all states involved, we conclude that the above

computation correctly computes Ax if � and � are finite. If � or � are cofinite, then
the argument can also be used with one small difference. Namely, the index vectors
are one component shorter and keep no index for the states �ℕ and �ℕ. That is, at the
point in the algorithm where we introduce these index vectors and transform to State
Set II using Lemma 11.16, we have no index corresponding to the sum of the number
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of neighbours in the vertex set D of the partial solution of the vertices with states �ℕ
and �ℕ. However, we do not need to select entries corresponding to having p or q
neighbours in D for the states �≥p and �≥q since these correspond to all possibilities
of getting at least p or q neighbours in D. When we transform the states back to State
Set I just before extracting the values for Ax from A′

x, entries that have the state �≥p

or �≥q after the transformation count all possible combinations of partial solutions
except those counted in any of the other states. This is exactly what we need since all
combinations with less than p (or q) neighbours are present in the other states.

After traversing the whole decomposition tree T , one can find the number of [�, �]-
dominating sets of size � in the table computed for the root node z of T in Az(∅, �).

We conclude with an analysis of the running time. The most time-consuming
computations are again those involved in computing the table Ax for a join node x.
Here, we need O(n(sk)s−1sk+1i+(n)) time for the transformations of Lemma 11.16
that introduce the index vectors since max{∣Xx∣ ∣ x ∈ T} = k + 1. However, this is
still dominated by the time required to compute the table A′

x: this table contains at
most sk+1n(sk)s−2 entries A′

x(c, �, i⃗), each of which is computed by an n(sk)s−2-term
sum. This gives a total time of O(n2(sk)2(s−2)sk+1i×(n)) since we use n-bit numbers.
Because the nice tree decomposition has O(n) nodes, we conclude that the algorithm
runs in O(n3(sk)2(s−2)sk+1i×(n)) time in total.

This proof generalises ideas from the fast subset convolution algorithm [28]. While
convolutions use ranked Möbius transforms [28], we use transformations with multiple
states and multiple ranks in our index vectors.

The polynomial factors in the proof of Theorem 11.17 can be improved in several
ways. Some improvements we give are for [�, �]-domination problems in general, and
others apply only to specific problems. Similar to s = p+ q + 2, we define the value r
associated with a [�, �]-domination problems as follows:

r =

⎧





⎨





⎩

max{p− 1, q − 1} if � and � are cofinite
max{p, q − 1} if � is finite and � is cofinite
max{p− 1, q} if � is confinite and � is finite
max{p, q} if � and � are finite

Corollary 11.18 (General [�, �]-Domination Problems). Let �, � ⊆ ℕ be finite or
cofinite, and let p, q, r, and s be the values associated with the corresponding [�, �]-
domination problem. There is an algorithm that, given a tree decomposition of a
graph G of width k, computes the number of [�, �]-dominating sets in G of each size �,
0 ≤ � ≤ n, in O(n3(rk)2rsk+1i×(n)) time. Moreover, there is an algorithm that decides
whether there exist a [�, �]-dominating set of size �, for each individual value of �,
0 ≤ � ≤ n, in O(n3(rk)2rsk+1i×(log(n) + k log(r))) time.

Proof. We improve the polynomial factor (sk)2(s−2) to (rk)2r by making the following
observation. We never combine partial solutions corresponding to a �-state in one
child node with a partial solution corresponding to a �-state on the same vertex in
the other child node. Therefore, we can combine the components of the index vector
related to the states �j and �j for each fixed j in a single index. For example consider
the �1-states and �1-states. For these states, this means the following: if we index
the number of vertices used to create a �1-state and �1-state in i1 and we have i1
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vertices on which a partial solution is formed by considering the combinations (�0, �1),
(�1, �0), (�1, �1), (�0, �1), (�1, �0), or (�1, �1), then non of the combinations (�1, �1)
and (�1, �1) could have been used. Since the new components of the index vector range
between 0 and rk, this proves the first running time in the statement of the corollary.

The second running time follows from reasoning similar to that in Corollary 11.10.
In this case, we can stop counting the number of partial solutions of each size and
instead keep track of the existence of a partial solution of each size. The state trans-
formations then count the number of 1-entries in the initial tables instead of the number
of solutions. After computing the table for a join node, we have to reset all entries e
of Ax to min{1, e}. For these computations, we can use O(log(n) + k log(r))-bit num-
bers. This is because of the following reasoning. For a fixed colouring c using State
Set II, each of the at most rk+1 colourings using State Set I that can be counted in c
occur with at most one index vector in the tables A′

l and A′
r. Note that these are rk+1

colourings, not sk+1 colourings, since �-states are never counted in a colouring c where
the vertex has a �-state and vice versa. Therefore, the result of the large summation
over all index vectors g⃗ and ℎ⃗ with i⃗ = g⃗ + ℎ⃗ can be bounded from above by (rk)2.
Since we sum over n possible combinations of sizes, the maximum is nr2k allowing us
to use O(log(n) + k log(r))-bit numbers.

As a result, we can, for example, compute the size of a minimum-cardinality perfect
code in O(n3k23ki×(log(n))) time. Note that the time bound follows because the
problem is fixed and we use a computational model with O(k)-bit word size.

Corollary 11.19 ([�, �]-Optimisation Problems with the de Fluiter Property). Let
�, � ⊆ ℕ be finite or cofinite, and let p, q, r, and s be the values associated with the
corresponding [�, �]-domination problem. If the standard representation using State
Set I of the minimisation (or maximisation) variant of this [�, �]-domination problem
has the de Fluiter property for treewidth with function f , then there is an algorithm
that, given a tree decomposition of a graph G of width k, computes the number of
minimum (or maximum) [�, �]-dominating sets in G in O(n(f(k))2(rk)2rsk+1i×(n))
time. Moreover, there is an algorithm that computes the minimum (or maximum) size
of such a [�, �]-dominating set in O(n(f(k))2(rk)2rsk+1i×(log(n) + k log(r))) time.

Proof. The difference with the proof of Corollary 11.18 is that, similar to the proof of
Corollary 11.8, we can keep track of the minimum or maximum size of a partial solution
in each node of the tree decomposition and consider only other partial solutions whose
size differs at most f(k) of this minimum or maximum size. As a result, both factors n
(the factor n due to the size of the tables, and the factor n due to the summation over
the sizes of partial solutions) are replaced by a factor f(k).

As an application of Corollary 11.19, it follows for example that 2-Dominating

Set can be solved in O(nk63ki×(log(n))) time.

Corollary 11.20 ([�, �]-Decision Problems). Let �, � ⊆ ℕ be finite or cofinite, and
let p, q, r, and s be the values associated with the corresponding [�, �]-domination
problem. There is an algorithm that, given a tree decomposition of a graph G of
width k, counts the number of [�, �]-dominating sets in G in O(n(rk)2rsk+1i×(n)) time.
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Moreover, there is an algorithm that decides whether there exists a [�,�]-dominating
set in O(n(rk)2rsk+1i×(log(n) + k log(r))) time.

Proof. This result follows similarly as Corollary 11.19. In this case, we can omit the
size parameter from our tables, and we can remove the sum over the sizes in the
computation of entries of A′

x completely.

As an application of Corollary 11.20, it follows for example that we can compute
the number of strong stable sets (distance-2 independent sets) in O(nk23ki×(n)) time.

11.6. Clique Covering, Clique Packing, and Clique Par-
titioning Problems

We conclude this chapter by considering another type of problems for which we give
the currently fastest algorithms on tree decompositions: a series of clique covering,
packing, and partitioning problems. To give a general type of result applying to many
different problems, we define three classes of problems that we call 
-clique covering,

-clique packing, and 
-clique partitioning problems. For all these problems, we obtain
O∗(2k) algorithms.

We start by defining the 
-clique problems. Their definitions resemble the definition
of [�, �]-domination problems.

Definition 11.21 (
-Clique Covering, Packing and Partitioning). Let 
 ⊆ ℕ ∖ {0},
let G be a graph, and let C be a collection of cliques from G such that the size of every
clique in C is contained in 
. We define the following notions:

∙ C is a 
-clique cover of G if C covers the vertices of G, i.e,
∪

C∈C
C = V .

∙ C is a 
-clique packing of G if the cliques are disjoint, i.e, for any two C1, C2 ∈ C:
C1 ∩ C2 = ∅.

∙ C is a 
-clique partitioning of G if it is both a 
-clique cover and a 
-clique
packing.

The corresponding computational problems are defined in the following way. The

-clique covering problems ask for the cardinality of the smallest 
-clique cover. The

-clique packing problems ask for the cardinality of the largest 
-clique packing. The

-clique partitioning problems ask whether a 
-clique partitioning exists. For these
problems, we also consider their minimisation, maximisation, and counting variants.
See Table 11.2 for some concrete example problems. We note that clique covering
problems in the literature often ask to cover all the edges of a graph: here we cover
only the vertices.

Throughout this section, we assume that 
 is decidable in polynomial-time, that
is, for every j ∈ ℕ we can decide in time polynomial in j whether j ∈ 
. This allows
us to precompute 
 ∩ {1, 2, . . . , k + 1} in time polynomial in k, after which we can
decide in constant time whether a clique of size l is allowed to be used in an associated
covering, packing, or partitioning.

We start by giving algorithms for the 
-clique packing and partitioning problems.
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 problem type Standard problem description
{1, 2, . . .} partitioning, minimisation Minimum clique partition
{2} partitioning, counting Count perfect matchings
{3} covering Minimum triangle cover of vertices
{3} packing Maximum triangle packing
{3} partitioning Partition into triangles
{p} partitioning Partition into p-cliques
{1, 3, 5, 7, . . .} covering Minimum cover by odd-cliques

Table 11.2. 
-clique covering, packing and partitioning problems.

Theorem 11.22. Let 
 ⊆ ℕ∖{0} be polynomial-time decidable. There is an algorithm
that, given a tree decomposition of a graph G of width k, computes the number
of 
-clique packings or 
-clique partitionings of G using �, 0 ≤ � ≤ n, cliques in
O(n3k22ki×(nk + n log(n))) time.

Proof. Before we start dynamic programming on the tree decomposition T , we first
compute the set 
 ∩ {1, 2, . . . , k + 1}.

We use states 0 and 1 for the colourings c, where 1 means that a vertex is already
in a clique in the partial solution, and 0 means that the vertex is not in a clique
in the partial solution. For each node x ∈ T , we compute a table Ax with entries
Ax(c, �) containing the number of 
-clique packings or partitionings of Gx consisting
of exactly � cliques that satisfy the requirements defined by the colouring c ∈ {1, 0}∣Xx∣,
for all 0 ≤ � ≤ n.

The algorithm uses the well-known property of tree decompositions that for every
clique C in the graph G, there exists a node x ∈ T such that C is contained in the
bag Xx (a nice proof of this property can be found in [47]). As every vertex in G
is forgotten in exactly one forget node in T , we can implicitly assign a unique forget
node xC to every clique C, namely the first forget node that forgets a vertex from C.
In this forget node xC , we will update the dynamic programming tables such that they
take the choice of whether to pick C in a solution into account.

Leaf node: Let x be a leaf node in T . We compute Ax in the following way:

Ax({0}, �) =
{

1 if � = 0
0 otherwise

Ax({1}, �) = 0

Since we decide to take cliques in a partial solution only in the forget nodes, the only
partial solution we count in Ax is the empty solution.

Introduce node: Let x be an introduce node in T with child node y introducing the
vertex v. Deciding whether to take a clique in a solution in the corresponding forget
nodes makes the introduce operation trivial since the introduced vertex must have
state 0:

Ax(c× {1}, �) = 0 Ax(c× {0}, �) = Ay(c, �)

Join node: In contrast to previous algorithms, we will first present the computations
in the join nodes. We do so because we will use this operation as a subroutine in the
forget nodes.
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× 0 1

0 0 1
1 1

× 0 1

0 0 1
1 1 1

Figure 11.3. Join tables for 
-clique problems: the left table corresponds to
partitioning and packing problems and the right table corresponds to covering
problems.

Let x be a join node in T and let l and r be its child nodes. For the 
-clique
partitioning and packing problems, the join is very similar to the join in the algorithm
for counting the number of perfect matchings (Theorem 11.13). This can be seen from
the corresponding join table; see Figure 11.3. The only difference is that we now also
have the size parameter �. Hence, for y ∈ {l, r}, we first create the tables A′

y with
entries A′

y(c, �, i), where i indexes the number of 1-states in c. Then, we transform
the set of states used for these tables A′

y from {1, 0} to {0, ?} using Lemma 11.12,
and compute the table A′

x, now with the extra size parameter �, using the following
formula:

A′
x(c, �, i) =

∑

�l+�r=�

∑

i=il+ir

A′
l(c, �l, il) ⋅A′

r(c, �r, ir)

Finally, the states in A′
x are transformed back to the set {0, 1}, after which the entries

of Ax can be extracted that correspond to the correct number of 1-states in c. Because
the approach described above is a simple extension of the join operation in the proof
of Theorem 11.13 which was also used in the proof of Theorem 11.17, we omit further
details.

Forget node: Let x be a forget node in T with child node y forgetting the vertex v.
Here, we first update the table Ay such that it takes into account the choice of taking
any clique in Xy that contains y in a solution or not.

Let M be a table with all the (non-empty) cliques C in Xy that contain the vertex v
and such that ∣C∣ ∈ 
, i.e., M contains all the cliques that we need to consider before
forgetting the vertex v. We notice that the operation of updating Ay such that it takes
into account all possible ways of choosing the cliques in M is identical to letting the
new Ay be the result of the join operation on Ay and the following table AM :

AM (c×{1}, �) =

⎧

⎨

⎩

1 if all the 1-states in c form a clique with v in M and �=1
1 if c is the colouring with only 0-states and �=0
0 otherwise

AM (c×{0}, �) = 0

It is not hard to see that this updates Ay as required since AM (c, �) is non-zero only
when a clique in M is used with size � = 1, or if no clique is used and � = 0.

If we consider a partitioning problem, then Ax(c, �) = Ay(c× {1}, �) since v must
be contained in a clique. If we consider a packing problem, then Ax(c, �) = Ay(c ×
{1}, �) + Ay(c× {0}, �) since v can but does not need to be in a clique. Clearly, this
correctly computes Ay.
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After computing Az for the root node z of T , the number of 
-clique packings or
partitionings of each size � can be found in Az(∅, �).

For the running time, we first observe that there are at most O(n2k) cliques in G
since T has O(n) nodes that each contain at most k + 1 vertices. Hence, there are
at most O((n2k)n) ways to pick at most n cliques, and we can work with O(nk +
n log(n))-bit numbers. As a join and a forget operation require O(n2k22k) arithmetical
operations, the running time is O(n3k22ki×(nk + n log(n))).

For the 
-clique covering problems, the situation is different. We cannot count
the number of 
-clique covers of all possible sizes, as the size of such a cover can
be arbitrarily large. Even if we restrict ourselves to counting covers that contain
each clique at most once, then we need numbers with an exponential number of bits.
To see this, notice that the number of cliques in a graph of treewidth k is at most
O∗(2k) since there are at most O(2k) different cliques in each bag. Hence, there are at
most 2O

∗(2k) different clique covers, and these can be counted using only O∗(2k)-bit
numbers. Therefore, we will restrict ourselves to counting covers of size at most n
because minimum covers will never be larger than n.

A second difference is that, in a forget node, we now need to consider covering the
forgotten vertex multiple times. This requires a slightly different approach.

Theorem 11.23. Let 
 ⊆ ℕ∖{0} be polynomial-time decidable. There is an algorithm
that, given a tree decomposition of a graph G of width k, computes the size and
number of minimum 
-clique covers of G in O(n3 log(k)2ki×(nk + n log(n))) time.

Proof. The dynamic programming algorithm for counting the number of minimum 
-
clique covers is similar to the algorithm of Theorem 11.22. It uses the same tables Ax

for every x ∈ T with entries Ax(c, �) for all c ∈ {0, 1}∣Xx∣ and 0 ≤ � ≤ n. And, the
computations of these tables in a leaf or introduce node of T are the same.

Join node: Let x be a join node in T and let l and r be its child nodes. The join
operation is different from the join operation in the algorithm of Theorem 11.22 as
can be seen from Figure 11.3. Here, the join operation is similar to our method of
handling the 01-states and 00-states for the Dominating Set problem in the algo-
rithm of Theorem 11.7. We simply transform the states in Al and Ar to {0, ?} and
compute Ax using these same states by summing over identical entries with different
size parameters:

Ax(c, �) =
∑

�l+�r=�

Al(c, �l) ⋅Ar(c, �r)

Then, we obtain the required result by transforming Ax back to using the set of states
{1, 0}. We omit further details because this works analogously to Theorem 11.7. The
only difference with before is that we use the value zero for any Al(c, �l) or Ar(c, �r)
with �l, �r < 0 or �l, �r > n as these never contribute to minimum clique covers.

Forget node: Let x be a forget node in T with child node y forgetting the vertex v. In
contrast to Theorem 11.22, we now have to consider covering v with multiple cliques.
In a minimum cover, v can be covered at most k times because there are no vertices
in Xx left to cover after using k cliques from Xx.
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Let AM be as in Theorem 11.22. What we need is a table that contains more
than just all cliques that can be used to cover v: it needs to count all combinations of
cliques that we can pick to cover v at most k times indexed by the number of cliques
used. To create this new table, we let A0

M = AM , and let Aj
M be the result of the join

operation applied to the table Aj−1
M with itself. Then, the table Aj

M counts all ways
of picking a series of 2j sets C1, C2, . . . , C2j , where each set is either the empty set or
a clique from M . To see that this holds, compare the definition of the join operation
for this problem to the result of executing these operations repeatedly. The algorithm
computes A⌈log(k)⌉

M . Because we want to know the number of clique covers that we can
choose, and not the number of series of 2⌈log(k)⌉ sets C1, C2, . . . , C2⌈log(k)⌉ , we have to
compensate for the fact that most covers are counted more than once. Clearly, each
cover consisting of � cliques corresponds to a series in which 2⌈log(k)⌉−� empty sets are

picked: there are
(

2⌈log(k)⌉

�

)

possibilities of picking the empty sets and �! permutations
of picking each of the � cliques in any order. Hence, we divide each entry AM (c, �) by

�!
(

2⌈log(k)⌉

�

)

. Now, A⌈log(k)⌉
M contains the numbers we need for a join with Ay.

After performing the join operation with Ay and A
⌈log(k)⌉
M obtaining a new table Ay,

we select the entries of Ay that cover v: Ax(c, �) = Ay(c× {1}, �).
If we have computed Az for the root node z of T , the size of the minimum 
-clique

cover equals the smallest � for which Az(∅, �) is non-zero, and this entry contains the
number of such sets.

For the running time, we find that in order to compute A
⌈log(k)⌉
M , we need O(log(k))

join operations. The running time then follows from the same analysis as in Theo-
rem 11.22.

Similar to previous results, we can improve the polynomial factors involved.

Corollary 11.24. Let 
 ⊆ ℕ ∖ {0} be polynomial-time decidable. There are algorithms
that, given a tree decomposition of a graph G of width k:

1. decide whether there exists a 
-clique partition of G in O(nk22k) time.
2. count the number of 
-clique packings in G or the number of 
-clique partition-

ings in G in O(nk22ki×(nk + n log(n))) time.
3. compute the size of a maximum 
-clique packing in G, maximum 
-clique par-

titioning in G, or minimum 
-clique partitioning in G of a problem with the de
Fluiter property for treewidth in O(nk42k) time.

4. compute the size of a minimum 
-clique cover in G of a problem with the de
Fluiter property for treewidth in O(nk2 log(k)2k) time, or in in O(nk22k) time if
∣
∣ is a constant.

5. compute the number of maximum 
-clique packings in G, maximum 
-clique
partitionings in G, or minimum 
-clique partitionings in G of a problem with
the de Fluiter property for treewidth in O(nk42ki×(nk + n log(n))) time.

6. compute the number of minimum 
-clique covers in G of a problem with the de
Fluiter property for treewidth in O(nk2 log(k)2ki×(nk + n log(n))) time, or in
O(nk22ki×(nk + n log(n))) time if ∣
∣ is a constant.

Proof (Sketch). Similar to before. Either use the de Fluiter property to replace a
factor n2 by k2, or omit the size parameter to completely remove this factor n2 if
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possible. Moreover, we can use O(k)-bit numbers instead of O(nk + n log(n))-bit
numbers if we are not counting the number of solutions. In this case, we omit the time
required for the arithmetic operations because of the computational model that we
use with O(k)-bit word size. For the 
-clique cover problems where ∣
∣ is a constant,
we note that we can use Ap

M for some constant p because, in a forget node, we need
only a constant number of repetitions of the join operation on A0

M instead of log(k)
repetitions.

By this result, Partition Into Triangles can be solved in O(nk22k) time. For
this problem, Lokshtanov et al. proved that the given exponential factor in the running
time is optimal, unless the Strong Exponential-Time Hypothesis fails [227].

We note that in Corollary 11.24 the problem of deciding whether there exists a

-clique cover is omitted. This is because this problem can easily be solved without
dynamic programming on the tree decomposition by considering each vertex and test-
ing whether it is contained in a clique whose size is a member of 
. This requires
O(nk2k) time in general, and polynomial time if ∣
∣ is a constant.

11.7. Concluding Remarks

In this chapter, we have given exponentially faster algorithms on tree decompositions
for a large variety of problems. This exponential speed-up comes at the cost of addi-
tional polynomial factors in the running time. Further improvement of the base of the
exponent in the running time of many of these algorithms seems to be very hard as
this would disprove the Strong Exponential-Time Hypothesis.

Some of our algorithms can be used in practical situations and improve on pre-
vious algorithms in these situations. For example, consider the problems #Perfect

Matching or Partition Into Triangles. Our running time of nk22k is already
faster than the previously fastest n3k algorithm for k ≥ 13. For other problems such
as Dominating Set, our algorithm represents a smaller improvement since nk23k is
faster than n4k only for k ≥ 22; for these values the algorithm does not appear prac-
tical as 222322 ≈ 1013 (this in contrast to 132212 ≈ 106). For problems involving even
more states, our running times have only theoretical implications.

It would be interesting to see how much the polynomial factors can be improved.
For example, it is likely that one can replace the factor n2 in the running time of our
algorithm that counts the number of dominating sets of each size �, 0 ≤ � ≤ n, by a
factor n log(n) by evaluating the formula for a join node in the proof of Theorem 11.7
using fast Fourier transforms. This could also replace the factor k2 by k log(k) in
Corollary 11.10 and Theorem 11.13, and possibly improve the polynomial factors in
the running time in Corollaries 11.18-11.20 and Corollary 11.24.

As a final remark, we mention that, very recently, we have obtained O∗(ck) al-
gorithms for various problems on tree decompositions, for some constant c ≥ 2, for
which previously only O∗(kk) algorithms existed [88]. This includes problems like
Hamiltonian Cycle, Feedback Vertex Set, Steiner Tree, and Connected

Dominating Set. In this paper, the techniques presented in this chapter are used to
obtain algorithms for which the base of the exponent of the running time is small. For
many problems, the base c is so small that we can give proofs that no exponentially
faster algorithms exist unless the Strong Exponential-Time Hypothesis fails [88].
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12
Fast Dynamic Programming
on Branch Decompositions

The second type of graph decomposition we consider in this thesis are branch decompo-
sitions. Like tree decompositions, branch decompositions have shown to be an effective
tool for solving many combinatorial problems with both theoretical and practical ap-
plications. They are used extensively in designing algorithms for planar graphs and
for graphs excluding a fixed minor. In particular, most of the recent results aimed at
obtaining faster exact or parameterised algorithms on these graphs rely on branch de-
compositions [110, 113, 153, 154]. Practical algorithms using branch decompositions
include those for ring routing problems [81] and tour merging for the Travelling

Salesman Problem [82].
Recall the general two-step approach for graph-decomposition-based algorithms

from Chapter 11. Concerning the first step in this approach, we note that finding
the branchwidth of a graph is NP-hard in general [286]. For fixed k, one can find
a branch decomposition of width k in linear time, if such a decomposition exists, by
combining the results from [37] and [48]. This is similar to tree decompositions, and the
constant factors involved in this algorithm are very large. However, in contrast to tree
decompositions for which the complexity on planar graphs is unknown, there exists a
polynomial-time algorithm that computes a branch decomposition of minimal width of
a planar graph [286]. For general graphs several useful heuristics exist [81, 82, 182, 249].

Concerning the second step of the general two-step approach, Dorn has shown how
to use fast matrix multiplication to speed up dynamic programming algorithms on
branch decompositions [110]. Among others, he gave an O∗(4k) time algorithm for the
Dominating Set problem. On planar graphs, faster algorithms exist using so-called

†This chapter is joint work with Hans L. Bodlaender, Erik Jan van Leeuwen and Martin
Vatshelle. The chapter contains results of which a preliminary version has been presented at the 35th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2010) [50].
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sphere-cut branch decompositions [114]. On these graphs, Dominating Set can be
solved in O∗(3

!
2 k) time, where ! is the smallest constant such that two n×n matrices

can be multiplied in O(n!) time. Some of these results can be generalised to graphs
that avoid a minor [113]. We obtain the same results without requiring planarity.

Our Results. In this chapter, we show that one can count the number of dominating
sets of each given size in a graph in O∗(3

!
2 k) time. We also show that one can count

the number of perfect matchings in a graph in O∗(2
!
2 k) time, and we show that the

[�, �]-domination problems with finite or cofinite � and � can be solved in O∗(s
!
2 k),

where s is the natural number of states required to represent partial solutions.
These results are based on combining the approach on tree decompositions of Chap-

ter 11 with fast matrix multiplication to speed up dynamic programming as introduced
by Dorn [110]. To make this work efficiently, we introduce the use of asymmetric ver-
tex states. We note that matrix multiplication has been used for quite some time as a
basic tool for solving combinatorial problems; see, for example, the results mentioned
in Section 2.4 or in [190, 285]. One of the results of this chapter is that (generalisations
of) fast subset convolution and fast matrix multiplication can be combined to obtain
faster algorithms for many optimization problems.

Different from the results on tree decompositions in Chapter 11, the base of the
exponent of the running time of the algorithms in this chapter does not equal the base
of the exponent of their space requirement. That is, if the space requirement is O∗(sk),
our algorithms use O∗(s

!
2 k) time. This difference between the running times in both

chapters is due to the fact that the structure of a branch decomposition is different
from the structure of a tree decomposition. A tree decomposition can be transformed
into a nice tree decomposition, such that every join node x with children l, r has
Xx = Xr = Xl. But a branch decomposition does not have such a property: here we
need to consider combining partial solutions from both tables of the child edges while
forgetting and introducing new vertices at the same time.

Optimality, Polynomial Factors and Model of Computation. We note that, under
the hypothesis that ! = 2, which could be the true value of !, the running times of our
algorithms do attain the space bound. In this case, the base of the exponent of some of
the running times are optimal under the Strong Exponential-Time Hypothesis. This
follows from the results of Lokshtanov et al. [227] and the fact that the branchwidth
of any graph is at most its treewidth plus one (Proposition 12.2).

Similar to Chapter 11, we will spend some effort to make the polynomial factors in
the running times in this chapter small. Specifically, we want to obtain algorithms that
are linear in n whenever possible. The improvement of the polynomial factors may lead
to seemingly strange situations when the matrix multiplication constant is involved.
To see this, notice that ! is defined as the smallest constant such that two n × n
matrices can be multiplied in O(n!) time. Consequently, any polylogarithmic factor
in the running time of the corresponding matrix-multiplication algorithm disappears
in an infinitesimal increase of !. These polylogarithmic factors are additional polyno-
mial factor in the running times of our algorithms on branch decompositions. In our
analyses, we pay no extra attention to this, and we only explicitly give the polynomial
factors involved that are not related to the time required to multiply matrices.
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Finally, we note that we again use the notation i+(n) and i×(n) for the time
required to multiply and add n-bit numbers, respectively. Also, we analyse our algo-
rithms in the Random Access Machine (RAM) model with O(k)-bit word size [157],
where addition and multiplication are unit-time operations (i+(k) = i×(k) = O(1)).
We do so because of reasons similar to those given in Chapter 11.

Fast Matrix Multiplication. We defined ! to be the matrix multiplication constant,
that is, O(n!) is the time in which we can multiply two n × n matrices. Currently,
! < 2.376 due to the algorithm by Coppersmith and Winograd [83].

For multiplying a (n × p) matrix A and (p × n) matrix B, we differentiate be-
tween p ≤ n and p > n. Under the assumption that ! = 2.376, an O(n1.85p0.54)
time algorithm is known if p ≤ n [83]. Otherwise, the matrices can be multiplied in
O( pnn

!) = O(pn!−1) time by matrix splitting: split the matrices A and B into p
n many

n×n matrices A1, A2, . . . A p
n

and B1, B2, . . . B p
n
, multiply each of the p

n pairs Ai×Bi,
and sum up the results.

Organisation of the Chapter. This chapter is organised as follows. We begin with
an introduction to dynamic programming on branch decompositions in Section 12.1.
In this section, we give some definitions and an example algorithm for Dominating

Set. In the following sections, we give a series of faster dynamic programming algo-
rithms on branch decompositions. We give a faster algorithm for Dominating Set in
Section 12.2, a faster algorithm for #Perfect Matching in Section 12.3, and faster
algorithms for the [�, �]-domination problems in Section 12.4. Finally, we give some
concluding remarks in Section 12.5.

12.1. Introduction to Branchwidth-Based Algorithms

Branch decompositions are closely related to tree decompositions. Similar to tree
decompositions, one can solve many NP-hard problems in polynomial time on graphs
for which the branchwidth is bounded by a constant. If one is given a graph G with a
branch decomposition T of G of width k, then the running time of such an algorithm is
typically polynomial in the size of the graph G but exponential in the branchwidth k.
Because of the close relation between branch decompositions and tree decompositions,
a relation that is also reflected in Proposition 12.2, similar problems can be solved in
this way on both types on graph decompositions. For example, consider the algorithms
for Independent Set, Dominating Set, and many other problems that can be found
in [110], or the algorithm for Steiner Tree that can be found in [184].

In this section, we introduce some important ideas of branchwidth-based algo-
rithms. First, we give some definitions in Section 12.1.1. Thereafter, we present
an example of a dynamic programming algorithm on branch decompositions in Sec-
tion 12.1.2. This example algorithm will be the basis for all other algorithms presented
in this chapter. In Section 12.1.3, we conclude by defining the de Fluiter property for
branchwidth: a property similar to the de Fluiter property for treewidth defined in
Section 11.2.
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12.1.1. Definitions

Branch decompositions are related to tree decompositions and also originate from the
series of papers on graph minors by Robertson and Seymour [268].

Definition 12.1 (Branch Decomposition). A branch decomposition of a graph G is a
tree T in which each internal node has degree three and in which each leaf x of T has
an assigned edge ex ∈ E such that this assignment is a bijection between the leaves
of T and the edges E of G.

For a decomposition tree T , we often identify T with the set of nodes in T , and we
write E(T ) for the edges of T .

If we would remove any edge e from a branch decomposition T of G, then this
cuts T into two subtrees T1 and T2. In this way, the edge e ∈ E(T ) partitions the
edges of G into two sets E1, E2 where Ei contains exactly those edges in the leaves of
subtree Ti. The middle set Xe associated with the edge e ∈ E(T ) is defined to be the
set of vertices Xe ⊆ V that are both an endpoint of an edge in the edge partition E1

and an endpoint of an edge in the edge partition E2, where E1 and E2 are associated
with e. That is, if Vi =

∪

Ei, then Xe = V1 ∩ V2.
The width bw(T ) of a branch decomposition T is the size of the largest middle set

associated with the edges of T . The branchwidth bw(G) of a graph G is the minimum
width over all possible branch decompositions of G. In this chapter, we always assume
that a branch decomposition of the appropriate width is given.

Observe that vertices v of degree one in G are not in any middle set of a branch
decomposition T of G. Let u be the neighbour of such a vertex v. We include the
vertex v in the middle set of the edge e of T incident to the leaf of T that contains
{u, v}. This raises the branchwidth to max{2, bw(G)}. Throughout this chapter, we
ignore this technicality.

The treewidth tw(G) and branchwidth bw(G) of any graph G are related in the
following way:

Proposition 12.2 ([268]). For any graph G with branchwidth bw(G) ≥ 2:

bw(G) ≤ tw(G) + 1 ≤
⌊

3

2
bw(G)

⌋

To perform dynamic programming on a branch decomposition T , we need T to
be rooted. To create a root, we choose any edge e ∈ E(T ) and subdivide it creating
edges e1 and e2 and a new node y. Next, we create another new node z, which will be
our root, and add it together with the new edge {y, z} to T . The middle sets associated
with the edges created by the subdivision are set to Xe, i.e., Xe1 = Xe2 = Xe.
Furthermore, the middle set of the new edge {y, z} is the empty set: X{y,z} = ∅.

We use the following terminology for the edges in a branch decomposition T giving
similar names to edges as we would usually do to vertices. We call any edge of T that
is incident to a leaf but not the root a leaf edge. Any other edge is called a internal
edge. Let x be the lower endpoint of an internal edge e of T and let l, r be the other
two edges incident to x. We call the edges l and r the child edges of e.
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Definition 12.3 (Partitioning of Middle Sets). For a branch decomposition T , let
e ∈ E(T ) be an edge not incident to a leaf with left child l ∈ E(T ) and right child
r ∈ E(T ). We define the following partitioning of Xe ∪Xl ∪Xr:

1. The intersection vertices: I = Xe ∩Xl ∩Xr.
2. The forget vertices: F = (Xl ∩Xr) ∖ I.
3. The vertices passed from the left : L = (Xe ∩Xl) ∖ I.
4. The vertices passed from the right : R = (Xe ∩Xr) ∖ I.

Notice that this is a partitioning because any vertex in at least one of the sets Xe,
Xl, Xr must be in at least two of them by the definition of a middle set.

Because each bag has size at most k, the partitioning satisfies the properties:

∣I∣+ ∣L∣+ ∣R∣ ≤ k ∣I∣+ ∣L∣+ ∣F ∣ ≤ k ∣I∣+ ∣R∣+ ∣F ∣ ≤ k

We associate with each edge e ∈ E(T ) of a branch decomposition T the induced
subgraph Ge = G[Ve] of G. A vertex v ∈ V belongs to Ve in this definition if and only
if there is a middle set f with f = e or f below e in T with v ∈ Xf . That is, v is in Ve

if and only if v is an endpoint of an edge associated with a leaf of T that is below e
in T , i.e.:

Ge = G
[

∪

{Xf ∣ f = e or f is below e in T}
]

For an overview of branch-decomposition-based techniques, see [184].

12.1.2. An Example Algorithm for Dominating Set

Dynamic programming algorithms on branch decompositions work similar to those on
tree decompositions. The tree is traversed in a bottom-up manner while computing
tables Ae with partial solutions on Ge for every edge e of T . Again, the table Ae

contains partial solutions of each possible characteristic, where two partial solutions P1

and P2 have the same characteristic if any extension of P1 to a solution on G also is an
extension of P2 to a solution on G. After computing a table for every edge e ∈ E(T ),
we find a solution for the problem on G in the single entry of the table A{y,z}, where z
is the root of T and y is its only child node. Because the size of the tables is often (at
least) exponential in k, such an algorithm typically runs in O(f(k)poly(n)) time, for
some function f that grows at least exponentially.

As an introduction, we will first give a simple dynamic programming algorithm for
Dominating Set whose running time will be improved later. We note that a faster
algorithm exists; see [110].

Proposition 12.4. There is an algorithm that, given a branch decomposition of a
graph G of width k, counts the number of dominating sets in G of each size �,
0 ≤ � ≤ n, in O(mn26ki×(n)) time.

Proof. Let T be a branch decomposition of G rooted at a vertex z. For each edge e ∈
E(T ), we will compute a table Ae with entries Ae(c, �) for all c ∈ {1, 01, 00}Xe and all
0 ≤ � ≤ n. Here, c is a colouring with states 1, 01, and 00 that have the same meaning
as in the tree-decomposition-based algorithms: see Table 11.1 in Section 11.1.2. In the



246 Chap. 12: Fast Dynamic Programming on Branch Decompositions

table Ae, an entry Ae(c, �) equals the number of partial solutions of Dominating Set

of size � in Ge that satisfy the requirements defined by the colouring c on the vertices
in Xe. That is, the number of vertex sets D ⊆ Ve of size � that dominate all vertices
in Ve except for those with state 00 in colouring c of Xe, and that contain all vertices
in Xe with state 1 in c.

The described tables Ae are computed by traversing the decomposition tree T in
a bottom-up manner. A branch decompositions has only two kinds of edges for which
we need to compute such a table: leaf edges, and internal edges which have two child
edges.

Leaf edges: Let e be an edge of T incident to a leaf of T that is not the root. Then,
Ge = G[Xe] is a two-vertex graph with Xe = {u, v}. Note that {u, v} ∈ E.

We compute Ae in the following way:

Ae(c, �) =

⎧





⎨





⎩

1 if � = 2 and c = (1, 1)
1 if � = 1 and either c = (1, 01) or c = (01, 1)
1 if � = 0 and c = (00, 00)
0 otherwise

The entries in this table are zero unless the colouring c represents one of the four
possible partial solutions of Dominating Set on Ge and the size of this solution is �.
In these non-zero entries, the single partial solution represented by c is counted.

