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Abstract

We consider an infinite sequence of items of types C = {c1, . . . , cI}, and another infinite
sequence of items of types S = {s1, . . . , sJ}, and a bipartite graph G of allowable matches
between the types. Matching the two sequences on a first come first served basis defines a
unique infinite matching between the sequences. For (ci, sj) ∈ G we define the matching
rate rci,sj as the long term fraction of (ci, sj) matches in the infinite matching, if it exists.
We assume that the types of items in the two sequences are i.i.d. with given probability
vectors α, β. We describe this system by a Markov chain, obtain conditions for ergodicity,
and derive its stationary distribution which is of product form. We show that if the chain
is ergodic, then the matching rates exist almost surely, and give a closed form formula to
calculate them.

Keywords: Service system; first come first served policy; multi type customers and servers;
infinite bipartite matching; infinite bipartite matching rates; Markov chains; product form
solution.

2000 Mathematics Subject Classification: Primary 60J10; Secondary 90B22; 68M20.

1 Introduction

We consider the model suggested by Caldentey, Kaplan and Weiss [4]. We have an infinite
sequence of customers, c1, . . . , cN , . . . and of servers, s1, . . . , sM , . . .. Customers are of types
{c1, . . . , cI}, servers are of types {s1, . . . , sJ}. Customers of type ci can be served by a subset
S(ci) of the servers, servers of type sj can serve a subset C(sj) of the customers. A bipartite
graph G describes possible matches of customers and servers, where an arc (ci, sj) in G indicates
that ci ∈ C(sj), and sj ∈ S(ci).

A unique first come first served (FCFS) infinite bipartite matching is defined between the two
sequences: customer cN is matched to the first server in the sequence that can serve it and that
has not been matched to any of the customers c1, . . . , cN−1. Equivalently, server sM is matched
to the first customer in the sequence that he can serve, and which has not been matched to
any of the previous servers in the sequence. It is easy to see that these two constructions result
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in the same infinite matching, and indeed the roles of servers and customers in this model are
completely symmetric. For each N we denote by rNci,sj

the fraction of (ci, sj) matches created
between c1, . . . , cN and s1, . . . , sN .

We assume that the sequences of customers and servers are randomly generated. The types
of customers are i.i.d. drawn from a probability vector α, and the types of the servers are
i.i.d. drawn from a probability vector β, with the two sequences independent. This defines a
probability distribution on the matches, and in particular on rNci,sj

.
For given G, α, β we define the matching rates rci,sj

= limN→∞ rNci,sj
if these limits exist

almost surely. Obviously the matching rates must satisfy:∑
ci∈C(sj)

rci,sj = βsj , for all sj ,∑
sj∈S(ci)

rci,sj
= αci

, for all ci.
(1)

We refer to these as the total resource pooling linear equations. If these equations do not have
a non-negative solution, then rates cannot exist, and we say that in this case there can be
no complete resource pooling in the system. Unfortunately, these equations are not enough
to determine the rates, since in many cases (depending on the structure of the graph G) they
may have many nonnegative solutions. In cases when the solution is unique the question of
convergence still remains.

Let C, resp. S denote a subset of customer, resp. server types, and let S(C) =
⋃
ci∈C S(ci),

C(S) =
⋃
sj∈S C(sj), and let also αC =

∑
ci∈C αci

, βS =
∑
sj∈S βsj

. Caldentey, Kaplan and Weiss
[4] have shown that the following condition is necessary for the existence of matching rates:

αC ≤ βS(C), for all subsets C, βS ≤ αC(S), for all subsets S.

They conjectured that the sharpened condition:

αC < βS(C), for all non trivial subsets C, βS < αC(S), for all non trivial subsets S. (2)

is sufficient for existence of the matching rates. They have also suggested a Markovian description
for the matching of each successive server sN , or for each successive pair cN , sN . Using this
Markovian description they confirmed the conjecture for some special types of graphs G and
calculated the matching rates for some of those. Recently, Busic, Gupta and Mairess [2] have
shown that the sharper condition (2) is necessary for the existence of rates, and discussed some
related models.

In the current paper we show that indeed (2) is necessary and sufficient for the existence of
rates, and obtain a closed form formula (7) for calculating the matching rates. We do so by
refining the Markovian description in [4], to obtain a new Markov chain which is associated with
the matching of each successive server. For this Markov chain we find a product form stationary
distribution (6). The form of this stationary distribution confirms that (2) is sufficient for
ergodicity of the chain, and hence proves (see Theorem 2 in [4]) that (2) is sufficient for the
existence of the rates. The formula (7) is then derived from the stationary distribution. The
Markov chain which we use to describe the matching process uses the same idea which was
used by Visschers et al. [9, 10] to describe a queueing system with multi-type customers and
multi-type servers.

The motivation for this model can be found in assigning tenants to housing projects (cf.
Kaplan [6, 7]), adopting couples to adoptive children, kidney transplants, etc. In a queueing
context it relates to situations where servers and customers play symmetric roles, e.g. if both
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arrive in independent Poisson streams and an arriving customer (resp. server) is matched to
the longest waiting compatible server (resp. customer), and both are then immediately removed
from the system. This model is also relevant to skill based routing in call centers. A recent paper
of Talreja and Whitt [8] derives further results for such a call center type model, including some
matching rates under first come first served.

The rest of the paper is structured as follows: In Section 2 we define the Markov chain and
derive its stationary distribution. In Section 3 we obtain the formula (7) for the matching rates.
In Sections 5 and 6 we explore the relationship between our model and the manufacturing type
queueing system of Visschers et al. [9, 10] and the call center skilled based routing type model
of Whitt and Talreja [8].

Remark 1. We assume without loss of generality that in the graph G no two nodes have exactly
the same connections. The reason is that our matching mechanism does not distinguish between
such nodes. Therefore, if we have for example two server types s′, s′′ with C(s′) = C(s′′), we
will merge them to a single type s and calculate the matching rates for the merged server type
s with βs = βs′ + βs′′ . Once we can calculate rs,c for any customer type c, we can retrieve
rs′,c = βs′

βs
rs,c, rs′′,c = βs′′

βs
rs,c.

