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Abstract

The accurate registration of multiview images is of central importance in many advanced image processing

applications. Image super-resolution, for example, is a typical application where the quality of the super-resolved

image is degrading as registration errors increase. Popular registration methods are often based on features

extracted from the acquired images. The accuracy of the registration is in this case directly related to the

number of extracted features and to the precision at which the features are located: images are best registered

when many features are found with a good precision. However, in low-resolution images, only a few features

can be extracted and often with a poor precision. By taking a sampling perspective, we propose in this paper new

methods for extracting features in low resolution images in order to develop efficient registration techniques.

We consider in particular the sampling theory of signals with finite rate of innovation [10] and show that

some features of interest for registration can be retrieved perfectly in this framework, thus allowing an exact

registration. We also demonstrate through simulations that the sampling model which enables the use of finite

rate of innovation principles is well-suited for modeling the acquisition of images by a camera. Simulations of

image registration and image super-resolution of artificially sampled images are first presented, analyzed and

compared to traditional techniques. We finally present favorable experimental results of super-resolution of real

images acquired by a digital camera available on the market.

I. INTRODUCTION

Multiview camera systems are composed of a set of cameras positioned at different locations and focusing

on the same scene of interest. Thus, at any given time, the i-th camera acquires a sampled image gi [m, n] of
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the particular view fi (x, y) it has of the scene. To take advantage of such systems and use advanced image

processing techniques like super-resolution, motion estimation or occlusion removals, the first processing task

of utmost importance is the accurate registration of the acquired images. The exact registration of two images

consists in finding the geometric transformation that exists between the view fi of one camera and the view fj

of a second camera with a different location. However, the continuous views are usually not available and the

registration is done on the acquired digital sampled images gi and gj .

Various surveys and books on image registration are available for an in-depth review of recent and more

classic image registration techniques [5], [49], [19]. These techniques operate either in the spatial domain or

the frequency domain of the image. Frequency domain methods can be computationally efficient but are often

limited to global rigid motion as the translations and rotation are estimated from the aliased spectra [28], [18],

[45]. There are a wide variety of registration techniques in the spatial domain. Earliest methods involved the

use of the cross-correlation between images as it is maximized when the two images are correctly overlaid [35].

Many variations of this model have been proposed, e.g. by preprocessing the images with an edge detector [1].

Registration based on mutual information is also a standard method used in medical imaging [34]. In [23], the

Taylor expansion of the first order is used to find the parameters of the registration. A large set of methods consist

first in extracting features in images and then matching them across images in order to calculate the existing

transformations. In that case, the registration is based only on the retrieved features. Local features are points of

interest in the image like the center of gravity of closed boundary regions [17], [27] or corners. Various automatic

corner detectors have been proposed, like the famous Harris-Plessey detector [20] or the SUSAN detector [39].

More details on different corner detectors can be found in [37]. In [7], correspondence between features is

efficiently carried out by first computing putative correspondences with a correlation matching algorithm and

then refining them with a RANSAC algorithm [16]. Another types of features are global features which take

into account the whole image. They do not require any feature correspondence step but a single transformation

occurring between any pair of images must be assumed. Image moments are the prevailing global features used

for estimating image disparity and allow the retrieval of affine transformations [40], [21], [2].

Image registration is an inverse problem as it tries to estimate from the sampled images gi, i = 1, 2, . . . , N

the transformation that occurred between the views fi, i = 1, 2, . . . , N . It is also dependent on the properties of

the camera used for image acquisition like the sampling rate (or resolution) of the sensor, the imperfection of the

lens that adds blur, and the noise of the device. As the resolution decreases, the local two-dimensional structure

of an image degrades and an exact registration of two low-resolution images becomes increasingly difficult.

In this respect, we observe that registration and sampling are intimately related. In order to achieve perfect

registration, one “brute-force” solution would consist in reconstructing perfectly the continuous signals fi from

their sampled versions gi and run a registration algorithm on the reconstructed continuous signals. Another
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solution is to carry out a perfect estimation of relevant image features in fi from gi and run a registration

algorithm based on such features alone.

Perfect reconstruction of a signal from its sampled version is the fundamental problem in sampling theory.

For bandlimited signals, the well-known Nyquist-Shannon sampling theorem shows that exact reconstruction

is possible from the samples only. Moreover, new sampling schemes have recently emerged allowing perfect

reconstruction of a certain class of non-bandlimited signals called signals with Finite Rate of Innovation (FRI)

[46]. The peculiarity of these signals resides in the fact that they can be completely described by a parametric

expression with a finite number of degrees of freedom. By taking into account known properties of the sampling

setup, the parameters of the observed FRI signal can be exactly retrieved. The new sampling schemes for FRI

signals were first proposed by Vetterli et al in [46] and then extended in [10] to the case of kernels with compact

support. The multidimensional scenario has been considered in [29] and [38].

In this paper, we provide exact results for feature extraction in low-resolution images for registration purposes.

We are primarily interested in finding the exact localization of features. In that respect, feature extraction (or

localization) algorithms differ from feature detection techniques which are merely concerned with the existence

or not of feature in an image. We assume that the sampling kernel is known and consider the latest theoretical

results from the sampling theory of FRI signals to derive new feature extraction techniques. The underlying

motivation in using the FRI sampling theory is due to the fact that some features used for registration can

be modelled as FRI signals for which perfect reconstruction methods can be established. In particular, we

present two novel feature extraction techniques that allow to retrieve exactly global features like moments

or local features like step edges in low-resolution images. From the extracted features,standard feature-based

registration algorithms are used to perform image super-resolution as this application requires a registration of

high quality. We first show super-resolution results on synthetic images obtained by simulating an acquisition

device with known characteristics. We then apply the proposed algorithms to image super-resolution of real

images captured with a camera available on the market. The quality of the super-resolved images in both cases

gives evidence of the accuracy of the registration and also highlights the validity of our acquisition model.

The organization of the paper is as follows. Section II presents the principles of sampling FRI signals and

describes the sampling kernels and their properties. It also introduces the image acquisition model considered

and details the problem of image registration. In Section III, we present an exact method that retrieves global

features which are then used for registration purposes. In Section IV, we demonstrate a local approach of

feature extraction. We focus on the extraction of step edges from which corners are inferred. In Section V,

both registration methods are used in the context of image super-resolution and various experimental results

are provided. We then conclude in Section VI.
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II. PROBLEM SET-UP

A. Image Acquisition Model

This section reviews the idealized image formation model considered in this paper and describes how the

samples are related to the observed view via the Point-Spread Function (PSF) of the camera. The diagram in

Figure 1(a) presents the main components of a camera which lead to a digital image of a given observed view.