Internal edges: Let e be an internal edge of T with child edges l and r. Recall the
definition of the sets I, L, R, F induced by Xe, Xl, and Xr (Definition 12.3).

Given a colouring c, let c(I) denote the colouring of the vertices of I induced by c.
We define c(L), c(R), and c(F ) in the same way. Given a colouring ce of Xe, a col-
ouring cl of Xl, and a colouring cr of Xr, we say that these colourings match if they
correspond to a correct combination of two partial solutions with the colourings cl
and cr on Xl and Xr which result is a partial solution that corresponds to the colour-
ing ce on Xe. For a vertex in each of the four partitions I, L, R, and F of Xe∪Xl∪Xr,
this means something different:

∙ For any v ∈ I: either ce(v) = cl(v) = cr(v) ∈ {1, 00}, or ce(v) = 01 while
cl(v), cr(v) ∈ {00, 01} and not cl(v) = cr(v) = 00. (5 possibilities)

∙ For any v ∈ F : either cl(v) = cr(v) = 1, or cl(v), cr(v) ∈ {00, 01} while not
cl(v) = cr(v) = 00. (4 possibilities)

∙ For any v ∈ L: ce(v) = cl(v) ∈ {1, 01, 00}. (3 possibilities)
∙ For any v ∈ R: ce(v) = cr(v) ∈ {1, 01, 00}. (3 possibilities)

That is, for vertices in L or R, the properties defined by the colourings are copied
from Al and Ar to Ae. For vertices in I, the properties defined by the colouring ce is
a combination of the properties defined by cl and cr in the same way as it is for tree
decompositions (as in Proposition 11.3). For vertices in F , the properties defined by
the colourings are such that they form correct combinations in which the vertices may
be forgotten, i.e., such a vertex is in the vertex set of both partial solutions, or it is
not in the vertex set of both partial solutions while it is dominated.

Let �#1
= #1(cr(I∪F )) be the number of vertices that are assigned state 1 on I∪F

in any matching triple ce, cl, cr. We can count the number of partial solutions on Ge
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satisfying the requirements defined by each colouring ce on Xe using the following
formula:

Ae(ce, �) =
∑

ce,cl,cr match

∑

�l+�r=�+�#1

Al(cl, �l) ⋅Ar(cr, �r)

Notice that this formula correctly counts all possible partial solutions on Ge per cor-
responding colouring ce on Xe by counting all valid combinations of partial solutions
on Gl corresponding to a colouring cl on Xl and partial solutions Gr corresponding to
a colouring cr on Xr.

Let {y, z} be the edge incident to the root z of T . From the definition of A{y,z},
A{y,z}(∅, �) contains the number of dominating sets of size � in G{y,z} = G.

For the running time, we observe that we can compute Ae in O(n) time for all leaf
edges e of T . For the internal edges, we have to compute the O(n3k) values of Ae, each
of which requires O(n) terms of the above sum per set of matchings states. Since each
vertex in I has 5 possible matching states, each vertex in F has 4 possible matching
states, and each vertex in L or R has 3 possible matching states, we compute each Ae

in O(n25∣I∣4∣F ∣3∣L∣+∣R∣i×(n)) time.
Under the constraint that ∣I∣ + ∣L∣ + ∣R∣, ∣I∣ + ∣L∣ + ∣F ∣, ∣I∣ + ∣R∣ + ∣F ∣ ≤ k, the

running time is maximal if ∣I∣ = 0, ∣L∣ = ∣R∣ = ∣F ∣ = 1
2k. As T has O(m) edges and

we work with n-bit numbers, this leads to a running time of O(mn24
1
2k3ki×(n)) =

O(mn26ki×(n)).

The above algorithm gives the framework that we use in all of our dynamic pro-
gramming algorithms on branch decompositions. In later algorithms, we will specify
only how to compute the tables Ae for both kinds of edges.

We notice that the above algorithm computes the size of a minimum dominating set
in G, but does not give the dominating set itself. To construct a minimum dominating
set D, the branch decomposition T can be traversed in top-down order in the same
way as we described for tree decompositions, tracing the entries in the tables that lead
to a minimum solution in A{y,z}.

12.1.3. De Fluiter Property for Treewidth/Branchwidth

We conclude this introduction to branchwidth-based algorithms with a discussion on
a de Fluiter property for branchwidth. We will see below that such a property for
branchwidth is identical to the de Fluiter property for treewidth.

One could define a de Fluiter property for branchwidth by replacing the words
treewidth and tree decomposition in Definition 11.4 by branchwidth and branch de-
composition. However, the result would be a property equivalent to the de Fluiter
property for treewidth. This is not hard to see, namely, consider any edge e of a
branch decomposition with middle set Xe. A representation of the different charac-
teristics on Xe of partial solutions on Ge used on branch decompositions can also
be used as a representation of the different characteristics on Xx of partial solutions
on Gx on tree decompositions, if Xe = Xx and Ge = Gx. Clearly, an extension of
a partial solution on Ge with some characteristic is equivalent to an extension of the
same partial solution on Gx = Ge, and hence the representations can be used on both
decompositions. This equivalence of both de Fluiter properties follows directly.
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As a result, we will use the de Fluiter property for treewidth in this chapter. Recall
that this property on tree decompositions and branch decompositions is closely related
to the finite integer index property; see Section 11.2. We will later also define a similar
property for cliquewidth in Chapter 13; this property is different from the other two.

12.2. Minimum Dominating Set

We now start with giving faster algorithms on branch decompositions for a variety
of problems. In this section, we improve the example algorithm of Proposition 12.4.
This improvement will be presented in two steps. First, we use state changes similar
to what we did in in Section 11.3. Thereafter, we will further improve the result by
using fast matrix multiplication in the same way as proposed in [110]. As a result,
we will obtain an O∗(3

!
2 k) algorithm for Dominating Set for graphs given with any

branch decomposition of branchwidth k.
Similar to tree decompositions, it is more efficient to transform the problem to

one using states 1, 00, and 0? if we want to combine partial solutions from different
dynamic programming tables. However, there is a large difference between dynamic
programming on tree and on branch decompositions. On tree decompositions, we can
deal with forget vertices separately, while this is not possible on branch decompositions.
This makes the situation more complicated. On branch decompositions, vertices in F
must be dealt with simultaneously with the computation of Ae from the two tables Al

and Ar for the child edges l and r of e. We will overcome this problem by using
different sets of states simultaneously. The set of states used depends on whether a
vertex is in L, R, I or F . Moreover, we do this asymmetrically as different states can
be used on the same vertices in a different table Ae, Al, Ar. This use of asymmetrical
vertex states will later allow us to easily combine the use of state changes with fast
matrix multiplication and obtain significant improvements in the running time.

We state this use of different states on different vertices formally. We note that
this construction has already been used in the proof of Theorem 11.17.

Lemma 12.5. Let e be an edge of a branch decomposition T with corresponding middle
set ∣Xe∣, and let Ae be a table with entries Ae(c, �) representing the number of partial
solutions of Dominating Set in Ge of each size �, for some range of �, corresponding
to all colourings of the middle set Xe with states such that for every individual vertex
in Xe one of the following fixed sets of states is used:

{1, 01, 00} {1, 01, 0?} {1, 00, 0?} (see Table 11.1 in Section 11.1.2)

The information represented in the table Ae does not depend on the choice of the
set of states from the options given above. Moreover, there exist transformations
between tables using representations with different sets of states on each vertex using
O(∣Xx∣∣Ax∣) arithmetic operations.

Proof. Use the same ∣Xe∣-step transformation as in the proof of Lemma 11.9 with
the difference that we can choose a different formula to change the states at each
coordinate of the colouring c of Xe. At coordinate i of the colouring c, we use the
formula that corresponds to the set of states that we want to use on the corresponding
vertex in Xe. See also Remark 11.1.
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We are now ready to give the first improvement of Proposition 12.4.

Proposition 12.6. There is an algorithm that, given a branch decomposition of a
graph G of width k, counts the number of dominating sets in G of each size �,
0 ≤ � ≤ n, in O(mn23

3
2ki×(n)) time.

Proof. The algorithm is similar to the algorithm of Proposition 12.4, only we employ
a different method to compute Ae for an internal edge e of T .

Internal edges: Let e be an internal edge of T with child edges l and r.
We start by applying Lemma 12.5 to Al and Ar and change the sets of states

used for each individual vertex in the following way. We let Al use the set of states
{1, 0?, 00} on vertices in I and the set of states {1, 01, 00} on vertices in L and F . We
let Ar use the set of states {1, 0?, 00} on vertices in I, the set of states {1, 01, 00} on
vertices in R, and the set of states {1, 01, 0?} on vertices in F . Finally, we let Ae use
the set of states {1, 0?, 00} on vertices in I and the set of states {1, 01, 00} on vertices
in L and R. Notice that different colourings use the same sets of states on the same
vertices with the exception of the set of states used for vertices in F ; here, Al and Ar

use different sets of states.
Now, three colourings ce, cl and cr match if:

∙ For any v ∈ I: ce(v) = cl(v) = cr(v) ∈ {1, 0?, 00}. (3 possibilities)
∙ For any v ∈ F : either cl(v) = cr(v) = 1, or cl(v) = 00 and cr(v) = 01, or
cl(v) = 01 and cr(v) = 0?. (3 possibilities)

∙ For any v ∈ L: ce(v) = cl(v) ∈ {1, 01, 00}. (3 possibilities)
∙ For any v ∈ R: ce(v) = cr(v) ∈ {1, 01, 00}. (3 possibilities)

For the vertices on I, these matching combinations are the same as used on tree
decompositions in Theorem 11.7, namely the combinations with states from the set
{1, 0?, 00} where all states are the same. For the vertices on L and R, we do exactly
the same as in the proof of Proposition 12.4.

For the vertices in F , a more complicated method has to be used. Here, we can use
only combinations that make sure that these vertices will be dominated: combinations
with vertices that are in vertex set of the partial solution, or combinations in which the
vertices are not in this vertex set, but in which they will be dominated. Moreover, by
using different states for Al and Ar, every combination of partial solutions is counted
exactly once. To see this, consider each of the three combinations on F used in
Proposition 12.4 with the set of states {1, 01, 00}. The combination with cl(v) = 00 and
cr(v) = 01 is counted using the same combination, while the other two combinations
(cl(v) = 01 and cr(v) = 00 or cr(v) = 01) are counted when combining 01 with 0?.

In this way, we can compute the entries in the table Ae using the following formula:

Ae(ce, �) =
∑

ce,cl,cr match

∑

�l+�r=�+�#1

Al(cl, �l) ⋅Ar(cr, �r)

Here, �#1
= #1(cr(I ∪ F )) again is the number of vertices that are assigned state 1

on I ∪ F in any matching triple ce, cl, cr.
After having obtained Ae in this way, we can transform the set of states used back

to {1, 01, 00} using Lemma 12.5.
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For the running time, we observe that the combination of the different sets of states
that we are using allows us to evaluate the above formula in O(n23∣I∣+∣L∣+∣R∣+∣F ∣i×(n))
time. As each state transformation requires O(n3ki+(n)) time, the improved algorithm
has a running time of O(mn23∣I∣+∣L∣+∣R∣+∣F ∣i×(n)). Under the constraint that ∣I∣ +
∣L∣ + ∣R∣, ∣I∣ + ∣L∣ + ∣F ∣, ∣I∣ + ∣R∣ + ∣F ∣ ≤ k, the running time is maximal if ∣I∣ = 0,
∣L∣ = ∣R∣ = ∣F ∣ = 1

2k. This gives a total running time of O(mn23
3
2ki×(n)).

We will now give our faster algorithm for counting the number of dominating sets
of each size �, 0 ≤ � ≤ n on branch decompositions. This algorithm uses fast matrix
multiplication to speed up the algorithm of Proposition 12.6. This use of fast matrix
multiplication in dynamic programming algorithms on branch decompositions was first
proposed by Dorn in [110].

Theorem 12.7. There is an algorithm that, given a branch decomposition of a graph G
of width k, counts the number of dominating sets in G of each size �, 0 ≤ � ≤ n, in
O(mn23

!
2 ki×(n)) time.

Proof. Consider the algorithm of Proposition 12.6. We will make one modification to
this algorithm. Namely, when computing the table Ae for an internal edge e ∈ E(T ),
we will show how to evaluate the formula for Ae(c, �) for a number of colourings c
simultaneously using fast matrix multiplication. We give the details below. Here, we
assume that the states in the tables Al and Ar are transformed such that the given
formula for Ae(c, �) in Proposition 12.6 applies.

We do the following. First, we fix the two numbers � and �l, and we fix a colouring
of I. Note that this is well-defined because all three tables use the same set of states for
colours on I. Second, we construct a 3∣L∣×3∣F ∣ matrix Ml where each row corresponds
to a colouring of L and each column corresponds to a colouring of F where both
colourings use the states used by the corresponding vertices in Al. We let the entries
of Ml be the values of Al(cl, �l) for the cl corresponding to the colourings of L and F
of the given row and column of Ml, and corresponding to the fixed colouring on I and
the fixed number �l. We also construct a similar 3∣F ∣ × 3∣R∣ matrix Mr with entries
from Ar such that its rows correspond to different colourings of F and its columns
correspond to different colourings of R where both colourings use the states used by
the corresponding vertices in Ar. The entries of Mr are the values of Ar(cr, �−�l−�#1

)
where cr corresponds to the colouring of R and F of the given row and column of Mr,
and corresponding to the fixed colouring on I and the fixed numbers � and �l. Here,
the value of �#1

= #1(cr(I ∪ F )) depends on the colouring cr in the same way as in
Proposition 12.6. Third, we permute the rows of Mr such that column i of Ml and
row i of Mr correspond to matching colourings on F .

Now, we can evaluate the formula for Ae for all entries corresponding to the fixed
colouring on I and the fixed values of � and �l simultaneously by computing Me =
Ml ⋅Mr. Clearly, Me is a 3∣L∣× 3∣R∣ matrix where each row corresponds to a colouring
of L and each column corresponds to a colouring of R. If one works out the matrix
product Ml ⋅Mr, one can see that each entry of Me contains the sum of the terms of
the formula for Ae(ce, �) such that the colouring ce corresponds to the given row and
column of Me and the given fixed colouring on I and such that �l + �r = � + �#1

corresponding to the fixed � and �l. That is, each entry in Me equals the sum over
all possible allowed matching combinations of the colouring on F for the fixed values
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of � and �l, where the �r involved are adjusted such that the number of 1-states used
on F is taken into account.

In this way, we can compute the function Ae by repeating the above matrix-
multiplication-based process for every colouring on I and every value of � and �l

in the range from 0 to n. As a result, we can compute the function Ae by a series of
n2 3∣I∣ matrix multiplications.

The time required to compute Ae in this way depends on ∣I∣, ∣L∣, ∣R∣ and ∣F ∣.
Under the constraint that ∣I∣+ ∣L∣+ ∣F ∣, ∣I∣+ ∣R∣+ ∣F ∣, ∣I∣+ ∣L∣+ ∣R∣ ≤ k and using
the matrix-multiplication algorithms for square and non-square matrices as described
in the introduction of this chapter, the worst case arises when ∣I∣ = 0 and ∣L∣ = ∣R∣ =
∣F ∣ = k

2 . In this case, we compute each table Ae in O(n2(3
k
2 )!i×(n)) time. This gives

a total running time of O(mn23
!
2 ki×(n)).

Using the fact that Dominating Set has the de Fluiter property for treewidth,
and using the same tricks as in Corollaries 11.8 and 11.10, we also obtain the following
results.

Corollary 12.8. There is an algorithm that, given a branch decomposition of a graph G
of width k, counts the number of minimum dominating sets in G in O(mk23

!
2 ki×(n))

time.

Corollary 12.9. There is an algorithm that, given a branch decomposition of a graph G
of width k, computes the size of a minimum dominating set in G in O(mk23

!
2 ki×(k))

time.

12.3. Counting the Number of Perfect Matchings

The next problem we consider is the problem of counting the number of perfect match-
ings in a graph. To give a fast algorithm for this problem, we use both the ideas
introduced in Theorem 11.13 to count the number of perfect matchings on graphs
given with a tree decomposition and the idea of using fast matrix multiplication of
Dorn [110] found in Theorem 12.7. We note that [110, 111] did not consider counting
perfect matchings. The result will be an O∗(2

!
2 k) algorithm.

From the algorithm to count the number of dominating sets of each given size in a
graph of bounded branchwidth, it is clear that vertices in I and F need special attention
when developing a dynamic programming algorithm over branch decompositions. This
is no different when we consider counting the number of perfect matchings. For the
vertices in I, we will use state changes and an index similar to Theorem 11.13, but for
the vertices in F we will require only that all these vertices are matched. In contrast
to the approach on tree decompositions, we will not take into account the fact that
we can pick edges in the matching at the point in the algorithm where we forget the
first endpoint of the edge. We represent this choice directly in the tables Ae of the leaf
edges e: this is possible because every edge of G is uniquely assigned to a leaf of T .

Our algorithm will again be based on state changes, where we will again use dif-
ferent sets of states on vertices with different roles in the computation.
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Lemma 12.10. Let e be an edge of a branch decomposition T with corresponding
middle set ∣Xe∣, and let Ae be a table with entries Ae(c, �) representing the number of
matchings in He matching all vertices in Ve ∖Xe and corresponding to all colourings
of the middle set Xe with states such that for every individual vertex in Xe one of the
following fixed sets of states is used:

{1, 0} {1, ?} {0, ?} (meaning of the states as in Lemma 11.12)

The information represented in the table Ae does not depend on the choice of the
set of states from the options given above. Moreover, there exist transformations
between tables using representations with different sets of states on each vertex using
O(∣Xx∣∣Ax∣) arithmetic operations.

Proof. The proof is identical to that of Lemma 12.5 while using the formulas from the
proof of Lemma 11.12.

Theorem 12.11. There is an algorithm that, given a branch decomposition of a graph
G of width k, counts the number of perfect matchings in G in O(mk22

!
2 ki×(k log(n)))

time.

Proof. Let T be a branch decomposition of G of branchwidth k rooted at a vertex z.
For each edge e ∈ E(T ), we will compute a table Ae with entries Ae(c) for all

c ∈ {1, 0}Xe where the states have the same meaning as in Theorem 11.13. In this
table, an entry Ae(c) equals the number of matchings in the graph He matching all
vertices in Ve ∖Xe and satisfying the requirements defined by the colouring c on the
vertices in Xe. These entries do not count matchings in Ge but in its subgraph He

that has the same vertices as Ge but contains only the edges of Ge that are in the
leaves below e in T .

Leaf edges: Let e be an edge of T incident to a leaf of T that is not the root. Now,
He = Ge = G[Xe] is a two vertex graph with Xe = {u, v} and with an edge between u
and v.

We compute Ae in the following way:

Ae(c) =

{

1 if c = (1, 1) or c = (0, 0)
0 otherwise

The only non-zero entries are the empty matching and the matching consisting of the
unique edge in He. This is clearly correct.

Internal edges: Let e be an internal edge of T with child edges l and r.
Similar to the proof of Theorem 11.13, we start by indexing the tables Al and Ar

by the number of 1-states used for later use. However, we now count only the number
of 1-states used on vertices in I in the index. We compute indexed tables A′

l and A′
r

with entries A′
l(cl, il) and A′

r(cr, ir) using the following formula with y ∈ {l, r}:

A′
y(cy, iy) =

{

Ay(cy) if #1(cy(I))) = iy
0 otherwise

Here, #1(cy(I)) is the number of 1-entries in the colouring cy on the vertices in I.
Next, we apply state changes by using Lemma 12.10. In this case, we change the

states used for the colourings in A′
r and A′

l such that they use the set of states {0, 1}
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on L, R, and F , and the set of states {0, ?} on I. Notice that the number of 1-states
used to create the ?-states is now stored in the index il of A′

l(c, il) and ir of A′
r(c, ir).

We say that three colourings ce of Xe, cl of Xl and cr of Xr using these sets of
states on the different partitions of Xe ∪Xl ∪Xr match if:

∙ For any v ∈ I: ce(v) = cl(v) = cr(v) ∈ {0, ?}. (2 possibilities)
∙ For any v ∈ F : either cl(v) = 0 and cr(v) = 1, or cl(v) = 1 and cr(v) = 0.

(2 possibilities)
∙ For any v ∈ L: ce(v) = cl(v) ∈ {1, 0}. (2 possibilities)
∙ For any v ∈ R: ce(v) = cr(v) ∈ {1, 0}. (2 possibilities)

Now, we can compute the indexed table A′
e for the edge e of T using the following

formula:

A′
e(ce, ie) =

∑

ce,cl,cr match

∑

il+ir=ie

A′
l(cl, il) ⋅A′

r(cr, ir)

Notice that we can compute A′
e efficiently by using a series of matrix multiplications

in the same way as done in the proof of Theorem 12.7. However, the index i should be
treated slightly differently from the parameter � in the proof of Theorem 12.7. After
fixing a colouring on I and the two values of ie and il, we still create the two matrices Ml

and Mr. In Ml each row corresponds to a colouring of L and each column corresponds
to a colouring of F , and in Mr each rows again corresponds to a colourings of F and
each column corresponds to a colouring of R. The difference is that we fill Ml with
the corresponding entries A′

l(cl, il) and Mr with the corresponding entries A′
r(cr, ir).

That is, we do not adjust the value of ir for the selected A′
r(cr, ir) depending on the

states used on F . This is not necessary here since the index counts the total number
of 1-states hidden in the ?-states and no double counting can take place. This in
contrast to the parameter � in the proof of Theorem 12.7; this parameter counted the
number of vertices in a solution, which we had to correct to avoid double counting of
the vertices in F .

After computing A′
e in this way, we again change the states such that the set of

states {1, 0} is used on all vertices in the colourings used in A′
e. We then extract the

values of A′
e in which no two 1-states hidden in a ?-state are combined to a new 1-state

on a vertex in I. We do so using the indices in the same way as in Theorem 11.13 but
with the counting restricted to I:

Ae(c) = A′
e(c,#1(c(I)))

After computing the Ae for all e ∈ E(T ), we can find the number of perfect
matchings in G = G{y,z} in the single entry in A{y,z} where z is the root of T and y
is its only child.

Because the treewidth and branchwidth of a graph differ by at most a factor 3
2

(see Proposition 12.2), we can conclude that the computations can be done using
O(k log(n))-bit numbers using the same reasoning as in the proof of Theorem 11.13.
For the running time, we observe that we can compute each Ae using a series of k22∣I∣

matrix multiplications. The worst case arises when ∣I∣ = 0 and ∣L∣ = ∣R∣ = ∣F ∣ = k
2 .

Then the matrix multiplications require O(k22
!
2 k) time. Since T has O(m) edges, this

gives a running time of O(mk22
!
2 ki×(k log(n))) time.
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12.4. [�, �]-Domination Problems

We have shown how to solve two fundamental graph problems in O∗(s
!
2 k) time on

branch decompositions of width k, where s is the natural number of states involved
in a dynamic programming algorithm on branch decompositions for these problem.
Similar to the results on tree decompositions, we generalize this and show that one
can solve all [�, �]-domination problems with finite or cofinite � and � in O∗(s

!
2 k) time.

For the [�, �]-domination problems, we use states �j and �j , where �j and �j

represent that a vertex is not in or in the vertex set D of the partial solution of the
[�, �]-domination problem, respectively, and has j neighbours in D. This is similar to
Section 11.5. Note that the number of states used equals s = p+ q + 2.

On branch decompositions, we have to use a different approach than on tree de-
compositions, since we have to deal with vertices in L, R, I, and F simultaneously. It
is, however, possible to reuse part of the algorithm of Theorem 11.17. Observe that
joining two children in a tree decomposition is similar to joining two children in a
branch decomposition if L = R = F = ∅. Since we have demonstrated in the algo-
rithms earlier in this chapter that one can have distinct states and perform different
computations on I, L, R, and F , we can essentially use the approach of Theorem 11.17
for the vertices in I.

Theorem 12.12. Let �, � ⊆ ℕ be finite or cofinite. There is an algorithm that, given a
branch decomposition of a graph G of width k, counts the number of [�, �]-dominating
sets of G of each size �, 0 ≤ � ≤ n, of a fixed [�, �]-domination problem involving s
states in O(mn2(sk)2(s−2)s

!
2 ki×(n)) time.

Proof. Let T be the branch decomposition of G of width k rooted at the vertex z.
Recall the definitions of State Sets I and II defined in Definition 11.14. Similar to

the proof of Theorem 11.17, we will use different sets of states to prove this theorem. In
this proof, we mostly use State Set I while we let the subscripts of the states count only
neighbours in D outside the current middle set. That is, we use states �j and �j for our
tables Ae, Af , and Ag such that the subscripts j represent the number of neighbours
in the vertex set D of each partial solution of the [�, �]-domination problem outside of
the vertex sets Xe, Xf and Xg, respectively. Using these states for colourings c, we
compute the table Ae for each edge e ∈ E(T ) such that the entry Ae(c, �) contains
the number of partial solutions of the [�, �]-domination problem on Ge consisting of �
vertices that satisfy the requirements defined by c.

Leaf edges: Let e be an edge of T incident to a leaf of T that is not the root. Now,
Ge = G[Xe] is a two vertex graph.

We compute Ae in the following way:

Ae(c, �) =

⎧





⎨





⎩

1 if c = (�0, �0) and � = 0
1 if c = (�0, �0) or c = (�0, �0), and � = 1
1 if c = (�0, �0) and � = 2
0 otherwise

Since the subscripts of the states count only vertices in the vertex set of a partial
solutions of the [�, �]-domination problem on Ge that are outside the middle set Xe,
we only count partial solutions in which the subscripts are zero. Moreover, the size
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parameter � must equal the number of �-states since these represent vertices in the
vertex set of the partial solutions.

Internal edges: Let e be an internal edge of T with child edges l and r.
The process of computing the table Ae by combining the information in the two

tables Al and Ar is quite technical. This is mainly due to the fact that we need to do
different things on the different vertex sets I, L, R, and F . We will give a three-step
proof.

Step 1: As a form of preprocessing, we will update the entries in Al and Ar such
that the subscripts will not count only the vertices in vertex sets of the partial solutions
outside of Xl and Xr, but also some specific vertices in the vertex sets of the partial
solutions in the middle sets. Later, we will combine the information from Al and Ar

to create the table Ae according to the following general rule: combining �i and �j
gives �i+j , and �i and �j gives �i+j . In this context, the preprocessing makes sure that
the subscripts of the states in the result in Ae correctly count the number of vertices
in the vertex sets of the partial solutions of the [�, �]-domination problem.

Recall that for an edge e of the branch decomposition T the vertex set Ve is defined
to be the vertex set of the graph Ge, that is, the union of the middle set of e and all
middle sets below e in T . We update the tables Al and Ar such that the subscripts of
the states �j and �j count the number of neighbours in the vertex sets of the partial
solutions with the following properties:

∙ States used in Al on vertices in L or I count neighbours in (Vl ∖Xl) ∪ F .
∙ States used in Al on vertices in F count neighbours in (Vl ∖Xl) ∪ L ∪ I ∪ F .
∙ States used in Ar on vertices in I count neighbours in (Vr ∖Xr) (nothing changes

here).
∙ States used in Ar on vertices in R count neighbours in (Vr ∖Xr) ∪ F .
∙ States used in Ar on vertices in F count neighbours in (Vr ∖Xr) ∪R.

If we now combine partial solutions with state �i in Al and state �j in Ar for a vertex
in I, then the state �i+j corresponding to the combined solution in Ae correctly counts
the number of neighbours in the partial solution in Ve ∖Xe. Also, states for vertices
in L and R in Ae count their neighbours in the partial solution in Ve ∖Xe. And, if we
combine solutions with a state �i in Al and a state �j in Ar for a vertex in F , then
this vertex will have exactly i+ j neighbours in the combined partial solution.

Although one must be careful which vertices to count and which not to count, the
actual updating of the tables Al and Ar is simple because one can see which of the
counted vertices are in the vertex set of a partial solution (�-state) and which are not
(�-state).

Let A∗
y be the table before the updating process with y ∈ {l, r}. We compute the

updated table Ay in the following way:

Ay(c, �) =

{

0 if �(c) is not a correct colouring of Xy

A∗
y(�(c), �) otherwise

Here, � is the inverse of the function that updates the subscripts of the states, e.g., if
y = l and we consider a vertex in I with exactly one neighbour with a �-state on a
vertex in F in c, then it changes �2 into �1. The result of this updating is not a correct
colouring of Xy if the inverse does not exist, i.e., if the strict application of subtracting
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the right number of neighbours results in a negative number. For example, this happens
if c contains a �0- or �0-state while it has neighbours that should be counted in the
subscripts.

Step 2: Next, we will change the states used for the tables Al and Ar, and we will
add index vectors to these tables that allow us to use the ideas of Theorem 11.17 on
the vertices in I.

We will not change the states for vertices in L in the table Al, nor for vertices in R
in the table Ar. But, we will change the states for the vertices in I in both Al and Ar

and on the vertices in F in Ar. On F , simple state changes suffice, while, for vertices
on I, we need to change the states and introduce index vectors at the same time.

We will start by changing the states for the vertices in F . On the vertices in F , we
will not change the states in Al, but introduce a new set of states to use for Ar. We
define the states �̄j and �̄j . A table entry with state �̄j on a vertex v requires that the
vertex has an allowed number of neighbours in the vertex set of a partial solution when
combined with a partial solution from Al with state �j . That is, a partial solution that
corresponds to the state �i on v is counted in the entry with state �̄j on v if i+ j ∈ �.
The definition of �̄j is similar.

Let A∗
r be the result of the table for the right child r of e obtained by Step 1. We

can obtain the table Ar with the states on F transformed as described by a coordinate-
wise application of the following formula on the vertices in F . The details are identical
to the state changes in the proofs of Lemmas 12.5 and 12.10.

Ar(c1 × {�̄j} × c2) =
∑

i+j∈�

A∗
r(c1 × {�i} × c2)

Ar(c1 × {�̄j} × c2) =
∑

i+j∈�

A∗
r(c1 × {�i} × c2)

Notice that if we combine an entry with state �j in Al with an entry with state �̄j
from Ar, then we can count all valid combinations in which this vertex is not in the
vertex set of a partial solution of the [�, �]-domination problem. The same is true for
a combination with state �j in Al with state �̄j in Ar for vertices in the vertex set of
the partial solutions.

As a final part of Step 2, we now change the states in Al and Ar on the vertices in I
and introduce the index vectors i⃗ = (i�1, i�2, . . . , i�p, i�1, i�2, . . . , i�q), where i�j and i�j
index the sum of the number of neighbours in the vertex set of a partial solution of
the [�, �]-domination problem over the vertices with state �≤j and �≤j , respectively.
That is, we change the states used in Al and Ar on vertices in I to State Set II of
Definition 11.14 and introduce index vectors in exactly the same way as in the proof
of Lemma 11.16, but only on the coordinates of the vertices in I, similar to what we
did in the proofs of Lemmas 12.5 and 12.10. Because the states �≤j and �≤j are used
only on I, we note that that the component i�j

of the index vector i⃗ count the total
number of neighbours in the vertex sets of the partial solutions of the [�, �]-domination
problem of vertices with state �≤j on I. As a result, we obtain tables A′

l and A′
r with

entries A′
l(cl, �l, g⃗) and A′

r(cr, �r, ℎ⃗) with index vectors g⃗ and ℎ⃗, where these entries
have the same meaning as in Theorem 11.17. We note that the components i�p and i�q
of the index vector are omitted if � or � is cofinite, respectively.

We have now performed all relevant preprocessing and are ready for the final step.
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Step 3: Now, we construct the table Ae by computing the number of valid combi-
nations from A′

l and A′
r using fast matrix multiplication.

We first define when three colourings ce, cl, and cr match. They match if:

∙ For any v ∈ I: ce(v) = cl(v) = cr(v) with State Set II. (s possibilities)
∙ For any v ∈ F : either cl(v) = �j and cr(v) = �̄j , or cl(v) = �j and cr(v) = �̄j ,

with State Set I used for cl and the new states used for cr. (s possibilities)
∙ For any v ∈ L: ce(v) = cl(v) with State Set I. (s possibilities)
∙ For any v ∈ R: ce(v) = cr(v) with State Set I. (s possibilities)

State Set I and State Set II are as defined in Definition 11.14. That is, colourings match
if they forget valid combinations on F , and have identical states on I, L, and R.

Using this definition, the following formula computes the table A′
e. The function

of this table is identical to the same table in the proof of Theorem 11.17: the table
gives all valid combinations of entries corresponding to the colouring c that lead to a
partial solution of size � with the given values of the index vector i⃗. The index vectors
allow us to extract the values we need afterwards.

A′
e(ce, �, i⃗) =

∑

ce,cl,cr
match

∑

�l+�r=�+#�(c)

⎛

⎝

∑

i�1=g�1+ℎ�1

⋅ ⋅ ⋅
∑

i�q=g�q+ℎ�q

A′
l(cl, �l, g⃗) ⋅A′

r(cr, �r, ℎ⃗)

⎞

⎠

Here, #� = #�(cr(I ∪ F )) is the number of vertices that are assigned a �-state on
I ∪ F in any matching triple ce, cl, cr.

We will now argue what kind of entries the table A′
e contains by giving a series of

observations.

Observation 12.1. For a combination of a partial solutions on Gl counted in A′
l and a

partial solution on Gr counted in A′
r to be counted in the summation for A′

e(c, �, i⃗), it
is required that both partial solutions contains the same vertices on Xl∩Xr (= I∩F ).

Proof. This holds because sets of matching colourings have a �-state on a vertex if and
only if the other colourings in which the same vertex is included also have a �-state
on this vertex.

Observation 12.2. For a combination of a partial solutions on Gl counted in A′
l and a

partial solution on Gr counted in A′
r to be counted in the summation for A′

e(c, �, i⃗),
it is required that the total number of vertices that are part of the combined partial
solution is �.

Proof. This holds because we demand that � equals the sum of the sizes of the partial
solutions on Gl and Gr used for the combination minus the number of vertices in these
partial solutions that are counted in both sides, namely, the vertices with a �-state
on I or F .

Observation 12.3. For a combination of a partial solutions on Gl counted in A′
l and a

partial solution on Gr counted in A′
r to be counted in the summation for A′

e(c, �, i⃗), it
is required that the subscripts j of the states �j and �j used in c on vertices in L and R
correctly count the number of neighbours of this vertex in Ve ∖ Xe in the combined
partial solution.
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Proof. This holds because of the preprocessing we performed in Step 1.

Observation 12.4. For a combination of a partial solutions on Gl counted in A′
l and a

partial solution on Gr counted in A′
r to be counted in the summation for A′

e(c, �, i⃗),
it is required that the forgotten vertices in a combined partial solution satisfy the
requirements imposed by the specific [�, �]-domination problem. I.e., if such a vertex
is not in the vertex set D of the combined partial solutions, then it has a number of
neighbours in D that is a member of �, and if such a vertex is in the vertex set D
of the combined partial solution, then it has a number of neighbours in D that is a
member of �. Moreover, all such combinations are considered.

Proof. This holds because we combine only entries with the states �j and �̄j or with
the states �j and �̄j for vertices in F . These are all required combinations by definition
of the states �̄j and �̄j .

Observation 12.5. For a combination of a partial solutions on Gl counted in A′
l and a

partial solution on Gr counted in A′
r to be counted in the summation for A′

e(c, �, i⃗), it
is required that the total sum of the number of neighbours outside Xe of the vertices
with state �≤j or �≤j in a combined partial solution equals i�j or i�j , respectively.

Proof. This holds because of the following. First the subscripts of the states are
updated such that every relevant vertex is counted exactly once in Step 1. Then,
these numbers are stored in the index vectors at Step 2. Finally, the entries of A′

e

corresponding to a given index vector combine only partial solutions which index
vectors sum to the given index vector i⃗.

Observation 12.6. Let Dl and Dr be the vertex set of a partial solution counted in Al

and Ar that are used to create a combined partial solution with vertex set D, respec-
tively. After the preprocessing of Step 1, the vertices with state �≤j or �≤j have at
most j neighbours that we count in the vertex sets Dl and Dr, respectively. And, if
a vertex in the partial solution from Al has i such counted neighbours in Dl, and the
same vertex in the partial solution from Ar has j such counted neighbours in Dr, then
the combined partial solution has a total of i+ j neighbours in D outside of Xe.

Proof. The last statement holds because we count each relevant neighbour of a vertex
either in the states used in Al or in the states used in Ar by the preprocessing of
Step 1. The first part of the statement follows from the definition of the states �≤j

or �≤j : here, only partial solutions that previously had a state �i and �i with i ≤ j
are counted.