2 The Markov chain

We now define a discrete time Markov chain ZN associated with the matching of successive
servers, so that ZN summarizes the state after the matching of s1, . . . , sN . Assume that N is
large enough so that s1, . . . , sN contains at least one server of each type sj for j = 1, . . . , J . Let
skj be the last server of type sj among s1, . . . , sN , and let clj be the customer which is matched
to server skj . Note that because matching is FCFS, if we look at the customers which were
matched to s1, . . . , sN , then clj is the last of them which is matched to a type sj server. Let
l(1) < l(2) < · · · < l(J) be the ordered string of l1, . . . , lJ . This defines a (random) permutation
of server types, S1, . . . , SJ , where Sj is the server that matched customer cl(j) . Consider now
the customers cl(j)+1, . . . , cl(j+1)−1 (this may be an empty string). Some of them may have
been matched to servers sM where 1 ≤ M ≤ N and where M 6∈ {k1, . . . , kJ}. Let nj be
the number of unmatched customers between cl(j) and cl(j+1) . We define the state of ZN as
s = (S1, n1, S2, n2, . . . , SJ−1, nJ−1, SJ). Figure 1 illustrates a typical state of ZN . There are
five types of customers and five types of servers. The system graph G at the top of the figure
has S(c1) = {s1, s5} and S(ci) = {si−1, si}, i = 2, . . . , 5. The figure illustrates the state ZN
which is seen by server sN+1 when he is searching for his match. All previous servers s1, . . . , sN ,
represented by gray dots, have been matched to customers, represented by gray dots and by
the five black dots which are cl(1) , . . . , cl(5) , the last customers matched by each type of server.
The oblongs around those 5 black dots spell out the type of server that matched each of them.
Server sN+1 is represented by a black dot, and the white dots represent the remaining unmatched
servers and customers. This state is ZN = s = (s5, 0, s1, 3, s4, 2, s2, 3, s3).

We will use the following notation:
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s5 s1 s4 s2 s3

sN+1

{ { {c1 c1,c5 c1,c2, c5

s
c

1 2 3 4 5

1 2 3 4 5

G

Figure 1: Illustration of the system’s Markovian state

S : an arbitrary server type from the set of server types {s1, . . . , sJ}. The capitalized
S points to one of the server types, and in particular in an arbitrary state s =
(S1, n1, . . . , nJ−1, SJ), the sequence S1, . . . , SJ is the permutation of the server types
as they appear in the order of cl(1) , . . . , cl(J) . Note that the actual server types sj
are not capitalized.

C : a subset of customer types.
S : a subset of server types.

C(S) : the subset of customer types which can be matched to at least one server type in S,
equals

⋃
s∈S C(s).

U(S) : the set of customer types which are uniquely served by the set of server types S.
Customer types in U(S) cannot be served by any type of server which is not in S.
It is equal to C(S), the complement set of all the customers which can be matched
to server types in the complement of S. We let by convention U(∅) = ∅.

αC : sum of αc over c ∈ C. By convention, α∅ = 0.
βS : sum of βs over s ∈ S.

Returning to Figure 1 we look at the unmatched customers. There are 3 unmatched customers
following directly after the last s1 match. Clearly those are customers which can only be matched
to servers s5, s1. Hence, looking at G, they are all of type c1. Similarly the two unmatched
customers following the last s4 match cannot be matched to s2, s3 and hence must belong to
U({s5, s1, s4}) = {c1, c5}, and the last three unmatched customers must be of types {c1, c2, c5} =
U({s5, s1, s4, s2}) = C({s3}).

In general, for a state s = (S1, n1, S2, n2, . . . , nJ−1, SJ) the nj unmatched customers follow-
ing directly after the last match of Sj will all belong to U({S1, . . . , Sj}). Those unmatched
customers include all the customers of types in U({S1, . . . , Sj}) which were in the original in-
finite sequence of customers between cl(j) and cl(j+1) . As a result, if c ∈ U({S1, . . . , Sj}) then
each of the nj unmatched customers can be of type c with probability αc

αU({S1,...,Sj})
. Clearly,

U({S1, . . . , Sj}) ⊆ U({S1, . . . , Sj , Sj+1}), with possibility of equality. Also, it is possible that
U({S1}) = U({S1, S2}) = · · · = U({S1, . . . , Sj}) = ∅ in which case n1 = · · · = nj = 0 for all sam-
ple paths; states for which nj > 0 but U({S1, . . . , Sj}) = ∅ are not feasible. Let S be the state
space of ZN . Hence, if PJ is the set of all permutations of {s1, . . . , sJ}, and Z+ the non-negative
integers, then the state space of ZN is the subset of PJ ×ZJ−1

+ of all (feasible) states s satisfying
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nj > 0 only if U({S1, . . . , Si}) 6= ∅ for all j = 1, . . . , J − 1, so

S = {(S1, n1, . . . , nJ−1, SJ)|(S1, . . . , SJ) ∈ PJ , ni ≥ 0, ni = 0 if U({S1, . . . , Si}) = ∅, i = 1, . . . , J}

It is worth noting the following: In the paper of Caldentey, Kaplan and Weiss [4] the matching
process of successive servers is described by the Markov chain XN which lists the ordered string
of unmatched customers, and the countable state space of XN consists of finite ordered strings
of customer types. This Markov chain turned out to be intractable, and we believe that it does
not in general have a product form stationary distribution. Our current process ZN is based
on Visschers et al. [9, 10], which analyze and obtain product form solutions for a continuous
time Markov chain describing a multi-type customer multi-type server queueing system (this will
be discussed in Section 5). The process ZN retains information different from that retained by
XN about the matching process. It records the last match for each type of server, which is not
included in the state description of [4], but it does not specify the types of unmatched customers,
only how many there are following directly after the last match of each type of server.