The light rays are first focused by the lens of the camera but, because a lens is never perfect, they are inevitably

blurred before hitting the image sensor. As the quality of the material and the size of the lens decrease, the

amount of blur introduced increases. Various other sources of blur also participate to the overall filtering of the

ray lights. Thus, a diffraction phenomenon occurs when the size of the camera aperture is of the same order

as the wavelength of the light rays. This introduces interferences on the camera plane which are often referred

as the “airy disk” or “blob”. Also, some amount of blur caused by motion or atmospheric conditions can be

introduced and deteriorate the observed view.

Another main component of a camera is the image sensor, either a CCD (Charge Coupled Device) or CMOS

(Complementary Metal Oxide Semiconductor) array. It measures the amount of light received and outputs a

sampled image, the term digital image usually referring to the quantized sampled image. Since each pixel value

results from the integration of the incoming light over a finite spatial region defined by the characteristics of

the sensor array (physical size, number of pixel, technology), the sensor array also contributes in blurring the

image. In this research, we consider that the overall blur introduced by the camera is characterized by the PSF.

The PSF is often modeled by a Gaussian pulse in the literature but we model here the PSF with B-spline

functions for mainly two reasons. First, B-splines are very similar to a Gaussian pulse [44]. Second, B-splines

possess properties like polynomial reproduction that we want to take advantage of. B-splines have already been

used as a PSF model in [33] but their polynomial reproduction capabilities have not yet been exploited.

Figure 1(b) presents the equivalent idealized model to Figure 1(a) in terms of filter and analog-to-digital

converter. The incoming continuous irradiance light-field f (x, y) is first filtered with the function ϕ (x, y).

This two-dimensional function is the PSF that characterizes the camera and is assumed known. The blurred

observation g (x, y) = f (x, y) ∗ϕ (−x/T,−y/T ) is then uniformly sampled so that the discrete representation

of the observed view is given by the following equivalent expressions:

g [m, n] = g (m, n) =

∫∫
f (x, y)ϕ (x/T − m, y/T − n) dxdy

= 〈f (x, y) , ϕ (x/T − m, y/T − n)〉, (1)

where x, y ∈ R, m, n ∈ Z. We assume throughout this paper that the sampling period is equal to T in

both dimensions in order to simplify notations. As seen in Equation (1), the impulse response of the filter

representing the lens is expanded by a factor T corresponding to the sampling period. As in the sampling
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Real-world
SensorLens Digital image

Camera

(a) From the real observed view to its digital representation

Tg(x, y)f(x, y)

ϕ(−x/T,−y/T )

g [m, n]

(b) Model of a camera in terms of filter and analog-to-digital converter

Fig. 1. Camera model: (a) the incoming irradiance light field is blurred by the lens and sampled by the image sensor; (b) Equivalent

model: f is the irradiance light field, ϕ is the point-spread function of the lens, g is the blurred irradiance light field, T is the sampling

period and g is the sampled image.

theory of FRI signals, the PSF is thereafter referred to as the sampling kernel ϕ (x, y) of the acquisition device.

The sampling kernel is the time-reversed version of the impulse response of the filter in Figure 1(b). When

writing Equation (1), it is implicitly assumed that the sampling kernel is spatially invariant. Finally if the kernel

is separable, it can be written as a tensor product of two 1D functions: ϕ (x, y) = ϕ1 (x) ⊗ ϕ2 (y) so that:

g [m, n] =
∫∫

f (x, y)ϕ1 (x/T − m)ϕ2 (y/T − n) dxdy.

B. Sampling Kernels and Finite Rate of Innovation

The recent sampling theory for FRI signals is concerned with the problem of perfect reconstruction of non-

bandlimited signals. Examples of FRI signals are streams of Diracs or piecewise polynomial functions. Such

signals are non-bandlimited but follow a parametric expression with a finite number of degrees of freedom. For

example, a stream of Diracs is completely defined by the location and the amplitude of each Dirac.

In an acquisition device, the incoming signal x (t) is first filtered and then sampled. The obtained samples are

given by yn = 〈x (t) , ϕ (t/T − n)〉 where the function ϕ (t) is the sampling kernel. In this study, we consider

the set of sampling kernels known as polynomial reproducing kernels as described in [10]. The particular

property of these kernels is their ability to reproduce polynomials up to a certain degree by linearly combining

several shifted versions such as:

∑

n∈Z

c(p)
n ϕ (t/T − n) = tp p = 0, . . . , P, (2)

where c
(p)
n are known coefficients and P depends on the kernel itself. Such functions are said to have an

approximation order equal to (P + 1). In [42], Strang and Fix proved the necessary and sufficient conditions
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for a function ϕ (x) to possess polynomial reproduction qualities:

ϕ̂ (0) 6= 0 and
d(k)ϕ̂ (2iπ)

dωk
= 0 for i ∈ Z − {0} , k = 0, . . . , P, (3)

where ϕ̂ (ω) is the Fourier transform of ϕ (t). These conditions are called the Strang-Fix conditions of order

(P + 1). The coefficients c
(p)
n used for the reproduction of the monomial tp are computed as follows [4]:

c(p)
n = 〈tp, ϕ̃ (t/T − n)〉 =

1

T

∫
tpϕ̃ (t/T − n) dt, p = 0, . . . , P, (4)

where ϕ̃(t) is the dual of ϕ(t). The computation of the coefficients c
(p)
n is straightforward when ϕ(t) is

orthogonal, that is, when 〈ϕ(t), ϕ(t − n)〉 = δn. In this case, ϕ̃(t) = ϕ(t) and c
(p)
n = 〈tp, ϕ (t/T − n)〉. It

is more involved when ϕ(t) is not orthogonal. In this second situation, one has to evaluate the dual function

first and then the coefficients. The computation of the dual of a B-spline is discussed later in this section.

There exists a variety of functions satisfying Strang-Fix conditions. We consider in this paper the family of

B-spline [43]. This function called centered B-spline of degree P is denoted by βP (x) and can be obtained

recursively by successive convolution of the box B-spline β0 (x):

βP(x) = β0(x) ∗ . . . ∗ β0(x)︸ ︷︷ ︸
(P + 1) times

, β0(x) =





1, |x| < 1
2

1
2 , |x| = 1

2

0, otherwise.

The Fourier transform of βP (x) is given by:

β̂P(ω) = [sinc(ω)]P+1 (5)

and satisfies Strang-Fix conditions of order (P + 1). Now assume that ϕ (x) is a B-spline βP (x). The dual

B-spline ϕ̃ (x) that forms a biorthonormal basis with ϕ (x) so that 〈ϕ (x − m) , ϕ̃ (x)〉 = δm can be computed

as [44]:

ϕ̃(x) =
∞∑

n=−∞

(b2P+1)
−1 [n] · βP(x − n),

where:

(b2P+1)
−1 [n] ↔ (B2P+1 (z))−1 .