We will now use Observations 12.1-12.6 to show that we can compute the required
values for Ae in the following way. This works very similar to Theorem 11.17. First, we
change the states in the table A′

e back to State Set I (as defined in Definition 11.14).
We can do so similar as in Lemma 11.15 and Lemmas 12.5 and 12.10. Then, we extract
the entries required for the table Ae using the following formula:

Ae(c, �) = A′
e

(

c, �, (Σ1
�(c),Σ

2
�(c), . . . ,Σ

p
�(c),Σ

1
�(c),Σ

2
�(c), . . . ,Σ

q
�(c))

)

Here, Σl
�(c) and Σl

�(c) are defined as in the proof of Theorem 11.17: the weighted
sums of the number of �j- and �j-states with 0 ≤ j ≤ l, respectively.
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If � or � is cofinite, we use the same formula but omit the components Σp
�(c) or

Σq
�(c) from the index vector of the extracted entries, respectively.

That the values of these entries equal the values we want to compute follows from
the following reasoning. First of all, any combination considered leads to a new par-
tial solution since it uses the same vertices (Observation 12.1) and forgets vertices
that satisfy the constraints of the fixed [�, �]-domination problem (Observation 12.4).
Secondly, the combinations lead to combined partial solutions of the correct size (Ob-
servation 12.2). Thirdly, the subscripts of the states used in Ae correctly count the
number of neighbours of these vertices in the vertex set of the partial solution in
Ve ∖Xe. For vertices in L and R, this directly follows from Observation 12.3 and the
fact that for any three matching colourings the states used on each vertex in L and R
are the same. For vertices in I, this follows from exactly the same arguments as in the
last part of the proof of Theorem 11.17 using Observation 12.5 and Observation 12.6.
This is the argument where we first argue that any entry which colouring uses only the
states �0 and �0 is correct, and thereafter inductively proceed to �j and �j for j > 0
by using correctness for �j−1 and �j−1 and fact that we use the entries corresponding
to the chosen values of the index vectors.

All in all, we see that this procedure correctly computes the required table Ae.

After computing Ae in the above way for all e ∈ E(T ), we can find the number of
[�, �]-dominating sets of each size in the table A{y,z}, where z is the root of T and y
its only child because G = G{y,z} and X{y,z} = ∅.

For the running time, we note that we have to compute the tables Ae for the O(m)
edges e ∈ E(T ). For each table Ae, the running time is dominated by evaluating the
formula for the intermediate table A′

e with entries A′
e(c, �, i⃗). We can evaluate each

summand of the formula for A′
e for all combinations of matching states by s∣I∣ matrix

multiplications as in Theorem 12.7. This requires O(n2(sk)2(s−2)s∣I∣) multiplications
of an s∣L∣ × s∣F ∣ matrix and an s∣F ∣ × s∣R∣ matrix. The running time is maximal
if ∣I∣ = 0 and ∣L∣ = ∣R∣ = ∣F ∣ = k

2 . In this case, the total running time equals
O(mn2(sk)2(s−2)s

!
2 ki×(n)) since we can do the computations using n-bit numbers.

Similar to our results on the [�, �]-domination problem on tree decompositions,
we can improve the polynomial factors of the above algorithm in several ways. The
techniques involved are identical to those of Corollaries 11.18, 11.19, and 11.20. Similar
to Section 11.5, we define the value r associated with a [�, �]-domination problems as
follows:

r =

⎧





⎨





⎩

max{p− 1, q − 1} if � and � are cofinite
max{p, q − 1} if � is finite and � is cofinite
max{p− 1, q} if � is confinite and � is finite
max{p, q} if � and � are finite

Corollary 12.13 (General [�, �]-Domination Problems). Let �, � ⊆ ℕ be finite or
cofinite, and let p, q, r and s be the values associated with the corresponding [�, �]-
domination problem. There is an algorithm that, given a branch decomposition of
a graph G of width k, computes the number of [�, �]-dominating sets in G of each
size �, 0 ≤ � ≤ n, in O(mn2(rk)2rs

!
2 ki×(n)) time. Moreover, there is an algorithm

that decides whether there exist a [�, �]-dominating set of size �, for each individual
value of �, 0 ≤ � ≤ n, in O(mn2(rk)2rs

!
2 ki×(log(n) + k log(r))) time.
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Proof. Apply the modifications to the algorithm of Theorem 11.17 that we have used in
the proof of Corollary 11.18 for [�, �]-domination problems on tree decompositions to
the algorithm of Theorem 12.12 for the same problems on branch decompositions.

Corollary 12.14 ([�, �]-Optimisation Problems with the de Fluiter Property). Let
�, � ⊆ ℕ be finite or cofinite, and let p, q, r and s be the values associated with the
corresponding [�, �]-domination problem. If the standard representation using State
Set I of the minimisation (or maximisation) variant of this [�, �]-domination problem
has the de Fluiter property for treewidth with function f , then there is an algorithm
that, given a branch decomposition of a graph G of width k, computes the number
of minimum (or maximum) [�, �]-dominating sets in G in O(m[f(k)]2(rk)2rs

!
2 ki×(n))

time. Moreover, there is an algorithm that computes the minimum (or maximum) size
of such a [�, �]-dominating set in O(m[f(k)]2(rk)2rs

!
2 ki×(log(n) + k log(r))) time.

Proof. Improve the result of Corollary 12.13 in the same way as Corollary 11.19 im-
proves Corollary 11.18 on tree decompositions.

Corollary 12.15 ([�, �]-Decision Problems). Let �, � ⊆ ℕ be finite or cofinite, and
let p, q, r and s be the values associated with the corresponding [�, �]-domination
problem. There is an algorithm that, given a branch decomposition of a graph G of
width k, counts the number of [�, �]-dominating sets in G of a fixed [�, �]-domination
problem in O(m(rk)2rs

!
2 ki×(n)) time. Moreover, there is an algorithm that decides

whether there exists a [�,�]-dominating set in O(m(rk)2rs
!
2 ki×(log(n)+k log(r))) time.

Proof. Improve the result of Corollary 12.14 in the same way as Corollary 11.20 im-
proves upon Corollary 11.19 on tree decompositions.

12.5. Concluding Remarks

In this chapter, we have given the currently fastest algorithms on branch decomposi-
tions of width k, when the running time is expressed as a function of k, for #Per-

fect Matching and the [�, �]-domination problems. These algorithms attain the
same time bounds as earlier algorithms on branch decompositions of planar graphs by
Dorn [110, 111]. Our results were obtained by combining the techniques introduced in
Chapter 11 with fast matrix multiplication. For this combined approach to work, we
introduced the use of asymmetric vertex states on vertices that we forget while com-
puting the dynamic programming table for the next edge of the branch decomposition.

We observe that our branchwidth-based algorithms are efficient algorithms for
problems such as #Perfect Matching, both in theory and in practice. Namely,
any graph G has branchwidth at most ⌈ 2

3n⌉ because the branchwidth of a clique of

size n is ⌈ 2
3n⌉; see for example [183]. As a result, we directly obtain an O(2

!
2 ⋅ 23n) =

O(1.7315n)-time algorithm for this problem. This running time is identical to the fast-
matrix-multiplication based algorithm for this problem by Björklund et al. [27]. We
note that this result has recently been improved to O∗(1.6181n)-time by Koivisto [208].
Our algorithm improves this result on graphs for which we can compute a branch de-
composition of width at most 0.5844n in polynomial time; this is a very large family
of graphs since this bound is not much smaller than the given upper bound of 2

3n.
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13
Fast Dynamic Programming

on Clique Decompositions

After considering treewidth-based algorithms in Chapter 11 and branchwidth-based
algorithms in Chapter 12, the final results that we present in this thesis concern
cliquewidth-based algorithms. In this chapter, we will give the currently fastest
cliquewidth-based algorithms when the running time is expressed as a function of
the cliquewidth k. We obtain these results by extending the techniques introduced in
Chapter 11 to this graph-width parameter, which is quite different from the other two.

The notion of cliquewidth was first studied by Courcelle et al. [85]. The graph
decomposition associated with cliquewidth is a k-expression, which is sometimes also
called a clique decomposition. Whereas the treewidth and branchwidth of any graph
are closely related, its cliquewidth can be very different from both of them. For
example, the treewidth of the complete graph on n vertices is equal to n− 1, while its
cliquewidth is equal to 2. However, the cliquewidth of a graph is always bounded by a
function of its treewidth [87]. This makes cliquewidth an interesting graph parameter
to consider on graphs where the treewidth or branchwidth is too high for obtaining
efficient algorithms.

In this chapter, we will give a very fast algorithm for Dominating Set on graphs
given with a clique decomposition of cliquewidth k. The first algorithm for this problem
on clique decompositions is an O∗(16k)-time algorithm by Kobler and Rotics [206]. The
previously fastest algorithm for this problem has a running time of O∗(8k), obtained
by transforming the problem to a problem on boolean decompositions [62]. We present
a direct algorithm that runs in O∗(4k) time. We also show that one can also count the
number of dominating sets of each size �, 0 ≤ � ≤ n, at the cost of an extra polynomial

†This chapter is joint work with Hans L. Bodlaender, Erik Jan van Leeuwen and Martin
Vatshelle. The chapter contains results of which a preliminary version has been presented at the 35th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2010) [50].
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factor. Furthermore, we show that one can solve Independent Dominating Set and
Total Dominating Set in O∗(4k) time.

We note that there are other width parameters that potentially have lower values
than cliquewidth, for example rankwidth (see [248]) or booleanwidth (see [62]). Also, a
problem is in ℱPT when parameterised by cliquewidth if and only if it is in ℱPT when
parameterised by rankwidth or booleanwidth [62, 248]. However, for many problems
the best known running times for these problems are often much better as a function
of the cliquewidth than as function of the rankwidth or booleanwidth.

Similar to Chapters 11 and 12, we use the notation i+(n) and i×(n) for the time
required to multiply and add n-bit numbers, respectively. Also, we analyse our algo-
rithms in the Random Access Machine (RAM) model with O(k)-bit word size [157],
where addition and multiplication are unit-time operations (i+(k) = i×(k) = O(1)).
We do so because of reasons similar to those given in Chapter 11.

This chapter is organised as follows. First, we introduce the reader to cliquewidth
and the related graph decompositions in Section 13.1. Then, we give our results
on cliquewidth-based algorithms in Section 13.2. Finally, we give some concluding
remarks in Section 13.3

13.1. k-Expressions and Cliquewidth

In this section, we introduce cliquewidth and k-expressions or clique decompositions.
Cliquewidth is, like treewidth and branchwidth, a notion related to the decomposition
of graphs. This notion was introduced by Courcelle et al. [85].

A labelled graph with set of labels L is a graph G = (V,E) where each vertex
v ∈ V is assigned a label from L.

Definition 13.1 (k-Expression). A k-expression is an expression combining any num-
ber of the following four operations on labelled graphs with labels {1, 2, . . . , k}:

1. create a new graph: create a new graph with one vertex having any label.
2. relabel : relabel all vertices with label i to j (i ∕= j).
3. add edges: connect all vertices with label i to all vertices with label j (i ∕= j).
4. join graphs: take the disjoint union of two labelled graphs.

The cliquewidth cw(G) of a graph G is defined to be the minimum k for which there
exists a k-expression that evaluates to a graph isomorphic to G.

The definition of a k-expression can also be turned into a rooted decomposition
tree. In this decomposition tree T , leaves of the tree T correspond to the operations
that create new graphs, effectively creating the vertices of G, and internal vertices of T
correspond to one of the other three operations described above. We call this tree a
clique decomposition of width k.

Like the other two width parameters, computing the cliquewidth of general graphs
is NP-hard [130]. However, graphs of cliquewidth 1, 2, or 3 can be recognised in
polynomial time [84]. Also, for k ≥ 4, there is an ℱPT-algorithm that, given a graph
of cliquewidth k, outputs a 2k+1-expression [248]. In this chapter, we always assume
that a given decomposition of the appropriate width is given.
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In this chapter, we also assume that any k-expression does not contain superfluous
operations, e.g., a k-expression does apply the operation to add edges between vertices
with labels i and j twice in a row without first changing the sets of vertices with the
labels i and j, and it does not relabel vertices with a given label or add edges between
vertices with a given label if the set of vertices with such a label is empty. Under these
conditions, it is not hard to see that any k-expressions consists of at most O(n) join
operations and at most O(nk2) other operations.

For more information on algorithms on graphs of bounded cliquewidth, see [86].

13.2. Domination Problems on Clique Decompositions

On graphs of bounded cliquewidth, we mainly consider the Dominating Set problem.
We will show how to improve the complex O∗(8k)-time algorithm, which computes
a boolean decomposition of a graph of cliquewidth at most k to solve Dominating

Set [62], to an O∗(4k)-time algorithm that involves only clique decompositions. Similar
O∗(4k)-time algorithm for Independent Dominating Set and Total Dominating

Set follow from the same approach.

Theorem 13.2. There is an algorithm that, given a k-expression for a graph G, com-
putes the number of dominating sets in G of each size 0 ≤ � ≤ n in O(n3(k2+i×(n)) 4k)
time.

Proof. An operation in a k-expression applies a procedure on zero, one, or two label-
led graphs with labels {1, 2, . . . , k} that transforms these labelled graphs into a new
labelled graph with the same set of labels. If H is such a labelled graph with vertex
set V , then we use V (i) to denote the vertices of H with label i.

For each labelled graph H obtained by applying an operation in a k-expression, we
will compute a table A with entries A(c, �) that store the number of partial solutions
of Dominating Set of size � that satisfy the constraints defined by the colouring c. In
contrast to the algorithms on tree and branch decompositions, we do not use colourings
that assign a state to each individual vertex, but colourings that assign states to the
sets V (1), V (2), . . . , V (k).

The states that we use are similar to the ones used for Dominating Set on
tree decompositions and branch decomposition. The states that we use are tuples
representing two attributes: inclusion and domination. The first attribute determines
whether at least one vertex in V (i) is included in a partial solution. We use states 1,
0, and ? to indicate whether this is true, false, or any of both, respectively. The second
attribute determines whether all vertices of V (i) are dominated in a partial solution.
Here, we also use states 1, 0, and ? to indicate whether this is true, false, or any of
both, respectively. Thus, we get tuples of the form (s, t), where the first components
is related to inclusion and the second to domination, e.g., (1, ?) for vertex set V (i)
represents that the vertex set contains a vertex in the dominating set while we are
indifferent about whether all vertices in V (i) are dominated.

We will now show how to compute the table A for a k-expression obtained by using
any of the four operations on smaller k-expressions that are given with similar tables
for these smaller k-expressions. This table A contains an entry for every colouring c
of the series of vertex sets {V (1), V (2), . . . , V (k)} using the four states (1, 1), (1, 0),
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(0, 1), and (0, 0). We note that the other states will be used to perform intermediate
computations. By a recursive evaluation, we can compute A for the k-expression that
evaluates to G.

Create a new graph: In this operation, we create a new graph H with one vertex v
with any label j ∈ {1, 2, . . . , k}. We assume, without loss of generality by permuting
the labels, that j = k. We compute A by using the following formula where c is a
colouring of the first k − 1 vertex sets V (i) and ck is the state of V (k):

A(c× {ck}, �) =

⎧

⎨

⎩

1 if ck = (1, 1), � = 1, and c = {(0, 1)}k−1

1 if ck = (0, 0), � = 0, and c = {(0, 1)}k−1

0 otherwise

Since H has only one vertex and this vertex has label k, the vertex sets for the other
labels cannot have a dominating vertex, therefore the first attribute of their state must
be 0. Also, all vertices in these sets are dominated, hence the second attribute of their
state must be 1. The above formula counts the only two possibilities: either taking
the vertex in the partial solution or not.

Relabel: In this operation, all vertices with some label i ∈ {1, 2, . . . , k} are relabelled
such that they obtain the label j ∈ {1, 2, . . . , k}, j ∕= i. We assume, without loss of
generality by permuting the labels, that i = k and j = k − 1.

Let A′ be the table belonging to the k-expression before the relabelling and let A
be the table we need to compute. We compute A using the following formulas:

A(c×{(0, 1)}×{(i, d)}, �) =
∑

i1,i2∈{0,1}
max{i1,i2}=i

∑

d1,d2∈{0,1}
min{d1,d2}=d

A′(c×{(i1, d1)}×{(i2, d2)}, �)

A(c×{(i∗, d∗)}×{(i, d)}, �) = 0 if (i∗, d∗) ∕= (0, 1)

These formula correctly compute the table A because of the following observations.
For V (i), the first attribute must be 0 and the second attribute must be 1 in any
valid partial solution because V (i) = ∅ after the operations; this is similar to this
requirement in the ‘create new graph’ operation. If V (j) must have a vertex in the
dominating set, then this vertex must be in V (i) or V (j) originally. And, if all vertices
in V (j) must be dominated, then all vertices in V (i) and V (j) must be dominated.
Note that the minimum and maximum under the summations correspond to ‘and’ and
‘or’ operations, respectively.

Add edges: In this operation, all vertices with some label i ∈ {1, 2, . . . , k} are connected
to all vertices with another label j ∈ {1, 2, . . . , k}, j ∕= i. We again assume, without
loss of generality by permuting the labels, that i = k − 1 and j = k.

Let A′ be the table belonging to the k-expression before adding the edges and let A
be the table we need to compute. We compute A using the following formula:

A(c×{(i1, d1)}×{(i2, d2)}, �) =
∑

d′
1∈{0,1}

max{d′
1,i2}=d1

∑

d′
2∈{0,1}

max{d′
2,i1}=d2

A(c×(i1, d
′
1)×(i2, d

′
2), �)

This formula is correct as a vertex sets V (i) and V (j) contain a dominating vertex if
and only if they contained such a vertex before adding the edges. For the property of
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domination, correctness follows because the vertex sets V (i) and V (j) are dominated
if and only if they were either dominated before adding the edges, or if they become
dominated by a vertex from the other vertex set because of the adding of the edges.

Join graphs: This operation joins two labelled graphs H1 and H2 with tables A1 and A2

to a labelled graph H with table A. To do this efficiently, we first apply state changes
similar to those used in Chapters 11 and Chapter 12. We use states 0 and ? for the
first attribute (inclusion) and states 1 and ? for the second attribute (domination).

Changing A1 and A2 to tables A∗
1 and A∗

2 that use this set of states can be done
in a similar manner as in Chapters 11 and Chapter 12, i.e., by changing the states
coordinate-wise as in for example Lemmas 11.9 and 12.5. We first copy Ay into A∗

y, for
y ∈ {1, 2} and then iteratively use the following formulas in a coordinate-wise manner:

A∗
y(c1 × (0, 1)× c2, �) = A∗

y(c1 × (0, 1)× c2, �)

A∗
y(c1 × (?, 1)× c2, �) = A∗

y(c1 × (1, 1)× c2, �) +A∗
y(c1 × (0, 1)× c2, �)

A∗
y(c1 × (0, ?)× c2, �) = A∗

y(c1 × (0, 1)× c2, �) +A∗
y(c1 × (0, 0)× c2, �)

A∗
y(c1 × (?, ?)× c2, �) = A∗

y(c1 × (1, 1)× c2, �) +A∗
y(c1 × (1, 0)× c2, �) +

A∗
y(c1 × (0, 1)× c2, �) +A∗

y(c1 × (0, 0)× c2, �)

We have already seen many state changes similar to these in Chapters 11 and 12.
Therefore, it is not surprising that we can now compute the table A∗ in the following
way, where the table A∗ is the equivalent of the table A we want to compute only
using the different set of states:

A∗(c, �) =
∑

�1+�2=�

A∗
1(c, �1) ⋅A∗

2(c, �2)

Next, we apply state changes to obtain A from A∗. These state changes are the
inverse of those given above. Again, first copy A∗ into A and then iteratively transform
the states in a coordinate-wise manner using the following formulas:

A(c1 × (0, 1)× c2, �) = A(c1 × (0, 1)× c2, �)

A(c1 × (1, 1)× c2, �) = A(c1 × (?, 1)× c2, �)−A(c1 × (0, 1)× c2, �)

A(c1 × (0, 0)× c2, �) = A(c1 × (0, ?)× c2, �)−A(c1 × (0, 1)× c2, �)

A(c1 × (1, 0)× c2, �) = A(c1 × (?, ?)× c2, �)−A(c1 × (0, ?)× c2, �)

−A(c1 × (?, 1)× c2, �) +A(c1 × (0, 1)× c2, �)

Correctness of the computed table A follows by exactly the same reasoning as used in
Theorem 11.7 and in Proposition 12.6. We note that the last of the above formulas
is a nice example of an application of the principle of inclusion/exclusion: to find
the number of sets corresponding to the (1, 0) -state, we take the number of sets
corresponding to the (?, ?)-state; then, we subtract what we counted to much, but
because we subtract some sets twice, we need to add some number of sets again to
obtain the required value.

The number of dominating sets in G of size � can be computed from the table A
related to the final operation of the k-expression for G. In this table, we consider only
the entries in which the second property is 1, i.e., the entries corresponding to partial
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solutions in which all vertices in G are dominated. Now, the number of dominating
sets in G of size � equals the sum over all entries A(c, �) with c ∈ {(0, 1), (1, 1)}.

For the running time, we observe that each of the O(n) join operations take
O(n24ki×(n)) time because we are multiplying n-bit numbers. Each of the O(nk2)
other operations take O(n24k) time since we need O(n4k) series of a constant num-
ber of additions using n-bit numbers, and i+(n) = O(n). The running time of
O(n3(k2 + i×(n)) 4k) follows.

Similar to the algorithms for Dominating Set on tree decompositions and branch
decompositions in Chapters 11 and 12, we can improve the polynomial factors in the
running time if we are interested only in the size of a minimum dominating set, or
the number of these sets. To this end, we will introduce a notion of a de Fluiter
property for cliquewidth. This notion is defined similarly to the de Fluiter property
for treewidth; see Section 11.2.

Definition 13.3 (De Fluiter Property for Cliquewidth). Consider a method to re-
present the different partial solutions used in an algorithm that performs dynamic
programming on clique decompositions (k-expressions) for an optimisation problem Π.
Such a representation has the de Fluiter property for cliquewidth if the difference be-
tween the objective values of any two partial solutions of Π that are stored for a
partially evaluated k-expression and that can both still lead to an optimal solution is
at most f(k), for some function f . Here, the function f depends only on the clique-
width k.

The definition of the de Fluiter property for cliquewidth is very similar to the same
notion for treewidth. However, the structure of a k-expression is different from tree
decompositions and branch decompositions in such a way that the de Fluiter property
for cliquewidth does not appear to be equivalent to the other two. This in contrast
to the same notion for branchwidth that is equivalent to this notion for treewidth; see
Section 12.1.3. The main difference is that k-expressions deal with sets of equivalent
vertices instead of the vertices themselves.

The representation used in the algorithm for the Dominating Set problem above
also has the de Fluiter property for cliquewidth.

Lemma 13.4. The representation of partial solutions for the Dominating Set prob-
lem used in Theorem 13.2 has the de Fluiter property for cliquewidth with f(k) = 2k.

Proof. Consider any partially constructed graph H from a partial bottom-up evalua-
tion of the k-expression for a graph G, and let S be the set of vertices of the smallest
remaining partial solution stored in the table for the subgraph H. We prove the lemma
by showing that by adding at most 2k vertices to S, we can dominate all future neigh-
bours of the vertices in H and all vertices in H that will receive future neighbours.
We can restrict ourselves to adding vertices to S that dominate these vertices and not
vertices in H that do not receive future neighbours, because Definition 13.3 considers
only partial solutions on H that can still lead to an optimal solution on G. Namely, a
vertex set V (i) that contains undominated vertices that will not receive future neigh-
bours when continuing the evaluation of the k-expression will not lead to an optimal
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solution on G. This is because the selection of the vertices that will be in a dominating
set happens only in the ‘create a new graph’ operations.

We now show that by adding at most k vertices to S, we can dominate all vertices
in H, and by adding another set of at most k vertices to S, we can dominated all future
neighbours of the vertices in H. To dominate all future neighbours of the vertices in H,
we can pick one vertex from each set V (i). Next, consider dominating the vertices in
each of the vertex sets V (i) and are not yet dominated and that will receive future
neighbours. Since the ‘add edges’ operations of a k-expression can only add edges
between future neighbours and all vertices with the label i, and since the ‘relabel’
operation can only merges the sets V (i) and not split them, we can add a single vertex
to S that is a future neighbour of a vertex in V (i) to dominate all vertices in V (i).

Using this property, we can easily improve the result of Theorem 13.2 for the case
where we want to count only the number of minimum dominating sets. This goes in a
way similar to Corollaries 11.8, 11.10, 12.8, and 12.9.

Corollary 13.5. There is an algorithm that, given a k-expression for a graph G, com-
putes the number of minimum dominating sets in G in O(nk24ki×(n)) time.

Proof. For each colouring c, we maintain the size B(c) of any minimum partial dom-
inating set inducing c, and the number A(c) of such sets. This can also be seen as a
table D(c) of tuples. Define a new function ⊕ such that

(A(c), B(c))⊕ (A(c′), B(c′)) =

{

(A(c) +A(c′), B(c)) if B(c) = B(c′)
(A(c∗), B(c∗)) otherwise

where c∗ = argmin{B(c), B(c′)}. We will use this function to ensure that we count
only dominating sets of minimum size.

We now modify the algorithm of Theorem 13.2 to use the tables D. For the
first three operations, simply omit the size parameter � from the formula and replace
any + by ⊕. For instance, the computation for the third operation that adds new
edges connecting all vertices with label V (i) to all vertices with label V (j), becomes:

D(c×{(i1, d1)}× {(i2, d2)}) =
⊕

d′
1∈{0,1}

max{d′
1,i2}=d1

⊕

d′
2∈{0,1}

min{d′
2,i1}=d2

D(c× (i1, d
′
1)× (i2, d

′
2))

For the fourth operation, where we take the union of two labelled graphs, we need
to be more careful. Here, we use that the given representation of partial solutions
has the de Fluiter property for cliquewidth. We first discard solutions that contain
vertices that are undominated and will not receive new neighbours in the future, that
is, we set the corresponding table entries to D(c) = (∞, 0). Then, we also discard any
remaining solutions that are at least 2k larger than the minimum remaining solution.

Let D1(c) = (A1(c), B1(c)) and D2(c) = (A2(c), B2(c)) be the two resulting tables
for the two labelled graphs H1 and H2 we need to join. To perform the join operation,
we construct tables A1(c, �) and A2(c, �) as follows, with y ∈ {1, 2}:

Ay(c, �) =

{

Ay(c) if By(c) = �
0 otherwise
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In these tables, � has a range of size 2k and thus this table has size O(k 4k).
Now, we can apply the same algorithm for the join operations as described in

Theorem 13.2. Afterwards, we retrieve the value of D(c) by setting A(c) = A(c, �′)
and B(c) = �′, where �′ is the smallest value of � for which A(c, �) is non-zero.

For the running time, we observe that each of the O(k2n) operations that create a
new graph, relabel vertex sets, or add edges to the graph compute O(4k) tuples that
cost O(i+(n)) time each since we use a constant number of additions and comparisons
of an log(n)-bits number and an n-bits number. Each of the O(n) join operations cost
O(k24ki×(n)) time because of the reduced table size. In total, this gives a running
time of O(nk24ki×(n)).

Finally, we show that one can use O(k)-bit numbers when considering the decision
version of this minimisation problem instead of the counting variant.

Corollary 13.6. There is an algorithm that, given a k-expression for a graph G, com-
putes the size of a minimum dominating sets in G in O(nk24k) time.

Proof. Maintain only the size B(c) of any partial solution satisfying the requirements
of the colouring c in the computations involved in any of the first three operations.
Store this table by maintaining the size � of the smallest solution in B that has no
undominated vertices that will not get future neighbours, and let B contain O(log(k))-
bit numbers giving the difference in size between the size of the partial solutions and
the number �; this is similar to, for example, Corollary 11.10.

For the fourth operation, follow the same algorithm as in Corollary 13.5, using
A(c, �) = 1 if B(c) = � and A(c, �) = 0 otherwise. Since the total sum of all entries in
this table is 4k, the computations for the join operation can now be implemented using
O(k)-bit numbers. See also, Corollaries 11.10 and 12.9. In the computational model
with O(k)-bit word size that we use, the term in the running time for the arithmetic
operations disappears since i×(k) = O(1).

We conclude by noticing that O∗(4k) algorithms for Independent Dominating

Set and Total Dominating Set follow from the same approach. For Total Dom-

inating Set, we have to change only the fact that a vertex does not dominate itself
at the ’create new graph’ operations. For Independent Dominating Set, we have
to incorporate a check such that no two vertices in the solution set become neighbours
in the ‘add edges’ operation.

13.3. Concluding Remarks

In this chapter, we have given O(4k) algorithms for Dominating Set, Independent

Dominating Set, and Total Dominating Set on graphs of cliquewidth at most k
given with a k-expression. This improves previous results for these problems.

We conclude by noting that Dominating Set can be solved on rank decompo-
sitions of width k in O∗(2

3
4k

2+O(k)) time [63, 161] and on boolean decompositions of
width k in O∗(8k) time [62]. Both of these algorithms can be faster than our algo-
rithm since the rankwidth and booleanwidth of a graph can be much smaller than its
cliquewidth; see [62] and [248].
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14
Conclusion

In this PhD thesis, we studied exact exponential-time algorithms for domination
problems in graphs. This study led to faster exact exponential-time algorithms for
many basic graph domination problems including Dominating Set, Independent

Set, Edge Dominating Set, Total Dominating Set, Red-Blue Dominating

Set, Partial Dominating Set, #Dominating Set, the parameterised problem
k-Nonblocker, and many others. We also obtained faster algorithms for these and
many other graph domination problems on some prominent types of graph decompo-
sitions: tree decompositions, branch decompositions, and, for some problems, clique
decompositions (also called k-expressions).

A series of interesting new insights and techniques arose from this study. We men-
tion the techniques of inclusion/exclusion-based branching and extended inclusion/ex-
clusion-based branching . We also mention our generalisation of the fast subset convolu-
tion algorithm, which we translated to the setting of state-based dynamic programming
algorithms on graph decompositions.

New insights often lead to new questions and new research directions. This is also
the case for this study. Below, we give two open problems related to exact exponential-
time algorithms for domination problems in graphs that we find very interesting. Fur-
thermore, it is interesting to see to what extent the techniques presented in this thesis
can be used to obtain faster algorithms for problems outside the context of domination
problems in graphs. Two examples of this are our results for 2-Disjoint Connected

Subgraphs in Chapter 10, and the O∗(ck) algorithms for a large series of connectivity
problems (including Hamiltonian Cycle, Steiner Tree, Feedback Vertex Set,
Connected Dominating Set, and many others) on tree decompositions of width k
that we obtained very recently [88].

We note that many suggestions for further research are also given in the concluding
remarks sections of Chapters 4-13.
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Beating the O∗(2n)-Barrier for Capacitated Vertex Cover. For every graph domi-
nation problem in NP for which vertex subsets are certificates (i.e., for which we can
decide, for a given subset D ⊆ V , whether D is a solution to this problem in polynomial
time) there exists a trivial O∗(2n)-time algorithm. Over the last years, algorithms have
been developed beating these trivial algorithms for more and more complex problems.

For example, the first algorithms for Dominating Set beating this trivial time
bound date from 2004 [151, 172, 279], while such algorithms for more complex problems
such as Connected Dominating Set [143] (see also [1, 133]), Capacitated Domi-

nating Set [90] (see also [225]), and the problems of computing the lower and upper
irredundance numbers [22, 91] followed later. We note that we posted finding such
algorithms for Capacitated Dominating Set and for the irredundance numbers of
a graph as open problems in [40] and [148], respectively.

It is interesting to search for algorithms beating the trivial time bound for increas-
ingly hard problems. Naturally, we can always impose more restrictions to a solution of
a problem, as long as these restrictions are polynomial-time verifiable. In this context,
we find the Capacitated Vertex Cover problem an interesting next problem to
consider.

Capacitated Vertex Cover

Input: A graph G = (V,E), a capacity function c : V → ℕ, and an
integer k ∈ ℕ.

Question: Does there exist a capacitated vertex cover C ⊆ V in G of size at
most k with the capacities c?

Given a graph G and a capacity function c : V → ℕ, a capacitated vertex cover is
a vertex subset C ⊆ V such that there exist a function f : E → C that assigns to each
edge e ∈ E the vertex v ∈ e that covers it; this in such a way that there exist at most
c(v) vertices e with f(e) = v.

Open Problem 14.1. Give an algorithm for Capacitated Vertex Cover that runs
in O((2− �)n) time, for some � > 0.

Of course, it is possible that such an algorithm does not exists. However, proving such
a result (under any reasonable complexity-theoretic hypothesis) seems to be very hard.

Bounds on the Treewidth of Sparse Graphs. Many of the results in Chapters 8-
10 depend on the upper bound on the pathwidth of cubic graphs given by Fomin
and Høie [147] (Theorem 2.14) and the extension of this result to other low-degree
graphs [138] (Proposition 2.16). Any (significantly enough) improvement of this upper
bound would directly improve many of these results, possibly even leading to faster
algorithms for Dominating Set and some closely related problems than those given
in Chapter 5.

This upper bound of 1
6n (plus polylogarithmic factors that we will ignore here) on

the pathwidth of a cubic graph also is the best known upper bound on the treewidth of
a cubic graph. This is so even while a tree decomposition is a more general structure
than a path decomposition. Due to our results in Chapter 11, the exponential parts
of the running times of dynamic programming algorithms on path decompositions
and tree decompositions are equal, for many problems. As a result, any improvement
of the upper bound on the treewidth of cubic graphs would probably have almost
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the same consequences for exact exponential-time algorithms. We note that such an
improvement would also have effects on a series of results in parameterised algorithms:
see Theorem 6.18 or, for example, [97, 138].

Open Problem 14.2. For some constant ct <
1
6 , prove that the treewidth of a cubic

graph is at most ct ⋅ n + o(n), and that tree decompositions of this width can be
computed in polynomial time.

We note that the upper bound on the pathwidth of a cubic graph given by Fomin
and Høie [147] is not known to be tight. The best known lower bound on the pathwidth
of cubic graphs is 0.082n [149, notes on chapter 5]; this bound can be derived from a
similar lower bound on the bisection width of cubic graphs [21]. Also, no similar lower
bounds on the treewidth of cubic graphs are known.
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A
Omitted Case Analyses

A.1. The Faster Algorithm for Partition Into Triangles
on Graphs of Maximum Degree Four

We have given an O(1.02445n)-time algorithm for Partition Into Triangles on
graphs of maximum degree four in Chapter 4. We have also claimed a faster expo-
nential-time algorithm that solves this problem in O(1.02220n) time. In this section
of the appendix, we will give the details of this faster algorithm.

In Chapter 4, we have used known algorithms for Exact Satisfiability and
Exact 3-Satisfiability to solve Partition Into Triangles on graphs of maxi-
mum degree four. In this section, we present an algorithm for Exact Satisfiability

that is specifically tailored to the fact that the input is obtained from an instance of
Partition Into Triangles. This algorithm will be analysed using the number of
vertices in a Partition Into Triangles instance used to build the different struc-
tures involved in an Exact 3-Satisfiability instance as a measure of instance size.

Our algorithm is a branch-and-reduce algorithm for Exact Satisfiability in-
stances (not only Exact 3-Satisfiability instances). We analyse the resulting al-
gorithm by bounding the number of subproblems generated. To do so, we will use the
following measure of progress k on instances with variable set X and clause set C.

k := 5∣X∣+
∑

C∈C,∣C∣≥3

2
1

3
(∣C∣ − 3)

Before justifying this measure, we introduce a series of standard reduction rules
used in many algorithms for Exact Satisfiability. Besides using these reduction
rules, we always decide that we have a No-instance if two or more variables in a clause
are set to True. Also, we set any literal to False that occurs in a clause with a literal
that has been set to True, and thereafter we remove the clause. After doing so, we



278 Appx. A: Omitted Case Analyses

remove all literals that have been set to False from the remaining clauses. If this
results in an empty clause, we decide that we have a No-instance.

Below, we let x and y be arbitrary literals, we let C and C ′ be arbitrary (sub)clauses,
and we let Φ be the rest of the current Exact Satisfiability formula. By Φ : a → b,
we denote the formula Φ with all occurrences of the literal a replaced by b and all
occurrences of the literal ¬a by ¬b. This notation is extended to sets of variables, for
example in Φ : C → False. The numbers behind the reduction rules represent the
minimum decrease of the measure as a result of the reduction.

1. C ∧ C ∧ Φ ⇒ C ∧ Φ (0)
2. (x) ∧ Φ ⇒ Φ : x → True (-5)
3. (x, y) ∧ Φ ⇒ Φ : y → ¬x (-5)
4. (x, x, C) ∧ Φ ⇒ C ∧ Φ : x → False (-5)
5. (x,¬x,C) ∧ Φ ⇒ Φ : C → False (-5)
6. (x, y, C) ∧ (x,¬y, C′) ∧ Φ ⇒ (y, C) ∧ (¬y, C) ∧ Φ : x → False (-5)
7. (x, y, C) ∧ (¬x,¬y, C′) ∧ Φ ⇒ Φ : y → ¬x; C,C′ → False (-5)
8. C ∧ C′ ∧ Φ with C ⊂ C′ ⇒ C ∧ Φ : (C′ ∖ C) → False (-5)
9. (x,C) ∧ (y, C) ∧ Φ ⇒ (x,C) ∧ Φ : y → x (-5)

10. (x,C) ∧ (C,C′) ∧ Φ with ∣C∣, ∣C′∣ ≥ 2 ⇒ (x,C) ∧ (¬x,C′) ∧ Φ (−2 1

3
)

11. (x,C) ∧ (¬x,C′) ∧ Φ with x,¬x ∕∈
∪

Φ ⇒ (C,C′) ∧ Φ (−2 2

3
)

12. If, after application of Reduction Rules 1-11, Φ contains a variable x and a
series of variables y1, . . . , yl that occur only in clauses with x in a such way
that every clause that contains x contains exactly one of the variables yi,
then set x to False.