We now describe the transition mechanism of ZN . If the chain is in state ZN = s, and sN+1

is of type Si then none of the first n1 + · · ·+ni−1 unmatched customers can match him. He will
then consider the ni unmatched customers following cl(i) , and look for a match, and take the first
match. The probability for each one of them to provide a match is αU({S1,...,Si})∩C(Si)

αU({S1,...,Si})
, and the

successive trials are independent. If no match is found among these ni customers, server sN+1

will continue searching along the remaining ni+1 + · · ·+nJ−1 customers, to look for a match, and
if none is found he will then search the rest of the infinite sequence following cl(J) , where he will
eventually find a match after a geometrically distributed number of trials. Recall that all of the
nj unmatched customers following cl(j) are of types U({S1, . . . , Sj}), so the probability that one of
these nj unmatched customers following cl(j) will provide a match for sN+1 is

αU({S1,...,Sj})∩C(Si)

αU({S1,...,Sj})
,

and the trials are independent. We denote by δj(Si) the probability of no match between sN+1

of type Si and one of the nj unmatched customers between cl(j) and cl(j+1) .
The effect of sN+1 finding a match among the nj customers following Sj is that the permuta-

tion S1, . . . , Si, . . . , Sj , . . . , SJ is replaced by a permutation in which Si moves to the right and is
inserted between Sj and Sj+1. In the special case that a match is found among the ni customers
following cl(i) the permutation is unchanged and only the counts change. In the special case that
no match is found among n1 + . . .+ nJ−1 customers, Si moves to the rightmost position in the
permutation. If the type of sN+1 is S1 and n1 > 0, server sN+1 will be matched to the first
unmatched customer following cl(1) , and the only change in state will be that n1 is reduced by 1.

This concludes the description of the Markov chain ZN . Before formulating the global balance
equations we establish the following properties of ZN .

Theorem 1. ZN is an irreducible and aperiodic Markov chain.

Proof. It is obvious from the foregoing description of the states and transitions that the transi-
tions probabilities do not depend on any of the states prior to ZN , so ZN is a Markov chain.

It is possible to move with positive probability from any state (S1, n1, . . . , nJ−1, SJ) to a
state with no unmatched customers between them and (possibly) some other permutation of the
server types, say (S̄1, 0, . . . , 0, S̄J), in

∑J−1
i=1 ni steps, by having consecutive servers each of which

can match a consecutive unmatched customer. One can also move with positive probability from
any state (S̄1, 0, . . . , 0, S̄J) to the state (S1, n1, . . . , nJ−1, SJ) in J +

∑J−1
i=1 ni steps. This is done

if successive servers are of type S1, . . . , SJ and the infinite sequence of customers starts with a
customer of S1 followed by n1 customers of types in U({S1}), and then a customer of S2, followed
by n2 customers of U({S1, S2}), etc. Hence the chain is irreducible.
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The chain is aperiodic, since from any state (S1, n1, . . . , nJ−1, SJ) one can stay in the same
state in the next step if sN+1 is of type SJ and the first customer following cl(J) can be matched
to SJ .

To formulate the global balance equations we need to specify the precise transitions into state
s = (S1, n1, . . . , nJ−1, SJ). For j = 1, . . . , J , if sN+1 is of type Sj then state s will be reached from
an originating state in which Sj follows Sk, and there are nk − l unmatched customers between
Sk and Sj . Here k ≤ j − 1, with 0 ≤ l ≤ nk. We denote this originating state swapSj

k,l(s). A

typical transition from swapSj

k,l(s) to s is illustrated in Figure 2. Note that in the originating state
Sj−1 and Sj+1 are in consecutive positions in the permutation, with nj−1 + 1 + nj unmatched
customers between them, one of which is then matched to sN+1.

{ { {l n j−1 n j

S j Sk+1 S j−1 S j+1

{ { {l n j−1 n j

S jS j−1 S j+1

Sk

Sk Sk+1

{nk − l

{nk − l

swapk ,l
Sj (s)→ s

Figure 2: Transition from state swapSj

k,l(s) to state s

To clarify we illustrate some special cases in Figure 3. In the transition swapSJ

k,l(s) to s (Figure
3a), there is obviously no SJ+1, and SJ moves from its originating position in the permutation
to the last position. If k = j − 1 we have the transition swapSj

j−1,l(s) to state s (Figure 3b),
in which the permutation remains the same, but the counts of unmatched customers between
Sj−1, Sj , Sj+1 change, from nj−1− l, l+ 1 +nj in the originating state to nj−1, nj in s. The case
of k = 0 means that sN+1 is of the same type as the leftmost server in the originating state.
There are now two possibilities. If there are any unmatched customers following the first server
in the originating state, then sN+1 would match with the first of them, and the transition would
be from swapS1

0,0(s) to s, with the permutation remaining the same and the number of unmatched
customers in the first interval reducing from n1 + 1 to n1 (Figure 3d); in this case j = 1. If
there are no unmatched customers following the first server in the originating state, then the
transition will be from swapSj

0,0(s) to s (Figure 3c); in this case j > 1.
Note that, if j < J , the originating state swapSj

k,l(s) always has one additional unmatched
customer in front of Sj+1, i.e. the one matching Sj in state s. However, if U{S1, . . . , Sj} = ∅,
such an additional customer is not possible and thus the state swapSj

k,l(s) is not feasible; this

means that s can not be reached by a match of Sj . Hence, the transition swapSj

k,l(s) to s is
feasible only if U{S1, . . . , Sj} 6= ∅.

We denote the probability of the transition from swapSj

k,l(s) to s by qSj

k,l(s), conditional on the
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S1

{ {l n j

S jS j−1 S j+1

n j

{n j−1 − l

{ {l n j

S jS j−1 S j+1

{n j−1 − l

{ {n j−1 n j

S j S1 S j−1 S j+1

{ {n j−1 n j

S jS j−1 S j+1S1

{ n1
S2S1

{ n1
S2

swap0,0
S1 (s)→ s

swap j−1,l
Sj (s)→ s

swap0,0
Sj (s)→ s

{ {l nJ−1

SJ Sk+1 SJ−1

{ {l nJ−1

SJSJ−1

Sk

Sk Sk+1

{nk − l

{nk − l

swapk ,l
SJ (s)→ s

(a) (b)

(c) (d)

Figure 3: Some additional swap transitions

event that sN+1 is of type Sj . For k > 0, k < j − 1 (see Figures 2, 3(a)) it is given by:

q
Sj

k,l(s) = (δk(Sj))
l (δk+1(Sj))

nk+1 · · · (δj−1(Sj))
nj−1 (1− δj−1(Sj)) , 0 < k < j − 1.