Here, B2P+1 (z) is the z-transform of b2P+1 [n] = β2P+1 (n), n ∈ Z. For further details on the computation of

the dual we refer to [44]. Figure 2(a) and (b) show, as example, the cubic B-spline and its dual. Figure 2(c)

presents the reproduction with B-splines of the polynomial 5x3 − 120x over the interval [−4, 4].

In two dimensions, similar results can be derived. In particular, when ϕ (x, y) is a separable kernel, each of

its components is reproducing polynomials so that we have:

∑

m,n∈Z

c(p,q)
m,n ϕ1 (x/T − m)ϕ2 (y/T − n) = xpyq, p = 0, . . . , P, q = 0, . . . , Q, with c(p,q)

m,n = c(p)
m · c(q)

n .
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Fig. 2. (a) Cubic B-spline; (b) Cubic Dual spline used to calculate the coefficient c
(p)
m ; (c) Reproduction (in red) of the polynomial

5x3 − 120x (dotted line) with a linear combination of scaled and shifted cubic B-splines (in blue) over the support [−4, 4].

A closer look at Equation (1) also reveals that the sampling period T is also used to rescale the sampling

kernel. The reason of this coupling is to maintain a unit spacing (relative to ϕ) between two consecutive

samples in order to satisfy the polynomial reproduction property as reflected in Equation (2). However, it can

happen that, in a real scenario, the shift between two samples is smaller than T . For example, image acquisition

devices like mobile phones or webcams usually introduce a strong blur due to the low quality of the lens. In

that scenario, the support of the corresponding sampling kernel is large although the image sensor has a good

resolution. If we assume that the sampling period is reduced by an integer factor M , then the image samples

are in this case given by:

g [m, n] = 〈f (x, y) , ϕ (x/T − m/M, y/T − n/M)〉.

The samples can be divided into their polyphase components g(i,j), i = 0, . . .M − 1 and j = 0, . . .M − 1:

g(i,j) [m, n] = 〈f (x, y) , ϕ (x/T − m − i/M, y/T − n − j/M)〉

= 〈f (x, y) , ϕ(i,j) (x/T − m, y/T − n)〉,

where ϕ(i,j) (x/T − m, y/T − n) = ϕ (x/T − i/M, y/T − j/M). Each polyphase component is treated inde-

pendently and the corresponding coefficients c
(p,q)
Mm+i,Mn+j are obtained using Equations (4) with the sampling

kernel ϕ(i,j). This polyphase decomposition will be used in Section V-B.

C. Multiview Images and Registration Problem

Assuming that each camera of a multiview system has the same intrinsic parameters and the same sampling

kernel ϕ (x, y), then the acquired image by the i-th sensor is expressed as:

gi [m, n] = 〈fi (x, y) , ϕ (x/T − m, y/T − n)〉 . (6)

By neglecting border effects, it is often assumed that the different observations fi can be related to a single

observation of reference (e.g. f1) via a geometric transformation Ti of the coordinates x, y:

fi (x, y) = f1 (Ti (x, y)) , (7)
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where T1 is the identity matrix. The transformations Ti can be of various types depending on the complexity

of the scene. Transformations range from simple translation to complex nonlinear transformations. We consider

here linear transformations, i.e. translation, rotation, affine transformation and projective transformation. The

imaging situation corresponds to an observed scene that is flat, or to a 3D scene that is observed from a distance

much greater than the distance between cameras so that parallax effects are negligible [7]. Combining Equations

(6) and (7), we obtain the following popular model:

gi [m, n] = 〈f1 (Ti (x, y)) , ϕ (x/T − m, y/T − n)〉 . (8)

The goal of image registration is thus to find the different transformations Ti as accurately as possible given

the acquired images {g0,g1, . . .}. As the resolution of the images decreases, less information is available and a

correct estimation of the Ti gets more and more difficult. Image registration based on (local or global) features

therefore relies on the accurate extraction of features in {fi} given the information provided by {gi}.

III. IMAGE REGISTRATION WITH CONTINUOUS MOMENTS FROM SAMPLES

This section describes how the continuous moments of an image can be calculated exactly from a discrete

image when the assumptions related to the imaging model considered are satisfied. From these results, an exact

registration can be achieved.

A. Continuous moments

Since the first work of Hu [22], functions of moments have been extensively used in pattern recognition to

build features that are invariant to a given transformation [21]. In image reconstruction, Milanfar et al showed

how a convex bilevel polygonal shape can be perfectly reconstructed from a finite number of moments [30]

[13]. Finally, moments have been used in various ways to perform image registration [17][27][48].

A moment is defined by its type (geometric, central or complex . . . ) and its order. The basic moments are

the geometric moments mp,q, of order p + q, which are obtained in 2D by inner product between polynomial

planes and the function of interest f (x, y):

mp,q =

∫∫
f (x, y)xpyqdxdy, p, q ∈ N. (9)

The barycenter (xb, yb) of f (x, y) is defined as (xb, yb) =
(

m1,0

m0,0
, m0,1

m0,0

)
. The central moments µp,q are then

expressed as:

µp,q =

∫∫
f (x, y) (x − xb)

p (y − yb)
q dxdy =

p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
(−xb)

p−k (−yb)
q−l mk,l. (10)

The complex moments Cp,q are defined on the complex image plane z = x + jy, j =
√
−1 as:

Cp,q =

∫∫
f (x, y) (x + jy)p (x − jy)q dxdy =

p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
jp−k+q+l (−1)q−l mk+l,p−k+q−l. (11)
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As shown above, the various types of moments can be obtained by a linear combination of the geometric

moments which therefore constitute the basic elements of moment-based analysis.

With an image acquisition system, the observed view f (x, y) is not available so the true moments mp,q of

the continuous function f (x, y) cannot be directly computed. Instead, they are approximated from the acquired

image g using the discretized version of Equation (9):

mp,q =
∑

m,n

g [m, n] (mT )p (nT )q . (12)

When the resolution of g gets low, the discrete moments mp,q do not provide a good approximation of

the continuous moments and this discrepancy can degrade the performance of any moment-based techniques

dramatically. An alternative solution might be to deconvolve each image first and then evaluate the discrete

moments on the deconvolved samples. This approach may improve the end result but does not solve the problem

when the resolution is low as indicated in Figure 3.