(-5)

Lemma A.1. Reduction Rules 1-12 are correct and result in the given minimum re-
ductions in the measure k.

Proof. Reduction Rules 1-11 are used in many papers on Exact Satisfiability, e.g.
see [67]; their correctness is evident. For the correctness of Reduction Rule 12, consider
a variable x and a series of variables y1, . . . , yl as in the statement of the reduction rule.
Since Reduction Rules 6 and 7 do not apply, the signs of all literals of x must be equal,
and the same goes for the signs of the literals of each of the individual variables yi.
Without loss of generality, we assume all these literals to be positive. Consider any
solution with x set to True. Since the yi occur in clauses with x, they must all be set
to False. Because none of the yi occur in clauses together or in a clause without x, we
can replace this assignment by an equivalent one by setting x to False and all the yi
to True. Correctness of the reduction rule follows.

Now, consider the decrease of the measure. When any of the above reduction rules
except Reduction Rules 1, 10, and 11 are applied, at least one variable is assigned a
value or replaced by another, and no clauses are increased in size. Hence, the measure
decreases by at least 5 in these cases. Clearly, Reduction Rule 1 does not increase the
measure as it removes a clause. Reduction Rule 10 reduces the size of one clause of size
at least four by one, hence the measure decreases by 2 1

3 . Finally, Reduction Rule 11
removes one variable and one possibly large clause of size s decreasing the measure by
5 + 2 1

3 (s − 3). However, this reduction rule also increases the size of another clause
by s − 2 increasing the measure by 2 1

3 (s − 2). Together, this leads to a decrease of
5− 2 1

3 = 2 2
3 .

We now justify our measure. Recall that f(x) denotes the frequency of the varia-
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ble x, that f+(x) and f−(x) denote the frequencies of the positive and negative literals
of x, respectively, and that F (x) = (f+(x), f−(x)).

Lemma A.2. Let G be an n-vertex graph of maximum degree four. In polynomial
time, we can either decide that G is a No-instance of Partition Into Triangles,
or transform G into an equivalent Exact Satisfiability instance of measure k that
satisfies k ≤ n.

Proof. We first apply the procedure used to prove Theorem 4.9 to G, see Section 4.3.
If this procedure does not decide that we have a No-instance, then it results in an
equivalent Exact 3-Satisfiability instance satisfying 2∣C∣+∑x∈X (2f(x)− 3) ≤ n,
where X is the set of variables and C is the set of clauses.

We distinguish between two types of variables x ∈ X: variables with f(x) = 2
and F (x) = (1, 1), and all other variables, which by Property 4.6 satisfy f(x) ≥ 3.
Let n2 be the number of variables with f(x) = 2, and let n≥3 be the number of other
variables. Then:

n ≥ 2∣C∣+
∑

x∈X

(2f(x)− 3) ≥ 2∣C∣+ n2 + 3n≥3 = 5n≥3 + 2
1

2
n2

The last equality follows from distributing the two vertices used by the clauses of size
three to the variables: these variables are given 2

3 vertex for each occurrence in C.
To the obtained instance, we exhaustively apply Reduction Rules 1-12. We note

that this will not result in an instance of Exact 3-Satisfiability, but in an instance
of Exact Satisfiability instead. This is because the reduction rules (specifically
Reduction Rule 11) can create clauses of size at least four when removing variables x
with f(x) = 2. Since a clause can increase by at most one in size per removed variable,
we obtain the following inequality:

n ≥ 5n≥3 + 2
1

2
n2 ≥ 5n≥3 +

∑

C∈C,∣C∣≥3

2
1

3
(∣C∣ − 3) = k

This proves that k ≤ n.

We note that the amounts proven in Lemma A.1 by which the measure decreases
as a result of applying a reduction rule apply only after first applying Lemma A.2:
Lemma A.2 uses any such decrease due to Reduction Rule 11 for its correctness. We
also note that the new Exact Satisfiability instance no longer satisfies Property 4.6.
Before, this property held only if we counted identical clauses multiple times; now, we
remove these double clauses.

Reduction Rules 1-12 enforce some new constraints on the resulting Exact Sat-

isfiability instances. These will be proven in the next lemma. Recall that a unique
variable is a variable x with f(x) = 1.

Lemma A.3. After exhaustively applying Reduction Rules 1-12 to an Exact Satis-

fiability instance, it satisfies the following properties:

1. All clauses have size at least three.
2. All variables occur at most once in each clause.
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3. If variables occur together in multiple clauses, their literals have identical signs
in all clauses in which they occur together.

4. For any pair of clauses, each clause contains at least two variables not occurring
in the other.

5. There are no variables x with F (x) = (1, 1).
6. Every clause contains at most one unique variable.

Proof. (1.) Smaller clauses are removed by Reduction Rules 2 and 3. (2.) Reduction
Rule 4 or 5 applies if a clause contains a variable two or more times. (3.) If their
literals do not have the same signs, Reduction Rule 6 or 7 applies. (4.) No clauses are
identical by Reduction Rule 1. No clause is a subclause of another clause by Reduction
Rule 8. And, if a clause contains only one variable that does not occur in the other
clause, Reduction Rule 9 or 10 applies. (5.) By Reduction Rule 11. (6.) If a clause
has more than one unique variable, Reduction Rule 12 applies.

Next, we give a series of lemmas that describe the branching rules of our algorithm.
Since we first exhaustively apply the reduction rules before branching, each lemma will
assume that no reduction rule applies without mentioning this. Also, we implicitly
assume that directly after the branching all reduction rules are exhaustively applied
again. In each lemma, we prove that the described branching has associated branching
number at most 1.02220 when analysed using the measure k (see Section 2.1).

Lemma A.4. If an Exact Satisfiability instance contains a variable x that occurs
both as a positive and as a negative literal, then we can either reduce the instance
to an equivalent smaller instance, or we can branch on the instance such that the
associated branching number is at most 1.02220.

Proof. Let us first consider branching on a variable x with f+(x) ≥ 2 and f−(x) ≥ 2,
i.e., we have the following situation:

(x,C1) ∧ (x,C2) ∧ (¬x,C ′
1) ∧ (¬x,C ′

2) ∧ Φ

where x can also occur in Φ.
We branch by considering two subproblems: one where we set x to True and one

where we set x to False. Below, we consider a series of cases where we distinguish
between whether the Ci or C ′

i have size two or size at least three.
If we set x to True, then the measure decreases by at least the following quan-

tities. We give these quantities by a series of bullets. Below, we will compute the
corresponding sums of the decrease of the measure for each of the cases considered.

∙ 5 for removing x.
∙ 5 for each literal in C1 or C2 because these are set to False. Note that by

Lemma A.3(4), at least two variables occur in C1 that do not occur in C2 and
vice versa. Therefore, then the measure decreases by 20 if ∣C1∣ = ∣C2∣ = 2, and
by at least 25 otherwise.

∙ 5 per C ′
i with ∣C ′

i∣ = 2 because ¬x is removed from the corresponding clauses:
this results in the removal of at least one more variable by Reduction Rule 3.
Notice that by Lemma A.3(3): (C1 ∪ C2) ∩ (C ′

1 ∪ C ′
2) = ∅.

∙ A number of times 2 1
3 for reducing the sizes of the clauses.
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The situation is symmetric, hence setting x to False decreases the measure by the
same quantities after replacing Ci by C ′

i and vice versa.
The table below gives all considered cases together with the minimum decrease of

the measure obtained by each of the above reasons. In the first two columns, we give
the number of Ci and C ′

i with ∣Ci∣ ≥ 3 and ∣C ′
i∣ ≥ 3, respectively. We assume that all

other Ci and C ′
i have size two. In the third and fourth column, we give the decrease of

the measure as a sum of four terms: the first one corresponds to the first bullet given
above, the second corresponds to the second bullet, etc. In the last column, we give
the branching number � associated with the branching. By symmetry reasons, we can
restrict ourselves to the given cases.

#Ci : #C ′
i : decrease of the measure k when we set

∣Ci∣ ≥ 3 ∣C ′
i∣ ≥ 3 x → True x → False �

0 0 5 + 20 + 10 + 0 = 35 5 + 20 + 10 + 0 = 35 1.02001
1 0 5 + 25 + 10 + 2 1

3 = 42 1
3 5 + 20 + 5 + 2 1

3 = 32 1
3 1.01886

2 0 5 + 25 + 10 + 4 2
3 = 44 2

3 5 + 20 + 0 + 4 2
3 = 29 2

3 1.01910
1 1 5 + 25 + 5 + 4 2

3 = 39 2
3 5 + 25 + 5 + 4 2

3 = 39 2
3 1.01763

2 1 5 + 25 + 5 + 7 = 42 5 + 25 + 0 + 7 = 37 1.01773
2 2 5 + 25 + 0 + 9 1

3 = 39 1
3 5 + 25 + 0 + 9 1

3 = 39 1
3 1.01778

This proves the branching numbers for branching on variables x with f+(x) ≥ 2
and f−(x) ≥ 2. Hence, we can assume without loss of generality by negating variables
that, for each variable x, we have have f−(x) ∈ {0, 1} and f+(x) ≥ 1.

If f+(x) ≥ 3, we can make a similar table associated with the following situation:

(x,C1) ∧ (x,C2) ∧ (x,C3) ∧ (¬x,C) ∧ Φ

Again, the first two columns give the size of ∣C∣ and the ∣Ci∣; the third and the fourth
column contain the decrease of the measure in both branches as a sum of the quantities
based on each of the four bullets given above; and the fifth column gives the associated
branching number. In the sum corresponding to the branch where we set x → True,
we bound the decrease of the measure due to assigning values to variables with literals
in C1, C2, and C3 by 30 if ∣C1∣ = ∣C2∣ = ∣C3∣ = 2, and by 35 otherwise.

#Ci : decrease of the measure k when we set
∣C∣ ∣Ci∣ ≥ 3 x → True x → False �
2 0 5 + 30 + 5 + 0 = 40 5 + 10 + 15 + 0 = 30 1.02015
2 1 5 + 35 + 5 + 2 1

3 = 47 1
3 5 + 10 + 10 + 2 1

3 = 27 1
3 1.01924

2 2 5 + 35 + 5 + 4 2
3 = 49 2

3 5 + 10 + 5 + 4 2
3 = 24 2

3 1.01963
2 3 5 + 35 + 5 + 7 = 52 5 + 10 + 0 + 7 = 22 1.02013

≥ 3 0 5 + 30 + 0 + 2 1
3 = 37 1

3 5 + 15 + 15 + 2 1
3 = 37 1

3 1.01874
≥ 3 1 5 + 35 + 0 + 4 2

3 = 44 2
3 5 + 15 + 10 + 4 2

3 = 34 2
3 1.01773

≥ 3 2 5 + 35 + 0 + 7 = 47 5 + 15 + 5 + 7 = 32 1.01794
≥ 3 3 5 + 35 + 0 + 9 1

3 = 49 1
3 5 + 15 + 0 + 9 1

3 = 29 1
3 1.01820

This proves the branching numbers for branching on variables x with f+(x) ≥ 3
and f−(x) ≥ 1. Because variables x with F (x) = (1, 1) are removed by the reductions
rules (Lemma A.3(5)), the only remaining variables x for which we have to prove the
lemma are those with F (x) = (2, 1). Let x be such a variable with F (x) = (2, 1).
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If the negated literal of x occurs in a clause of size three, we apply the following
transformation:

(x,C1) ∧ (x,C2) ∧ (¬x, v1, v2) ∧ Φ =⇒ (v1, v2, C1) ∧ (v1, v2, C2) ∧ Φ

This transformation is well-known as resolution; see for example [67]. In this trans-
formation, we remove one variable, but increase two clauses in size by one. Therefore,
this transformation does not increase the measure: it decreases by 5− 2× 2 1

3 = 1
3 .

If the negated literal of x occurs in a clause of size at least four, this corresponds
to the following situation with ∣C∣ ≥ 3.

(x,C1) ∧ (x,C2) ∧ (¬x,C) ∧ Φ

In this case, we again branch by considering either setting x → True in one branch
and setting x → False in the other branch. We again consider a number of subcases
corresponding to the Ci having size two or at least three. The associated branching
numbers are again computed in a table similar to the two tables given above.

decrease of the measure k when we set
∣C1∣ ∣C2∣ x → True x → False �
2 2 5 + 20 + 0 + 2 1

3 = 27 1
3 5 + 15 + 10 + 2 1

3 = 32 1
3 1.02357

2 ≥ 3 5 + 25 + 0 + 4 2
3 = 34 2

3 5 + 15 + 5 + 4 2
3 = 29 2

3 1.02183
≥ 3 ≥ 3 5 + 25 + 0 + 7 = 37 5 + 15 + 0 + 7 = 27 1.02209

At this point, each case except one gives a branching number that is smaller than
the claimed 1.02220. So, to obtain our result, we must analyse this case in more detail:
this is the case where the variable x has F (x) = (2, 1) and where ∣C1∣ = ∣C2∣ = 2 in
the above situation. A refined analysis of the decrease of the measure give the result.

Let us inspect this one case a little more thoroughly. This case corresponds to the
following situation:

(x, v1, v2) ∧ (x, v3, v4) ∧ (¬x,w1, w2, w3) ∧ Φ

To obtain a branching number that improves upon the one given in the above table,
we look at the effect of the branching on Φ. Consider setting x to True and hence
the vi to False. Notice that at least two of the variables vi must also occur somewhere
in Φ by Lemma A.3(6).

Let us first assume that a literal ¬vi occurs in Φ, and without loss of generality
let this be ¬v1. Consider the clause with ¬v1. By Lemma A.3(4), this clause cannot
contain a literal of v2, and it must contain at least two literals that are not literals of
the variables v3 and v4. Hence, this clause must contain at least one variable that we
have not considered this far. The literal of this variable will be set to False decreasing
the measure by at least an additional 5.

If no literals of the form ¬vi occur in Φ, at least two positive literals of the vi
must occur in Φ; these literals are set to False. We now consider several cases with a
clause containing these literals depending on the number of literals in the clause that
are not among the vi. By Lemma A.3(4), each clause in Φ can contain at most two
occurrences of the vis and thus must contain at least one literal of a different variable.
If these literals fill a clause except for one spot, as in (v1, v3, y), then y is set to True



A.1. The Faster Algorithm for Partition Into Triangles 283

decreasing the measure by at least an additional 5. If these literals fill a clause except
for two spots, as in (v1, v3, y1, y2), then Reduction Rule 3 will replace y2 by ¬y1 also
decreasing the measure by an additional 5. And, if these literals fill a clause except
for at least three spots, then each such literal will be removed decreasing the measure
an additional by 2 1

3 each.
Altogether, we conclude that with at least two vi in Φ, this decreases the measure

by at least an additional 4 2
3 . Therefore, we obtain a branching number of �(27 1

3 +
4 2
3 , 32

1
3 ) = �(32, 32 1

3 ) < 1.02179.

We notice that we will use systematic case analyses as in the proof of the above
lemma throughout the rest of this appendix. In these analyses, we will often start
with a series of bullets corresponding to the different effects that decrease the meas-
ure. Then, for each case considered, we will give the associated decrease of the measure
associated with each bullet systematically. Thereafter, we will perform the case anal-
ysis by giving a table with a row for each case giving the relevant properties of this
case, the total decrease of the measure in each branch as a sum of the effects of each
bullet in the enumeration given before, and the associated branching number.

From now on, we assume without loss of generality that all variables occur only
as positive literals. Based on this assumption, we can give a simple lower bound on
the decrease of the measure as a result of setting a number of literals in Φ to False.
This is formalised in the following proposition. Its proof has similarities to the last
few paragraphs of the proof of Lemma A.4.

Proposition A.5. Let Φ be an Exact Satisfiability formula containing only positive
literals. Consider setting some variables with a total of l literals in Φ to False, while at
least one variable in Φ remains without a truth assignment. Then, setting the literals
to False decreases the measure of Φ by at least 2 1

3 × l if l ≤ 2 and at least 5 if l ≥ 3
besides the decrease due to removing the corresponding variables.

Proof. If Φ contains a clause in which all literals are set to False, then Φ is not
satisfiable resulting in the removal of the whole formula. If Φ contains a clause in which
all literals except for one are set to False, then the last literals is set to True removing
a variable and thus decreasing the measure by at least 5. If Φ contains a clause in
which all literals except for two are set to False, then the variables corresponding to
the last two literals will be replaced by one variable by Reduction Rule 3 decreasing
the measure by at least 5. Finally, if Φ contains a clause in which a literal is set to
False and in which at least three literals are not assigned a value, then this reduces
the size of the clause decreasing the measure by at least 2 1

3 each.
We conclude that the minimum decrease of the measure is min{2 1

3 × l, 5}. This
proves the proposition.

Lemma A.6. If an Exact Satisfiability instance contains two clauses that have two
or more variables in common, then we can either reduce the instance to an equivalent
smaller instance, or we can branch on the instance such that the associated branching
number is at most 1.02220.

Proof. In the proof below, we can assume that all literals are positive literals since we
can otherwise apply Lemma A.4.
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Let C be the set of literals contained in both clauses, and let C1 and C2 be the
literals in each clause not contained in the other. We have the following situation:

(C,C1) ∧ (C,C2) ∧ Φ

with ∣C∣ ≥ 2 as in the statement of the lemma, and ∣C1∣, ∣C2∣ ≥ 2 by Lemma A.3(4).
In most cases, we will branch in the following way. In one subproblem, we assume

that a literal in C will be True; consequently, we set all variables in C1 and C2 to
False. In the other subproblem, we assume that none of the literals in C will be
True; we set the corresponding variables to False. We will distinguish different cases
where C, C1 and C2 have size two or size at least three.

In the first subproblem where the literals in C1 and C2 are set to False, this leads
to the following decrease of the measure k:

∙ 10 per Ci with ∣Ci∣ = 2 and 15 per Ci with ∣Ci∣ ≥ 3 for removing the variables
that are set to False. This is correct since all variables occur at most once per
clause by Lemma A.3(2).

∙ 5 if ∣C∣ = 2 because then Reduction Rule 3 will remove one additional variable.
∙ a number of times 2 1

3 depending on the size of C, C1 and C2 for reducing the
size of the two given clauses.

∙ 4 2
3 if ∣C1∣ = ∣C2∣ = 2 and 5 otherwise for the additional decrease of the measure

of Φ. By Lemma A.3(6), at least two literals in Φ are set to False if ∣C1∣ =
∣C2∣ = 2 and at least three literals otherwise. The given quantities by which the
measure decreases correspond to the ones proven in Proposition A.5.

In the second subproblem where the literals in C are set to False, this leads to the
following decrease of the measure k:

∙ 10 if ∣C∣ = 2 and 15 if ∣C∣ ≥ 3 for removing the variables that are set to False.
∙ 5 for each Ci with ∣Ci∣ = 2 because Reduction Rule 3 will remove additional

variables in these cases.
∙ a number of times 2 1

3 depending on the size of C, C1 and C2 for reducing the
size of the two clauses.

∙ a quantity bounding the additional decrease of the measure of Φ from below. If
∣C∣ = 2, we use 2 1

3 because by Lemma A.3(6) one of the variables in C must
occur in Φ; this leads to the given decrease by Proposition A.5. If ∣C∣ ≥ 3, we
use 4 2

3 by the same reasoning.

Next, we compute the branching numbers associated with the given branching by
giving a table that is similar to the tables used in the proof of Lemma A.4.

#Ci : decrease of the measure k when we set
∣C∣ ∣Ci∣ ≥ 3 C1, C2 → False C → False �
2 0 20 + 5 + 4 2

3 + 4 2
3 = 34 1

3 10 + 10 + 4 2
3 + 2 1

3 = 27 1.02298
2 1 25 + 5 + 7 + 5 = 42 10 + 5 + 7 + 2 1

3 = 24 1
3 1.02167

2 2 30 + 5 + 9 1
3 + 5 = 49 1

3 10 + 0 + 9 1
3 + 2 1

3 = 21 2
3 1.02088

≥ 3 0 20 + 0 + 9 1
3 + 4 2

3 = 34 15 + 10 + 9 1
3 + 4 2

3 = 39 1.01921
≥ 3 1 25 + 0 + 11 2

3 + 5 = 41 2
3 15 + 5 + 11 2

3 + 4 2
3 = 36 1

3 1.01797
≥ 3 2 30 + 0 + 14 + 5 = 49 15 + 0 + 14 + 4 2

3 = 33 2
3 1.01712
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Hence, we have proven the lemma for all cases except when ∣C∣ = ∣C1∣ = ∣C2∣ = 2. In
this case, we have the following situation:

(x, y, v1, v2) ∧ (x, y, v3, v4) ∧ Φ

If, in the branch where we set v1, v2, v3, v4 → False, the additional decrease of the
measure of Φ is at least 7, then we obtain the required branching number since �(20+
5 + 4 2

3 + 7, 27) = �(36 2
3 , 27) < 1.02220.

By Lemma A.3(6), at least two occurrences of the literals of v1, v2, v3, and v4 must
occur in Φ. If these are exactly two occurrences, then both x and y must occur at least
once in Φ also, as Reduction Rule 12 would otherwise be applicable. In this case, the
additional decrease of the measure of Φ in the branch where we set x, y → False can
be bounded from below by 4 2

3 in stead of 2 1
3 by Proposition A.5. Thus, we obtain a

branching number of �(34 1
3 , 10+ 10+ 4 2

3 +4 2
3 ) = �(34 1

3 , 29
1
3 ) < 1.02207 for this case.

If there are at least three occurrences of the literals of v1, v2, v3, and v4 in Φ
while setting them to False decreases the measure by less than 7, then all of these
occurrences of the vi must be in clauses of size three with exactly one other variable z,
as for example in: (v1, v3, z) ∧ (v2, v4, z). This holds because all literals occur only as
positive literals, and all other configurations that do not directly give a No-instance
lead to an additional decrease of the measure of Φ of at least 7: in these cases, at least
three clauses of size at least four will be reduced in size (3 × 2 1

3 = 7); at least two
variables will be removed (2× 5 > 7); or exactly one variable will be removed and at
least one clause of size at least four is reduced in size (5 + 2 1

3 > 7).
In fact, the only remaining situation is the following:

(x, y, v1, v2) ∧ (x, y, v3, v4) ∧ (v1, v3, z) ∧ (v2, v4, z) ∧ Φ

This holds because if z exist in a clause of size three with any of the vi, then z will not
occur in a clause of size three with the same vi again due to Lemma A.3(4). Hence, in
order to put at least three of the literals of the variables vi in clauses of size three with
no other variables than z, exactly one occurrence of each of the four vis is necessary.

In this special case, we branch z instead. If we set z → True, this results in v1,
v2, v3, and v4 being set to False, and in the replacement of y by ¬z by Reduction
Rule 3. Thus, this removes a total of 6 variables and 2 clauses of size four decreasing
the measure by at least 6×5+2×2 1

3 = 34 2
3 . If we set z → False, this directly results

in the following replacements: v3 → ¬v1 and v4 → ¬v2. In the two clauses with x
and y this leads to the following situation (x, y, v1, v2)∧ (x, y,¬v1,¬v2). This situation
is reduced by Reduction Rule 7 by setting x and y to False. In this branch, a total
of 5 variables and 2 clauses of size four are removed decreasing the measure by at least
5×5+2×2 1

3 = 29 2
3 . The associated branching number equals �(34 2

3 , 29
2
3 ) < 1.02183,

completing the proof of the lemma.

We deal with variables of relatively high frequency next: variables x with f(x) ≥ 4.

Lemma A.7. If an Exact Satisfiability instance contains a variable x with f(x)≥4,
then we can either reduce the instance to an equivalent smaller instance, or we can
branch on the instance such that the associated branching number is at most 1.02220.
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Proof. We can assume that Lemmas A.4 and A.6 do not apply, otherwise we are done.
Therefore, each variable has only positive literals and no two variables occur together
in a clause more than once. This means that we have the following situation:

(x,C1) ∧ (x,C2) ∧ (x,C3) ∧ (x,C4) ∧ Φ

where x can also occur in Φ.
We branch on x and again distinguish several cases based on the sizes of the Ci. If

we set x → True, we obtain the following quantities for the decrease in the measure:

∙ 5 for removing x.
∙ 5×∑4

i=1 ∣Ci∣ for removing the variables in the Ci; these are set to False.
∙ a number of times 2 1

3 for reducing the clauses.
∙ 5 extra since by Lemma A.3(6) at least 4 variables must also occur in Φ and this

leads to an additional decrease of the measure of at least 5 by Proposition A.5.

If we set y → False, we obtain the following quantities for the decrease in the measure:

∙ 5 for removing x.
∙ 5 for each Ci with ∣Ci∣ = 2 because Reduction Rule 3 will remove an additional

variable in these cases.
∙ a number of times 2 1

3 for reducing the sizes of the clauses.

Identical to the proofs of the previous lemmas, we calculate the branching numbers
for each considered case in a table. In this table, we compute the decrease of the
measure in each branch as a sum of the above bullets.

#Ci : decrease of the measure k when we set
∣Ci∣ ≥ 3 x → True x → False �

0 5 + 40 + 0 + 5 = 50 5 + 20 + 0 = 25 1.01944
1 5 + 45 + 2 1

3 + 5 = 57 1
3 5 + 15 + 2 1

3 = 22 1
3 1.01891

2 5 + 50 + 4 2
3 + 5 = 64 2

3 5 + 10 + 4 2
3 = 19 2

3 1.01859
3 5 + 55 + 7 + 5 = 72 5 + 5 + 7 = 17 1.01849
4 5 + 60 + 9 1

3 + 5 = 79 1
3 5 + 0 + 9 1

3 = 14 1
3 1.01859

This completes the proof.

What remains is to deal with variables x with f(x) = 3. Hereafter, only variables x
with F (x) = (1, 0) and F (x) = (2, 0) remain. In this case, the problem solvable in
polynomial time as noted in many earlier papers on Exact Satisfiability; see for
example [67].

Before giving the last lemmas that deal with the branching of the algorithm, we
first introduce a new proposition dealing with the additional decrease of the measure
due to setting a number of literals in Φ to False under some extra conditions: this will
improve upon Proposition A.5 when these conditions apply. Hereafter, we introduce a
new reduction rule that will make sure that these extra conditions apply when needed.

Proposition A.8. Let Φ be an Exact Satisfiability formula containing only positive
literals. Consider setting some variables with a total of l literals in Φ to False, while
at least three variables in Φ remain without a truth assignment. Then, setting the
literals to False decreases the measure of Φ by at least the following quantities besides
the decrease due to removing the corresponding variables.
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1. min{2 2
3 × l, 15} if no variables exist in Φ that, in at least two clauses, occur only

with literals that have been set to False.

2. min{5⌊l/4⌋ + 2 1
3 (l mod 4), 15} if no variables exist in Φ that, in at least three

clauses, occur only with literals that have been set to False.

Proof. We start with the first situation where no variables in Φ exist that, in two or
more clauses, occur only with literals that have been set to False. If any of the l literals
that are set to False occur in a clause of size at least four in Φ, then this removes one
literal decreasing the measure by 2 1

3 . This shows that the minimum decrease of the
measure is at most 2 1

3 × l. We will show that this minimum decrease can be bounded
from below by min{2 1

3 × l, 15}. To do so, we consider clauses in Φ with literals that
have been set to False and show that every other configuration decreases the measure
by at least the same quantity, or removes at least three variables.

We can assume that there are no clauses containing only literals that are set to
False since this results in a No-instance in which the whole formula Φ will be removed.
First, consider a clause in Φ containing only one literal z that is not set to False. In
this case, the variable z will be set to True. We note that, in the current situation,
there can be only one clause that only contains z and literals that have been set to
False. If the clause has size three, two occurrences of the vi lead to the removal of one
extra variable, which has more measure than 2×2 2

3 . With larger clauses, the measure
decreases by an additional 2 1

3 for each extra literal: this remains more than 2 1
3 × l.

Second, consider clauses in Φ containing two or more literals that do not belong
to the l literals that have not been set to False. It is possible that literals in such a
clause have been set to True due to the previous step where we first considered clauses
with one literals that was not among the l literals set to False in advance. If more
than one of these literals is set to True, then we have a No-instance and Φ is removed
completely. Hence, at most one literal in the clause has been set to True. If one literal
has been set to True in a clause of size three, the remaining variable will be set to
False decreasing the measure by an additional 5 while using only one occurrence of
the l literals: this is more than given by 2 1

3 × l and will remain more if we consider
larger clauses also. Finally, if one literal has been set to True and all remaining literals
have been set to False by new assignments as described in the previous sentence, then,
because no two literals may occur in a clause together more than once, at least three
different variables that are not among the variables initially set to False are given a
value: this gives the term 15 in min{2 1

3 × l, 15}.
What remains is to considering clauses in Φ containing two or more literals that

are not among the l literals that have been set to False in advance and in which no
literals are set to True by new assignments as described in the previous paragraph.
Here, we distinguish between literals that are set to False in advance, literals that
are set to False due to the effects described in the previous paragraph, and literals of
variables that have no assigned value yet. Again, if all literals in a clause have been
set to False, then we again have a No-instance. If all literals except for one have
been set to False due to the effects described in the previous paragraph, then the
last literal will be set to True; if the clause has size three, this removes one variable
while using one occurrences of the l literals; if the clause is larger, each extra literal
increases the decrease of the measure by 2 1

3 (this is always as least as much as 2 1
3 × l).

If all literals except for two have been set to False due to the effects of the previous
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paragraph, then Reduction Rule 3 will also remove one additional variable leading to
the same decrease of the measure as in the previous case. Finally, if some literals have
been set to False due to the effects described in the previous paragraph, but at least
three others remain, then each of the l literals only reduces the size of the clause giving
exactly a decrease in the measure of 2 1

3 × l.
This proves the bound on the additional decrease of the measure of Φ under the

first condition in the proposition.

For the decreases of the measure under the second condition, we can give a similar
proof. The only difference is that Φ can contain one structure that decreases the
measure by less than given under the first condition. This is the case if a variable
in Φ exists which occurs in only two clauses and only with some of the l literals that
are set to False: the situation excluded by the first condition and not by the second
condition. If both clauses have size three, four of the l literals that have been set
to False are used while removing only one additional variable. This decreases the
measure by 5 per four literals set to False. Using larger clauses, this again increases
the decrease of the measure by 2 1

3 each. We conclude that the measure decreases by
at least min{5⌊l/4⌋+ 2 1

3 (l mod 4), 15}.

If Reduction Rules 1-12 and Lemmas A.4, A.6, and A.7 do not apply, then we try
to apply the following new reduction rule. This reduction rule considers a variable x
of frequency three as in the following situation:

(x, v1, v2, . . .) ∧ (x, v3, v4, . . .) ∧ (x, v5, v6, . . .) ∧ Φ

Reduction Rule 13. If, in the above situation, there exists a variable z in Φ that
occurs in a clause with only literals of the variables vi, and all vi from one of the
clauses with x occur in some clause with z, then we apply the replacement: z → x.

Proof of correctness. Setting x → True implies z → True because z occurs in a clause
in which it occurs only with variables that are among the vi. Also, setting z → True
implies x → True because the vi that are set to False set all literals in a clause with x
to False except for x itself. We conclude that x = z in any solution.

Notice that this reduction rule removes a variable and thus decreases the measure
by at least five.

We continue by giving the remaining lemmas describing the branching rules of our
algorithm.

Lemma A.9. If an Exact Satisfiability instance contains a variable x with f(x) ≥ 3
that occurs only in clauses of size three, and such that the clauses containing x do
not have the following form: (x, v1, w1) ∧ (x,w2, u1) ∧ (x,w2, u2) with f(v1) = 3,
f(wi) = 2, and f(ui) = 1, for all i. Then, we can either reduce the instance to an
equivalent smaller instance, or we can branch on the instance such that the associated
branching number is at most 1.02220.

Proof. We can assume that Lemmas A.4, A.6, and A.7 do not apply, otherwise we are
done.

We consider the following situation:

(x, v1, v2) ∧ (x, v3, v4) ∧ (x, v5, v6) ∧ Φ
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Branching on x removes four variables if we set x → False by Reduction Rule 3.
If we set x → True this results in the removal of seven variables and an additional
decrease of the measure of the instance due to the effect that setting the vis to False
has on Φ. Let l be the number of occurrences of the literals of vi in Φ, and let k(l)
be the minimum additional decrease of the measure of Φ as a result of setting these
literals to False. We can conclude that if k(l) ≥ 14, we obtain a branching number of
�(20, 35 + k(l)) ≤ �(20, 49) < 1.02171.

Notice that Φ cannot contain a variable z that occurs in two clauses with only
variables that are among the vi as this must be with at least four different variables vi
and then Reduction Rule 13 applies. Hence, we can apply Proposition A.8(1) and use
that k(l) ≥ min{2 2

3 × l, 15}.
We will consider branching numbers for three different values of l. Lemma A.3(6)

shows that at least 3 of the vi must also occur in Φ. Actually, we can make this
argument a little stronger by noticing that x may occur only in clauses with at most
two unique variables as Reduction Rule 12 otherwise applies. Consequently, the vi
must occur at least 4 times in Φ: l ≥ 4.

If l ≥ 6, then k(l) ≥ 14 as required.
If l = 4, then exactly four of the vi occur exactly once in Φ and the other two do

not occur in Φ. This means that at least one of the clauses with x must contain two
literals also occurring in Φ; without loss of generality, let these variables be v1 and v2.
Since F (v1) = F (v2) = (2, 0), these two variables are combined to one variable y
with F (y) = (1, 1) by Reduction Rule 3 in the branch where x → False. This
fires Reduction Rule 11 decreasing the measure of the instance in this branch by
an additional 2 2

3 by Lemma A.1. Hence, we obtain a decrease of the measure of at
least 20 + 2 2

3 = 22 2
3 in total in the branch where x → False. Since k(l) ≥ 9 1

3 , the
associated branching number is at most �(35 + 9 1

3 , 22
2
3 ) < 1.02173.

Finally, let l = 5. If any of the three clauses with x contain two vis with F (vi) =
(2, 0), then we can repeat the argument of l = 4 as Reduction Rule 11 causes the
measure to decrease by an additional 2 2

3 in the branch where we set x → False.
The case that remains is when l = 5 and no clause containing two vi with F (vi) =

(2, 0) exists. In this case, two vis must be unique variables and one vi must have
F (vi) = (3, 0): this is the one special case excluded in the statement of the lemma.

Lemma A.10. If an Exact Satisfiability instance contains a variable x with f(x)≥3
occurring in two clauses of size three and one clause of size four, then we can either
reduce the instance to an equivalent smaller instance, or we can branch on the instance
such that the associated branching number is at most 1.02220.

Proof. We can assume that Lemmas A.4, A.6, A.7, and A.9 do not apply, otherwise
we are done.

We have the following situation:

(x, v1, v2) ∧ (x, v3, v4) ∧ (x, v5, v6, v7) ∧ Φ

If we set x → True, the measure decreases by 40 for removing eight variables, by 2 1
3

for removing one clause of size four, and by an additional quantity that we call kΦ
for the additional effect on Φ. If we set x → False, the measure decreases by 5 for
removing x, by 10 for the two replacements due to Reduction Rule 3, and by 2 1

3 for
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reducing one clause of size four in size. To obtain a bound on kΦ, we first observe that
at least five occurrences of the variables vi exist in Φ because otherwise Reduction
Rule 12 can be applied. If there exists no variable z that occurs only with literals of
the variables vi in at least two clauses in Φ, then we apply Proposition A.8 to conclude
that kΦ ≥ 11 2

3 . In this case, we obtain a branching number of �(54, 17 1
3 ) < 1.02181.

The only case that remains is when there exists a variable z that occurs only with
literals of the variables vi in at least two clauses in Φ. If these are at least three clauses
or one of them has size at least four, then the literals of at least five variables vi are in
these clauses as no literal may occur in a clause with z twice: in this case, Reduction
Rule 13 applies. Hence, exactly four literals of the vi occur in clauses with z. More
precisely, the situation is isomorphic to the following:

(x, v1, v2) ∧ (x, v3, v4) ∧ (x, v5, v6, v7) ∧ (v1, v5, z) ∧ (v3, v6, z) ∧ Φ

In this specific case, we branch on z. Setting z → True directly results in the removal
of z, v1, v3, v5, and v6 and indirectly removes three more variables as Reduction
Rule 3 sets v2 → ¬x, v4 → ¬x, and v7 → ¬x, i.e., eight variables are removed
decreasing the measure by 40. Setting z → False results in the removal of z and
the setting of v5 → ¬v1 and v6 → ¬v3. This results in the following clauses with x:
(x, v1, v2)∧ (x, v3, v4)∧ (x,¬v1,¬v3, v7). To this instance, Reduction Rule 6 is applied
setting x → False resulting in v2 → ¬v1 and v4 → ¬v3. In total, six variables are
removed and a clauses of size four is reduced: the measure decreases by 32 1

3 . This
gives a branching number of �(32 1

3 , 40) < 1.01943.