In the remaining cases (Figure 3(b,c,d)) it is:

q
Sj

j−1,l(s) = (δj−1(Sj))
l (1− δj−1(Sj)) , j > 1,

q
Sj

0,0(s) = q
Sj

1,n1
(s), j > 1,

qS1
0,0(s) = 1,

where we use
δi(Sj) =

αU({S1,...,Si})

αU({S1,...,Si,Sj})
, 0 < i < j,

to denote the probability of no match for sN+1 = Sj with one of the unmatched customers
following Si in the originating state. We set by convention, δi(Sj) = 0 if U({S1, . . . , Si}) ⊆
U({S1, . . . , Si, Sj}) = ∅.

Equipped with the above notations, the global balance equations can be formulated as follows:

π(s) =
∑

j:U{S1,...,Sj}6=∅

βSjQSj (s), s ∈ S, (3)

where

QS1(s) = qS1
0,0(s)π(swapS1

0,0(s)), (4)

QSj (s) = q
Sj

0,0(s)π(swapSj

0,0(s)) +
j−1∑
k=1

nk∑
l=0

q
Sj

k,l(s)π(swapSj

k,l(s)), j > 1. (5)
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Note that QSj (s), j = 1, . . . , J is the probability that the state ZN+1 = s has been reached by
match of sN+1 = Sj .

We are now ready to state our main theorem:

Theorem 2. The global balance equations (3) for the Markov chain ZN are solved by:

π(s) = π(S1, n1, S2, n2, . . . , SJ−1, nJ−1, SJ) = B

J−1∏
k=1

(
1

β{S1,...,Sk}

)(
αU{S1,...,Sk}

β{S1,...,Sk}

)nk

, s ∈ S,

(6)
where B is a constant, U{S1, . . . , Sk} is the set of customer types which are served exclusively
by the servers {S1, . . . , Sk}, and

αU{S1,...,Sk} =
∑

c∈U{S1,...,Sk}

αc, β{S1,...,Sk} =
k∑
j=1

βSj
.

A necessary and sufficient condition for ergodicity of ZN is condition (2), or equivalently, for
each subset {S1, . . . , Sj} of the server types s1, . . . , sJ :

αU{S1,...,Sj} < β{S1,...,Sj}, j = 1, . . . , J,

in which case π(s) is the stationary distribution with the normalizing constant:

B−1 =
∑
PJ

1
(β{S1} − αU{S1})(β{S1,S2} − αU{S1,S2}) · · · (β{S1,...,SJ−1} − αU{S1,...,SJ−1})

Proof. We will substitute expression (6) into (3) and check that global balance holds. First, for
each state s ∈ S and j ∈ {1, . . . , J} such that U{S1, . . . , Sj} 6= ∅, we calculate by substitution
of (6) the quantities βSj

q
Sj

k,l(s)π(swapSj

k,l(s))/π(s) appearing in (3) – (5). For 1 ≤ k < j we have:

βSj
q
Sj

k,l(s)
π(swapSj

k,l(s))
π(s)

= βSj
(1− δj−1(Sj)) (δk(Sj))

l

(
1

β{S1,...,Sk,Sj}

)(
αU{S1,...,Sk,Sj}

β{S1,...,Sk,Sj}

)l
(
αU{S1,...,Sk}
β{S1,...,Sk}

)l


j−1∏
i=k+1

(δi(Sj))
ni

(
1

β{S1,...,Si,Sj}

)(
αU{S1,...,Si,Sj}

β{S1,...,Si,Sj}

)ni

(
1

β{S1,...,Si}

)(
αU{S1,...,Si}
β{S1,...,Si}

)ni


αU{S1,...,Sj−1,Sj}

β{S1,...,Sj−1,Sj}

1
β{S1,...,Sj−1,Sj}

= βSj
(1− δj−1(Sj))

αU{S1,...,Sj−1,Sj}

β{S1,...,Sk,Sj}

(
β{S1,...,Sk}

β{S1,...,Sk,Sj}

)l j−1∏
i=k+1

(
β{S1,...,Si}

β{S1,...,Si,Sj}

)ni+1

=
(
αU{S1,...,Sj−1,Sj} − αU{S1,...,Sj−1}

) βSj

β{S1,...,Sk,Sj}
´
(

β{S1,...,Sk}

β{S1,...,Sk,Sj}

)l j−1∏
i=k+1

(
β{S1,...,Si}

β{S1,...,Si,Sj}

)ni+1

=
(
αU{S1,...,Sj−1,Sj} − αU{S1,...,Sj−1}

)
(1− θk,j)θlk,j

j−1∏
i=k+1

θni+1
i,j .
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The first equality is obtained after canceling all the common terms of π(swapSj

k,l(s)) and π(s).
The second and third equalities follow from canceling the α terms with the corresponding δi(Sj)
terms. Finally, for the last equality, we denote

θi,j =
β{S1,...,Si}

β{S1,...,Si,Sj}
, 1 ≤ i < j .

Similarly we obtain for the term βSjq
Sj

0,0(s)π(swapSj

0,0(s))/π(s) by substitution of (6), for j > 1:

βSj
q
Sj

0,0(s)
π(swapSj

0,0(s))
π(s)

= βSj
(1− δj−1(Sj))

1
βSj


j−1∏
i=1

(δi(Sj))
ni

(
1

β{S1,...,Si,Sj}

)(
αU{S1,...,Si,Sj}

β{S1,...,Si,Sj}

)ni

(
1

β{S1,...,Si}

)(
αU{S1,...,Si}
β{S1,...,Si}

)ni


αU{S1,...,Sj−1,Sj}

β{S1,...,Sj−1,Sj}

1
β{S1,...,Sj−1,Sj}

=
(
αU{S1,...,Sj−1,Sj} − αU{S1,...,Sj−1}

) j−1∏
i=1

θni+1
i,j

Performing the summation in (5) we get, for j > 1:

βSj
QSj

(s) = βSj
q
Sj

0,0(s)π(swapSj

0,0(s)) + βSj

j−1∑
k=1

nk∑
l=0

q
Sj

k,l(s)π(swapSj

k,l(s))

= π(s)
(
αU{S1,...,Sj−1,Sj} − αU{S1,...,Sj−1}

)[
j−1∏
i=1

θi,j
ni+1 +

j−1∑
k=1

nk∑
l=0

(1− θk,j)θlk,j
j−1∏
i=k+1

θni+1
i,j

]
= π(s)

(
αU{S1,...,Sj−1,Sj} − αU{S1,...,Sj−1}

)
.