In [10] and [38], new sampling results were proposed for 1D and 2D FRI signals. In particular, it is shown

that it is possible to compute the exact moments of an FRI signal from its sampled version, provided that the

sampling kernel satisfies the Strang-Fix conditions. In this paper, we propose to use these results on real images

in order to extract the true continuous moments of a real object f from its samples g. The continuous moments

are obtained by linear combination of the samples with the coefficients c
(p,q)
m,n as follows:

mp,q =

∫ ∫
f (x, y)xpyqdxdy

(a)
=

∫ ∫
f (x, y)

∑

m

∑

n

c(p,q)
m,n ϕ (x/T − m, y/T − n) dxdy

=
∑

m

∑

n

c(p,q)
m,n

∫ ∫
f (x, y)ϕ (x/T − m, y/T − n) dxdy

(b)
=

∑

m

∑

n

c(p,q)
m,n g [m, n] , (13)

where (a) and (b) follow respectively from Equations (2) and (1). Thus the proposed combination of the samples

with c
(p,q)
m,n allows the extraction of the exact moments from a sampled version of the observed continuous

scene. Once the continuous geometric moments are obtained, other types of continuous moments (e.g. central

or complex) can be calculated using Equations like (10) and (11).

Figure 3 (a) and (b) show how the estimation of the moments using Equation (12) or (13) changes when

the resolution decreases. Figure 3 (a) is the case when there is no noise on the samples and Figure 3 (b) is

when a white Gaussian noise is added to the samples (SNR=18dB). For this experiment, 20 standard images

(e.g. Lena, Goldhill, Peppers, Mandril) of size 512x512 are artificially blurred and downsampled to generate

different square images with resolutions 256, 128, 64, 32, 16 and 8 pixels. Given these low resolution images,

the estimated moments m̂p,q using either Equations (12) or (13) are compared to the true moments mp,q of the
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Fig. 3. Estimation of image moments of order 2 in function of the image resolution. Lines represent the normalized distances between

the true moments and the discrete moments obtained from Equation (12); the continuous moments obtained from Equation (13); the

discrete moments obtained from Equation (12) using the deconvolved samples. (a) Noiseless case; (b) Noisy case (SNR = 18dB).

original image by calculating the normalized distance between them:

dk =
∑

i+j=k

(m̂i,j − mi,j)
2

m2
i,j

,

where k defines the order of the moments considered. Figure 3 shows the variation of the average normalized

distance d2 with respect to the resolution of the sampled images for moments of order 2. For completeness,

we also plot the normalized distance of the moments estimated using Equation (12) and the samples after

deconvolution. When the sampling kernel is known and reproduces polynomials, the moments obtained with

Equation (13) provide much more accurate results than those obtained with Equation (12) (with or without

deconvolution before computation) and this is true even in the presence of noise.

B. Registration Method and Simulation Results

Moments of an image can be used as features for registration. Since they are obtained from all the samples of

the considered image, moments convey a global information on the image. Thus, in order to use the moments of

two different images for registration, the observed views should not have new objects appearing or disappearing.

We consider the case of objects which are always visible on a uniform background. If the background is uniform

only in the neighborhood of the object of interest, then background subtraction and segmentation techniques

can be used to extract the objects of interest from the background and treat each object as if the background

was globally uniform. This was shown in [8].

Let g1 and g2 be two acquired images of the views f1 and f2 obtained as in Equation (6). Using the continuous

moments, we want to find the transformation T2 which relates the coordinates of f2 to the coordinates of f1

(see Equation (7)). We assume that the transformation T2 is an affine transformation represented by a translation

t in x and y directions and by a 2x2 matrix A composed of a rotation θ, a scaling (Xscale, Yscale) and a shear
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(a) (b) (c) (d)
Fig. 4. (a)-(b) The two original views f1 and f2 (512x512 pixels each); (c)-(d) The two corresponding acquired low-resolution images

g1 and g2 (16x16 pixels each). Original image “Blue Marble” by NASA’s Earth Observatory.

(Xshear, Yshear):

T2 (x, y) = A [x y]T + t with A =


 cos θ − sin θ

sin θ cos θ


 ·


 Xscale Xshear

Yshear Yscale


 . (14)

It is shown in [40] that if f1 and f2 are transformed into their canonical forms (i.e. their covariance matrix is

equal to the identity matrix), then the affine problem simplifies to finding a rotation angle which can then be

retrieved using complex moments. This can be achieved by applying a whitening transform as in [21] where

the expressions relating the central moments of the original signals and the complex moments of the signals

in their canonical forms can also be found. Thus, since Equation (13) provides us with the exact continuous

moments in the absence of noise, it is possible in theory to register exactly low-resolution images.

To measure the accuracy of the estimated transformation, the average and maximum geometric registration

errors ε and εmax are calculated as in [47]:

ε =
1

N2

∑

x,y

‖T (x, y) − T̃ (x, y) ‖2, and εmax = max
x,y

‖T (x, y) − T̃ (x, y) ‖2, (15)

where T̃ is the calculated estimation of the exact affine transformation T , and N is the size of the considered

images f1 and f2.

In Figure 4 (a)-(b), two high resolution images of size 512x512 pixels are considered as the two different

views f1 and f2 of the same scene. The affine transformation between f1 and f2 consists of a rotation of angle

θ = 36◦, a scaling factor of (Xscale, Yscale) = (0.8, 0.9), a shear factor of (Xshear, Yshear) = (0.1,−0.1) and

a translation of -12 pixels and 7 pixels in X and Y direction respectively. We have:

T2 (x, y) = A [x y]T + t with A =


 0.706 −0.4481

0.3893 0.7869


 and t =


 −12

7


 .

These two views are sampled with a cubic B-spline to generate two low-resolution images g1 and g2 of size

16x16 pixels (decimation factor of 32) as shown in Figure 4 (c)-(d). Given these two low-resolution images,
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Fig. 5. Step edge model. A straight step edge is described by 3 parameters: its amplitude α, its orientation θ and its offset γ.

we apply the registration method with the continuous moments to estimate A and t. The calculated affine

transformation T̃2 is:

Ã =


 0.7064 −0.4471

0.3885 0.7872


 , and t̃ =


 −12.004

7.007


 .

The average and maximum geometric registration errors are ε = 0.0413 pixels and εmax = 0.148 pixels which

are the same errors obtained from the true moments of f1 and f2. For comparison, the same simulation is run

with the discrete moments mp,q. As expected, they do not perform as well at this resolution. The retrieved

transformation is in this case:

Ã =


 0.7244 −0.4475

0.3941 0.7953


 and t̃ =


 −12.49

8.23


 ,

with an average and maximum error of ε = 11.2 pixels and εmax = 40.4 pixels. The improvement of the average

registration error is by a factor 280 in this simulation.