Lemma A.11. If an Exact Satisfiability instance contains avariable xwithf(x)≥3,
then we can either reduce the instance to an equivalent smaller instance, or we can
branch on the instance such that the associated branching number is at most 1.02220.

Proof. We can assume that Lemmas A.4, A.6, A.7, A.9, and A.10 do not apply, other-
wise we are done. This means that we have to consider only the following four remain-
ing cases:

Two clauses of size three and one clause of size at least five. In this case, we have
the following situation:

(x, v1, v2) ∧ (x, v3, v4) ∧ (x, v5, v6, v7, v8, . . .) ∧ Φ

Setting x → False removes three variables since Reduction Rule 3 applies, and it
reduces the larger clauses in size: this gives a decrease of the measure of 15+2 1

3 = 17 1
3 .

Setting x → True removes at least nine variables, removes a clause of size at least five,
and sets at least six literals in Φ to False since Reduction Rule 12 would otherwise
apply. If the condition in the second case of Proposition A.8 applies, then the measure
decreases by at least 45 + 4 2

3 + 9 2
3 = 59 1

3 since the effect of the six False literals in Φ
is an additional decrease of the measure of at least 9 2

3 by Proposition A.8(2). The
resulting branching number equals �(59 1

3 , 17
1
3 ) < 1.02062.

We will now show that the condition in the second case of Proposition A.8 applies.
We can restrict ourselves to the case where the large clause with x is of size at most
six, otherwise at least two extra variables are removed when x → True: these have
more measure than the 9 2

3 we need to prove. If Φ contains a variable z that, in three
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clauses, occurs only with literals of the variables vi, then this must be with at most 5 of
the variables vi if the third clause has size five, and with at most 6 of the variables vi
if the third clause has size six, as otherwise Reduction Rule 13 applies. However,
no such configuration with only five of the variables vi exist since there are at least
six slots to full in the three clauses with z. Furthermore, it is not so hard to check
that Lemma A.9 applies to variables z in that occur in three clauses with six if the
variables vi.

One clause of size three and two larger clauses. We have the following situation:

(x, v1, v2) ∧ (x, v3, v4, v5, . . .) ∧ (x, v6, v7, v8, . . .) ∧ Φ

Setting x → False removes two variable as Reduction Rule 3 sets v2 → ¬v1 and reduces
the two larger clauses in size: this decreases the measure by at least 10+2×2 1

3 = 14 2
3 .

Setting x → True removes at least nine variables, removes two clauses of size at least
four, and sets at least six literals in Φ to False as Reduction Rule 12 would otherwise
apply. This decreases the measure by at least 45 + 4 2

3 + 9 2
3 = 59 1

3 if the effect on the
measure of the six False literals in Φ is at least 9 2

3 , which is the case if the condition
in the second case of Proposition A.8 applies. The resulting branching number equals
�(59 1

3 , 14
2
3 ) < 1.02207.

Now, the second case of Proposition A.8 applies for the same reasons as in the
previous case where we considered two clauses of size three and one clause of size at
least five. That is, either two additional variables are removed when x → True, or no
variable in three clauses with literals of the variables vi exists because either Reduction
Rule 13 is applicable, or we have already branched on such variables.

Three clauses of size at least four. If all clauses have size at least four, then we
have the following situation:

(x, v1, v2, v3, . . .) ∧ (x, v4, v5, v6, . . .) ∧ (x, v7, v8, v9, . . .) ∧ Φ

Setting x → False removes one variable and reduces all three clauses in size: this
decreases the measure by at least 5 + 3 × 2 1

3 = 12. Setting x → True removes at
least ten variables, removes at least three clauses of size at least four, and sets at least
seven literals in Φ to False as Reduction Rule 12 would otherwise fire. This decreases
the measure by at least 50 + 7 + 10 = 67 since again, by the same reasoning as in
the above two cases, either two additional variables are removed, or the second case of
Proposition A.8 applies to the at least seven literals that are set to False in Φ. The
resulting branching number equals �(67, 12) < 1.02212.

The special case of three clauses of size three. At this point, the only variables x
with f(x) = 3 that remain correspond to the following situation that was explicitly
excluded in the statement of Lemma A.9:

(x, v1, v2) ∧ (x, v3, u1) ∧ (x, v4, u2) ∧ Φ

with f(v1) = 3, f(v2) = f(v3) = f(v4) = 2 and f(u1) = f(u2) = 1.
Since this case represents the only remaining variables of frequency three, v1 must

be a variable similar to x. Therefore, a more specific view of the current case is:

(x, v1, v2) ∧ (x, v3, u1) ∧ (x, v4, u2) ∧ (v1, v5, u3) ∧ (v1, v6, u4) ∧ Φ

with f(vi) = 2 and f(ui) = 1.
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Branching on x results in the required branching number of �(45 + 4 2
3 , 20) =

�(49 2
3 , 20) < 1.02154. Namely, setting x → True removes seven variables in the

clauses with x, and two variables in the other two clauses due to Reduction Rule 3.
Moreover, the measure of Φ is reduced by at least 4 2

3 by Proposition A.5 since v2
and v3 also occur in Φ. And, in the other branch, setting x → False removes x and
three other variables due to Reduction Rule 3.

We now take all the above lemmas together to obtain our result on Partition

Into Triangles on graphs of maximum degree four.

Theorem A.12. There is an O(1.02220n)-time and linear-space algorithm for Parti-

tion Into Triangles on graphs of maximum degree four.

Proof. We first use Theorem 4.9 from Chapter 4 together with Lemma A.2 to obtain
an Exact Satisfiability instance of measure at most n that is equivalent to the
Partition Into Triangles instance on graphs of maximum degree four.

To this instance, we exhaustively apply Reduction Rules 1-12 and Lemmas A.4-
A.11. As a result, we generate a branching tree with at most 1.02220n leaves, each
containing an instance of Exact Satisfiability in which all variables x satisfy
F (x) = (1, 0) or F (x) = (2, 0). It is known that these instances can be solved in
polynomial time and linear space, see for example [67]. This is true because such an
instance is equivalent to the question whether the following graph H = (V ′, E′) has
a perfect matching. Let X be the set of variables, and C be the set of clauses of a
remaining Exact Satisfiability instance. We construct H by letting V ′ = C and
introducing an edge for each variable x ∈ X of frequency two between the correspond-
ing clauses. We also add self-loops to all clauses containing a variable x of frequency
one. It is not hard to see that every solution of the Exact Satisfiability instance
corresponds to a perfect matching in H and vice versa.

We notice that the polynomial part of the running time of this algorithm consists
of only two components. One, the time required to test which reduction rules and
which lemmas should be applied to the current instance. Two, the time required to
test whether there exists a perfect matching in the graphs we build in the leaves of the
search tree. Both can be implemented quite efficiently, and thus no large polynomial
factors are hidden in the running time of the algorithm. This makes it a complicated
but practical and very fast exponential-time algorithm.
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A.2. Case Analysis for the Final Algorithm for Domi-
nating Set

In Chapter 5, we claimed an O(1.4969n)-time and polynomial-space algorithm for
Dominating Set. We will give a proof of this claim below.

Consider Algorithm 5.4 in Section 5.3.8 and the measure-and-conquer analysis of
the previous algorithm in the step-by-step improvement series in Section 5.3.7. For
a proper analysis of Algorithm 5.4, we further subdivide the case analysis of the al-
gorithm in Section 5.3.7 by differentiating between different kinds of elements of fre-
quency two depending on the kind of set their second occurrence is in. Let rf3 and
rf≥4 be the number of elements of frequency two whose second occurrence is in a set
of size two with a frequency three element and with a higher frequency element, respec-
tively. And, let rs3 and rs≥4 be the number of elements of frequency two whose second
occurrence is in a set of cardinality three and a set of greater cardinality, respectively.

We consider branching on a set S with ri elements of frequency i, for all ∣S∣ ≥ 3,
all ∣S∣ = ∑∞

i=2 ri, and all r2 = rf3 + rf≥4 + rs3 + rs≥4. Because S is of maximum
cardinality, we consider only subcases with rs4 > 0 if ∣S∣ ≥ 4. For these cases, we
will initially derive lower bounds on the decrease of the measure. In order to keep the
bounding cases of the associated numerical problem corresponding to real instances
on which the algorithm can branch, we perform a subcase analysis dealing with the
more subtle details later in the analysis. Let ℛ be the collection of sets containing a
frequency-two element from S, excluding S itself. Notice that the algorithm takes the
sets in ℛ in the set cover if we discard S.

In the branch where S is taken in the solution, we again start with a decrease in
measure of w(∣S∣) +∑∞

i=2 riv(i) +Δw(∣S∣)∑∞
i=2 ri(i− 1) due to the removal of S, its

elements, and the reduction in size of the sets containing elements from S. Additionally,
for each element of frequency two occurring in a set of size two, the measure is not
decreased by Δw(∣S∣) for reducing this set in size, but by w(2) since the set will be
removed by Reduction Rule 5.3. Similarly, for each element of frequency two occurring
in a set of size three, the decrease is Δw(3) instead of Δw(∣S∣) if ∣S∣ ≥ 4. Together, this
gives an extra decrease of (rf3+rf≥4)(w(2)−Δw(∣S∣))+rs3(Δw(3)−Δw(∣S∣)). Finally,
if S contains elements of frequency two whose second occurrence is in a set of size two
containing an element of frequency three, then these frequency three elements are
reduced in frequency because these sets have become singleton subsets; these elements
can also be removed completely if they occur in multiple such sets. This leads to an
additional decrease of the measure of at least [rf3 > 0]min{v(3), rf3Δv(3)}.

In the branch where S is discarded, the measure decreases by w(∣S∣)+∑∞
i=2 riΔv(i)

because of removing S. The sets in ℛ are taken in the set cover; this decreases
the measure by at least r2(v(2) + w(2)) because we have at least r2 sets, and they
together contain at least r2 other elements by Reduction Rule 5.6. Additionally, the
rs3 sets of size three and the rs≥4 sets of size at least four reduce the measure by at
least an additional rs3Δw(3) + rs≥4(w(4) − w(2)). And, if these sets are of size two
while containing elements of frequency at least three, we can add [rf3 > 0]Δv(3) +
[rf≥4 > 0](v(4)− v(2)); notice that we cannot add rf3Δv(3) as one element may be
in multiple sets in ℛ.

Furthermore, other sets are reduced in size because of the removal of all elements
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in
∪

S′∈ℛ
S′. Let qr⃗ be the number of element occurrences outside S and ℛ that are

removed after taking all sets in ℛ in the set cover in the subcase corresponding to r⃗, i.e.,
for this subcase, this is the number of times a set is reduced in cardinality by one. By
using the steepness inequalities in the same way as in the previous section, we decrease
the measure by at least an additional: min

{

qr⃗Δw(∣S∣),
⌊

qr⃗
2

⌋

w(2)+(qr⃗ mod 2)Δw(∣S∣)
}

.
We now give a lower bound on qr⃗. There are at least r2 additional elements

that are removed; these are all of frequency at least two, hence at least r2 additional
element occurrences are removed. These occurrences do not all need to be outside
of ℛ: for every set in ℛ of size three, there is one empty slot that could be filled by
an occurrence of these elements. Similarly, for every set in ℛ of size at least four,
there are ∣S∣ − 2 empty slots that can be filled with these elements. Furthermore, if
the sets in ℛ contain elements of frequency three or at least four, then the number
of removed element occurrences increases by 1 or 2, respectively. Altogether, we find
that qr⃗ ≥ max{0, r2 + [rf3 > 0] + 2[rf≥4 > 0]− rs3 − (∣S∣ − 2)rs≥4}.

Finally, we split some recurrences based on Reduction Rule 5.7. If rs3 > 0, and
a corresponding set of size three contains only elements of frequency two, then this
set is removed when taking S in the set cover: this can either be done by Reduction
Rule 5.7, or by the old Reduction Rules 5.1 and 5.3. We split the recurrence relations
with rs3 > 0 into two separate cases. We identify these case by introducing yet another
identifier: rrule5.7. One subcase has rrule5.7 = True, and one has rrule5.7 = False. If
rrule5.7 = True, we add an additional 2v(2)+w(2) to the formula of Δktake representing
the additional set and elements that are removed. Notice that we can do this because
we did not take these two frequency-two elements and this cardinality two set into
account in the new restrictions on the weights we imposed before starting the above
analysis.

This leads to the following set of recurrence relations:

∀ ∣S∣ ≥ 3, ∀ ri :
∞
∑

i=2

ri = ∣S∣, ∀ r2 = rf3+rf≥4+rs3+rs≥4, ∀ rrule5.7 ∈ {True, False}

with rs≥4 = 0 if ∣S∣ = 3, and rrule5.7 = False if rs3 = 0 :

N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1) + (rf3

+rf≥4)(w(2)−Δw(∣S∣)) + rs3(Δw(∣3∣)−Δw(∣S∣))
+[rf3 > 0]min{v(3), rf3Δv(3)}+ [rrule5.7](2v(2) + w(2))

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + r2(v(2)+w(2)) + rs3Δw(3) + rs≥4(w(4)−w(2))

+[rf3 > 0]Δv(3) + [rf≥4 > 0](v(4)− v(2))

+min
{

qr⃗Δw(∣S∣),
⌊qr⃗
2

⌋

w(2) + (qr⃗ mod 2)Δw(∣S∣)
}

Here, we let qr⃗ be tight the above lower bound.
Unfortunately, this does not yet complete the description of the new numerical

optimisation problem. For some specific cases, we will prove that we can increase the
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corresponding Δktake and Δkdiscard. We do this not only to improve the proven running
time of the algorithm, but also to make sure that the recurrences representing bounding
cases of this numerical problem represent actual instances that can be branched on. In
other words, the bounding cases should not be based on non-tight lower bounds on the
reductions of the measure. For one subcase, we not only increase Δktake and Δkdiscard,
but also split the corresponding recurrence into two separate recurrence relations.

Consider the following cases where S = {e1, e2, e3} or S = {e1, e2, e3, e4}. For each
case considered, we write Δktake+ = x and Δkdiscard+ = x if we add the additional
decrease of the measure x to the given quantities for the specific subcase.

1. ∣S∣ = 3, r2 = rs3 = 3 (qr⃗ = 0).

(a) rrule5.7 = False.
Remind that this means that none of the sets in ℛ can consist solely of
frequency-two elements, i.e., ℛ contains one element of frequency at least
three existing in all three sets in ℛ, or ℛ contains at least two elements of
frequency at least three. In both cases, we consider what happens in the
branch where the algorithm discards S and takes the sets in ℛ in the set
cover.
In the first case, no frequency-two element may occur in two sets in ℛ by
Reduction Rule 5.5. Thus, we need at least one more element than the
three counted in the above analyses: we decrease the measure by at least
an additional Δv(3) + v(2). Furthermore, by taking the sets in ℛ in the
set cover, there are at least three element occurrences outside S and ℛ

removed. No two of these elements may exist together in a set of size two
by Reduction Rule 5.7. Hence, this gives an at least additional 3Δw(3).
In the second case, the measure is decreased by at least an additional
2Δv(3). Moreover, the sum of the frequencies of the elements in (

∪

ℛ) ∖ S
is at least eight, while there are only six open slots in ℛ, i.e., there are at
least two elements outside of S and ℛ removed. If there are exactly two
extra element occurrences removed which occur together in a size two set,
then this set is a subset of a set in ℛ because the two frequency three ele-
ments must be in some set together: this is not possible due to Reduction
Rule 5.3. In any other case, the decrease in measure due to the removal of
these element occurrences is at least 2Δw(3).
Altogether, we add the minimum of both quantities to Δkdiscard by setting
Δkdiscard+= min{Δv(3) + v(2) + 3Δw(3), 2Δv(3) + 2Δw(3)}.

(b) rrule5.7 = True.
Notice that subcase (a) dominates every case where there exist one element
of frequency at least three and one extra element in ℛ, or where there exist
at least two elements of frequency at least three in ℛ. Furthermore, we
can disregard the case with one element of frequency at least three and
two frequency-two elements because of Reduction Rule 5.5. Hence, we can
restrict ourselves to the case where (

∪

ℛ) ∖ S consists of at least three
frequency-two elements.
Consider the branch where the algorithm takes S in the set cover. If there
are only three frequency-two elements, that is, ℛ = {{e1, e4, e5}, {e2, e4, e6},
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{e3, e5, e6}}, then Reduction Rules 5.7 and 5.1 remove all sets and elements
from ℛ. This gives an additional decrease of v(2)+2w(2) to Δktake besides
the 2v(2) + w(2) we counted already because rrule5.7 = True. If there are
four or more frequency-two elements in (

∪

ℛ) ∖ S, then Reduction Rule 5.7
can be applied at least twice reducing the measure by the same amount.
We set Δktake+= v(2) + 2w(2).

2. ∣S∣ = 3, r2 = rs3 = 2, r3 = 1 (qr⃗ = 0).

(a) rrule5.7 = False.

ℛ contains one element of frequency at least three existing in both sets in ℛ,
or ℛ contains at least two elements of frequency at least three. We consider
the branch where S is discarded and the sets in ℛ are taken in the set cover.

In the first case, ℛ = {{e1, e4, e5}, {e2, e4, e6}} with f(e4) ≥ 3 and all other
elements have frequency two. We have an extra decrease in measure of
Δv(3)+v(2) because e4 has higher frequency and we have an extra element.
Additionally, we look at the number of element occurrences outside of S
and ℛ that are removed: there are at least three of these. Hence, we get an
additional decrease of min{3Δw(3), w(2) + Δw(3)} equivalent to setting
qr⃗ = 3.

In the second case, we decrease the measure by at least an additional 2Δv(3)
because of the higher frequency elements. Moreover, there are at least two
element occurrences outside S and ℛ removed: this gives an additional
decrease of min{2Δw(3), w(2)} equivalent to setting qr⃗ = 2.

We add the minimum of both quantities to Δkdiscard by setting Δkdiscard+=
min{Δv(3) + v(2) +min{3Δw(3), w(2) +Δw(3)}, 2Δv(3) +min{2Δw(3),
w(2)}}.

(b) rrule5.7 = True.

Subcase (a) dominates every case with elements of frequency at least three
in ℛ. Thus, we may assume that ℛ contains only elements of frequency
two, and there are at least three of them because of Reduction Rule 5.5. In
the branch where S is discarded and all sets in ℛ are taken in the set cover,
one extra element of frequency two and at least two element occurrences
outside of S and ℛ are removed. Altogether, we add their contribution to
the measure to Δkdiscard by setting Δkdiscard+= v(2) + w(2).

3. ∣S∣ = 3, r2 = rs3 = 1, r3 = 2, rrule5.7 = False (qr⃗ = 0).

In the branch where S is discarded, there must be two elements in the unique
set in ℛ and one must be of frequency at least three. Hence, we set Δkdiscard+=
Δv(3) + v(2).

4. ∣S∣ = 3, r2 = rs3 = 2, r4 = 1, rrule5.7 = False (qr⃗ = 0).

Analogous to the case where ∣S∣ = 3, r2 = rs3 = 2, r3 = 1, rrule5.7 = False
(Case 2a), we set Δkdiscard+= min{Δv(3)+ v(2)+min{3Δw(3), w(2)+Δw(3)},
2Δv(3) + min{2Δw(3), w(2)}}.
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5. ∣S∣ = 3, r2 = 3, rf3 = 1, rs3 = 2, rrule5.7 = False (qr⃗ = 2).

Since rf3 = 1, we have a set R1 of size two in ℛ with an element of frequency
three. If this element is also in the other two sets in ℛ, then technically we are in
this case because none of the rs3 sets of size three consist solely of frequency-two
elements. However, after taking S in the solution, R1 disappears because it has
become a singleton set and Reduction Rule 5.7 fires on the remaining sets in ℛ.
The recurrence relation for the corresponding case with rrule5.7 = True correctly
represents this case. Therefore, we have to consider only the case where there
is another higher frequency element that prevents the rs3 sets of size three from
having only frequency-two elements.

For this case, consider the branch where S is discarded and the sets in ℛ are
taken in the set cover. Since there is another element of frequency at least three,
we decrease the measure by at least an additional Δv(3). Furthermore, there
are at least eight element occurrences of the elements in (

∪

ℛ) ∖ S, while ℛ has
only five available slots. Thus, qr⃗ should be 3 instead of 2. This allows us to set
Δkdiscard+= Δv(3) + Δw(3).

6. ∣S∣ = 3, r2 = 3, rf≥4 = 1, rs3 = 2, rrule5.7 = False (qr⃗ = 3).

In contrast to the previous case, the element of frequency at least four in the
size two set in ℛ can cause all other sets in ℛ not to consist of only frequency-
two elements. We split this case into two separate recurrences: one where this
element has frequency four, and one where it has higher frequency.

In the first case, we can set Δktake+= Δv(4), because after taking S in the set
cover, this element exists in a singleton set and hence its frequency is reduced
by one. Notice that we could not bound this decrease before since the frequency
of the element was unbounded.

In the second case, we remove at least one extra element occurrence outside ℛ

and S. If all other elements in ℛ have frequency two, this extra element occur-
rence cannot be in a set with another removed element occurrence by Reduction
Rule 5.5, and we can add Δw(3) to the decrease (not needing to increasing qr⃗ by
one). If some other element in ℛ has frequency at least three, then we remove
at least two extra element occurrence outside ℛ and S. Taking the worst case of
both, we can set Δkdiscard+= Δw(3).

7. ∣S∣ = 3, rf3 = 2, rs3 = 1, rrule5.7 = False (qr⃗ = 3).

There are two possible situations: either there are two different elements of
frequency three in the rf3 sets of size two, or both sets contain the same element
of frequency three. In the latter case, this element cannot also be in the third set
in ℛ because this would trigger Reduction Rule 5.6 on S. Since rrule5.7 = False,
there must be another element of frequency at least three in this third set in ℛ.
In both cases, we have an extra element of frequency at least three; hence, we
can set Δkdiscard+= Δv(3).

8. ∣S∣ = 3, rf≥4 = 2, rs3 = 1 (qr⃗ = 4).
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(a) rrule5.7 = False.

Similar to the previous case, there are two possible situations: either there
are two different elements of frequency at least four in the rf≥4 sets of size
two, or both sets contain the same element of frequency at least four.

In the first case, we have an additional reduction of at least v(4)− v(2) due
to this element. Moreover, at least ten element occurrences of the elements
in (

∪

ℛ) ∖ S are removed while there are only 4 slots available in ℛ and
currently qr⃗ = 4. This means we decrease the measure by an additional
min{2Δw(3), w(2)}.
In the second case, the element of frequency at least four cannot be in the
third set in ℛ because then Reduction Rule 5.6 applies to S; hence, there
must be an element of frequency at least three in the third set in ℛ. This
gives an additional Δv(3), while counting the number of removed element
occurrences of the elements in (

∪

ℛ) ∖ S gives us an additional Δw(3).

Altogether, we add the minimum of both cases to Δkdiscard by setting
Δkdiscard+= min{Δv(3) + Δw(3), v(4)− v(2) + min{2Δw(3), w(2)}}.

(b) rrule5.7 = True.

Consider the branch where we take S in the solution. After removing the
elements e1, e2, and e3, no sets outside of ℛ are reduced in size. This is
true because the two size two sets in ℛ that are removed contain an element
of frequency at least four: after removing their occurrences in ℛ, they still
have frequency at least two. Moreover, ri = 0 for all i ≥ 3, so no other
element occurrences outside of ℛ are removed. As a result, two sets of size
two or three are merged by Reduction Rule 5.7. Notice that we already
counted the decrease due to removing a set of size two and its elements,
but not the decrease due to the fact that two other sets are replaced by
one larger one. This gives an additional decrease of the measure; we set
Δktake+= min{2w(3)− w(4), w(3) + w(2)− w(3), 2w(2)− w(2)}.

9. ∣S∣ = 3, rf3 = 3, rrule5.7 = False (qr⃗ = 4).

Consider the branch where S is discarded and the sets in ℛ are taken in the set
cover. Since all sets in ℛ are of size two, there are three different frequency three
elements in ℛ by Reduction Rule 5.6 instead of the one we count now. These
elements decrease the measure by an additional 2Δv(3). Moreover, we removed
at least nine element occurrences of the elements in (

∪

ℛ) ∖ S from which only
three can be in ℛ and qr⃗ counts only four: at least two more are removed
decrease the measure by an additional min{2Δw(3), w(2)}. Altogether, we set
Δkdiscard+= 2Δv(3) + min{2Δw(3), w(2)}.

10. ∣S∣ = 3, rf≥4 = 3, rrule5.7 = False (qr⃗ = 5).

This case is similar to the above: there must be at least two more elements of
frequency at least four decrease the measure by 2(v(4) − v(2)) in the branch
where S is discarded. And, by a counting removed element occurrences of the
elements in (

∪

ℛ) ∖S, we should increase qr⃗ by four. Hence, we set Δkdiscard+=
2(v(4)− v(2)) + min{4Δw(3), 2w(2)}.
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11. ∣S∣ = 4, rs≥4 = 4, rrule5.7 = False (qr⃗ = 0).

In the branch where S is discarded and the sets in ℛ are taken in the solution, we
count only a measure of 4v(2) for the removed elements in (

∪

ℛ)∖S. There must
be at least four elements in (

∪

ℛ)∖S by Reduction Rule 5.6 and there are twelve
slots to fill. This can either be done by six elements of frequency two, or by using
higher frequency elements. Hence, we set Δkdiscard+= min{2v(2), Δv(3)}.

We solve the numerical problem associated with the described set of recurrence
relations and obtain a solution of N(k) ≤ 1.28935k using the following set of weights:

i 1 2 3 4 5 6 7 > 7

v(i) 0.000000 0.011179 0.379475 0.526084 0.573797 0.591112 0.595723 0.595723
w(i) 0.000000 0.353012 0.706023 0.866888 0.943951 0.981278 0.997062 1.000000

This leads to an upper bound of O
(

1.28759(0.595723+1)n
)

= O(1.49684n) on the running
time of the algorithm. The bounding cases of the numerical problem are:

∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = 4, r2 = re≥4 = 4 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7 ∣S∣ = r8 = 7 ∣S∣ = r8 = 8

This proves Theorem 5.1.
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A.3. Case Analysis for the Final Algorithm for Edge
Dominating Set

In Chapter 6, we claimed an O(1.3226n)-time and polynomial-space algorithm for
Edge Dominating Set. We will give a proof of this claim below.

Consider the improvement of Algorithm 6.3 described in Section 6.5. Here, we have
improved the worst case of the numerical optimisation problem that corresponded to
d = 3, r2 = 2, r3 = 1; the worst case that equals Graph 1 in Figure A.1. We have done
so by splitting the case into two subcases: one where this case corresponds to a separate
connected component and in which we now branch on another vertex (Graph 1 in
Figure A.1), and one where this case does not equal a separate connected component
and thus more edges are removed. As both cases lead to recurrence relations with
smaller solutions, this improves the upper bound on the running time of the algorithm.

We give the other improvements on the algorithms in a more schematic manner.
Listed in the order in which they appear as worst cases in the improvement series,
we introduce the following set of alternative branching strategies to Algorithm 6.3.
The numbering corresponds to the subgraphs of G[U ] drawn in Figure A.1. We refer
to the vertex on which the previous algorithm could branch as v (leftmost vertex
in the Figure A.1), and we denote the decrease in the measure of the subproblems
generated by the alternative branching strategy by Δ1,Δ2, . . .. At each subcase, we
either increase the current lower bound d2 on the number of edges between NU [v]
and the rest of G[U ], or find other means of increasing the lower bounds on the total
reduction in measure when branching (Δindep and Δvc). See Table A.1, for the upper
bounds on the running times of the individual algorithms in the series.

1. d = 3, r2 = 2, r3 = 1. See introductory example. The subcase tight to d2 = 0 is
handled more efficiently by branching on a U -degree two vertex. This results in
Δ1 = Δ2 = 2w(3) + 2w(2). All other subcases have at least two edges with only
one endpoint in NU [v], thus: d2 = 2.

2. d = 3, r2 = 1, r3 = 2. If there is a unique edge in G[U ] with only one endpoint u in
NU [v], then u has U -degree three. Branch on u and apply Reduction Rule 6.1 to
any 3-clique remaining in G[U ]. Because the other vertex incident to this unique
edge has weight at least w(1), and when its U -degree is reduced by one this
reduces its weight by at least Δw(3); we derive Δ1 = 3w(3)+w(2)+w(1),Δ2 =
3w(3) + w(2) + Δw(3). For the other subcases with d = 3, r2 = 1, r3 = 2 the
number of edges from NU [v] to the rest of G[U ] is at least 3 by a parity argument.
Hence, we can now use d2 = 3 for these cases.

Strategies none 1 1-2 1-3 1-4 1-5 1-7 1-8 1-9
O(cn): 1.3323 1.3315 1.3296 1.3280 1.3265 1.3248 1.3240 1.3228 1.3226
Ω(cn): 1.3160 1.2968 1.2968 1.2968 1.2968 1.2753 1.2753 1.2753 1.2753

Table A.1. Bounds on the running times of the algorithms in the improvement
series.
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1 2 3 4

5

7 8

8'
9

6

The leftmost vertex in every subgraph corresponds to a vertex we could branch on in Al-
gorithm 6.3 and grey vertices represent more efficient alternatives. If multiple vertices are
grey, simultaneously branch on these vertices generating four or eight subproblems. Crossed
vertices represent vertices branched on directly hereafter, but only in the subproblems where
this induces extra 1, 2 or 3-cliques. Sometimes small connected components that are paths
remain in a subproblem; these are immediately branched upon also.

Unfinished edges always connect to vertices outside the drawn subgraph, and there are no

other edges in G[U ] between vertices with at least one drawn endpoint. Dashed edges are

optional.

Figure A.1. More efficient branching strategies on possible subgraphs of G[U ].

3. d = 3, r2 = 3. Similar to Case 2: Δ1 = w(3)+3w(2)+w(1),Δ2 = w(3)+3w(2)+
Δw(3). For the remaining subcases, we have that d2 = 3.

4. d = 3, r2 = 2, r3 = 1. Case 1 reappears; consider four more subcases representing
d2 = 2.

(a) Both edges with only one endpoint in NU [v] are incident to the same vertex
u ∈ NU (v). Branch on u and apply Reduction Rule 6.1 if possible; this
is similar to Cases 2 and 3. Δ1 = 2w(3) + 2w(2) + 2w(1),Δ2 = 2w(3) +
2w(2) + 2Δw(3).

Let u,w ∈ NU (v) be incident to the edges with only one endpoint in NU [v] such
that u has U -degree two and w has U -degree three.

(b) Both edges in G[U ] with only one endpoint in NU [v] are incident to the
same vertex x ∕∈ NU (v). Branch on x, and if it is put in the vertex cover
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also branch on v. Because paths on two vertices are removed from G[U ]:
Δ1 = Δ2 = Δ3 = 2w(3) + 3w(2).

(c) If the vertex outside of NU [v] adjacent to w in G[U ] has U -degree one,
branch on w. This represents a different case of the numerical optimisation
problem: d = 3, r1 = r2 = r3 = 1.

(d) If the vertex x ∕∈ NU [v] that is adjacent to w in G[U ], has U -degree two
or three, branch simultaneously on x and u. Δ1 = 2w(3) + 3w(2) +
min{w(2), 2w(1)}, Δ2 = Δ3 = 2w(3) + 3w(2) + w(1) + Δw(3), Δ4 =
2w(3)+3w(2)+2Δw(3). For Δ1 we use the minimum extra reduction over
the subcase where two edges with one endpoint in NU [v] are incident to the
same vertex or to two different vertices outside NU [v].

For all other subcases with d = 3, r2 = 2, r3 = 1 we now have d2 = 4.

5. d = 3, r3 = 3. Because of Reduction Rule 6.1: d2 = 2. In Section 6.6, we discuss
variants of our algorithm for which we do not have a reduction rule dealing with
this subcase. Therefore we consider the subcase with d2 = 0 as if the reduction
rule was not in our algorithm: remove it using two subproblems by branching on
any vertex. Δ1 = Δ2 = 4w(3)

The rest of this case is identical to Subcases 4(b-d), with Δ1 = Δ2 = Δ3 =
4w(3) + w(2) in Subcase (b), and Δ1 = 4w(3) + w(2) + min{w(2), 2w(1)},
Δ2 = Δ3 = 4w(3) + w(2) + w(1) + Δw(3), Δ4 = 4w(3) + w(2) + 2Δw(3) in
Subcase (d). For all remaining subcases set d2 = 4.

6. d = 3, r2 = 1, r3 = 2. As we handled Case 2 earlier, we have d2 = 3. Suppose
that the U -degree two neighbour of v is adjacent to another neighbour of v in
G[U ]. See Case 7 when this extra condition does not apply. Let T be the 3-clique
(triangle) in G[U ] containing v.

(a) A vertex u ∕= v in G[U ] is a neighbour of two vertices in NU (v). Branch
on the neighbour of v incident to two edges with one endpoint in NU [v]. In
the subproblem where u is not removed also branch on u. Δ1 = 3w(3) +
2w(2) + w(1),Δ2 = Δ3 = 3w(3) + 2w(2) + Δw(3).

(b) In G[U ] a vertex u ∈ T has a U -degree one neighbour: branch on u.

(c) In the remaining subcase branch on both vertices in NU (T ). Δ1 = 3w(3)+
2w(2) + min{w(2) + w(1), 3w(1)}, Δ2 = 3w(3) + 2w(2) + 2w(1) + Δw(3),
Δ3 = 3w(3) + 2w(2) + w(1) + 2Δw(3), Δ4 = 3w(3) + 2w(2) + 3Δw(3).
Notice that since G[U ] is simple, the minimum in the formula for Δ1 does
not need to consider w(3): not all edges with only one endpoint drawn in
Figure A.1 can be incident to the same vertex.

7. d = 3, r2 = 1, r3 = 2, again d2 = 3 as we handled Case 2 earlier. Because of
Case 6 suppose that the U -degree two neighbour of v is not adjacent to another
neighbour of v in G[U ]. Let T be the 3-clique in G[U ] with v ∈ T .

(a) If any vertex in NU (T ) has U -degree one, branch on its neighbour in T .
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(b) If any vertex in NU (T ) has U -degree three, we proceed to Case 8, where we
let v be the vertex in T that is a neighbour to this U -degree three vertex.
This case is illustrated in Figure A.1, Case 8 (not Case 7).

For all other subcases, NU (T ) consists of vertices of U -degree two.

(c) A vertex in u ∈ U is adjacent to two vertices in T . Branch on the vertex in T
not adjacent to u. Δ1 = 3w(3)+2w(2)+Δw(3), Δ2 = 3w(3)+w(2)+Δw(2).

(d) Two vertices in U adjacent to T are adjacent to each other. Branch on
a vertex u ∈ T adjacent to one of these two vertices. When u is put in
the vertex cover, branch on the other vertex adjacent to one of these two
vertices. Δ1 = Δ2 = 3w(3)+2w(2)+Δw(2), Δ3 = 2w(3)+2w(2)+Δw(3)+
Δw(2).

(e) The U -degree two neighbour of v is adjacent to a neighbour of a vertex in T
in G[U ]. Notice that this case is isomorphic to Subcase (d) as the triangle T
is adjacent to three degree two vertices, two of which form a 4-cycle with T .
Hence, this case can be dealt with similarly.

(f) Left is the subcase where no vertices in U neighbouring T are adjacent:
branch on v.

Together with Case 6 this allows us to add an additional 2(Δw(2) −Δw(3)) to
Δindep for d = 3, r2 = 1, r3 = 2. This holds because the only remaining subcase
is Subcase 7(f) where putting v in the independent set gives at least two vertices
of U -degree two whose U -degree is reduced, in contrast to the original analysis,
where we did not have the U -degrees of these vertices specified.

8. d = 3, r3 = 3 with d2 = 4 since we handled Case 5 earlier. We consider many
subcases.

If not all vertices neighbouring the triangle T containing v in G[U ] are different, or
they are adjacent to each other, then we again give alternative ways of branching.
These specific cases are shown visually as Case 8’ in Figure A.1: the first picture
corresponds to a vertex being adjacent to two vertices of T ; the other pictures
on the top row correspond to T having two neighbours of degree two; and the
pictures on the bottom row represent neighbourhoods of T with at most one
degree two vertex. We will not explicitly state the recurrences representing these
cases: they can be derived easily in a way similar to the above analysis.

We assume all three vertices that are neighbours of T to be different and non-
adjacent.

(a) Again if any U -degree one vertex is a neighbour of a vertex u ∈ T , branch
on u.

(b) Otherwise, if at most one of the vertices adjacent to T in G[U ] has degree
two, branch on all three vertices neighbouring T in G[U ] simultaneously. In
the worst case, one vertex has degree two resulting in:
Δ1 = 5w(3)+w(2)+min{w(3)+w(2), w(3)+2w(1), 2w(2)+w(1), w(2)+
3w(1), 5w(1)}, Δ2 = Δ3 = 5w(3) + w(2) + min{w(2) + w(1), 3w(1)} +
2Δw(3), Δ4 = 5w(3) + w(2) + w(1) + 4Δw(3), Δ5 = 5w(3) + w(2) +
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min{2w(2), w(2) + 2w(1), 4w(2)} + Δw(3), Δ6 = Δ7 = 5w(3) + w(2) +
2w(1) + 3Δw(3), Δ8 = 5w(3) + w(2) + 5Δw(3).