To see that the sums of products of all the θi,j add up to 1, note that they represent probabilities
for Bernoulli trials, of which there are altogether

∑j−1
i=1 (ni + 1) trials, starting with nj−1 + 1

trials with success probability of (1 − θj−1,j), followed by ni + 1 trials with success probability
(1− θi,j), for i = j − 2, . . . , 2, 1. The summation of terms

∑j−1
k=1

∑nk

l=0 sums up the probabilities
that the first success will be on the first, the second, . . . or the last of the trials, while the first
term in the square brackets is the probability of no success at all. These obviously add up to 1.

For j = 1 the substitution gives:

βS1QS1(s) = βS1q
S1
0,0(s)π(swapS1

0,0(s))

= βS11
αU{S1}

β{S1}
π(s)

= π(s)
(
αU{S1} − αU{∅}

)
,

where we used that αU{∅} = 0.
Finally, summing up over j ∈ {1, . . . , J} satisfying U{S1, . . . , Sj} 6= ∅, we get from substitut-
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ing (6) in the global balance equations (3) that:

J∑
j=1

βSjQSj (s) = π(s)
∑

j:U{S1,...,Sj}6=∅

(
αU{S1,...,Sj−1,Sj} − αU{S1,...,Sj−1}

)
= π(s)

J∑
j=1

(
αU{S1,...,Sj−1,Sj} − αU{S1,...,Sj−1}

)
= π(s)

(
αU{S1,...,SJ} − αU{∅}

)
= π(s),

since clearly αU{S1,...,SJ} = 1 and αU{∅} = 0. The second equality is valid since if U{S1, . . . , Sj} =
∅ then αU{S1,...,Si} = 0, i = 1, . . . , j. This confirms that (6) solves the global balance equations.

If αU(S) < βS , for every non-trivial subset of servers S, the solution of the balance equations
converges. This implies, by Theorem 1 in [5], that the Markov process ZN is ergodic and its
stationary distribution is obtained by normalization of the solution (6). Hence, the condition
αU(S) < βS , for every non-trivial subset of servers S, is sufficient for ergodicity of ZN . Using
αU(S) = αC(S) = 1−αC(S) and βS = 1−βS , we see that this condition is equivalent to condition
(2). So (2) is sufficient for ergodicity, and Busic, Gupta and Mairess [2] have shown that it is
also necessary.

To finally derive the normalizing constant B the sum of the terms (6) over all states in S is
set to 1. For a single permutation S1, . . . , SJ the number of unmatched customers ni between Si
and Si+1 can take any value in Z+ if U({S1, . . . , Si}) 6= ∅, and otherwise, if U({S1, . . . , Si}) = ∅
only ni = 0 is feasible (and also αU({S1,...,Si}) = 0). Hence, taking the sum over all feasible values
of n1, . . . , nJ−1 for permutation S1, . . . , SJ yields

π(S1, ·, . . . , ·, SJ) =
B

(β{S1} − αU{S1})(β{S1,S2} − αU{S1,S2}) · · · (β{S1,...,SJ−1} − αU{S1,...,SJ−1})
.

The normalizing constant B readily follows by adding π(S1, ·, . . . , ·, SJ) over all permutations of
{s1, . . . , sJ}. This completes the proof.

3 The matching rates

We now calculate the matching rate between server type sj and customer type ci, where ci ∈
C(sj). We will first calculate the probability of a (ci, sj) match, conditional on server sN being
of type sj and on the system ZN being in state s = (S1, n1, S2, . . . , nJ−1, SJ) ∈ S. We denote
this as rci,sj

(S1, n1, S2, . . . , nJ−1, SJ).
For convenience we define, relative to the permutation S1, S2, . . . , SJ ,

α(k) = αU{S1,...,Sk}, β(k) = β{S1,...,Sk} = βS1 + · · ·+ βSk
,

and S(k) as the set of feasible values for nk, so S(k) = Z+ if U({S1, . . . , Sk}) 6= ∅, and S(k) = {0}
otherwise, where U{S1, . . . , Sk} are the customer types which can be served only by server types
{S1, . . . , Sk}. Note that α(k) = 0 when S(k) = {0}. Further, let

φk =
αU{S1,...,Sk}∩{ci}

αU{S1,...,Sk}
, ψk =

αU{S1,...,Sk}∩(C(sj)\{ci})

αU{S1,...,Sk}
, χk = 1− φk − ψk .

Here φk is the probability that a customer in the list of nk unmatched customers between Sk and
Sk+1 will be type ci and hence allow a (ci, sj) match. ψk is the probability that such a customer
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will be of a type different from ci and will allow a match with sj . χk is the probability that
such a customer is incompatible with sj . In other words, φk, ψk, χk are the probabilities that
when server sN of type sj examines one of the unmatched customers between Sk and Sk+1, this
will result in an immediate (ci, sj) match, or in an immediate match with a customer of a type
different from ci, or in a continuation of the search for a match among the following customers.
Note that either one or both of φk, ψk may be zero, or that one of them may be 1. In particular,
φk = ψk = 1− χk = 0 when U{S1, . . . , Sk} = ∅, and φJ = αci and ψJ = αC(sj)\{ci}.

We have:

rci,sj (S1, n1, S2, . . . , nJ−1, SJ) =

(1− χn1
1 )

φ1

φ1 + ψ1
+ χn1

1

[
(1− χn2

2 )
φ2

φ2 + ψ2
+ χn2

2

[
(1− χn3

3 )
φ3

φ3 + ψ3
+ · · ·

χ
nJ−2
J−2

[(
1− χnJ−1

J−1

) φJ−1

φJ−1 + ψJ−1
+ χ

nJ−1
J−1

[
φJ

φJ + ψJ

]]
· · ·
]]
,

where it is understood that if φk, ψk are both zero, then (1− χnk ) φk

φk+ψk
= 0 for all n ≥ 0.