IV. IMAGE REGISTRATION WITH LOCAL FEATURES

A. Step Edge Extraction

In this Section, the features considered are now local. When working at low-resolution, features are usually

more difficult to find and locate accurately as each sample integrates a larger part of the original scene. Thus the

properties of very localized features such as corners can be lost when images are acquired at low resolution. We

focus on the extraction of straight step edges. A straight step edge is described by three parameters, namely its

amplitude α, its orientation θ and its offset γ with respect to a given axis. This model of step edge is presented

in Figure 5. We now demonstrate how to retrieve the exact parameters from the samples.

Let ~N = (− sin θ, cos θ)T
be the vector normal to the edge and ~d = (x − γ, y)T

the vector of any point

(x, y) in R
2. Given ~N and ~d, a step edge function h (x, y) can be expressed as:

h (x, y) = αH
(〈

~d, ~N
〉)

, (16)
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where H (t) is the unit step function whose value is 1 if t ≥ 0 and 0 if t < 0. We assume that the signal h (x, y) is

sampled using a 2-D B-spline sampling kernel ϕ (x, y). Therefore, following Equation (1), the obtained samples

h [m, n] are simply:

h [m, n] = 〈h (x, y) , ϕ (x/T − m, y/T − n)〉 .

The set of samples is filtered with a finite difference operator to give d [m, n] which are referred to as the

differentiated samples:

d [m, n] = h [m + 1, n] − h [m, n] . (17)

It is shown in [10] that the samples d [m, n] are the samples that would have been directly obtained by inner

product of the derivative of h (x, y) along x and the modified kernel ϕ (x, y) ∗ β0 (x). The differentiation of a

discrete sampled signal is thus related to the derivation of its continuous counterpart as follows:

d [m, n] =

〈
dh (x, y)

dx
, ϕ (x/T − m, y/T − n) ∗ β0 (x/T − m)

〉

=

〈
dh (x, y)

dx
, (ϕ1 (x/T − m) ∗ β0 (x/T − m)) ⊗ ϕ2 (y/T − n)

〉
,

where the kernel ϕ has been assumed to be separable. Compared to ϕ (x/T, y/T ), the new kernel ϕ (x/T, y/T )∗
β0 (x/T ) can also reproduce polynomials with one degree higher along the x direction and has a support

increased by one unit on the x axis. When the sampling kernel is ϕ (x, y) = βP (x) ⊗ βP (y), the modified

kernel is a 2-D B-spline kernel of degree P + 1 along x and P along y:

d [m, n] =

〈
dh (x, y)

dx
, βP+1 (x/T − m) ⊗ βP (y/T − n)

〉
.

Moreover, the first derivative of the unit step function is given by
dh(x,y)

dx
= −α sin θ · δ

(
~d · ~N

)
which finally

yields the following relation:

d [m, n] = −α sin θ ·
〈
δ

(
~d · ~N

)
, ϕ (x/T − m, y/T − n) ∗ β0 (x/T − m)

〉
.

We now compute the weighted sum of the differentiated samples affected by the edge in row n with the

coefficients c
(p)
m used for reproduction of polynomial xp with the modified kernel ϕ1 (x/T − m)∗β0 (x/T − m):

τp,n =
∑

m∈Sn

c(p)
m d [m, n] , (18)

where Sn is the set of column indices of the samples affected by the edge along row n. It can be shown that

(see Appendix A):

τp,n = −α
p∑

j=0

(
p

j

)
mp−j

(tan θ)p−j

(
γ +

n

tan θ

)j

, (19)

where mj are the moments of the sampling kernel: mj =
∫
∞

∞
tjϕ2 (t) dt. Since ϕ2 (t) is known, its moments

mj can be computed numerically once and stored. Besides, m0 = 1 because ϕ2 (t) satisfies partition of unity.
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Algorithm 1 Subpixel Edge Location

1: Define weight = 1,

2: Run a Canny-like edge detector on sampled image,

3: Compute the differentiated samples using Equation (17),

4: for all position (i, j) detected as an edge do

5: find the differentiated samples in the neighborhood of (i, j),

6: calculate τ0,j , τ1,j and τ1,j+1 using Equation (18),

7: calculate α, tan θ and γ using Equations (22),

8: store [α tan θ γ weight] as a candidate edge

9: end for

10: while there exists similar edges do

11: Merge similar edges i.e. average [α tan θ γ] and add weight together,

12: end while

13: Discard edges having a too small weight.

Also, for symmetric functions like B-splines, the odd order moments are equal to zero. In the case of B-spline,

it turns out that the even order moments m2j can be calculated analytically. To simplify notations, we now

write the quantity un = γ + n
tan θ

. For p = 0, 1, 2, formula (19) becomes:

τ0,n = −αm0; τ1,n = −α

[
m0un +

m1

tan θ

]
; τ2,n = −α

[
m0u

2
n + 2

m1

tan θ
un +

m2

(tan θ)2

]
. (20)

Solving directly this system of equations for α, γ and θ leads to an ambiguity about the sign of the angle θ of

the edge. To overcome this and find the angle θ, we consider instead two consecutive rows, i.e. n and n + 1,

and compute τk,n and τk,n+1. It turns out that this approach gives a simple relation for θ:

tan θ =
τ0,n

τ1,n+1 − τ1,n

. (21)

The complete solution for a single step edge is then given by:

α = −τ0,n, tan θ =
τ0,n

τ1,n+1 − τ1,n

, and γ =
(n + 1) τ1,n − nτ1,n+1

τ0,n

, (22)

where it has been assumed that m0 = 1 and m1 = 0. Thus Equations (22) allows the calculation of the exact

parameters of a step edge from its sampled version using only two consecutive rows and measurements τk,n

up to order one.

It is possible to extend this analysis to any number K of parallel step edges. Such signal is specified by

2K + 1 parameters, namely (αk, γk) for k = 1, . . . , K and the angle θ. It is expressed as:

h (x, y) =
K∑

k=1

αkH
(〈

~dk, ~N
〉)

, (23)
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(a) (b) (c)

(d) (e) (f)
Fig. 6. (a) Original image (1024x1024pixels); (b) Sampled image with a B-spline (64x64pixels); (c) Horizontally differentiated samples;

(d) Canny edge detection; (e) Retrieved edges with Algorithm 1; (f) Retrieved edges plotted against the original image.

with ~dk = (x − γk, y)T
. We prove in Appendix B that the angle θ can be retrieved using the same formula as

in Equation (21). Moreover, by defining the quantity τ̂p,n as follows:

τ̂p,n =





τ0,n, p = 0,

τp,n − ∑p−1
j=0

(p
j

) mp−j

m0(tan θ)p−j τ̂j,n, p > 0,
(24)

we can show that this quantity can be written in the form of a powersum series:

τ̂p,n =
K∑

k=1

λk · (uk,n)p p = 0, 1, . . . , M − 1, (25)

where uk,n = γk + n
tan θ

and λk = −αkm0. The K pairs of unknowns {λk, uk,n} can then be retrieved by

applying the annihilating filter method (a.k.a. Prony’s method) provided that M ≥ 2K. For more details on the

annihilating filter method, we refer to [46], [10], [41].