The first four reductions correspond to the degree two vertex being put in
the independent set and the last four reductions correspond to it being put
in the vertex cover.

The only case that remains is the case where two vertices adjacent to T have
degree two, and we can assume that these are not adjacent to v. Similar to the
previous case, we add an additional 2(Δw(2)−Δw(3)) to Δindep in the recurrence
representing branching on v since at least two vertices at distance two from v
now have degree two. We remark that this improved case remains a worst case
in the associated numerical optimisation problem.

9. d = 4, r4 = 4. If all vertices in NU [v] are pairwise adjacent we have a clique that
can be filtered out by Reduction Rule 6.1. It can also be removed using three
subproblems by branching on any two vertices: Δ1 = Δ2 = Δ3 = 5w(4).

If there are two edges in G[U ] with only one endpoint in NU [v] then we branch on
both vertices in NU [v] incident to these edges. Δ1 = 5w(4) +min{w(2), 2w(1)},
Δ2 = Δ3 = 5w(4)+w(1)+Δw(4), Δ4 = 5w(4)+2Δw(4). This results in d2 = 4
for all other subcases.

Having introduced all the alternative branching rules, we will now prove Theo-
rem 6.9. This theorem states that there exists an algorithm that solves Edge Domi-

nating Set in O(1.3226n) time and polynomial space.

Proof of Theorem 6.9. Reconsider the numerical optimisation problem used to prove
the running time of Theorem 6.7 and modify the values of Δindep as justified by the
above case analysis. This gives:

Δindep = w(d)+

d
∑

i=1

riw(i)+d2Δw(d) +

⎧

⎨

⎩

2(Δw(2)−Δw(3)) if d = 3, r2 = 1, r3 = 2
or d = r3 = 3

0 otherwise

d2 =

[(

d
∑

i=1

(i− 1)ri

)

mod 2

]

+

⎧









⎨









⎩

4 if d = 3, r2 = 2, r3 = 1 (cases 1 and 4)
2 if d = 3, r2 = 1, r3 = 2 (case 2; also 6, 7)
2 if d = r2 = 3 (case 3)
2 if d = r3 = 3 (case 5; also 8)
4 if d = r4 = 4 (case 9)

Furthermore, we add additional recurrences corresponding to the alternative branching
strategies for all the subcases listed above. In order to keep the numerical optimisation
problem finite, set w(i) = 1 for i ≥ p for some p ≥ 4 (see Remark A.1).

The solution (see Section 5.6) to this modified numerical optimisation problem
leads to a running time of O(1.3226n) using to following set of weights:

w(1) = 0.779307 w(2) = 0.920664 w(3) = 0.997121 ∀i≥4 w(i) = 1

The modified algorithm uses only polynomial space for the same reason as in Theo-
rem 6.7.
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21 3

Figure A.2. Lower Bound Graphs.

Remark A.1. If we would have set w(i) = 1, for all i ≥ 3, as in the proof of Theorem 6.7,
then the recurrence relation for d = r4 = 4 becomes independent of the weight func-
tion w: w(i) for i < 3 does not occur in its formulas. The solution to this recurrence
relation is close to � = 1.3247 and is independent of w. Hence, w(3) needs to be
variable in order to get any solution below 1.3247.

The proof of the lower bound on the running time of Algorithm 6.3 is no longer
valid after introducing the first alternative branching strategy. We prove different
lower bounds for the algorithms in the improvement series (also see Table A.1):

Proposition A.13. The worst case running time of the i-th algorithm in the improve-
ment series is Ω(1.2968n) if i ≤ 4 and Ω(1.2753n) if i ≥ 5.

Proof. If i ≤ 4, consider the class of graphs consisting of l disjoint copies of Graph 2 in
Figure A.2. In this case, the i-th algorithm in the series can branch on the rightmost
grey vertex v. When v is put in the independent set, we are left with Subgraph 1 of
Figure A.1 in G[U ] which generates two subproblems. When v is put in the vertex
cover, the algorithm can branch on the leftmost grey vertex. This results in either a
path on three vertices (two subproblems) or a cycle of length six (four subproblems)
remaining in G[U ]. Altogether this leads to a total of eight subproblems for each copy
consisting of eight vertices. Since 8l = 8n/8 > 1.2968n, these algorithms run in time
Ω(1.2968n).

If i ≥ 5, then the i-th algorithm in the series uses alternative branching strategies
1 up to i ≥ 5. In this case, the previous lower bound is no longer valid since the
algorithm can no longer branch on the grey vertices: an alternative is introduced by
alternative branching strategy 5. Now consider Graph 3 of Figure A.2 in which the
algorithm can branch on one of the grey vertices. In the subproblem where this vertex
is put in the independent set, a star shaped graph remains in G[U ] which generates
two subproblems by branching on its centre vertex. In the other subproblem, the
algorithm can branch on the other grey vertex resulting a cycle of length six in G[U ]
or the removal of this copy of the graph from U . This gives a total sum of seven
subproblems on a graph on eight vertices. Since 7l = 7n/8 > 1.2753n, these algorithms
run in time Ω(1.2753n).
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A.4. Omitted Proofs for the Independent Set Algorithm

In Chapter 7, we claimed an O(1.08537n)-time and polynomial-space algorithm for
Independent Set on graphs in which each connected component has average degree
at most three. This algorithm is a branch-and-reduce algorithm for which the reduction
rules can be found in Section 7.2.1 and the branching rules are described in the proofs
of four lemmas which are formulated in Section 7.2.2. However, the proofs of only two
of these lemmas are given in Chapter 7; the other two can be found in this appendix.

In Section A.4.1, we give the proof of Lemma 7.8 involving the branching on 3-
regular graphs. Thereafter, we give the proof of Lemma 7.6 involving the branching
on graphs with vertices of degree four in Section A.4.2. Finally, we give the details on
the small separators rule due to Fürer [158] in Section A.4.3 for completeness.

Before giving the two omitted proofs, we first define what we call an external edge.
When considering to remove a set of vertices S ⊆ V from the graph in some branch,
external edges are all edges incident to vertices in S that have not yet been considered
as edges between vertices in S. That is, these edge are either edges between S and
the rest of G, or edges between two vertices in S whose adjacency has not yet been
considered.

We further clarify this concept by example. Consider a 3-regular graph and consider
branching on a vertex v with a 3-cycle in N [v]. In the branch where v is taken in I
and hence N [v] is removed, there are 4 external edges: 4 vertices of degree three give
us 12 endpoints from which 3 edges between v and N(v) are formed; 4 external edges
remain. However, some of these external edges can actually be the same edge if there
is a second 3-cycle in G[N [v]]. That is, when counting external edges, we count unused
endpoints of edges, while two of these endpoints can be of the same edges. If these
edges are the same edges, we call this an extra adjacency : this lowers the actual number
of edges removed. We note that, in the given example, we disregard the fact that if
the extra adjacency exists, then the graph would be reduced by the domination rule.

In this way, we often construct simple counting arguments of the following form
(the values used for the variables represent the above example): we remove n′ = 4
vertices and m′ = 8 edges among which there are e = 4 external edges. As these e = 4
external edges can lead to at most e′ = 1 extra adjacency by reason X, this reduces
the measure by m′ − n′ − 1 = 3 and gives T (k −m′ + n′ + 1) = T (k − 3).

A.4.1. Proof of Lemma 7.8

The first proof that we give in this appendix is the proof of Lemma 7.8.

Lemma A.14 (before Lemma 7.8). Let T (k) be the number of subproblems generated
when branching on a graph G with measure k = m − n. If G is 3-regular and 3- and
4-cycle free, then we can branch such that T (k) satisfies T (k) ≤ T1(k− 2)+T3(k− 5),
or a better sequence of branchings exists. Here, we denote by T1(k) and T3(k) the
recurrences from Cases 1 and 3 from Lemma 7.6 applied to an instance of measure k,
respectively.

Proof. Our reduction rules guarantee that no trees can be separated from G since we
branch on a degree-three vertex in a graph of maximum degree three. We can also
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assume that no other reduction rules than the degree one and two rules can be applied
after branching. Namely, if such a reduction rule can be applied in the branch where
we discard v, then we have the sufficient relation of T (k) ≤ T (k− 4)+ T (k− 5). And,
if such a reduction rule can be applied only in the branch where we take v in I, then
we follow the proof below to obtain a T3(k − 2)-branch when discarding v to obtain a
branching which corresponds to the sufficient relation of T (k) ≤ T3(k− 2) + T (k− 7).

Let v be a vertex of G with neighbours x, y and z. We systematically consider
the possible local neighbourhoods around v and observe what happens to this local
neighbourhood when we branch on v. Because of 3- and 4-cycle freeness, v is the only
common neighbour of any two vertices from the set {x, y, z}. By the same argument,
there cannot be any adjacent vertices within N(x), N(y) or N(z). There can, however,
be at most six adjacencies between vertices from two different neighbourhoods. These
adjacencies are important in the branch where v is discarded. Here, the remaining
neighbours of x, y and z are folded to single vertices, and hence these adjacencies
determine the newly formed local structure on which we will branch next. Notice that
when there are two adjacencies between the same neighbourhoods, then the vertex
folding after discarding v will lead to the removal of an extra edge since we do not
allow double edges.

We first show that we can easily deal with cases involving more than three of these
adjacencies between the neighbourhoods of x, y and z. If there are six, then we are
looking at a connected component of constant size that can be solved in constant time.
If there are five, then there are only two external edges out of N2[v] and hence there
exists a small separator. Finally, if there are four such adjacencies, then these cannot
all be between the same two neighbourhoods as this creates a 4-cycle. The alternative
is that all three neighbourhoods are adjacent. In the branch where we discard v, the
neighbourhoods of x, y and z are folded resulting in two degree-three vertices between
which a double edge is removed that are in a 3-cycle with a degree-four vertex. This
allows us to apply Lemma 7.6 Case 2 to obtain the following recurrence relations with
a better branching behaviour than we are proving: T (k) ≤ T3(k− 5) + T (k− 3− 4) +
T (k − 3− 6) or T (k) ≤ T3(k − 5) + 2T (k − 3− 8) + 2T (k − 3− 12).

We will now show that we can always obtain a T3(k−5) branch when taking v in I
and discarding its neighbours. Removing N(v) results in the creation of six degree-two
vertices that will be folded. If any of these vertices are folded to degree-four vertices,
we can apply Lemma 7.6 and we are done.

Hence, we need to consider only the case in which no degree-four vertices are
created. This can happen only if the vertices that now have degree two form paths of
even length: vertex folding replaces adjacent degree-two vertices by an edge. By the
argument in the previous paragraph, we know that there are at most three adjacencies
between the vertices in N2(v). Since the vertices in N2(v) are the new degree-two
vertices, the only possible way for them to form even length paths is when they form
three pairs of adjacent vertices (paths of length two connected to the rest of G). In
this particular local structure, v lies on three 5-cycles, each pair of which overlaps in v
and a different neighbour of v. In this very specific case, we decide not to branch on v:
either this connected graph G has a vertex with a different local configuration, or G
has no such vertex and thus each local configuration equals this specific case. If one
draws this graph, one find that there is only one graph in which each vertex has this
local configuration: the graph of the dodecahedron. We finish the argument by noting
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that the dodecahedron has 20 vertices and can be solved in constant time.
What remains is the T1(k − 2) branch when discarding v. In this branch, vertex

folding results in three folded vertices. Because the graph is 3- and 4-cycle free before
applying this lemma, a new 3- or 4-cycle created by folding after discarding v must
involve the folded vertices. If such a 3- or 4-cycle is created, we can apply Lemma 7.6
Case 1. Notice that the folded vertices are of degree four unless folding results in the
implicit removal of double edges between folded vertices. If all folded vertices are of
degree four, we can apply Lemma 7.6 Case 1 obtaining our result of T1(k − 2). If, on
the other hand, additional edges are removed and we also consider the possibility that
3- or 4-cycles involving only degree-three vertices are created, we can apply the slightly
worse Case 2 of Lemma 7.6 on the graph with measure k − 3. This results in T (k) ≤
T3(k−5)+T (k−3−4)+T (k−3−6) or T (k) ≤ T3(k−5)+2T (k−3−8)+2T (k−3−12).

The only cases that remain are those in which no new 3- or 4-cycles are created
by folding. We consider six different cases depending on the location of the three
vertices that are the result of folding relative to each other in the graph obtained
after discarding v. These three vertices will be of degree four unless there are double
adjacencies between the neighbourhoods N(x), N(y), and N(z): in these case folding
results in double edges that will be removed. Hence, the following six cases arise:

0: Three non-adjacent degree-four vertices.
1: Three degree-four vertices only two of which are adjacent.

2a: Three degree-four vertices on a path of length three.
2b: Two adjacent degree-three vertices and a non-adjacent degree-four vertex.
3a: Two degree-three vertices adjacent to a degree-four vertex.
3b: Three degree-four vertices that form a 3-cycle.

Note that the numbers correspond to the number of edges between the vertices that
are the result of the folding.

For each of these six cases, we will give efficient sequences of branchings based on
the following reasoning. This reasoning is quite similar to exploiting mirrors. Let x′,
y′ and z′ be the result of folding the neighbourhoods of x, y and z to single vertices,
respectively. If v is discarded, we know that we need to take at least two of the three
neighbours of v in I: if we take only one, we could equally well have taken v which is
done in the other branch already. This observation becomes slightly more complicated
because we just folded the neighbours of v. The original vertex x is taken in the
independent set if and only if the vertex x′ is discarded in the reduced graph. Thus,
the fact that we needed to take at least two vertices from N(v) results in us being
allowed to restrict ourselves to taking at most one vertex from the three degree-four
vertices created by folding the neighbours of v. That is, taking any vertex in I from
the three folded vertices allows us to discard the other two.

0: Three Non-Adjacent Degree-Four Vertices

We will perform a T (k) ≤ T3(k − 3) + T (k − 9) branching after discarding v using
the reasoning given above. This reasoning tells us that if we pick any vertex from the
three folded vertices, then this allows us to discard the other two (see Figure A.3).

If we discard x′, we remove 4 edges and 1 vertex. Moreover, at least one degree-
four vertex remains in the graph after discarding x′ giving T3(k − 3), or at least one
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x’

v

yz x z’

y’

Figure A.3. The situation before and after discarding the degree-three vertex v
and folding its neighbours. If x′ is taken in the independent set (white), then this
corresponds to discarding x (gray) and by a replacement argument taking y and z
in the independent set. This then again corresponds to discarding y′ and z′.

extra edge is removed by folding resulting in T (k − 4) (which in composition with
the initial branching on v is even better). If, in the other branch, we take x′ in I,
then we can discard all four degree-three neighbours and both y′ and z′ resulting in
the removal of 20 edges, from which 16 external edges, and 7 vertices. Because y′

and z′ are non adjacent and they can be adjacent to only a single neighbour of x′ (or
a 4-cycle would exist), there are at most two extra adjacencies and thus at least 12
external edges remain. If at most two trees are separated from the graph, this gives
the T (k − 20 + 7 + 2 + 2) = T (k − 9) branch.

We now show that at most two trees are separated from the graph when there are
two extra adjacencies (i.e., when y′ and z′ are adjacent to neighbours of x′). In case
where trees are separated from G, there must exist some very specific local structures.
Because of the triangle and 4-cycle freeness, every tree vertex t can have neighbours
that are distance three away from each other in G[V ∖ {t}] only. The only size one
trees that can be separated are adjacent to both y′ and z′ and a neighbour of x′ that
is not adjacent to either y′ or z′. There can be at most one such tree, since two of
these trees adjacent to the same two vertices also create a 4-cycle. And, it can exist
only if y′ and z′ are adjacent to different neighbours of x′. This results in 9 remaining
external edges that because of the small separators rule can form only one larger tree.
If there is no size one tree, larger trees use more external edges and hence there can
also be at most two of them.

In the above paragraph, we have assumed that there are two extra adjacencies.
There can, however, also be fewer extra adjacencies leaving more external edges to
form trees. In this case, the fewer extra adjacencies lead to extra edges compensating
for the possible extra tree.

When considering this branching together with the initial branching on the vertex v,
we obtain T (k) ≤ T3(k− 2− 3) + T (k− 2− 9) + T3(k− 5) ≤ 2T (k− 8) + T (k− 11) +
2T (k − 12).

1: Three Degree-Four Vertices Only Two of Which Are Adjacent

Identical to the previous case, we try to perform a T (k) ≤ T3(k−3)+T (k−9) branching
after discarding v. In the worst case, this gives T (k) ≤ 2T (k−8)+T (k−11)+2T (k−12).
Without loss of generality, assume that x′ is adjacent to y′ and that z′ is not adjacent
to x′ or y′.

If we discard x′, we remove 4 edges and 1 vertex. Now, either a degree-four vertex
remains giving the T4(k− 3), or an extra edge is removed by folding giving the in this
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case slightly better T (k − 4). If we take x′, we can also discard z′ resulting in the
removal of 17 edges from which 13 external edges and 6 vertices. There can be at most
one extra adjacency, namely between z′ and a degree-three neighbour of x′. Any tree
vertex must again be adjacent to vertices that are distance at least 3 away from each
other in this structure. This can only be both z′ and any neighbour of x′. Hence,
there cannot be any size one tree: it would need two neighbours of x′ which causes a
4-cycle. Actually, there can be no tree at all since every tree leaf needs to be adjacent
to z′ in order to avoid 4-cycles in N(x′), but this also implies a 4-cycle. Hence, we
have T (k − 17 + 6 + 1) = T (k − 10).

If there is no extra adjacency, there can again be no 1-tree since it can be adjacent
to at most one neighbour of x′. Larger trees remove enough external edges to prove
T (k − 9).

2a: Three Degree-Four Vertices on a Path of Length Three

Again, we combine applying Lemma 7.6 to the branch where we take v with applying
a T (k) ≤ T3(k−3)+T (k−9) or better branch to the branch where we discard v. This
again leads to T (k) ≤ 2T (k− 8) + T (k− 11) + 2T (k− 12). Let y′ be adjacent to both
x′ and z′, and let x′ and z′ be non-adjacent.

If we discard x′, we remove 4 edges and 1 vertex while z′ remains of degree four
giving the T4(k− 3). If we take x′ in I, we can also discard z′ resulting in the removal
of 16 edges from which 11 external edges and 6 vertices. Notice that in the last branch
there cannot be any extra adjacencies since they imply triangles or 4-cycles. There also
cannot be any trees consisting of 1 or 2 vertices because tree leaves can be adjacent
only to z′ and a degree-three neighbour of x′. Finally, any larger tree decreases the
number of external edges enough to obtain T (k − 16 + 6 + 1) = T (k − 9).

2b: Two Adjacent Degree-Three Vertices and a Non-Adjacent a Degree-Four Vertex

We now have a graph with measure k−3 instead of k−2 due to the removal of a double
edge. The graph has two adjacent degree-three vertices that are the result of folding,
say y′ and z′, and a degree-four vertex x′. Furthermore, while y′ and z′ are adjacent,
they are not adjacent to x′. Of these vertices x′ cannot be involved in any triangle or
4-cycle, or we apply Lemma 7.6 Case 3 as discussed with the general approach.

We branch on x′. This leads to T (k − 3 − 3) when discarding x′. Similar to the
above cases, we can still discard both y′ and z′ when taking x′ in the independent
set. Therefore, taking x′ leads to removing 17 edges from which 12 external edges
and 7 vertices. If there is an extra adjacency, this is between y′ or z′ and a neighbour
of x′. In this case, there can be at most one tree since y′ and z′ together have only 3
external edges left and every tree leaf can be adjacent to at most one neighbour of x′

or a 4-cycle with x′ would exists. This leads to T (k− 3− 17+ 7+ 1+ 1) = T (k− 11).
If there is no extra adjacency, every tree leaf can still be adjacent to no more than one
neighbour of x′, which together with the 4 external edges of y′ and z′ lead to at most
two trees and T (k − 11). We obtain T (k) ≤ T3(k − 5) + T (k − 6) + T (k − 11).
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3a: Two Degree-Three Vertices Adjacent to a Degree-Four Vertex

We again have a graph with measure k − 3 with two degree-three vertices y′, z′ and
a degree-four vertex x′ which are all the result of folding. Furthermore, y′ is adjacent
to x′ and z′ while x′ and z′ are non-adjacent. Of these vertices, x′ cannot be involved
in any triangle or 4-cycle since we then apply Lemma 7.6 Case 2 as discussed with the
general approach.

Similar to the previous case, we branch on x′ giving T (k−3−3) when discarding x′,
and we discard y′ and z′ when taking x′. In the second branch, this leads to the removal
of 14 edges and 6 vertices obtaining T (k) ≤ T3(k− 5)+T (k− 6)+T (k− 11) as before
unless trees are separated.

If trees are separated in the branch where x′ is taken in I, observe that every tree
leaf can again be adjacent to at most one neighbour of x′, and hence all tree leaves
must be adjacent to z′. Also observe that the third neighbour of y′ cannot be adjacent
to x′ or any of its neighbours. Since z′ has only two external edges, this means the only
tree that can exist is a size two tree with both leaves connected to z′ and a different
neighbour of x′ not equal to y′ (or z dominates a tree vertex). Notice that this implies
a triangle involving the tree and z′. In this case, we branch on y′. When taking y′

in I, we remove 10 edges and 4 vertices: T (k− 6). When discarding y′, the tree forms
a triangle in which z′ is taken in I because of the domination rule. Since we can take
at most one of the folded vertices, this also results in x′ being discarded. In total, this
results in the removal of 11 edges and 4 vertices, and in this very specific structure no
trees can exist: T (k − 7). This gives a much better recurrence when combined with
branching on v than required.

3b: Three Degree-Four Vertices that Form a 3-Cycle

We treat this last subcase in an entirely different way. Reconsider the graph before
branching on v, and let N(x) = {v, a, b}, N(y) = {v, c, d} and N(z) = {v, e, f}. From
the general proof of the T3(k − 5) branch when taking v in I, we know that if there
are three adjacencies between the three neighbourhoods N(x), N(y) and N(z) then
these are not pairwise distributed over the six possible vertices. This was proved
by deciding to branch on another vertex which is always possible unless G equals
the dedocahedron. Hence, we know that at least one vertex from {a, . . . , f} has a
neighbour in both other neighbourhoods. Also, since there cannot be more than three
adjacencies between these neighbourhoods, we know that there can be at most two
such vertices with neighbours in both other neighbourhoods, and if there are two then
they must be adjacent.

We begin with the case where one vertex has neighbours in both other neighbour-
hoods. Without loss of generality, let this vertex be a and let N(a) = {x, c, e} and
let d and f be adjacent. We now branch on x in stead of v. If we discard x, the
neighbourhoods of a, b and v are folded to single vertices and we implicitly remove
a double edge coming from the old edges {c, y} and {e, z}. Furthermore, N(b) is
folded to a degree-four vertex giving a T3(k − 3) branch. If we take x in I and dis-
card N(x), then c, y and e, z are adjacent degree-two vertices that are replaced by a
single edge. Since these adjacent degree-two vertices form a path from d to f and the
neighbours of b are non adjacent, a degree-four vertex must be created and we have



312 Appx. A: Omitted Case Analyses

T3(k − 5) in the other branch. Together this gives the sufficiently efficient recurrence
of T (k) ≤ T3(k − 3) + T3(k − 5) ≤ T (k − 6) + T (k − 8) + T (k − 10) + T (k − 12).

We end our proof with the last case involved. Without loss of generality let both
a and c have neighbours in both other neighbourhoods: let N(a) = {x, c, e} and
N(c) = {y, a, f}. We obtain the same branching of T (k) ≤ T3(k− 3)+T3(k− 5) when
branching on x. If we discard x, the edges {c, f} and {e, z} lead to a double edge
between the folded neighbourhoods N(a) and N(v). Also, N(b) will become a degree-
four vertex giving the T3(k − 3) branch. In the other branch, we take x in I again
leading to two pairs of adjacent degree-two vertices that are replaced by single edges.
In this case, these edges are incident to c and f . By the same argument as before, the
neighbours of b will be folded to at least one degree-four vertex giving T3(k − 5).

A.4.2. Proof of Lemma 7.6

The proof in the previous section of this appendix and the running time of our algo-
rithm in Chapter 7 rely on the fact that we can perform very efficient branchings on
graphs with degree-four vertices. Moreover, these results require even more efficient
branchings when every 3- and 4-cycle contains a degree-four vertex. In this section, we
prove Lemma 7.6 which describes the branching rule that satisfies these requirements.

The proof of this lemma uses observations similar to those used in the proof of
Lemmas 7.5 and 7.7. Namely, in a graph that contains a 3-cycle containing a degree-
three vertex v, we can often branch on a neighbour u ∈ N(v); this allows us to apply the
domination rule on v the branch where we discard u. Also, in a graph containing a 4-
cycle containing a degree-three vertex v, we can use the fact that the vertex opposite v
on the cycle is a mirror of v. Actually, the only 4-cycles in which this does not happen
in a graph of maximum degree four is a 4-cycle consisting of degree-four vertices only.

Lemma A.15 (before Lemma 7.6). Let T (k) be the number of subproblems generated
when branching on a graph G with measure k = m−n. If G is of maximum degree four
but not 3-regular, then we can branch such that T (k) satisfies the following recurrence
relations, or a better sequence of branchings exists.

1. if G has a degree-four vertex that is part of a 3- or 4-cycle also containing at least
one degree-three vertex, and there are no 3- or 4-cycles containing only degree-
three vertices, then T (k) ≤ T (k−5)+T (k−6) or T (k) ≤ 2T (k−8)+2T (k−12).

2. if G has a degree-four vertex that is part of a 3- or 4-cycle also containing at
least one degree-three vertex, and the constraint on the degree-three vertices
from the previous case does not apply, then T (k) ≤ T (k − 4) + T (k − 6) or
T (k) ≤ 2T (k − 8) + 2T (k − 12).

3. if the above cases do not apply, then T (k) ≤ T (k − 3) + T (k − 7).

Proof. We start the proof by noticing that our reduction rules guarantee that no trees
can be separated from G when we branch on a degree-three vertex. Furthermore, no
trees are separated from G when discarding a vertex that by domination leads to a
single degree-three vertex to be taken in I.
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y

vw

x

Figure A.4. Vertex v has degree three and is adjacent to a triangle with two
degree-four vertices.

We first consider all possible 3-cycles containing both degree-three and degree-four
vertices. Then, we consider all possible 4-cycles containing both degree-three and
degree-four vertices in a 3-cycle free graph. In each subcase, Cases 1 and 2 from the
statement of the lemma are proved. Thereafter, the remaining Case 3 will be proved.

3-Cycles with Two Degree-Four Vertices and a Degree-Three Vertex

Let x, y, w be a 3-cycle in the graph with d(x) = d(y) = 4 and d(w) = 3, also let v
be the third neighbour of w. Notice that discarding v causes the domination rule to
apply to w; this results in w being taken in the maximum independent set I.

If v is of degree four, discarding v and taking w leads to the removal of 11 edges
and 4 vertices: T (k−7). Taking v and removing N [v] results in the removal of 3 edges
incident to w and at least 8 more edges (in the worst case, v is in a triangle) and
5 vertices. If in this last case all neighbours of v are of degree three, then there are
at most 6 external edges not incident to w and hence there can be at most one tree;
the neighbours of w are fixed and cannot form a tree because of the small separators.
Otherwise, any degree-four neighbours of v cause even more edges to be removed com-
pensating for any possible tree. This results in T (k − 5): remove 11 edges, 5 vertices,
and possibly separate one tree.

If v is of degree three (see Figure A.4), discarding v and taking w leads to the
removal of of at least 10 edges and 4 vertices: T (k − 6). In this case, if v is not part
of another 3-cycle or v has a degree-four neighbour (Case 1 of the lemma) taking v
removes at least 9 edges and 4 vertices: T (k − 5). On the other hand, if v is part of
a 3-cycle of degree-three vertices (Case 2 of the lemma) taking v removes 9 edges and
4 vertices T (k − 4).

3-Cycles with One Degree-Four Vertex and Two Degree-Three Vertices

When there is only one degree-four vertex on the 4-cycle, then the situation becomes
a lot more complicated. Let x, a and b be the 3-cycle vertices with d(x) = 4 and
d(a) = d(b) = 3, also let v be the third neighbour of a, and let w be the third
neighbour of b (see Figure A.5).

w

x

v

a b

Figure A.5. Triangles with one degree-four vertex and two degree-three vertices.
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y
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Figure A.6. Vertex v has a degree-four neighbour y.

By domination, we know that v and w are not adjacent to x, and that v ∕= w. If v
and w are adjacent, we can safely discard x reducing the graph. This follows from
the fact that if we pick v we would also pick b, and if we discard v, its mirror b is
also discarded which results in a being picked. In both cases a neighbour of x is in a
maximum independent set, hence x can safely be discarded. So, we can assume that v
and w are non-adjacent.

If v or w, say v, is of degree four, taking v removes at least 11 edges (when there
is a 3-cycle in N(v)) and 5 vertices. Since there are 6 external edges, a tree can be
separated. In total this leads to a branch with T (k − 5). If there are more external
edges (less edges in N(v)) the number of edges removed increases. Discarding v and
by domination taking a leads to the removal of 10 edges and 4 vertices: T (k−6). This
branching is sufficient to prove the lemma for this case. Thus, we can assume that v
and w are of degree three from now on.

Consider the case where v or w, say v, has a degree-four neighbour y (see Fig-
ure A.6). Suppose that y does not form a 3-cycle with v, then taking v removes at
least 10 edges and 4 vertices: T (k − 6). Discarding v and by domination taking a
removes at least 9 edges and 4 vertices: T (k − 5). If, on the other hand, y does from
a 3-cycle with v, then we branch on w. If, in this case, w has a degree-four neighbour
or is not involved in a 3-cycle (Case 1 of the lemma), then taking w results as before
in T (k − 5). Discarding w by domination results in taking b which again by domi-
nating results in taking v. In total 15 edges are removed from which 7 external edges
and 7 vertices. Because of the small separators rule, there can be at most 2 extra
adjacencies in the worst case leaving 3 external edges: T (k − 6). Note that, in this
case, separating a tree is beneficial over extra adjacencies since this uses more external
edges. This leaves the case where w has only degree-three neighbours with which it
forms a 3-cycle (now we are in Case 2 of the lemma). In this case, taking w leads to
T (k − 4) only, which now is enough. So, we can assume that v and w are of degree
three and that they have no degree-four neighbours.

a

x

b

w
v

Figure A.7. The vertices v and w both have only degree three neighbours and
are both part of a triangle.
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Figure A.8. Vertex w has a neighbour u ∕= a, b that is adjacent to x.

Suppose that v or w, say v, is part of a 3-cycle (see Figure A.7). Notice that we are
now in Case 2 of the lemma. We branch on w. In the first branch, we take w in I. The
worst case arises when w is also part of a 3-cycle; in this case, 8 edges and 4 vertices
are removed leading to a branch with T (k−4). In the other branch, we discard w and
by domination b and v are put in the independent set I removing a total of at least
14 edges from which 6 external edges and 7 vertices. Because of the small separators
rules, the external edges can form at most one extra adjacency or tree leading. This
gives the required branch with T (k − 6). So, at this point, we can also assume that v
and w are not part of any 3-cycle.

Suppose v or w, say w, has a neighbour u ∕= a, b that is adjacent to x (see Fig-
ure A.8). We branch on v. In the branch where we discard v, a is taken in I by
domination. In this branch, we still have T (k− 5). In the branch where we take v, we
have the situation that b becomes a degree-two vertex with neighbours x and w that
will be folded. Notice that both x and w are adjacent to u, and hence this folding
removes an additional edge. This gives a branch with T (k−6). The only case in which
the above does not holds is when v and w are both a neighbour of u. We reduce this
exceptional case by noting that the tree separators fires when considering branching
on u (without actually branching on u of course) because this would create the size
two tree {a, b}. Hence, now we can also assume that v and w have no neighbours
besides a and b that are adjacent x.

The rest of the analysis of this case consists of three more subcases depending on
the number of vertices in X = (N(w) ∪ N(v)) ∖ {a, b}. Because of the degrees of w
and v we know that 2 ≤ ∣X∣ ≤ 4.

If ∣X∣ = 2, v and w are adjacent to both vertices in X (see Figure A.9). Notice
that if we take v in the independent set it is optimal to also pick w and vice versa.
Hence, we branch by taking both v and w in I or discarding both. If we take both
v and w in I, 11 edges are removed and 6 vertices: T (k − 5). If we discard both v

v

x

u u’

b a

w

Figure A.9. Vertices v and w are adjacent to both u and u′.
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Figure A.10. The case ∣X∣ = 3.

and w, then we can take a in the independent set and remove 11 edges and 5 vertices:
T (k − 6). In this special kind of branching we have to check that we do not separate
trees from G. This cannot be the case when taking both v and w in I since there are
only 4 external edges. This can also not be the case when discarding both v and w
because, in this case, two tree leaves are formed; these are either adjacent resulting in
a small separator, or adjacent to the only degree-two vertices (neighbours of x) also
resulting in a small separator or even a constant size component. Also, there cannot
be any extra adjacencies because this also results in the existence of a small separator.

If ∣X∣ = 3, let u ∈ X be the common neighbour of v and w and let t ∈ X be the
third neighbour of w (see Figure A.10). We branch on t. If we take t in I, we also
take b by domination. This results in the removal of 7 vertices and 15 edges if t has a
degree-four neighbour or if there is no triangle involving t. Otherwise, only 14 edges
are removed. We have T (k − 6) or T (k − 5) since there can be at most 8 external
edges with this number of removed edges, and hence at most 2 extra adjacencies or
trees. If we discard t, 3 edges and 1 vertex are removed and the folding of w results in
the merging of vertices b and u. The new vertex can be discarded directly since it is
dominated by a resulting in an additional removal of 4 edges and 1 vertex. This leads
to T (k − 5) in total. Furthermore, we cannot separate trees in this way since there
can be at most one vertex of degree less than two (adjacent to t and u, but no to w)
which cannot become an isolated vertex. Depending on whether t is in a triangle, we
are in Case 1 or 2 or the lemma and we have a good enough branching.

Finally, if ∣X∣ = 4, all neighbours of v and w are disjoint. We branch on v. If we
take v in I, we remove 9 edges and 4 vertices, and if we discard v, we take a and again
remove 9 edges and 4 vertices. This T (k) ≤ T (k− 5)+T (k− 5) branching is not good
enough; therefore we inspect both branches more closely.

If we take a in I, w is folded resulting in the removal of an extra edge if its
neighbours have another common neighbour. In this case, we are done. But if this
is not the case, the folding of w results in a degree-four vertex. In the other branch
where we take v, b is folded resulting in another degree-four vertex. We now apply
the worst case of this lemma (Case 3) inductively to our two T (k − 5) branches and
obtain T (k) ≤ 2T (k − 8) + 2T (k − 12) as in the lemma.

We remark that T (k) ≤ T (k − 5) + T (k − 5) has a smaller solution than T (k) ≤
2T (k−8)+2T (k−12). However, after the bad branch in a 3-regular graph of Lemma 7.8
the second recurrence gives a better solution when applied in the T1(k − 2) branch.
This is because it is a composition of three branchings that are all a lot better than
the bad 3-regular graph branching with branching vector (2, 5).
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x

a b

vu u’

Figure A.11. Vertex x is a degree-four vertex that is a mirror of the degree-three
vertex v.

4-Cycles in which a Degree-Four Vertex is a Mirror of a Degree-Three Vertex

Let x be the degree-four vertex that is a mirror of the degree-three vertex v, let a and b
be their common neighbours, and let w be the third neighbour of v (see Figure A.11).
If we branch on v and take v in I, we remove at least 9 edges and 4 vertices, and when
we discard v and also x because it is a mirror of v, we remove 7 edges and 2 vertices:
T (k) ≤ T (k− 5)+ T (k− 5). This recurrence is not good enough. Below, we will show
that we can always obtain T (k − 6) in one of both branches.

Notice that if we discard v and x, we cannot separate any trees since this would
cause v and x to form a small separator. Also, any extra adjacency (a and b adjacent)
results in triangles involving degree-three and degree-four vertices which are handled
in the previous cases of this proof.

First assume that a, b or w is of degree four. In this case, we have T (k − 6) or
better when taking v. Hence, we can assume that a, b and w are of degree three. We
can also assume that a and b have no common neighbour outside this 4-cycle: if they
would have such a neighbour, then the tree separators rule fires on a with possible size
one tree b.

Let u and u′ be the third neighbours of a and b, respectively. When discarding
v and x, both a and b are taken in I and u and u′ are discarded. This means that
13 edges form which 7 external edges and 6 vertices are removed. If u and u′ are
vertices of degree three, then the only possible extra adjacencies are those between u
and u′, or between u or u′ and v. But there can be only one extra adjacency because
otherwise there is a small separator. So we end up removing 12 edges from which
5 external edges and 6 vertices which cannot create trees: T (k − 6). Also, if u or u′

is of degree four, then the extra edges that are removed compensate for any possible
extra adjacencies or separated trees.