We next calculate the probability of a (ci, sj) match conditional on server sN being of type
sj , and on the event ZN = s ∈ {(S1, n1 ∈ S(1), S2, n2 ∈ S(2), . . . , SJ−1, nJ−1 ∈ S(J−1), SJ)}, i.e
the permutation of server types is S1, . . . , SJ , with an arbitrary and feasible number of leftover
unmatched customers between them. We denote this as rci,sj (S1, S2, . . . , SJ)

Conditional on the permutation, using our convenient notation,

π(n1, . . . , nJ−1 |S1, . . . , SJ) =
J−1∏
k=1

(
1−

α(k)

β(k)

)(
α(k)

β(k)

)nk

,

we get by performing the summations:

rci,sj (S1, . . . , SJ) =
∑

n1∈S(1),...,nJ−1∈S(J−1)

π(n1, . . . , nJ−1 |S1, . . . , SJ)rci,sj (S1, n1, . . . , nJ−1, SJ)

=
∑

n1∈S(1),...,nJ−1∈S(J−1)

J−1∏
k=1

(
1−

α(k)

β(k)

)(
α(k)

β(k)

)nk

{
(1− χn1

1 )
φ1

φ1 + ψ1
+ χn1

1

[
(1− χn2

2 )
φ2

φ2 + ψ2
+ χn2

2

[
(1− χn3

3 )
φ3

φ3 + ψ3
+ · · ·

χ
nJ−2
J−2

[(
1− χnJ−1

J−1

) φJ−1

φJ−1 + ψJ−1
+ χ

nJ−1
J−1

[
φJ

φJ + ψJ

]]
· · ·
]]}

=
∑

n1∈S(1)

(
1−

α(1)

β(1)

)(
α(1)

β(1)

)n1
{

(1− χn1
1 )

φ1

φ1 + ψ1

+χn1
1

∑
n2∈S(2)

(
1−

α(2)

β(2)

)(
α(2)

β(2)

)n2
{

(1− χn2
2 )

φ2

φ2 + ψ2

+
.. .

+χnJ−2
J−2

∑
nJ−1∈S(J−1)

(
1−

α(J−1)

β(J−1)

)(
α(J−1)

β(J−1)

)nJ−1
{(

1− χnJ−1
J−1

) φJ−1

φJ−1 + ψJ−1

+χnJ−1
J−1

[
φJ

φJ + ψJ

]}
· · ·
}}
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=
J−1∑
k=1

φk
φk + ψk

α(k)(1− χk)
β(k) − α(k)χk

k−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl
+

φJ
φJ + ψJ

J−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl

=
J−1∑
k=1

φk
α(k)

β(k) − α(k)χk

k−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl
+

φJ
φJ + ψJ

J−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl
.

Finally we need multiply each of these rci,sj
(S1, . . . , SJ) by βj and by the probability of the

permutation, which is:

π(S1, . . . , SJ) = B

J−1∏
k=1

(β(k) − α(k))−1

and then add up over all the permutations, to get:

Theorem 3. For each pair (ci, sj), the matching rate rci,sj
is given by

rci,sj
= βsj

∑
PJ

B

J−1∏
k=1

(β(k) − α(k))−1

(
J−1∑
k=1

φk
α(k)

β(k) − α(k)χk

k−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl
+

φJ
φJ + ψJ

J−1∏
l=1

β(l) − α(l)

β(l) − α(l)χl

)
. (7)

Note that inside the parentheses of (7) each term in the summation over k is the probability
of a match in the kth interval between the servers Sk, Sk+1, and the last term is the probability
that the match occurs in the infinite remainder of the sequence of customers.

4 Calculating the matching rates

We now give some examples and demonstrate calculation of the matching rates. For some special
system graphs it is possible to derive the matching rates quite easily.

If the graph G is complete, i.e. all customer types are compatible with all server type, then
cN will be matched to SN for all N , and rci,sj

= αci
βcj

. This result is due to Talreja and Whitt
[8].

Another tractable example are the almost complete graphs. In these graphs every server type
is connected to all customer types except at most one, and every customer type is connected to
all server types except at most one. Without loss of generality we assume that each customer
and server node in G has exactly one missing arc. This is without loss of generality, since if
server type s′ is connected to all customer types then we can add a fictitious customer type c′

with αc′ = 0, which is connected to all except s′. We then have an equal number of customer
and server types. We label the server types as s1, . . . , sJ , and the customer types as c1, . . . , cJ
where sj is incompatible with cj , j = 1, . . . , J . The matching rates for this case were derived by
Caldentey, Kaplan and Weiss [4], and are given by:

rci,sj
= αci

βsj

(
(1− αci

)(1− βsj
)− αcj

βsi

)
(1− αci

− βsi
)(1− αcj

− βsj
)
π(∅), (8)

where π(∅) is the probability that n1 = · · · = nJ−1 = 0, given by:

π(∅) =
∑
PJ

B

J−1∏
j=1

1
β{S1,...,Sj}

=
∑
PJ

B

J∏
j=1

1
β{S1,...,Sj}

=
B

βs1 · · ·βsJ

.
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To obtain (8) from (7), note that for the almost complete graph U(S1, . . . , Sk) = ∅, k < J−1,
so that α(k) = 0, k < J − 1, and a matching of sj with ci can happen only in states with (i) no
unmatched customers, i.e. n1 = · · · = nJ−1 = 0, (ii) nJ−1 > 0 and SJ = sj and (iii) nJ−1 > 0
and SJ = si. The calculation then is straightforward, by using the identity

∑
Pk

k∏
l=1

1
βs1 + · · ·+ βsl

=
1

βs1 · · ·βsk

,

where Pk denotes the set of all permutations of s1, . . . , sk. This identity is verified by induction.
We have used (7) also to derive the matching rates for complete minus two graphs, in which

each customer type is connected to all but two of the server types, and each server type is
connected to all but two of the customer types. In this case U(S1, . . . , Sk) = ∅, k < J − 2, so in
the formula (7) one needs to sum over only two terms inside the parenthesis. Nevertheless the
formulas quickly become very lengthy and unilluminating, and seem to offer no advantage over
the general expression (7).

If the graph G is a tree, with no loops, one can derive the matching rates directly from the
complete resource pooling linear equations (1), which in that case have a unique solution. The
condition for stability is then that the solution is all positive. This result is also due to Talreja
and Whitt [8].