To determine the correct set of samples affected by a given edge, we first run a simple edge detector, e.g. a

Canny edge detector. We then retrieve the samples on the row surrounding each position labeled as an edge.

Since the kernel has a compact support, the number of samples affected by an edge is finite. The samples

are then used to compute the parameters of potential step edges from Equations (22). Edges having the same

parameters are fused together by averaging the parameters together and by increasing the weight of this edge by

one. Thus, a step edge that has been extracted k times has in the end a weight equal to k. Finally, edges with a

weight below a given threshold are discarded in order to keep only edges with sufficiently large weights. This

procedure is described in the pseudo-code of Algorithm 1. By considering only horizontal differentiations as in

Equation (17), horizontal edges cannot be extracted. In practice, Algorithm 1 is run on the sampled image and
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on the transposed image in order to find all possible step edges, and both results are fused again. The rational

of this approach is to find the largest possible region where a step edge occurs by discarding outliers so that

averaging of the parameters improves stability and robustness to noise (see the Cramér-Rao bounds).

Figure 6 shows how the edge extraction is performed with Algorithm 1 on a synthetic image presenting

different step edges with various orientations, amplitudes and offsets. Figure 6(a) shows the original scene

before acquisition (1024x1024 pixels). Figure 6(b) is the acquired image of size 64x64 pixels obtained with a

quadratic B-spline sampling kernel. Figure 6(c) is the differentiated samples d [m, n]. Figure 6(d) shows the

position of potential step edges using the Canny Edge detector. The retrieved edges are presented in Figure

6(e) and are also plotted against the original scene in Figure 6(f).

It is of interest to see how the estimation of the parameters of the step edge degrades when noise is present on

the samples. We therefore consider the Cramér-Rao lower bound which provides on average the best estimation

of a set of parameters using any unbiased algorithm. In [24], Kakarala et al have calculated the Cramér-Rao

bound for the problem of edge localization. However, as opposed to our work, they do not take into account

the effect of sampling. Our proposed approach can provide exact results even for heavily downsampled signals

and the Cramér-Rao bound derived in this case provides a more realistic bound than the one given in [24]. With

no loss of generality, we assume a zero mean white Gaussian noise with variance σ2. The Cramér-Rao lower

bound is derived in the case of our step edge detector in Appendix C. Figure 7 (a) and (b) show the scatterplots

of the step edge parameters (θ = π/4 and γ = 0) compared to the Cramér-Rao bounds for SNR levels from 0

to 50 dB for a sampled image of size 8x8 pixels (N = 8). Similarly, the average standard deviations of these

parameters are also plotted versus the Cramér-Rao bound in Figure 7 (c) and (d). Simulations show that the

proposed algorithm behaves well down to noise level of 13 dB.

B. Image Registration

We follow a similar registration approach to the one of Capel and Zisserman used for super-resolution in [7].

In their work, the features used are corners which are extracted with the Harris corner detector. This detector

can generally achieve sub-pixel accuracy only up to 1/3 to 1/4 of a pixel by using quadratic fitting in the

neighborhood of the local maxima. However, it is still possible to achieve a precise registration provided that

a large number of feature can be extracted (several hundreds). Thus, in this case, the registration error due to

the approximate location of each corner tends to diminish as the number of extracted features increases.

On images with low resolution, only a small number of features, say between 10 to 20, can usually be

extracted in each image and matched. Thus, very accurate extraction of features is essential to obtaining a

precise image registration. For this reason, the step edge extraction technique described in Algorithm 1 is

used to find possible contours in the low-resolution images. Intersections of edges are then computed to locate
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Fig. 7. Retrieval of a step edge with parameters (θ = π/4 and γ = 0) in an 8x8 pixels image under noisy condition. (a)-(b) Scatterplots

of angle and offset versus Cramér-Rao bound; (c)-(d) Standard deviation (averages over 10000 realizations) versus Cramér-Rao bound.

(a) (b) (c) (d)
Fig. 8. (a)-(b) Extracted edges and corners with our approach on two low-resolution images of size 64x64 pixels each; (c)-(d) 6 corners

are matched with correlation+RANSAC methods plotted against the high resolution images (512x512 pixels).

possible corners in the image. A first putative transformation is calculated from corresponding features obtained

by using a correlation-based matching algorithm. The estimated transformation is then iteratively refined using

a RANSAC procedure similarly to [7].

To assess the accuracy of the proposed feature extraction method in the context of image registration, we

compare it to the Harris corner detector in the following experiment. A high resolution image of a simple

scene, favorable to both our method and the Harris corner detector, is first acquired. The scene contains steps

edges, sharp corners, text and textures. The acquired picture is then cropped at two different known locations

to create two pictures f1 and f2 with different fields of view and size 512x512 pixels. The transformation (a

October 15, 2008 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING 18

(a) (b) (c) (d)
Fig. 9. (a)-(b) Extracted corners using Harris method on two low-resolution images of size 64x64 pixels each; (c)-(d) 18 corners are

matched using correlation+RANSAC methods plotted against the high resolution images (512x512 pixels).

single translation) between each picture is known exactly and is given by: t = [0 28]T . Each image is then

artificially downsampled with a quadratic B-spline of scale 8 giving two images of size 64x64 pixels each.

Features are then extracted from g1 and g2 using either the Harris corner detector or our step edge detector.

The functions used in this research for the subpixel Harris corner detector, the correlation matching and the

RANSAC fitting are available from [26].

The features extracted with our approach are shown in Figure 8(a) and (b). Six corners in total have been

successfully located from the extracted edges and matched across the two images using correlation and RANSAC

techniques. The matched features are plotted against f1 and f2 for a visual appreciation of the subpixel accuracy

(see 8(c) and (d)). The feature points returned by the Harris corner detector on each image are presented in

Figure 9(a) and (b). Eighteen corners have been matched successfully across images and are plotted against f1

and f2 on Figure 9(c) and (d).

Each set of features is independently used to estimate the translation t between the two images. The estimated

translation and registration errors with our approach are:

t̃ = [−0.15 28.13]T and ε = εmax = 0.039 pixel.

Similarly, the estimated translation and registration errors with the Harris features are:

t̃ = [−0.94 26.93]T and ε = εmax = 2.04 pixel.