4-Cycles that Contain Degree-Three-and-Four Vertices while no Degree-Four Ver-
tex is a Mirror of a Degree-Three Vertex

This can be the case only if the cycle consists of two degree-four vertices x, y and two
degree-three vertices u, v with x and y not adjacent. There are no other adjacencies
than the cycle between these vertices because then we would apply branchings from
the analysis of 3-cycles.

Suppose that either u or v, say v, has a third degree-four neighbour z (see Fig-
ure A.12). Notice that this neighbour z cannot be adjacent to x or y. If we branch
on v and take v in I, we remove 12 edges and 4 vertices, and if we discard v and its
mirror u we remove 6 edges and 2 vertices. Thus, we have T (k) ≤ T (k− 8)+T (k− 4)
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Figure A.12. Vertex v has a third degree-four neighbour z.

giving a better branching behaviour than required by this lemma. So, we can assume
that u and v have no degree-four neighbours not on the 4-cycle.

Let w be the degree-three neighbour of v. It is not adjacent to u since that would
imply that x and y are mirrors of w. Since w cannot be adjacent to x or y, taking v
results in the removal of 11 edges and 4 vertices: T (k − 7). Discarding v and u leads
to the removal of 6 edges and 2 vertices and hence a graph with measure k−4. In this
case x and y will be folded. Because they are not adjacent to other created degree-two
vertices (then there would be triangles involving degree-three and degree-four vertices),
a vertex of degree at least four is created, or at least one additional edge is removed. It
is also possible that a reduction rule different from the degree 0, 1 or 2 rules fires on the
new graph. In this last case, we have T (k−4−2) giving T (k) ≤ T (k−6)+T (k−7). If
an additional edge is removed, then this leads to T (k) ≤ T (k−5)+T (k−7). Otherwise,
if both options do not apply, we apply the worse case of this lemma inductively to our
new degree-four vertex and obtain T (k) ≤ 2T (k − 7) + T (k − 11). These recurrences
are sufficient to prove our running time.

A Degree-Four Vertex that is not Involved in any Triangle or 4-Cycle with any
Degree-Three Vertex

We finally arrive at Case 3 of our lemma. Let x be this degree-four vertex. If all its
neighbours are of degree three, branching on it results in T (k) ≤ T (k− 7) + T (k− 3).
In this case, there cannot be any separates trees since any tree leaf is of degree at least
three before branching and therefore must have at least two neighbours in N(x) to
become a leaf. But, in this last case, there would exist four cycles with degree-three
and degree-four vertices on it; these are handled in other cases of the proof of this
lemma.

If x has degree-four neighbours, the number of edges removed increases and there
can still be no trees unless at least three neighbours of x are of degree four and every
tree leaf vertex originally was a degree-four vertex. If x has three neighbours of degree
four there are at least 13 edges removed, in which case there are 7 external edges.
This can lead to at most one tree and T (k− 7) as required. If there are more external
edges, there will also be more edges removed keeping this reduction. Finally, if x has
four degree-four neighbours, we remove at least 12 edges from which 4 external edges;
this again gives us a branch with T (k−7). Here, any tree implies more external edges,
and hence more edges are removed also keeping this reduction.
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A.4.3. Details on the Small Separators Rule

In the last section of this appendix, we give the details of the small separators rule
that is due to Fürer [158]. We include the full proof of this rule for completeness.

Lemma A.16 (before Lemma 7.2, [158]). If the graph contains a vertex separator S of
size one or two, then we can simplify the instance in the following way. We recursively
solve two or four subproblems that correspond to the smallest associated connected
component C with each possible combination of vertices from S added. Given the
solutions computed by the recursive calls, we can remove S and C from the graph and
adjust the remaining graph to obtain an equivalent instance. If C has size at most
some constant c, then this operation can be done in polynomial time.

Proof. We first consider the case where G has a separator of size one. Let v be an
articulation point of G, and let C ⊂ V be the vertices of the smallest associated
connected component (vertices in C have edges only to v or to other vertices in C). If
the algorithm finds such an articulation point v, it recursively computes the maximum
independent sets I ∕v in the subgraph G[C] and Iv in the subgraph G[C ∪ {v}]. Notice
that ∣Iv∣ can be at most one larger than ∣I ∕v∣, and if this is the case then v ∈ Iv. If
the sizes of these maximum independent sets are the same, the algorithm recursively
computes the maximum independent set I in G[V ∖(C∪{v})] and returns I∪Iv. This is
correct since taking v in the independent set restricts the possibilities in G[V ∖(C∪{v})]
more, while it does not increase the maximum independent set in C ∪{v}. Otherwise,
if ∣Iv∣ = 1 + ∣I ∕v∣, then the algorithm computes the maximum independent set I in
G[V ∖C] and returns I ∪ (Iv ∖ {v}). This is also correct since adding v to C increases
the size of the maximum independent set in G[C] by one; this choice is now left to the
recursive call on G[V ∖ C].

Now, we will deal with separators in G of size two. If the algorithm finds such
a separator {u, v} with smallest association connected component C ⊂ V , then it
computes a maximum independent set in the four subgraphs induced by C and any
combination of vertices from the separator. Let I ∕v, ∕u be the computed maximum inde-
pendent set in G[C], let Iv, ∕u be the computed maximum independent set in G[C∪{v}],
let I ∕v,u be the computed maximum independent set in G[C ∪ {u}], and let Iv,u be the
computed maximum independent set in G[C ∪ {u, v}].

We now consider the following five possible cases. Correctness of the procedure in
each case follows from first deciding whether discarding u or v is optimal: this is the
case if adding them to C does not increase the size of the maximum independent set
in G[C]. Otherwise, each case lets the recursive call on the larger component decide
on their membership of the computed maximum independent set.

1. ∣Iv,u∣ = ∣I ∕v, ∕u∣ + 2, and hence ∣Iv, ∕u∣ = ∣I ∕v,u∣ = ∣I ∕v, ∕u∣ + 1. The algorithm now
computes a maximum independent set in G[V ∖C] and returns I ∪ J where J is
the set from {I ∕v, ∕u, Iv, ∕u, I ∕v,u, Iv,u} that agrees with I on u and v.

This is correct as either taking u or v in the maximum independent set I does
not influence the size of I ∩ C, and the recursive call on G[V ∖ C] now decides
whether it is beneficial to take u or v in I.

2. ∣Iv, ∕u∣ = ∣I ∕v,u∣ = ∣Iv,u∣ = ∣I ∕v, ∕u∣ + 1. Let G′ be G[V ∖ C] with an extra edge
added between u and v. Similar to the previous case, the algorithm computes a
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maximum independent set in G′ and returns I ∪ J , where J is one of the four
possible independent sets that agree on u and v.

Correctness follows from the same reasoning as above, only the extra edge en-
forces that the recursive call can only take u or v in the maximum independent
set and not both. This is necessary since taking both u and v now does restrict
the number of vertices that we can take from C.

3. ∣Iv, ∕u∣ = ∣I ∕v, ∕u∣ and ∣I ∕v,u∣ = ∣Iv,u∣ = ∣I ∕v, ∕u∣ + 1 (and the symmetric case). We
recursively compute the maximum independent set I in G[V ∖ (C ∪ {v}] and
return I ∪ J , where J is the independent set from {I ∕v, ∕u, I ∕v,u} that agrees on u.

In this case, v can safely be discarded since it does not help increasing the size
of the independent set in C ∪ {v}.

4. ∣I ∕v,u∣ = ∣Iv, ∕u∣ = ∣I ∕v, ∕u∣ and ∣Iv,u∣ = ∣I ∕v, ∕u∣ + 1. Let G′ be G[V ∖ C] with u and v
merged into a single vertex w. The algorithm makes a recursive call on G′

returning I. If w ∈ I, then we return (I ∖ {w}) ∪ Iv,u, otherwise, we return
I ∪ I ∕v, ∕u.

Correctness here is similar to Case 3. Instead of adding an edge to make sure that
not both u and v are chosen to increase the size of the maximum independent set,
we here merge both vertices to ensure that both need to be chosen to increase
the size of the maximum independent set by only one.

5. ∣Iv,u∣ = ∣I ∕v,u∣ = ∣Iv, ∕u∣ = ∣I ∕v, ∕u∣. Now it is safe to use I ∕v, ∕u. We make a recursive
call on G[V ∖ (C ∪ {u, v})] resulting in I and return I ∪ I ∕v, ∕u.

We complete the proof by noticing that if the smallest associated connected com-
ponent C has size at most a constant c, then the recursive calls on G[C] with one or
two vertices can all be performed in constant time. In this case, the reduction rule can
be executed in polynomial time.
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B
List of Problems

This appendix contains definitions of most computational problems used in this the-
sis. The appendix is divided in three sections: standard problems (pages 321-331),
parameterised problems (pages 331-333), and counting problems (pages 333-334). The
problems in each section are given in alphabetical order.

Standard Problems

Binary Knapsack

Input: A set of items, numbered 1, 2, . . . , n with, for each item i, two
positive integers vi, wi, where vi is the value of item i and wi is
the weight of item i, and two integers k, l.

Question: Does there exist a subset of the items with total weight at most l
and total value at least k?

This problem is called Binary Knapsack because each item may be taken at most
once.

Capacitated Dominating Set

Input: A graph G = (V,E), a capacity function c : V → ℕ, and an
integer k ∈ ℕ.

Question: Does there exist a capacitated dominating set D ⊆ V in G of size
at most k respecting the capacities c?

In this problem, vertices v ∈ D can dominate a number of neighbours that is at most
its capacity c(v). Formally, a capacitated dominating set is a vertex subset D ⊆ V
such that there exists a domination function f for D respecting the capacities c. This
domination function f : V ∖ D → D assigns to each vertex v ∈ V ∖ D the vertex
u ∈ N [v] ∩ D that dominates it, with the constraint that there exist at most c(v)
vertices u with f(u) = v.
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Chromatic Index

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exists an edge colouring of G using at most k colours?

An edge colouring of a graph G is an assignment of colours to the edges of G such that
no two edges that are incident to the same vertex have the same colour.

k-Colouring

Input: A graph G = (V,E).
Question: Does there exists a colouring of the vertices of G using at most k

colours such that no two vertices of the same colour are adjacent?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.
See also: Graph Colouring.

Connected Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a connected dominating set D ⊆ V in G of size

at most k?

A connected dominating set is a connected vertex subset D ⊆ V such that N [D] = V .

Connected Red-Blue Dominating Set

Input: A graph G = (ℛ ∪ ℬ, E) with red vertices ℛ and blue vertices ℬ

and an integer k ∈ ℕ.
Question: Does there exist a connected red-blue dominating set D ⊆ ℛ in G

of size at most k?

A connected red-blue dominating set is a connected subset D ⊆ ℛ such that N(D) ⊇ ℬ.

k-Dimensional Matching

Input: A series of mutually disjoint sets U1, U2, . . . , Uk of equal size and a
collection of sets S in which each set contains exactly one element
from each of the sets Ui.

Question: Does there exist a collection C ⊆ S such that each element from
∪

1≤i≤k Ui is contained in exactly one set in C?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.

Directed Dominating Set

Input: A directed graph G = (V,A) and an integer k ∈ ℕ.
Question: Does there exist a dominating set D ⊆ V in G of size at most k?

Edges (or arcs) in a directed graph are ordered pairs of vertices (u, v) ∈ A. A domi-
nating set D ⊆ V in a directed graph is a vertex subset such that, for every v ∈ V ,
either v ∈ D, or there exists a vertex d ∈ D such that (d, v) ∈ A.

Disjoint Connected Subgraphs

Input: A graph G = (V,E) and mutually disjoint non-empty sets
Z1, Z2, . . . , Zk ⊆ V .

Question: Do there exist mutually vertex-disjoint connected subgraphs
G1, G2, . . . , Gk of G (with Gi = (Vi, Ei)) such that Zi is contained
in Vi for every 1 ≤ i ≤ k?
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See also: k-Disjoint Connected Subgraphs.

k-Disjoint Connected Subgraphs

Input: A graph G = (V,E) and mutually disjoint non-empty sets
Z1, Z2, . . . , Zk ⊆ V .

Question: Do there exist mutually vertex-disjoint connected subgraphs
G1, G2, . . . , Gk of G (with Gi = (Vi, Ei)) such that Zi is contained
in Vi for every 1 ≤ i ≤ k?

The difference between this problem and Disjoint Connected Subgraphs is that,
in this problem, the integer k is part of the problem description instead of part of the
input. This leads to a different problem for every k ∈ ℕ.
See also: Disjoint Connected Subgraphs.

Distance-r Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a distance-r dominating set D ⊆ V in G of size

at most k?

A distance-r dominating set is a vertex subset D ⊆ V such that, for every vertex
v ∈ V , there exists a vertex d ∈ D that lies at distance at most r from v.

Domatic Number

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Can G be partitioned into at most k dominating sets?

See also: k-Domatic Number and Dominating Set.

k-Domatic Number

Input: A graph G = (V,E).
Question: Can G be partitioned into at most k dominating sets?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.
See also: Domatic Number and Dominating Set.

Dominating Clique

Input: A graph G = (V,E).
Question: Does there exist a dominating clique D ⊆ V in G?

A dominating clique is a vertex subset D ⊆ V that is both a dominating set and a
clique, i.e., N [D] = V and {u, v} ∈ E for every two distinct vertices u, v ∈ D.

Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a dominating set D ⊆ V in G of size at most k?

A dominating set is a vertex subset D ⊆ V such that N [D] = V .

p-Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a p-dominating set D ⊆ V in G of size at most k?

A p-dominating set is a vertex subset D ⊆ V such that every vertex v ∈ V ∖D has at
least p neighbours in D, i.e, ∣N(v) ∩D∣ ≥ p.
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Notice that p is fixed, and that this leads to a different problem for every p ∈ ℕ. Also
notice that this problem is different form the parameterised problem k-Dominating

Set.

Edge Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist an edge dominating set D ⊆ E in G of size at

most k?

An edge dominating set is an edge subset D ⊆ E such that, for every edge e ∈ E,
there exists an edge d ∈ D that has an endpoint in common with e.

Exact Cover by k-Sets

Input: A multiset of sets S over a universe U in which each set is of size
exactly k.

Question: Does there exist a collection C ⊆ S such that each element from U

is contained in exactly one set in C?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.

Exact Hitting Set

Input: A multiset of sets S over a universe U.
Question: Does there exist a subset of U that contains exactly one element

from every S ∈ S?

Exact Satisfiability

Input: A set of clauses C using a set of variables X.
Question: Does there exist a truth assignment to the variables in X such

that each clause in C contains exactly one literal set to true?

See also: Exact k-Satisfiability.

Exact k-Satisfiability

Input: A set of clauses C with each clause of size at most k using a set
of variables X.

Question: Does there exist a truth assignment to the variables in X such
that each clause in C contains exactly one true literal?

See also: Exact Satisfiability, Maximum Exact k-Satisfiability.

Feedback Vertex Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a feedback vertex set F ⊆ V in G of size at

most k?

A feedback vertex set is a vertex subset F ⊆ V such that G[V ∖ F ] does not contain
any cycle, i.e., such that G[V ∖ F ] is a collection of trees.

Graph Colouring

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exists a colouring of the vertices of G using at most k

colours such that no two vertices of the same colour are adjacent?
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See also: k-Colouring.

Hamiltonian Cycle

Input: A graph G = (V,E).
Question: Does G have a Hamiltonian cycle?

A Hamiltonian cycle is a set of edges in G that forms a cycle that visits every vertex
exactly once.
See also: Travelling Salesman Problem.

Hitting Set

Input: A multiset of sets S over a universe U and an integer k ∈ ℕ.
Question: Does there exist a subset of U of size at most k that contains at

least one element from every S ∈ S?

This problem is equivalent to Set Cover.
See also: k-Hitting Set.

k-Hitting Set

Input: A multiset of sets S over a universe U with each set of size at
most k and an integer l ∈ ℕ.

Question: Does there exist a subset of U of size at most l that contains at
least one element from every S ∈ S?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.
See also: Hitting Set.

Hypergraph 2-Colouring

Input: A hypergraph H = (Q, S).
Question: Does H have a 2-colouring?

A 2-colouring of H is a partition of Q into two sets Q1 and Q2 such that each set
S ∈ S contains at least one element from Q1 and at least one element from Q2.

2-Hypergraph 2-Colouring

Input: A 2-hypergraph H = (Q,ℒ,ℛ).
Question: Does H have a 2-colouring?

A 2-colouring of H is a partition of Q into two sets Ql and Qr such that each hy-
peredge L ∈ ℒ contains an element from Ql and each hyperedge R ∈ ℛ contains an
element from Qr.

Independent Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist an independent dominating set D ⊆ V in G of

size at most k?

An independent dominating set is a vertex subset D ⊆ V that is both an independent
set and a dominating set, i.e., N [D] = V and {u, v} ∕∈ E for every two distinct vertices
u, v ∈ D.

Independent Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist an independent set I ⊆ V in G of size at least k?
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An independent set is a vertex subset I ⊆ V such that {u, v} ∕∈ E for every two distinct
vertices u, v ∈ I.
This problem is equivalent to Vertex Cover.

Induced p-Regular Subgraph

Input: A graph G = (V,E).
Question: Does there exist an induced subgraph H of G that is p-regular?

For a vertex set V ′ ⊆ V , H = (V ′, (V ′ × V ′) ∩ E) is the subgraph induced by V ′.
A graph is p-regular if all vertices v ∈ G have degree p.
Notice that p is fixed, and that this leads to a different problem for every p ∈ ℕ.

Matrix Dominating Set

Input: An n×m 0-1 matrix and an integer k ∈ ℕ.
Question: Does there exist a set S of 1-entries in M of size at most k such

that every 1-entry is on the same row or column as an entry in S?

Maximum Cut

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a partitioning of the vertices of G into two sets

that induce a cut of size at least k?

The cut induced by a partitioning of V into two sets X1, X2 is the set of edges with
one endpoint in X1 and the other endpoint in X2.

Maximum Exact k-Satisfiability

Input: A set of clauses C with each clause of size at most k using a set
of variables X and an integer l ∈ ℕ.

Question: Does there exist a truth assignment to the variables in X such
that at least l clauses in C contain exactly one true literal?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.
See also: Exact Satisfiability, Exact k-Satisfiability.

Maximum k-Satisfiability

Input: A set of clauses C with each clause of size at most k using a set
of variables X.

Question: Does there exist a truth assignment to the variables in X that
satisfies at least k clauses in C?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.
See also: Satisfiability, k-Satisfiability.

Maximum Triangle Packing

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Do there exists mutually disjoint 3-element subsets S1, S2, . . . , Sk

of V such that for each Si the graph G[Si] is a triangle?

Minimum Clique Partition

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Can G be partitioned into at most k cliques?
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A clique is a vertex subset C ⊆ V such that {u, v} ∈ E for every two distinct vertices
u, v ∈ C.

Minimum Independent Edge Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist an independent edge dominating set D ⊆ E in G

of size at most k?

An independent edge dominating set is an edge subset D ⊆ E such that, for every edge
e ∈ E, there exists an edge d ∈ D that has an endpoint in common with e, and such
that no two distinct edges d, e ∈ D have an end point in common.
This problem is equivalent to Minimum Maximal Matching.

Minimum Maximal Matching

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a maximal matching M ⊆ E in G of size at

most k?

A matching is an edge subset M ⊆ E such that no two distinct edges d, e ∈ M have an
end point in common. A maximal matching is an inclusion-wise maximal matching,
i.e., a matching M ⊆ E such that there exists no superset L, M ⊂ L ⊆ E, that also is
a matching.
This problem is equivalent to Minimum Independent Edge Dominating Set.

Minimum Weight Dominating Set

Input: A graph G = (V,E), a weight function ! : V → ℝ+, and a non-
negative real number k ∈ ℝ+.

Question: Does there exist a dominating set D ⊆ V in G of weight at most k?

The weight of a dominating set D (see Dominating Set) is defined as !(D) =
∑

v∈D !(v).

Minimum Weight Edge Dominating Set

Input: A graph G = (V,E), a weight function ! : E → ℝ+, and a non-
negative real number k ∈ ℝ+.

Question: Does there exist an edge dominating set D ⊆ E in G of weight at
most k?

The weight of an edge dominating set D (see Edge Dominating Set) is defined as
!(D) =

∑

e∈D !(e).

Minimum Weight Independent Edge Dominating Set

Input: A graph G = (V,E), a weight function ! : E → ℝ+, and a non-
negative real number k ∈ ℝ+.

Question: Does there exist an independent edge dominating set D ⊆ E in G
of weight at most k?

The weight of an independent edge dominating set D (see Minimum Independent

Edge Dominating Set) is defined as !(D) =
∑

e∈D !(e).
This problem is equivalent to Minimum Weight Maximal Matching.
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Minimum Weight Maximal Matching

Input: A graph G = (V,E), a weight function ! : E → ℝ+, and a non-
negative real number k ∈ ℝ+.

Question: Does there exist a maximal matching M ⊆ E in G of weight at
most k?

The weight of a (maximal) matching M (see Minimum Maximal Matching) is
defined as !(M) =

∑

e∈M !(e).
This problem is equivalent to Minimum Weight Independent Edge Dominating

Set.

H-Minor Containment

Input: A graph G = (V,E).
Question: Does G contain the graph H as a minor?

The graph H is a minor of a graph G if it can be obtained from G by a series of vertex
or edge deletions and edge contractions.
Notice that the graph H is fixed, and that this leads to a different problem for every
graph H.

Not-All-Equal Satisfiability

Input: A set of clauses C using a set of variables X.
Question: Does there exist a truth assignment to the variables in X such

that every clause in C contains at least one literal set to true and
at least one literal set to false?

Partial Dominating Set

Input: A graph G = (V,E), an integer t ∈ ℕ, and an integer k ∈ ℕ.
Question: Does there exist a partial dominating set D ⊆ V in G of size at

most k that dominates at least t vertices?

Any vertex subset D ⊆ V is a partial dominating set. A partial dominating set D
dominates all vertices in N [D]. I.e., the problem asks whether there exists a vertex
subset D ⊆ V such that ∣D∣ ≤ k and ∣N [D]∣ ≥ t.

Partial Red-Blue Dominating Set

Input: A bipartite graph G = (ℛ ∪ ℬ, E) with red vertices ℛ and blue
vertices ℬ, an integer t ∈ ℕ, and an integer k ∈ ℕ.

Question: Does there exist a partial red-blue dominating set D ⊆ ℛ in G of
size at most k that dominates at least t vertices in ℬ?

Any vertex subset D ⊆ ℛ is a partial red-blue dominating set. A partial red-blue
dominating set D dominates all vertices in N(D) ∩ℬ. I.e., the problem asks whether
there exists a vertex subset D ⊆ ℛ such that ∣D∣ ≤ k and ∣N(D) ∩ℬ∣ ≥ t.

Partition Into l-Cliques

Input: A graph G = (V,E).
Question: Can the vertices of G be partitioned into cliques of size l?

A clique is a vertex subset C ⊆ V such that {u, v} ∈ E for every two distinct vertices
u, v ∈ C.
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Notice that l is fixed, and that this leads to a different problem for every l ∈ ℕ.

Partition Into Triangles

Input: A graph G = (V,E).
Question: Can V be partitioned into 3-element sets S1, S2, . . . , S∣V ∣/3 such

that for each Si the graph G[Si] is a triangle?

Perfect Code

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a perfect code D ⊆ V in G?

A perfect code is a vertex subset D ⊆ V that is both a perfect dominating set and an
independent set. That is, every vertex v ∈ V ∖D has exactly one neighbour in D, and
{u, v} ∕∈ E for every two distinct vertices u, v ∈ D. A perfect code is also known as an
efficient dominating set .

Perfect Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a perfect dominating set D ⊆ V in G of size at

most k?

A perfect dominating set is a vertex subset such that every vertex v ∈ V ∖ D has
exactly one neighbour in D.

Red-Blue Dominating Set

Input: A bipartite graph G = (ℛ ∪ ℬ, E) with red vertices ℛ and blue
vertices ℬ and an integer k ∈ ℕ.

Question: Does there exist a red-blue dominating set D ⊆ ℛ in G of size at
most k?

A red-blue dominating set is a subset D ⊆ ℛ such that N(D) ⊇ ℬ.

Satisfiability

Input: A set of clauses C using a set of variables X.
Question: Does there exist a truth assignment to the variables in X that

satisfies all clauses in C?

A clause is satisfied if it contains at least one literal that is set to True.
See also: k-Satisfiability.

k-Satisfiability

Input: A set of clauses C with each clause of size at most k using a set
of variables X.

Question: Does there exist a truth assignment to the variables in X that
satisfies all clauses in C?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.
See also: Satisfiability, Maximum k-Satisfiability.

Set Cover

Input: A multiset of sets S over a universe U and an integer k ∈ ℕ.
Question: Does there exist a set cover C ⊆ S of size at most k?
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A set cover C is a subset of S such that
∪

S∈C
S = U.

This problem is equivalent to Hitting Set.
See also: k-Set Cover.

k-Set Cover

Input: A multiset of sets S over a universe U in which each set is of size
at most k and an integer l ∈ ℕ.

Question: Does there exist a set cover C ⊆ S of size at most l?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.
See also: Set Cover.

Steiner Tree

Input: A graph G = (V,E), a set of terminals T ⊆ V , and an integer
k ∈ ℕ.

Question: Does there exist a Steiner tree in G connecting all terminals in T
using at most k edges?

A Steiner tree is a connected set of edges that connects all vertices in T .

Strong Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a strong dominating set D ⊆ V in G of size at

most k?

A strong dominating set is a vertex subset D ⊆ V such that every vertex v ∈ V ∖D
has a neighbour in D of equal or larger degree.

Strong Stable Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a strong stable set I ⊆ V in G of size at least k?

A strong stable set is a vertex subset I ⊆ V such that the distance in G between any
pair of vertices from I is at least two.

Subset Sum

Input: A set of integers a1, a2, . . . , an and an integer b.
Question: Does there exist a subset of the integers a1, a2, . . . , an whose sum

equals b?

Total Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a total dominating set D ⊆ V in G of size at

most k?

A total dominating set is a vertex subset D ⊆ V such that every v ∈ V (i.e., also those
in D) is adjacent to a vertex in D.

Total Perfect Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a total perfect dominating set D ⊆ V in G?
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A total perfect dominating set is a vertex subset D ⊆ V such that every vertex v ∈ V
(i.e., also those in D) has exactly one neighbour in D.

Travelling Salesman Problem

Input: A graph G = (V,E), a weight function ! : E → ℝ+, and a non-
negative real number k ∈ ℝ+.

Question: Does G have a Hamiltonian cycle whose total weight is at most k?

The weight of a Hamiltonian cycle C (see Hamiltonian Cycle) is defined as !(C) =
∑

e∈C !(e).
See also: Hamiltonian Cycle.

Vertex Cover

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a vertex cover C ⊆ V in G of size at most k?

A vertex cover is a vertex subset C ⊆ V such that every edge e ∈ E has an endpoint
in C.
This problem is equivalent to Independent Set.

Weak Dominating Set

Input: A graph G = (V,E) and an integer k ∈ ℕ.
Question: Does there exist a weak dominating set D ⊆ V in G of size at

most k?

A weak dominating set is a vertex subset D ⊆ V such that every vertex v ∈ V ∖D has
a neighbour in D of equal or smaller degree.

Parameterised Problems

k-Dominating Set

Input: A graph G = (V,E).
Parameter: An integer k ∈ ℕ.
Question: Does there exist a dominating set D ⊆ V in G of size at most k?

A dominating set is a vertex subset D ⊆ V such that N [D] = V .
Notice that this problem is different form the problem p-Dominating Set. Also
notice that the parametric dual of this problem is k-Nonblocker.
See also: Dominating Set.

k-Edge Dominating Set

Input: A graph G = (V,E).
Parameter: An integer k ∈ ℕ.
Question: Does there exist an edge dominating set D ⊆ E in G of size at

most k?

An edge dominating set is an edge subset D ⊆ E such that, for every edge e ∈ E,
there exists an edge d ∈ D that has an endpoint in common with e.
See also: Edge Dominating Set.
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k-Independent Set

Input: A graph G = (V,E).
Parameter: An integer k ∈ ℕ.
Question: Does there exist an independent set I ⊆ V in G of size at least k?

An independent set is a vertex subset I ⊆ V such that {u, v} ∕∈ E for every two distinct
vertices u, v ∈ I.
Notice that the parametric dual of this problem is k-Vertex Cover.
See also: Independent Set.

k-Minimum Maximal Matching

Input: A graph G = (V,E).
Parameter: An integer k ∈ ℕ.
Question: Does there exist a maximal matching M ⊆ E in G of size at

most k?

A matching is an edge subset M ⊆ E such that no two distinct edges d, e ∈ M have an
end point in common. A maximal matching is an inclusion-wise maximal matching,
i.e., a matching M ⊆ E such that there exists no superset L, M ⊂ L ⊆ E, that also is
a matching.
See also: Minimum Maximal Matching.

k-Minimum Weight Edge Dominating Set

Input: A graph G = (V,E) and a weight function ! : E → ℝ≥1.
Parameter: A non-negative real number k ∈ ℝ+.
Question: Does there exist an edge dominating set D ⊆ E in G of weight

at most k?

The weight of an edge dominating set D (see k-Edge Dominating Set) is defined
as !(D) =

∑

e∈D !(e).
See also: Minimum Weight Edge Dominating Set.

k-Minimum Weight Maximal Matching

Input: A graph G = (V,E) and a weight function ! : E → ℝ≥1.
Parameter: A non-negative real number k ∈ ℝ+.
Question: Does there exist a maximal matching M ⊆ E in G of weight at

most k?

The weight of a (maximal) matching M (see k-Minimum Maximal Matching) is
defined as !(M) =

∑

e∈M !(e).
See also: Minimum Weight Maximal Matching.

k-Nonblocker

Input: A graph G = (V,E).
Parameter: An integer k ∈ ℕ.
Question: Does there exist a non-blocking set D ⊆ V in G of size at least k?

A non-blocking set is a vertex subset D ⊆ V such that N [V ∖D] = V , i.e., such that
V ∖D is a dominating set.
Notice that the parametric dual of this problem is k-Dominating Set.
See also: Dominating Set.
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k-Not-All-Equal Satisfiability

Input: A set of clauses C using a set of variables X.
Parameter: An integer k ∈ ℕ.
Question: Does there exist a truth assignment to the variables in X such

that at least k clauses in C contain a literal set to true and a
literal set to false?

See also: Not-All-Equal Satisfiability.

k-Set Splitting

Input: A collection of sets S over a universe U.
Parameter: An integer k ∈ ℕ.
Question: Can U be partitioned into two colour classes such that at least k

sets from S are split?

A set S ∈ S is defined to be split if S contains at least one element of each of the two
colour classes, i.e., at least one red element and at least one green element.
This problem is also known as k-Maximum Hypergraph 2-Colouring (see Hy-

pergraph 2-Colouring).

k-Vertex Cover

Input: A graph G = (V,E)
Parameter: An integer k ∈ ℕ.
Question: Does there exist a vertex cover C ⊆ V in G of size at most k?

A vertex cover is a vertex subset C ⊆ V such that every edge e ∈ E has an endpoint
in C.
Notice that the parametric dual of this problem is k-Independent Set.
See also: Vertex Cover.

Counting Problems

#Dominating Set

Input: A graph G = (V,E).
Question: How many dominating sets D ⊆ V in G exist of minimum size?

A dominating set is a vertex subset D ⊆ V such that N [D] = V .
See also: Dominating Set.

#Independent Set

Input: A graph G = (V,E).
Question: How many independents set I ⊆ V in G exist of maximum size?

An independent set is a vertex subset I ⊆ V such that {u, v} ∕∈ E for every two distinct
vertices u, v ∈ I.
See also: Independent Set.

#Perfect Matching

Input: A graph G = (V,E).
Question: How many perfect matchings exist in G?
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A perfect matching in G is a set of edges M ⊆ E such that every vertex v ∈ V is
incident to exactly one edge in M .

#Minimum Weight Dominating Set

Input: A graph G = (V,E) and a weight function ! : V → ℝ+.
Question: How many dominating sets D ⊆ V in G exist of minimum weight?

The weight of a dominating set D (see Dominating Set) is defined as !(D) =
∑

v∈D !(v).

#k-Satisfiability

Input: A set of clauses C with each clause of size at most k using a set
of variables X.

Question: How many truth assignments to the variables in X exist that
satisfy all clauses in C?

Notice that k is fixed, and that this leads to a different problem for every k ∈ ℕ.
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corresponding subject is used. Numbers printed in italics refer to pages where the
subject is defined in a definition environment. Numbers printed in boldface are given
for computational problems; these numbers refer to pages where the main theorems
about these problems are stated.