In general formula (7) gives explicit expressions for the matching rates. However, it is not an
easy formula to calculate, as it requires for every pair (ci, sj) the calculation of several quantities
separately for every permutation of s1, . . . , sJ . It is not obvious that any short cuts could be
used to reduce the computational complexity, since to obtain rci,sj

the formula requires addition
of non-negative terms for each permutation. Recall that calculation of the permanent of an n×n
matrix, which requires addition of non-negative terms for each of the n! permutations is known
to be ]P . We are aware of some efforts to represent the matching rates as solutions to some
optimization problem. Such a method could present an attractive alternative to the direct use
of our formula (7).

We have programmed the formula (7), and we conclude this section on computing matching
rates by presenting one numerical example. It is for a system with 6 types of customers and 6
types of servers, where each node in the bipartite graph G is of degree 3, every type is connected
to exactly 3, and incompatible with 3, see Figure 4. We have used:

α = (.04, .25, .06, .27, .08, .30)

β = (.14, .15, .16, .17, .18, .20)

The following Table 1 gives the matching rates as calculated from formula (7). We have also

C

S

1 2 3 4 5 6

1 2 3 4 5 6

Figure 4: A 3 connected bipartite graph with 6 customer and 6 types

simulated the system, running 100 realizations of ≈ 10, 000 customer/server pairs each. To obtain
better estimates from the simulation we continued each run beyond 10,000 until we reached a
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state (S1, 0, . . . , 0, SJ) so that all customers and servers were matched. Note that each of these
states is a regeneration point of the Markov chain, and so our simulation did not require warm-up
and is unbiased. We give in the table approximate 95% confidence interval for the matching rates
(mean of the hundred ± 2 standard deviations). Note that all 18 values with the exception of
rc4,s4 are within the confidence interval given by the simulation — this is just as a sanity check.

Two algorithms which were proposed to calculate the matching rates are discussed in [4]: the
algoirthm of Caldentey and Kaplan [3], and the quasi independent algorithm. It is found there
that they do not always give the correct values. We note that they do not give correct values of
the matching rates for this example.

5 Relation to the manufacturing system

Visschers et al [9, 10] consider the following queueing model to describe a manufacturing system.
There are jobs of types {c1, . . . , cI} and a total of J machines {s1, . . . , sJ}, where job of type ci
can be processed by machine sj if (ci, sj) ∈ G. Customers arrive in independent Poisson streams
of rates λci , i = 1, . . . , I, the processing times of jobs by machine sj are independent and ex-
ponentially distributed with rate µsj

, j = 1, . . . , J . Service discipline is first come first served,
so that when machine sj finishes processing of a job it will take the longest waiting job in the
system which it can serve. Arriving jobs of type ci will join the end of the queue if they find no
available idle machine. An arriving job of type ci which will find one or more idle machines that
can serve him will go into service immediately at one of the machines. The choice of machine is
random according to an assignment probability distribution, where P (ci, sj |{S1, . . . , Si}) is the
probability that a job of type ci is assigned to the idle machine sj which can serve it, when the set
of busy machines is {S1, . . . , Si}. These assignment probability distributions determine assign-
ment rates: λSj

({S1, . . . , Si}) is the rate at which idle machine Sj is activated when {S1, . . . , Si}
is the set of busy machines.

The state of the manufacturing system is given as s̃ = (S1, n1, . . . , Si, ni), where there are a
total of i + n1 + · · · + ni jobs in the system, i of which are being processed, where machine Sk
is serving the k + n1 + · · · + nk−1-th job in the queue, for k = 1, . . . , i, with n1, . . . , ni−1 jobs
waiting between the machines, and ni jobs waiting after the last machine. The remaining J − i
machines are idle.

Visschers et al. [9, 10] using the results of [1], show that there exist unique assignment rates
λSj ({S1, . . . , Si}) with the property that for any subset of machines the product

λS1(∅)λS2({S1}) · · ·λSi({S1, . . . , Si−1})

is independent of the permutation of {S1, . . . , Si}, and there exist assignment probability dis-
tributions which achieve these assignment rates. Furthermore, by employing partial balance
arguments (that directly lead to a candidate product form solution), they show that these as-
signment rates dictate a product form stationary distribution of the system:

π̃(s̃) = B̃
λS1(∅)λS2({S1}) · · ·λSi

({S1, . . . , Si−1})
µ{S1}µ{S1,S2} · · ·µ{S1,...,Si}

i∏
j=1

(
λU{S1,...,Sj}

µ{S1,...,Sj}

)nj

,

where B̃ is a normalizing constant and λC =
∑
c∈C λc, µS =

∑
s∈S µs. The system is stable if and

only if λU{S1,...,Sj} < µ{S1,...,Sj} for j = 1, . . . , J and every permutation of machines S1, . . . , SJ .
This manufacturing system is obviously very similar to our matching model, if we replace

the arrival and processing rates λ, µ with the probabilities α, β. Assume now that the total
traffic intensity of the manufacturing system approaches 1. Then machines are busy almost all
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the time. This implies that machines become available at times given by independent Poisson
processes of rates µsj

. Furthermore, arriving jobs will almost never find idle servers, so they will
almost always join the queue. In particular the assignment probability distributions will become
almost irrelevant. We now provide an alternative proof to Theorem 2, based on the stationary
distribution of the manufacturing system of [9, 10], when the total traffic intensity in the system
approaches 1.

Alternative proof of Theorem 2. We note that the state space and transitions of ZN are exactly
those of the multi-type customer and multi-type server queueing system of [9, 10], when we
condition on all servers being busy, and aggregate over the number of customers queued up
behind the last machine.

In the manufacturing system of [9, 10], if all machines are busy the state is given by: s̃ =
(S1, n1, S2, n2, . . . , SJ−1, nJ−1, SJ , nJ), where S1, . . . , SJ is a permutation of the machines, and
nj the numbers queued between machine Sj and Sj+1 for 1 ≤ j < J , and nJ is the number
queued up behind the last machine.