Thus, although only one third of the number of corner points have been extracted with the proposed method

in comparison to the Harris corner detector, the registration accuracy is improved by a factor 50 using the step

edge extractor.

V. APPLICATION TO IMAGE SUPER-RESOLUTION

The goal of image super-resolution is to construct a single, detailed, high-resolution image using a set of low-

resolution images of the same scene. The problem of image super-resolution can be conceptually divided into
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(a) (b) (c) (d)
Fig. 10. Image super-resolution from translated images with registration based on moments; (a) Original high resolution image

(512x512pixels); (b) One of the 24 low-resolution images (64x64 pixels) used in the super-resolution simulation; (c) Super-resolved

image obtained from the discrete moments and the Wiener filter, 512x512 pixels, PSNR = 16.8 dB; (d) Super-resolved image obtained

from the continuous moments and the Wiener filter, 512x512 pixels, PSNR = 19.6 dB.

two sub-problems known as image registration and image reconstruction. Image registration aims at finding the

disparity between the low-resolution images whereas image reconstruction consists in fusing the set of registered

images into a single image and removing any blur and noise introduced during acquisition ([11])1. We consider

in this work two restoration techniques: the Wiener deconvolution approach and the iterative Modified Residual

Norm Steepest Descent (MRNSD) [31](a.k.a. EMLS [25])2. The Matlab function deconvwnr is used for the

Wiener deconvolution taking the known PSF as input parameter. The MRNSD technique is an Expectation-

Maximization iterative algorithm which forces the solution to be nonnegative.

An overview and tutorial of super-resolution techniques can be found in [32][14]. Most earlier works focused

on the restoration stage assuming that traditional registration methods provided a sufficiently accurate solution.

However, as also observed in [36], the quality of the restoration in super-resolution problems depends heavily

on the accuracy of the registration. It is therefore quite natural to test our registration algorithms in the context

of image super-resolution.

A. Image Super-resolution: Simulations

1) Moment-based Registration: The moment-based registration method is applied to the case of image super-

resolution. The first experiment is shown in Figure 10. As in the registration experiments, we use a single high

resolution image (Satellite image, 512x512 pixels) shown in Figure 10(a) to generate 24 other images related by

translations. Each of these images is blurred and downsampled with a cubic B-spline to give a low-resolution

image of size 64x64 pixels (see e.g. Figure 10(b)). This set of low-resolution images is then used as input for

1Notice that it is correct to divide the super-resolution problem into the two aforementioned sub-problems only when the motion is

linear and the PSF is spatially and rotationally invariant [12].

2Other methods based on Total Variation ([9] [15]) are not considered here.
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(a) (b) (c) (d)
Fig. 11. Image super-resolution from translated images with registration from the extracted edges and detected corners; (a) Original

high resolution image (512x512pixels); (b) One of the 20 low-resolution images (64x64 pixels) used in the super-resolution simulation;

(c) Super-resolved image with the Harris corner detector and Wiener filter, 512x512 pixels, PSNR = 15.1 dB; (d) Super-resolved image

with the proposed edge detector and Wiener filter, 512x512 pixels, PSNR = 15.6 dB.

super-resolution. The translations are retrieved from the discrete and the continuous moments of each image for

comparison. In the case of the discrete moments, the registration error averaged over the 24 frames is ǭ = 0.11

pixels with a maximum registration error of ǭmax = 2.5 pixels. In the case of the continuous moments, the

registration obtained is exact to machine precision. For a fair comparison, the Wiener filter is used in both

cases for restoration as it is fast and does not involve iterations. The super-resolved images are shown in Figure

10(c) and (d). The image in Figure 10(c) is obtained after registration with the discrete moments and the final

PSNR is equal to 16.8dB. The super-resolved image shown in Figure 10(d) results from the utilization of the

continuous moments for registration. The image has a higher PSNR = 19.6 dB. Thus, by considering more

accurate features like the continuous moments instead of the discrete moments, the registration is improved and

can lead to super-resolved images of higher quality.

2) Edge-based Registration: In this second experiment, we consider the registration based on the extraction

of step edges. As in the previous section, we generated 20 images of scene (Figure 11(a)) by cropping a high

resolution image at different locations. The images are thus related by translations and each image is then blurred

and downsampled with a quadratic B-spline to generate 20 low-resolution images of size 64x64 pixels (Figure

11(b)). In this simulation, two feature extraction methods are considered: the proposed step edge extractor and

the subpixel Harris corner detector. As previously, in order to do a fair comparison, we do not use an iterative

method but consider the Wiener filter as restoration method in both cases. The super-resolution algorithm based

on the Harris features is inspired by the work of Capel et al in [7] where a similar approach is considered.

With Harris features, the average registration error averaged over the 20 frames is ǭ = 0.44 pixels and the

maximum registration error observed in the 20 images is ǭmax = 2.04 pixels. The number of matched features

varies between 13 and 21 corners. With our extracted features, the average registration error averaged over the

20 frames is ǭ = 0.044 pixels and the maximum registration error observed in the 20 images is ǭmax = 0.14
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Fig. 12. Estimation of the PSF with the Slanted Edge Method; (a) Image of a slanted white square with step edges for PSF estimation

(acquired with a Nikon D70s digital camera); (b) Zoom on the target; (c) Measured Line Spread Function (solid line). Its support has

length 8 ranging from -4 to 4. The sampling kernel ϕ (t) can either be modeled by a B-spline of degree 7, β7 (t) (dashed line) or by a

B-spline of degree 3 scaled by 2, β3 (t/2) (dash-dot line).

pixels. Six features are matched in any pair of images in the set and the registration is improved on average

by a factor 10. The super-resolution results are similar to the previous case where global features were used.

Figure 11(c) presents the super-resolved image obtained with Harris features. This image shows more artefact

(PSNR = 15.1 dB) compared to the super-resolved image obtained with the proposed registration technique

which delivers a better visual quality and a PSNR = 15.6 dB. This simulation, thus, better highlights the fact

that more accurate registration leads to better super-resolution.

B. Image Super-resolution: Real-case Scenario

In this section, we consider the case of image super-resolution from real images acquired with a digital camera

(Nikon D70s). The following experiments thus naturally include the natural noise that occurs on the samples

during acquisition. The registration approach considered here is based on the continuous moments. Since it

takes a sampling point of view, we don’t want our image samples to be modified by internal post-processing

that is usually applied inside a digital camera right after acquisition (e.g. edge sharpening or noise attenuation).

For this reason, the set of images is acquired in RAW format. In a first experiment, pictures are taken in a

classroom with a focal length at 18mm (35mm equivalent: 27mm) and other settings at F16, 1/60s and ISO 200.