-clique covering problem, 205, 235, 238,
235–240


-clique packing problem, 205, 235, 236,
235–240


-clique partitioning problem, 205, 235,
236, 235–240

O∗-notation, 16
[�, �]-dominating set, 14, 14, 228, 233,

234, 254, 259, 260
[�, �]-domination problem, 8, 40, 118,

204, 205, 228, 225–235, 242, 254,
254–260

� -function, 22, 24, 25, 283, 285, 289–292
!, see matrix multiplication constant

algebraic approach, 39
annotations, 139–142, 169, 173, 177, 179,

183, 193, 194, 198
approximation algorithm, 3, 97, 204, 207
articulation point, 13, 319
artificial problem, 54
automated algorithm design, 96
automated analysis, 90

bag, 29–32, 116, 151, 160, 207, 208, 210,
213, 217, 218, 222–224, 226, 227,
229, 230, 232, 236

binary knapsack, 5, 40, 321
bipartite graph, 13, 28, 35, 91, 99, 109,

110, 167, 190, 191
bisecting line search, 94, 95

bisection width, 273
booleanwidth, 203, 261–263, 268
bottom-up method, 130
branch and reduce, 20, 52, 69, 71, 193,

200
branch-and-reduce algorithm, 20–26,

71–73, 95, 121, 126, 130, 147, 160,
161, 166, 176, 182, 183, 277, 306

branch decomposition, 39, 203, 244,
241–260, 263, 266, 271

sphere-cut, 242
width of, 244

branching number, 22–24, 127, 280–286,
288–292

branching phase, 147, 151
branching rule, 20, 23, 72, 73, 90, 109,

110, 115, 118, 125, 126, 130, 137,
138, 147, 149, 156, 161, 163, 164,
166, 169, 171, 174, 175, 177, 183,
184, 193, 194, 197, 280, 304, 306

branching vector, 22, 23
branchwidth, 203, 241–262, 266
brute-force algorithm, 44, 46, 54, 189, 272

capacitated dominating set, 8, 272, 321
capacitated vertex cover, 271, 272
certificate, 42–44, 272
characteristic, see partial solution,

characteristic
child edge, 242, 246, 248, 249, 252, 255
chordal graph, 160, see graph, chordal
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4-chordal graph, see graph, 4-chordal
chordless cycle, 158
chromatic index, 204, 322
chromatic number, see graph colouring
circle graph, see graph circle
clique, 13, 33, 101, 102, 111–113, 160,

161, 235–240, 260, 304
clique decomposition, 203, 261–268, 271
clique tree, 160, 161
cliquewidth, 203, 261–268
cloud (of triangles), 60–63
colouring (with states), 209–211, 214,

215, 218–220, 223–231, 234, 236,
245–255, 257, 259, 263, 264, 267, 268

matching, 210, 211, 215, 246, 247, 249,
250, 253, 257, 259

2-colouring
of a 2-hypergraph, 190, 193, 194, 198,

325
of a hypergraph, 190, 325

3-colouring, 5
k-colouring, 48, 322
complexity parameter, 4, 22, 43, 41–50,

55
computational model, 205, 221, 234, 240,

268
computer verification, 132
connected component, 13, 59, 60, 88,

101, 102, 108, 111, 119–123, 125,
129–131, 191, 300, 306, 307, 319, 320

of a set cover instance, 88
connected dominating set, 7, 37, 72, 240,

271, 272, 322
connected red-blue dominating set, 37,

322
constraint, 142, 151, 154, 179, 195, 198

due to folding sets, 87
monotone, 74, 93, 106
steepness, see steepness inequalities

constraint matrix, 93
contraction, see edge contraction
convex program, 93
counting phase, 193, 200
counting problem, 45, 136, 171, 174, 192,

193, 200, 333–334
counting variant, 9, 225, 235
covering code, 38

covering product, 206, 216, 221
cubic graph, see graph, 3-regular

see also graph, maximum degree three

de Fluiter property
for branchwidth, 247–248
for cliquewidth, 266, 267
for treewidth, 212, 211–213, 217, 221,

234, 239, 247, 248, 251, 260, 266
linear, 212, 217, 221

decision phase, 193, 200
decision variant, 9, 225, 234
determinant, 39
dimension (of a 2-hypergraph), 190, 191,

195, 199
k-dimensional matching, 39, 322
directed dominating set, 8, 91, 322
disjoint connected subgraphs, 187, 187,

189, 323
2-disjoint connected subgraphs, 189, 191,

187–192, 199, 271
k-disjoint connected subgraphs, 323
distance-2 independent set, 14, 235
distance-r dominating set, 8, 14, 91, 189,

323
divide and conquer, 20, 52
domatic k-partition, 144, 145
domatic number, 135, 136, 141, 144, 146,

144–146, 161, 323
3-domatic number, 145
k-domatic number, 323
dominating clique, 7, 9, 72, 323
dominating set, 2, 5, 6, 6, 7–9, 14, 19, 27,

28, 30–33, 42, 43, 49, 50, 70, 85,
69–98, 136, 138, 141–146, 151,
154–163, 166, 167, 169, 176, 185,
204–206, 208–212, 219, 214–221,
224, 225, 238, 240–243, 251,
245–251, 261, 263–267, 268, 271,
272, 293–299, 323, 327, 331, 334

on 4-chordal graphs, 159
on c-dense graphs, 158
on chordal graphs, 161
on circle graphs, 159
weakly chordal graphs, 159

#dominating set, 9, 45, 141, 142,
135–144, 154, 146–163, 169, 171,
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185, 214, 217, 245, 249, 250, 251,
267, 271, 333

2-dominating set, 234
k-dominating set, 49, 51, 92, 97, 331, 332
p-dominating set, 8, 14, 323
domination criterion, 7, 44
domination function, 321
dynamic programming, 26–34, 36, 37, 39,

52, 115, 138, 139, 145–147, 150,
154–156, 159, 160, 169, 171,
173–175, 177, 183, 192, 194,
197–199, 203–268, 271, 272

across subsets, 27–29, 36
on graph decompositions, 29–34, 203

dynamic programming phase, 150, 151,
194

edge contraction, 101, 112, 140, 141, 187,
191, 328

edge cover, 99, 100, 110, 112, 113
edge dominating set, 6, 7, 7, 8, 19, 30–33,

43, 44, 50, 73, 90, 98, 109, 97–118,
271, 300–305, 324, 327, 331, 332

on bipartite graphs, 99
k-edge dominating set, 50, 97, 114, 138,

331
edge subdivision, 140, 141, 244
efficient dominating set, 14, 329
eight queens puzzle, 1, 2
enumeration variant, 9
ETH, see exponential-time hypothesis
exact 3-satisfiability, 54, 55, 55, 57,

61–64, 277, 279
exact cover by k-sets, 39, 324
exact hitting set, 40, 324
exact satisfiability, 15, 55, 64, 277–280,

283, 285, 286, 288–290, 292, 324
exact k-satisfiability, 324
exceptional case, 150, 153, 154
exhaustive search algorithm, 137
exponential space, 24, 51, 52, 147
exponential time, 3, 46
exponential-time hypothesis, 46, 48, 49,

51, 54, 63, 70, 89, 119, 120
extended inclusion/exclusion branching,

163–166, 169, 171, 175, 177, 184,
185, 271

external edge, 306, 307, 309–311, 313–318

fan (of triangles), 60–63
fast matrix multiplication, 39, 206,

241–243, 248, 250, 251, 253, 257,
259, 260

fast subset convolution, 6, 206, 225, 233,
242, 271

feedback vertex set, 39, 73, 240, 271, 324

finite field, 39
finite integer index, 212, 213, 248
five queens puzzle, 1, 2
fixed-parameter tractable, see ℱPT

algorithm, see ℱPT-algorithm
flipped graph, 167, 168
forbidden branch, 136–138, 140, 143, 152,

157, 177, 180, 181, 184, 194, 196
forbidden property, 136, 137, 140, 164,

166, 168
forget bag, 30, 32
forget node, 207, 208, 210, 211, 215–217,

219, 220, 224, 229, 236–238, 240
Fourier transform, 39, 240
ℱPT, 49, 51, 97, 262
ℱPT-algorithm, 49–51, 92, 262
ℱPT-reduction, 51
frequency

of a variable, 15, 61
of an element, 16, 71

generalised series-parallel graph, see
graph, generalised series-parallel

graph
Gk,r, 189, 190, 191, 199
3-regular, 32, 126, 128, 129, 306–312
4-chordal, 156, 158, 159

4-regular, 58
average degree three, 119–130
bipartite, see bipartite graph
c-dense, 156, 157, 158
chordal, 156, 159, 158–161
circle, 156, 158, 159
generalised series-parallel, 139, 141
maximum degree four, 33, 48, 54,

57–65, 277, 279, 292
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maximum degree three, 32, 33, 51,
55–56, 89, 119–121, 126, 130,
131, 138, 272, 273, 306–320

P4-free, 189
P5-free, 189
P6-free, 188, 190, 199
P7-free, 190
Pl-free, 189, 190
split, 188, 189, 190, 199
weakly chordal, 156, 158, 159

graph colouring, 5, 19, 27, 28, 35, 36,
137, 325

graph decomposition, 29, 50
graph-decomposition-based algorithm, 4,

50

halting rule, 20, 21, 23, 138
Hamiltonian cycle, 5, 19, 36, 37, 39, 43,

45, 46, 48, 240, 271, 325, 331
Hamming distance, 38
hereditary graph class, 159
heuristic algorithm, 3, 204, 241
hitting set, 39, 325, 330
3-hitting set, 50
k-hitting set, 325
hyperedge, 190, 192–198
hyperedge class, 190, 194, 196, 197
hypergraph, 190, 325
2-hypergraph, 190, 192, 193, 198

dimension, see dimension
hypergraph 2-colouring, 190, 325
2-hypergraph 2-colouring, 188, 190,

190–199, 325

implicit differentiation, 94
improvement step, 76, 78–80, 82, 83, 85,

108, 109, 300, 305
incidence graph, 138, 139–141, 147,

149–151, 153, 157, 167, 169, 174,
176, 177, 181–185, 190–192, 195, 198

inclusion/exclusion, 6, 34–37, 54,
135–137, 144, 145, 161, 163, 215, 265

inclusion/exclusion branching, 135–138,
140, 156, 157, 161–165, 185, 187,
188, 192–195, 200, 271

extended, see extended
inclusion/exclusion branching

inclusion/exclusion formula, 34, 37, 137,
145, 166

independent dominating set, 14, 73, 204,
213, 221, 221, 262, 263, 268, 325

independent edge dominating set, 113,
327

independent set, 2, 5, 6, 6, 7–9, 13, 14,
20–25, 27, 35, 36, 43, 48, 54, 72, 87,
102, 104, 106, 110, 111, 116, 120,
130, 119–132, 145, 243, 271,
303–320, 326, 331, 332

maximum degree six graphs, 131
on maximum degree five graphs, 131
on maximum degree four graphs, 130
on maximum degree three graphs, 129

#independent set, 20–23, 25, 333
k-independent set, 51, 332, 333
index vector, 227, 228, 231–234, 256–259
induced bounded degree subgraph, 14
induced p-regular subgraph, 14, 205, 326
induced subgraph, 25–27, 131, 159, 171,

189, 208, 213, 245
internal edge, 244, 246, 247, 249, 250,

252, 255
introduce bag, 30–32, 151
introduce node, 207–209, 211, 215–217,

219, 220, 223, 229, 236, 238
irredundance numbers, 272
iterative compression, 38

join node, 207, 210, 211, 215–217, 219,
220, 223–225, 229, 231, 233, 234,
236–239, 242

join table, 216, 222, 223, 237

k-expression, 203, 262, 261–268, 271
add edges operation, 262–264, 268
create new graph operation, 262, 264,

268
join graphs operation, 262, 265–268
relabel operation, 262–264, 268

kernel, 50, 92, 130, 175, 176, 212
size, 50

kernelisation algorithm, see kernel

labelled graph, 262, 263, 267
leaf edge, 244, 246, 247, 252, 254
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leaf node, 207, 209, 214, 216, 217, 219,
220, 223, 229, 236, 238

line graph, 13, 97–99
linear program, 95, 153–155, 173, 174,

198, 199
local search, 38
lower bounds (on running time), 107,

109, 205, 305

matching, 14, 98, 113, 222–224, 251, 252,
327, 328, 332

matrix dominating set, 7, 8, 90, 98, 99,
99, 109, 109, 110, 326

matrix multiplication constant, 39, 242,
243, 248, 250–254, 259, 260

maximal clique, 160
maximal independent set, 15, 23, 24, 27,

100–103, 111, 112, 145
enumerate, 24, 27

maximal matching, 98, 327, 328, 332
maximisation variant, 9, 225, 234, 235,

260
maximum 2-satisfiability, 138
maximum cut, 39, 138, 326
maximum exact 2-satisfiability, 138
maximum exact k-satisfiability, 326
k-maximum hypergraph 2-colouring, 175,

333
maximum independent set, 15, 20, 21,

25, 122–126, 313, 314, 319, 320
maximum matching, 14, 42, 81, 87, 89, 99
maximum k-satisfiability, 326
maximum triangle packing, 205, 326
Max-SNP-complete, 55
measure, 71, 72, 74, 75, 117, 122, 125,

142, 151, 153, 155, 157, 173, 179,
182, 194, 195, 198, 277, 278

measure and conquer, 6, 69, 71–87, 93,
96, 97, 104, 106–109, 114, 118, 120,
130, 131, 135, 138, 142, 153, 161,
162, 173, 179, 194, 293

memorisation, 24–26, 131
middle set, 244, 245, 248, 252, 254, 255
minimal dominating set, 73, 145

enumerate, 145
minimal vertex cover, 98–105, 110–112,

114, 116

enumerate, 97, 100–104, 110, 115, 116
minimisation variant, 9, 225, 234, 235,

260
minimum clique partition, 205, 327
minimum dominating set, 29, 30, 45, 70,

92, 135, 141, 209, 211, 212, 214,
217–219, 247, 251, 266–268

minimum edge cover, 99, 100, 110
minimum edge dominating set, 31, 32,

44, 97–100, 102–105, 115
minimum independent edge dominating

set, 99, 118, 327
minimum maximal matching, 90, 98, 98,

100, 109, 110, 112, 115, 118, 327,
327

k-minimum maximal matching, 114, 332
minimum set cover, 16, 71, 79, 81, 86, 87,

89, 136, 147
minimum vertex cover, 4, 89
minimum weight dominating set, 136,

141, 144, 144, 155, 327
#minimum weight dominating set, 144,

155, 334
minimum weight edge cover, 110, 111
minimum weight edge dominating set,

110, 112, 110–112, 118, 327
k-minimum weight edge dominating set,

114, 332
minimum weight generalised edge cover,

110, 111
minimum weight generalised independent

edge cover, 113
minimum weight independent edge

dominating set, 112, 327, 328
minimum weight maximal matching, 112,

114, 112–118, 327, 328
k-minimum weight maximal matching,

98, 114, 116, 114–118, 332
minor, 187, 241, 242, 328
H-minor containment, 187, 328
mirror, 126, 127, 128, 308, 312, 314, 317,

318
Möbius transform, 206, 215, 222, 233
monotonicity property, 30, 31
multiplicity function, 147, 150, 151

nearly perfect set, 14
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Newton’s binomial theorem, 28, 35, 37
Newton-Raphson method, 94
nice path decomposition, 30, 31
nice tree decomposition, 207, 208, 209,

211, 214, 216, 225, 228, 229, 242
non-blocking set, 92, 332
k-nonblocker, 50, 51, 92, 92, 93, 271,

331, 332
not-all-equal satisfiability, 15, 328

k-not-all-equal satisfiability, 164, 175,
182, 182, 183, 333

NP, 41, 42, 43, 45–47, 63, 89, 103, 272
NP-complete, 43, 45–47, 51, 54, 63, 70,

119, 120, 156, 189–191
NP-hard, 43, 48, 53, 54, 96, 97, 103, 104,

145, 203, 204, 208, 241, 243, 262
NP-problem, 42–45, 47

optional branch, 138, 140, 143, 152, 157,
177, 180, 181, 184, 194, 196

optional property, 136, 137, 140, 164

P, 41, 42, 43, 46, 89, 103
#P, 45, 46
#P-complete, 45, 46
#P-hard, 15
#P-problem, 45, 46
2-packing, 14
packing product, 206
parallelisation, 52
parameterised algorithm, 4, 38, 39,

49–51, 92, 97, 114, 175, 185, 207,
241, 273

parameterised complexity, 9, 49, 129
parameterised problem, 49, 51, 92, 98,

114, 175, 331–333
parametric dual, 92
partial constraint satisfaction, 207
partial dominating set, 8, 14, 147, 163,

164, 166, 169, 174, 166–175, 177,
185, 271, 328

partial red-blue dominating set, 164,
167, 169, 171, 174, 328

partial solution, 160, 204, 205, 208–220,
223–234, 236, 242, 245–249, 254–259,
263, 264, 266–268

characteristic of, 208, 209, 211–214,
216, 217, 220, 221, 225, 229,
245, 247

extension of, 208, 245
partition into l-cliques, 205, 328

partition into triangles, 48, 54, 64 53–65,
205, 240, 277, 279, 292, 329

path decomposition, 29, 30–34, 115–117,
150, 151, 154, 155, 173, 198, 272

width of, 29
pathwidth, 29, 33, 115, 116, 150, 151,

153, 155, 173, 174, 198, 272, 273
perfect code, 14, 204, 234, 329

perfect dominating set, 14, 204, 329

perfect matching, 14, 35, 44, 45, 113,
222–225, 237, 251, 253, 292, 334

#perfect matching, 15, 19, 35, 39, 45,
161, 204, 206, 223, 222–225, 232,
240, 242, 243, 251–253, 260, 333

planar graph, 13, 39, 46, 189, 204, 241,
260

polynomial factors, 3, 22, 54, 65, 205,
211, 217, 218, 233, 240, 242, 259,
262, 266

polynomial time, 3, 42
complexity class, see P

polynomial-time many-one reduction, 42,
43, 48, 51

practical algorithm, 53, 207, 240, 260,
292

practical issues, 51, 52, 93
preprocessing, 29

quadratically constrained program, 94, 95
quasi-polynomial time, 3
quasiconvex function, 95
quasiconvex program, 72
queens graph, 2

RAM model, 205, 243, 262
Random Access Machine model, see

RAM model
random colouring, 176
random search, 93
randomised algorithm, 37–39, 55
rankwidth, 203, 262, 268
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recurrence (for dynamic programming),
27, 31, 32, 36, 37, 115, 145, 146, 165

recurrence relation, 21, 25, 72, 73, 75,
77–80, 83, 85, 89, 93–95, 103, 105,
107, 108, 117, 129, 142, 143, 152,
153, 155, 174, 175, 179, 181, 184,
185, 197, 294, 295, 297, 299, 300,
304, 305, 307, 312, 316, 318

computing upper bounds, 22
set of, 72, 75, 77, 78, 80–83, 85, 88, 91,

143, 152, 181, 183, 197, 294, 304
red-blue dominating set, 91, 91, 138,

151, 155, 156, 161, 162, 167, 204,
205, 221, 271, 329

reduction rule, 20–23, 73, 76, 78–82, 84,
86, 88–90, 92, 97, 100, 101, 109,
111–113, 115, 121–123, 125, 126,
130, 131, 137–139, 147, 149, 152,
161, 162, 171, 188, 192, 193, 195,
200, 277, 278, 302, 306, 307

annotations, 193
clique, 101, 113
clique of size two or three, 111
connected component, 88, 122
counting argument, 84
degree 0, 1, 122
degree one, 149
degree one hyperedge, 193
domination, 122
folding sets, 86
folding vertices, 87, 122, 124, 131
identical sets, 147
isolated vertex, 111
matching, 81
one hyperedge class, 193
size one sets, 78
small separators, 123, 319–320
subsets, 79, 147
subsumption, 82, 149, 171
tree separators, 124
unique element, 76, 149

3-regular graph, see graph, 3-regular
4-regular graph, see graph, 4-regular
required branch, 136
required property, 136, 137, 163–165, 168
running time, 2, 41, 43, 46, 72

satisfiability, 15, 42, 43, 49, 69, 103, 104,
205, 329

3-satisfiability, 38, 43, 46–48, 55, 63
#2-satisfiability, 23
k-satisfiability, 15, 48, 329

#k-satisfiability, 334

search tree, 21, 24, 103, 110, 112, 116,
137, 166, 194

separator, 13, 122–124, 307, 313, 316,
317, 319–320

SERF-reduction, 47, 48, 51
set cover, 15, 16, 34, 43, 69, 71, 72, 73,

76, 85, 88–93, 135–144, 147, 149,
150, 154, 155, 157, 161–164, 167,
169, 174, 176, 199, 293–298, 325, 330

k-set cover, 48, 330

k-set splitting, 51, 163, 164, 175,
176–179, 181, 181–185, 190, 333

singly-exponential time, 3, 46, 65
small separators rule, see reduction rule,

small separator
smooth quasiconvex programming

algorithm, 93, 95
SNP, 46, 47
SNP-complete, 47, 48, 51
SNP-hard, 47, 48
solution-driven approach, 38–39
sort and search, 40
sorting, 39, 40
spanning tree, 50
sparsification lemma, 48, 63
split (set), 175–177, 179, 181, 333
split and list, 40
split graph, see graph, split
state, 204–206, 209–211, 214–234,

236–238, 240, 245, 246, 248–259,
263–265

asymmetric, 242, 248, 260
colouring, see colouring
set of, 214–220, 222, 223, 225–227,

248–254, 256–258, 260, 265
for [�, �]-domination problems, 225,

226, 254, 256

state change, 206, 218, 221–224, 228,
230–232, 248, 249, 251–253, 255,
256, 258, 265
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steepness inequalities, 74, 75, 77, 79, 84,
85, 93, 106, 142, 179, 195, 196, 294

Steiner tree, 37, 204, 206, 240, 243, 271,
330

Stirling’s formula, 26
strong dominating set, 8, 91, 330
strong exponential-time hypothesis, 49,

205, 216, 240, 242
strong stable set, 14, 204, 235, 330
subdivision, see edge subdivision
Subexponential Reduction Family, see

SERF-reduction
subexponential time, 3, 47, 48, 63, 89
subexponential-time algorithm, 39,

46–48, 54, 63, 119, 120, 207
subset problem, 7
subset sum, 5, 39, 330
subsumption, see reduction rule,

subsumption

terminal graph, 212, 213
total dominating set, 6, 7, 8, 14, 90, 90,

97, 204, 221, 262, 263, 268, 271, 330
total nearly perfect set, 14
total perfect dominating set, 14, 204, 330
travelling salesman problem, 5, 27, 34,

52, 135, 137, 241, 331
tree decomposition, 29, 30, 33, 34, 141,

147, 156, 159–161, 169, 171, 173,
177, 183, 192, 194, 197–199, 207,
203–249, 251, 254, 259, 260, 263,
266, 271–273

width of, 29, 207
tree separators rule, see reduction rule,

tree separators
treewidth, 6, 29, 33, 50, 52, 138–141, 160,

169, 173, 203–240, 242, 244, 247,

253, 261, 262, 266, 272, 273
triangle partition, 54, 56, 61
trimming, 137

universe, 15, 34, 71, 72, 90, 138, 145, 175

vertex cover, 13, 44, 48, 50, 89, 98–100,
102, 104, 106, 110, 114, 116, 301,
303–305, 326, 331

k-vertex cover, 50, 51, 129, 130, 332, 333
maximum degree three graphs, 130

vertex folding rule, see reduction rule,
folding vertices

W-hierarchy, 51
W[1], 51
W[1]-complete, 51
W[1]-hard, 51, 204
W[2], 51
W[2]-complete, 51, 92, 97
walk, 36, 37
weak dominating set, 8, 91, 331
weakly chordal graph, see graph, weakly

chordal
weakly perfect dominating set, 14
weight function, 72, 74, 75, 106, 107, 142,

143, 146, 151, 173, 179, 194, 305
weight sums, 136, 144, 155
weights (set of), 76–78, 80, 82, 83, 85, 89,

91, 143, 146, 151, 155, 173, 179, 194,
299, 304

width parameter, 203, 261, 262
word size, 205, 221, 234, 240, 243, 262,

268
W[P], 51

XP, 51
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Summary

In this PhD thesis, we study algorithms for a class of subset problems in graphs called
domination problems. Subset problems in graphs are problems where one is given a
graph G = (V,E), and one is asked whether there exists some subset S of a set of
items U in the graph (mostly U is either the set of vertices V or the set of edges E)
that satisfies certain properties. Domination problems in graphs are subset problems in
which one of these properties requires a solution subset S to dominate its complement
U ∖S; the domination criterion is based on a neighbourhood relation in the graph that
decides which elements of U are dominated by a given subset S. The most well-known
domination problem in graphs is the Dominating Set problem. In this problem,
the set U is the set of vertices V of G, a vertex subset S dominates all vertices in V
that have a neighbour in S, and one is asked to compute a smallest vertex subset
S ⊆ V that dominates all vertices in V ∖S. Other examples of domination problems in
graphs are Independent Set, Edge Dominating Set, Total Dominating Set,
Red-Blue Dominating Set, Partial Dominating Set, and #Dominating Set.

We study exact exponential-time algorithms for domination problems in graphs.
These algorithms use, in the worst case, a number of computation steps that is expo-
nential in a complexity parameter of the input. In other words, these algorithms use
exponential time. Exact exponential-time algorithms are algorithms of this type that
are guaranteed to return optimal solutions to their corresponding problems.

Our study led to faster exact exponential-time algorithms for many well-known
graph domination problems including the ones stated above. We also obtained a
number faster algorithms for related problems. This includes a number of results in
parameterised complexity. Prominent among these are faster algorithms operating on
graph decompositions for many graph domination problems.

This thesis begins with an introduction to the field of exact exponential-time al-
gorithms. We give an overview of known techniques and relevant concepts from com-
plexity theory and from areas of algorithmic research that are closely related. In the
last part of the introduction, we give an example of a ‘very fast’ exponential-time algo-
rithm. That is, we give an O(1.02220n)-time and polynomial-space algorithm for the
Partition Into Triangles problem restricted to graphs of maximum degree four;
a problem for which we can show that no subexponential-time algorithms exist under
reasonable complexity-theoretic assumptions.

The first graph domination problem that we study is Dominating Set. For this
problem, we obtain an O(1.4969n)-time and polynomial-space algorithm. This result
is based on a stepwise algorithm-design process that combines a careful analysis of
the combinatorial structure of the problem with a running-time analyses using the
measure-and-conquer technique. We use parts of the same algorithm to also obtain
an O(1.4969n)-time and polynomial-space algorithm for Total Dominating Set, an
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O(1.2279n)-time and polynomial-space algorithm for Red-Blue Dominating Set,
and an O∗(1.9588k)-time and polynomial-space algorithm for k-Nonblocker.

The same approach is used in a different setting to obtain O(1.3226n)-time and
polynomial-space algorithms for Edge Dominating Set and a number of related
edge-domination problems. These results are, similar to previous results on edge-
domination problems, based on enumerating certain minimal vertex covers in a graph.
To obtain our results, we introduce a new reduction rule that allows us to enumerate
fewer vertex covers. The approach also leads to O∗(2.4006k)-time algorithms for k-
Edge Dominating Set and some related problems.

For Independent Set, we obtain faster algorithms on graphs with a small average
degree than previously known. We give an O(1.08537n)-time and polynomial-space
algorithm for Independent Set on graphs of average degree at most three using
extensive case analyses and a running-time analysis based on average degrees. This
result is then used to give faster algorithms on graphs of larger average degree. This
leads to an O(1.2114n)-time and polynomial-space algorithm for Independent Set.

Next, we introduce a new technique that we call inclusion/exclusion-based branch-
ing. This technique uses the principle of inclusion/exclusion as a branching rule,
which can be used in a standard branch-and-reduce algorithm. In this way, inclu-
sion/exclusion can easily be combined with other approaches such as different branch-
ing rules, reduction rules, or treewidth based approaches on sparse graphs. Using
our new technique, we give both an O(1.5673n)-time and polynomial-space algorithm
and an O(1.5002n)-time-and-space algorithm for #Dominating Set. We also use
this approach to obtain results on Domatic Number, Red-Blue Dominating Set,
Dominating Set restricted to some graph classes, and, in a completely different
setting, a result on Disjoint Connected Subgraphs.

We extend the technique to problems that deal with partial requirements; the
corresponding domination problems are partial domination problems. We call the
extension of our technique extended inclusion/exclusion-based branching. We use it to
obtain an O(1.5673n)-time and polynomial-space algorithm for Partial Dominating

Set, an O(1.5014n)-time-and-space algorithm for Partial Dominating Set, and an
O∗(1.8213k)-time and polynomial-space algorithm for k-Set Splitting.

Next, we consider algorithms on graph decompositions. We combine standard ap-
proaches on tree decompositions, branch decompositions, and clique decompositions
(also called k-expressions) with variants of the fast subset convolution algorithm. On
tree decompositions of width k, we obtain algorithms for many graph domination prob-
lems running in O∗(sk) time and space by using a technique that we call generalised
fast subset convolution. Here, s is number of states required to represent partial so-
lutions of a problem. In this way, we obtain faster algorithms on tree decompositions
for the [�, �]-domination problems and a class of clique covering, packing, and parti-
tioning problems. This includes an O∗(3k)-time-and-space algorithm for Dominating

Set and an O∗(2k)-time-and-space algorithm for #Perfect Matching.
The same approach leads to O∗(4k)-time-and-space algorithms for Dominating

Set, Total Dominating Set, and Independent Dominating Set on clique de-
compositions. On branch decompositions, we obtain O∗(s

!
2 k)-time-and-space algo-

rithms for many graph domination problems by further extending the approach using
asymmetric vertex states combined with fast matrix multiplication.

We conclude this thesis with a number of interesting open problems.
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Nederlandse Samenvatting

Dit proefschrift gaat over algoritmen voor domineringsproblemen in grafen. Een graaf
is een combinatorische structuur die bestaat uit een verzameling knopen en een verza-
meling lijnen die ieder twee verschillende knopen kunnen verbinden; deze lijnen noemen
we kanten. Grafen worden gebruikt om allerlei zaken wiskundig te modelleren. Zo kan
bijvoorbeeld een wegennetwerk gemodelleerd worden door voor ieder dorp of stad een
knoop te introduceren, en elk paar van deze knopen waarbij er een weg ligt tussen
de betreffende dorpen of steden te verbinden met een kant. Een ander voorbeeld van
een structuur die vaak gemodelleerd wordt door middel van een graaf is een sociaal
netwerk: nu stellen de knopen mensen voor en geven kanten aan dat de verbonden
mensen elkaar kennen binnen dit netwerk.

Een graafprobleem is een combinatorisch probleem waarbij iets uitgerekend moet
worden over grafen. Dit proefschrift gaat over een bepaald type graafproblemen,
namelijk graafdomineringsproblemen. Het meest bekende graafdomineringsprobleem
is het probleem met de naam Dominating Set. In dit probleem krijgt men een graaf
gegeven en dient in deze graaf de kleinste verzameling knopen gevonden te worden met
de volgende eigenschap: iedere knoop in de graaf moet verbonden zijn via een kant
met een knoop in de gezochte verzameling of zelf in de gezochte verzameling zitten.

In het algemeen zijn graafdomineringsproblemen problemen waarin bij een gegeven
graaf een bepaalde verzameling van objecten in de graaf (meestal een verzameling
knopen of een verzameling kanten) gezocht dient te worden met bepaalde eigenschap-
pen. Één van de eigenschappen die de gezochte verzameling objecten moet hebben is
dat deze verzameling alle overgebleven objecten domineert. Wanneer een verzameling
objecten een ander object domineert hangt af van het specifieke probleem, maar deze
definitie hangt in alle gevallen samen met lokale eigenschappen van de graaf. Bij het
Dominating Set probleem domineert een verzameling knopen een andere knoop als
er een kant tussen deze knoop en een knoop uit de verzameling bestaat. In een ander
graafdomineringsprobleem zou bijvoorbeeld een verzameling knopen een andere knoop
kunnen domineren als de afstand via de kanten tussen de knoop en een willekeurige
knoop uit de verzameling ten hoogste twee is. In weer een ander probleem zou een
kant een andere kant kunnen domineren als beide kanten een eindpunt in dezelfde
knoop hebben. Enkele andere voorbeelden van domineringsproblemen in grafen zijn
Independent Set, Edge Dominating Set, Total Dominating Set, Red-Blue

Dominating Set, Partial Dominating Set en #Dominating Set.
Een algoritme is een stapsgewijze beschrijving van hoe je iets uit kunt rekenen.

De bekendste algoritmen zijn waarschijnlijk de rekenmethoden die we op de basis-
school geleerd hebben: de manieren waarop we grote getallen optellen, aftrekken, ver-
menigvuldigen of delen. Zo hebben we geleerd het staartdelingalgoritme te gebruiken
als rekenmethode om grote delingen uit te voeren. Algoritmen zijn essentieel in com-



380 Nederlandse Samenvatting

puters om dingen uit te rekenen. Zo gebruikt een routeplanner een algoritme om de
kortste route van A naar B te berekenen. In dit proefschrift bestuderen we algoritmen
voor het oplossen van domineringsproblemen in grafen.

Een belangrijke eigenschap van een algoritme is hoeveel rekenstappen er in het
slechtste geval nodig zijn om het algoritme uit te voeren: dit noemen we de looptijd
van het algoritme. De looptijd van een algoritme voor een graafprobleem wordt vaak
gegeven als een formule uitgedrukt in het aantal knopen of het aantal kanten in de
gegeven graaf. In dit proefschrift beschouwen we exponentiële-tijd algoritmen: algo-
ritmen waarvan de looptijd een exponentiële functie is. Dit wil zeggen, algoritmen
waarvan de looptijd zich zo gedraagt dat als het algoritme uitgevoerd wordt op een
grotere graaf de looptijd dan vermenigvuldigd wordt met een vast getal voor iedere
knoop (of kant) dat de graaf groter is. Een exact exponentiële-tijd algoritme is een
exponentiële-tijd algoritme dat na het uitvoeren gegarandeerd een optimale oplossing
van het gegeven probleem oplevert.

Mijn studie naar exacte exponentiële-tijd algoritmen voor domineringsproblemen
in grafen heeft geleid tot snellere algoritmen voor veel bekende graafdomineringspro-
blemen inclusief de voorbeelden die hierboven gegeven zijn. Deze studie resulteerde
ook in een aantal snellere algoritmen voor problemen die gerelateerd zijn aan het on-
derwerp van het proefschrift, waaronder een aantal resultaten in de geparametriseerde
complexiteit. De meest aansprekende hiervan zijn waarschijnlijk de snellere algoritmen
voor veel graafdomineringsproblemen op graafdecomposities.

Dit proefschrift begint met een introductie tot het onderzoeksgebied van de exacte
exponentiële-tijd algoritmen. Hier geven we een overzicht van bestaande technieken en
behandelen we gerelateerde begrippen uit de complexiteitstheorie en uit algoritmische
onderzoeksgebieden die verwant zijn aan de exponentiële-tijd algoritmen. In het laatste
deel van de introductie geven we een voorbeeld van een ‘zeer snel’ exponentiële-tijd
algoritme. Hier geven we namelijk een algoritme voor het Partition Into Triangles

probleem op grafen met maximale graad vier dat O(1.02220n) tijd en polynomiaal veel
ruimte gebruikt. Voor dit probleem kunnen we laten zien dat er geen subexponentiële-
tijd algoritmen voor bestaan tenzij geaccepteerde complexiteitstheoretische aannamen
niet waar blijken te zijn.

Het eerste graafdomineringsprobleem dat we bestuderen is Dominating Set. Voor
dit probleem geven we een algoritme dat O(1.4969n) tijd en polynomiaal veel ruimte
gebruikt. Dit resultaat is gebaseerd op een stapsgewijs ontwerpproces voor algorit-
men waarbij een grondige analyse van de combinatorische structuur van het probleem
gepaard gaat met een looptijdanalyse gebaseerd op de ‘measure and conquer’ techniek.
We gebruiken delen van hetzelfde algoritme om ook een algoritme voor Total Domi-

nating Set te construeren dat O(1.4969n) tijd en polynomiaal veel ruimte gebruikt,
een algoritme voor Red-Blue Dominating Set te construeren dat O(1.2279n) tijd
en polynomiaal veel ruimte gebruikt, en een algoritme voor k-Nonblocker te con-
strueren dat O∗(1.9588k) tijd en polynomiaal veel ruimte gebruikt.

Hierna gebruiken we dezelfde aanpak in een iets andere setting. Voor het Edge Do-

minating Set probleem en een aantal gerelateerde kantdomineringsproblemen geven
we algoritmen die O(1.3226n) tijd en polynomiaal veel ruimte gebruiken. Deze resul-
taten zijn net als eerdere resultaten over kantdomineringsproblemen gebaseerd op het
opsommen van bepaalde minimum vertex covers in een graaf. Om onze resultaten
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te verkrijgen introduceren we in deze algoritmen een nieuwe reductieregel die we ge-
bruiken om minder van deze vertex covers op te hoeven sommen. De gebruikte aanpak
leidt ook tot algoritmen voor k-Edge Dominating Set en een aantal gerelateerde
problemen die O∗(2.4006k) tijd en ruimte gebruiken.

Voor het Independent Set probleem geven we snellere algoritmen op grafen met
een kleine gemiddelde graad. We geven een algoritme voor Independent Set op
grafen met een gemiddelde graad van ten hoogste drie dat O(1.08537n) tijd en poly-
nomiaal veel ruimte gebruikt. Dit resultaat is gebaseerd op een grote gevalsanalyse
waarbij de gemiddelde graad een belangrijke rol speelt in de looptijdanalyse. We ge-
bruiken dit resultaat ook om snellere algoritmen te verkrijgen voor Independent Set

op grafen met een grotere gemiddelde graad. Dit leidt uiteindelijk tot een algoritme
voor het algemene Independent Set probleem dat O(1.2114n) tijd en polynomiaal
veel ruimte gebruikt.

In het derde deel van het proefschrift introduceren we een nieuwe techniek die we
inclusion/exclusion-based branching noemen. Deze techniek gebruikt het principe van
inclusie/exclusie als branchingregel die gebruikt kan worden in een standaard ‘branch
and reduce’ algoritme. Inclusie/exclusie kan op deze manier gemakkelijk gecombineerd
worden met andere algoritmische methodieken zoals verschillende branchingregels, re-
ductieregels, of aanpakken op ijle grafen gebaseerd op boombreedte (treewidth). Ge-
bruikmakend van onze nieuwe techniek geven we twee algoritmen voor #Dominating

Set: een algoritme dat O(1.5673n) tijd en polynomiaal veel ruimte gebruikt en een
algoritme dat O(1.5002n) tijd en ruimte gebruikt. We gebruiken deze aanpak ook om
resultaten te behalen voor Domatic Number, Red-Blue Dominating Set, Domi-

nating Set beperkt tot een aantal graaf klassen, en in een volledig andere context
om een resultaat te behalen voor Disjoint Connected Subgraphs.

Hierna breiden we bovenstaande techniek uit zodat deze ook met partiële vereisten
overweg kan. In de context van graafdomineringsproblemen wil dit zeggen dat we de
techniek uitbreiden om van toepassing te zijn op partiële domineringsproblemen in
grafen. We noemen deze uitbreiding van onze techniek extended inclusion/exclusion-
based branching. Door gebruik te maken van deze uitbreiding construeren een algoritme
voor Partial Dominating Set dat O(1.5673n) tijd en polynomiaal veel ruimte ge-
bruikt, een algoritme voor Partial Dominating Set dat O(1.5014n) tijd en ruimte
gebruikt, en algoritme voor k-Set Splitting dat O∗(1.8213k) tijd en polynomiaal
veel ruimte gebruikt.

In het vierde deel van het proefschrift beschouwen we dynamisch programmeeral-
goritmen die werken op graafdecomposities. Hier combineren we standaardaanpakken
op boomdecomposities, branchdecomposities, en cliquedecomposities (ook bekend als
k-expressies) met varianten van het ‘fast subset convolution’ algoritme. We geven
algoritmen op boomdecomposities met boombreedte k voor een breed scala aan graaf-
domineringsproblemen die allen O∗(sk) tijd en ruimte gebruiken; hier is s het aan-
tal ‘states’ dat nodig is om partiële oplossingen van het probleem te representeren.
Deze algoritmen maken gebruik van een nieuwe techniek die we generalised fast sub-
set convolution noemen. Op deze manier construeren we algoritmen voor de [�, �]-
domineringsproblemen en een klasse van overdekkings-, pakkings- en partitionerings-
problemen met cliques. Hieronder vallen onder andere een algoritme voor Dominating

Set dat O∗(3k) tijd en ruimte gebruikt en een algoritme voor #Perfect Matching

dat O∗(2k) tijd en ruimte gebruikt.
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Dezelfde aanpak leidt tot algoritmen voor Dominating Set, Total Dominating

Set en Independent Dominating Set op cliquedecomposities die O∗(4k) tijd en
ruimte gebruiken. Op branchdecomposisties geven we algoritmen voor een breed scala
aan graafdomineringsproblemen die O∗(s

!
2 k) tijd en ruimte gebruiken door de aanpak

verder uit te breiden met het gebruik van asymmetrische states op knopen en snelle
matrixvermenigvuldigingen.

Tot slot geven we in dit proefschrift nog enkele interessante open problemen voor
toekomstig onderzoek.
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