We start from the stationary probabilities of the system in [9, 10] and go through several
steps to reach our result. We explain notation and steps following this derivation:

π̃(s̃) = B̃
λS1(∅)λS2({S1}) · · ·λSJ

({S1, . . . , SJ−1})
µ{S1}µ{S1,S2} · · ·µ{S1,...,SJ}

J∏
j=1

(
λU{S1,...,Sj}

µ{S1,...,Sj}

)nj

= B̃ρJ+nJ
αS1(∅)αS2({S1}) · · ·αSJ

({S1, . . . , SJ−1})
β{S1}β{S1,S2} · · ·β{S1,...,SJ−1}

J−1∏
j=1

(
ραU{S1,...,Sj}

β{S1,...,Sj}

)nj

= B̃ρJ+nJ αS1(∅)αS2({S1}) · · ·αSJ
({S1, . . . , SJ−1})

J−1∏
j=1

(
1

β{S1,...,Sj}

)(
ραU{S1,...,Sj}

β{S1,...,Sj}

)nj

= B̃ρJ+nJ Ψ
J−1∏
j=1

(
1

β{S1,...,Sj}

)(
ραU{S1,...,Sj}

β{S1,...,Sj}

)nj

.

The first expression is taken from [10], where λsj
(S) is defined as the rate at which server sj is

activated when S is the subset of busy servers. We then define λ =
∑I
i=1 λci

, µ =
∑J
j=1 µsj

, ρ =
λ
µ , and let: αci

= λci

λ , βsj
=

µsj

µ . We divide each term in the numerator by λ and each term in the
denominator by µ, to obtain the second equality, where αSj ({S1, . . . , Si}) = λSj ({S1, . . . , Si})/λ.
Note that αU{S1,...,SJ} = β{S1,...,SJ} = 1, so we can drop them from the product, which now goes
from 1 to J − 1. The third equality is straight forward. We now note that, as is required in
[10], the product λS1(∅)λS2({S1}) · · ·λSJ

({S1, . . . , SJ−1}) is the same for all the permutations of
{s1, . . . , sJ}, and define the constant value

Ψ =
λS1(∅)λS2({S1}) · · ·λSJ

({S1, . . . , SJ−1})
λJ

= αS1(∅)αS2({S1}) · · ·αSJ
({S1, . . . , SJ−1})

which is the last equality.
Note that nJ appears only in the exponent of ρ. Summing over nJ = 0, 1, . . . we obtain the

marginal stationary probabilities:

π̃(s, ρ) = B̃
ρJ

1− ρ
Ψ
J−1∏
j=1

(
1

β{S1, . . . , Sj}

)(
ραU{S1,...,Sj}

β{S1, . . . , Sj}

)nj

.
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Hence the conditional probabilities given that all servers are busy are:

π(s, ρ) = B(ρ)
J−1∏
j=1

(
1

β{S1, . . . , Sj}

)(
ραU{S1,...,Sj}

β{S1,...,Sj}

)nj

.

with the new normalizing constant

B(ρ)−1 =
∑
PJ

1
(β{S1} − ραU{S1})(β{S1,S2} − ραU{S1,S2}) · · · (β{S1,...,SJ−1} − ραU{S1,...,SJ−1})

.

Substituting ρ = 1 we get the result (6).

6 Conjectured matching rates for a call center system

Talreja and Whitt [8] considered a queueing system which provides a model for call centers with
skill based routing. The model is similar to the manufacturing model of Section 5. Customers
of types ci, i = 1, . . . , I arrive as independent ergodic point processes (not necessarily Poisson)
with rates λci

. They are served by pools of servers of various types sj , j = 1, . . . , J , with Msj

servers of each type, that have i.i.d service times distributed as Gsj
(not necessarily exponential),

so that the service capacity of the whole type sj pool is at total rate µsj . Server of type sj can
serve customer of type ci if (ci, sj) ∈ G. Service discipline is first come first served. The added
feature here is that the system is overloaded so that there is not enough service capacity to serve
all the customers, and customers of type ci have patience distribution Fci

, so that customers
abandon the queue without service if their patience limit is reached.

Talreja and Whitt consider this system under many server heavy traffic scaling (uniform
accelaration), where one thinks of a sequence of systems in which for system n the arrival rates
and the number of servers are scaled up by a factor of n, and the queue lengths are then rescaled
through division by n. Since the system is overloaded servers will be busy almost all the time,
and queues of customers of all types will be non-empty almost all the time. Also, two consecutive
customers will have arrived almost at the same time, and when a server becomes available for
one of them, a server will become available for the next one (if resource pooling holds) almost
immediately, irrespective of their types, and it is conjectured in [8] that global first come first
served occurs on a fluid scale, so that all customers which do not abandon get served after a global
waiting time of W . Assuming patience distributions are absolutely continuous W is uniquely
determined by

I∑
i=1

λci(1− Fci(W )) =
J∑
j=1

µsj . (9)

It is then possible to write down the following equations for the matching rates νci,sj :∑
ci∈C(sj)

νci,sj
= µsj

, for all sj ,∑
sj∈S(ci)

νci,sj = λci(1− Fci(W )), for all ci.

These are again the total resource pooling linear equations for this system.
Talreja and Whitt obtain the matching rates for systems where G is a tree, or when G is

complete, and for hybrid cases of these. For the complete graph case they prove convergence of
the stochastic system to these rates. No further results exist for this model so far.
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Consider now this model, and assume that arrivals are Poisson and processing times are
exponential, let µ =

∑
µsj

, λ =
∑
λci

, and let ρ = λ/µ. If we let ρ↘ 1 the solution of (9) will
have W = 0, and the total resource pooling linear equations are identical to our model. It seems
that just as the infinite matching model corresponds to the manufacturing system of Section 5
when ρ↗ 1 so it can also correspond to the overloaded system with abandonments, as ρ↘ 1.

For ρ ≥ 1, under many server heavy traffic scaling (uniform acceleration), the following
limiting behavior appears plausible: Most customers will wait a time which is close to W before
being served. When a server will look at the queue he will therefore encounter enough customers
of the various types which have all been waiting approximately W , and are now close to the head
of the queue. He will choose the first one of those which he can serve. Assume now that arrivals
are Poisson, which is a reasonable assumption for a high arrival rate call center. This implies
that customers which get served are i.i.d. of type ci with probability αci = λci(1 − Fi(W ))/λ.
Also, since servers are busy almost all the time, with many servers this results in servers of type
sj becoming available as independent Poisson streams with rates µsj

, so consecutive servers will
be i.i.d of type sj with probability βsj

= µsj
/µ. We formulate the following conjecture:

Conjecture 1. In the model of Talreja and Whitt [8], under uniform acceleration (many server
heavy traffic scaling), the matching rates are given by the formula (7).
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