The slanted edge method is used to estimates the PSF indirectly by measuring first the Edge Spread Function

(ESF)[6]. By differentiating along the edge’s normal direction, the Line Spread Function (LSF) can be obtained

and represents a cross-section of the PSF. Only one LSF is necessary to characterize a circularly symmetric

and spatially invariant PSF. The estimation of the PSF is presented in Figure 12. The acquired image is shown

in Figure 12(a) and the target used for the PSF estimation is shown in Figure 12(b). The estimated LSF is the

solid line in Figure 12(c). It can be observed that its support is approximately 8 pixels, ranging from -4 to 4.

The PSF is therefore modeled by two different B-splines with support 8: a B-spline of degree 7, β7 (t) (dashed
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(a)

(b) (c) (d)

Fig. 13. Real image super-resolution from 40 images acquired with a Nikon D70s SLR camera; (a) One of the 40 images acquired

by the camera; (b) Region of interest (128x128 pixels) used for super-resolution; (c) Super-resolved image of size 1024x0124 pixels

(SR factor = 8). The PSF in this case is modeled by a B-spline of order 7 (scale 1); (d) Super-resolved image of size 1024x0124 pixels

(SR factor = 8). The PSF in this case is modeled by a B-spline of order 3 (scale 2). Both images are restored with 60 iterations of the

MRNSD method.

line), and a B-spline of degree 3 scaled by 2, β3 (t/2) (dash-dot line).

The target used for PSF estimation is then replaced with a Tiger plush and a newspaper (see Figure 13(a))).

Keeping the camera settings unchanged, 40 images are taken from random positions by moving the camera

horizontally and vertically between each acquisition. It should be noted that the distance between foreground

objects (desks, chairs) and background objects (blackboard) is large and traditional registration techniques that

considers the whole image would not achieve good subpixel accuracy unless segmentation is first applied.

Since the proposed feature extraction techniques can be exact on low-resolution image, we consider directly

the regions of interest for registration and thus estimate an accurate local motion. The same region of interest

of size 128x128 pixels is selected in each image (Figure 13(b)) and only this region is used for registration and

restoration.

The sampling kernel is first modeled by the B-spline of degree 7. We register the images using continuous

moments and the fused image is restored with the MRNSD method. The obtained super-resolved image (SR

factor =8) is shown in Figure 13(c). In the second case, the sampling kernel is modeled by a B-spline of degree

3 scaled by two. Because of the scaled kernel, the device is oversampling by a factor two with respect to

our model. The sampling period is consequently reduced by a factor two and the samples can be written as:

g [m, n] = 〈f (x, y) , ϕ (x/T − m/2, y/T − n/2)〉. Two consecutive samples are now distant by T/2 instead
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(a) (b)
Fig. 14. Real super-resolution of the Moon from 60 images acquired with a Nikon D70s SLR camera and a lens (18-70mm, F3.5-4.5)

set at a focal length of 38mm (35mm equiv.: 57mm). (a) The Moon as acquired by the camera (60x60 px); (b) Super-resolved image

of the Moon (600x600 px) with MRNSD restoration method.

of T and even and odd samples must be treated independently so that polynomial reproduction is satisfied. We

thus decompose the observed samples into their four polyphase components [10]:




g [2m, 2n] = 〈f (x, y) , ϕ (x/T − m, y/T − n)〉
g [2m, 2n + 1] = 〈f (x, y) , ϕ (x/T − m, y/T − n − 1/2)〉
g [2m + 1, 2n] = 〈f (x, y) , ϕ (x/T − m − 1/2, y/T − n)〉

g [2m + 1, 2n + 1] = 〈f (x, y) , ϕ (x/T − m − 1/2, y/T − n − 1/2)〉
For each region of size 128x128 pixels (Figure 13(b)), four sub-images of size 64x64 pixels are considered

separately, each one corresponding to a polyphase component. The continuous moments of each polyphase

component are computed and used for registration. For each image pairs, four estimations of the registration are

obtained and then averaged. The super-resolved image achieved after registration from the polyphase components

is shown in Figure 13(d). As in the previous case, we restored the image using 60 iterations of the MRNSD

algorithm. The super-resolved image presents a good level of detail and is less saturated than the image obtained

with B-spline of level 7.

Another experiment is presented in Figure 14. Sixty pictures of the Moon are taken with a digital SLR camera

and a lens with a focal length at 38mm (35mm equivalent: 57mm) and settings: F16, 1/60s, ISO 200. The PSF

in this case is not estimated as previously and is directly approximated with a cubic B-spline at scale 1. The

MRNSD algorithm is used as restoration method. Figure 14(a) shows the Moon as acquired by the camera and

Figure 14(b) presents the obtained super-resolved image where new details of the Moon can now be observed.

VI. CONCLUSION

We have presented in this paper two novel approaches for feature extraction that take maximum advantage

of the a priori knowledge of the acquisition filter and that are based on the basic principles behind the sampling

of FRI signals. The first proposed method allows the exact retrieval of the continuous moments of an object

from its sampled image. The second method retrieves the exact location of local image features such as step

edges or parallel edges. These are then used to retrieve the exact location of corner points which are utilized
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for the exact registration of low resolution images like in the context of image super-resolution. Experimental

results on artificially sampled images and natural images shows the efficiency of the proposed feature extraction

methods and the validity of the proposed acquisition model.

Although the use of these new methods was demonstrated only for registration, these techniques can also be

used for pattern recognition, camera calibration and photogrammetry. This is part of our on-going research.

APPENDIX A

We now prove Equation (19): τp,n = −α
∑p

i=0

(p
i

)
mi

(tan θ)i

(
γ + n

tan θ

)p−i
.

Proof: We first recall the following relation between the moments mp of function f (t) and the moments

m′
p of the translated function f (t − T ):

m′
p =

∫
f (t − T ) tpdt =

∫
f (x) (x + T )p dx =

p∑

k=0

(
p

k

)
T k

∫
f (x)xp−kdx =

p∑

k=0

(
p

k

)
T kmp−k (26)

Let Ω = [−L, L] be the support of the sampling kernel ϕ2 (t). For simplicity, we assume T = 1:

τp,n =
∑

m∈Sn

c(p)
m d [m, n]

= −α sin θ
∑

m∈Sn

c(p)
m

〈
δ

(
~d · ~N

)
, ϕ (x − m, y − n) ∗ β0 (x − m)

〉

= −α sin θ

〈
δ

(
~d · ~N

)
,


 ∑

m∈Sn

c(p)
m ϕ1 (x − m) ∗ β0 (x − m)


 ⊗ ϕ2 (y − n)

〉

= −α sin θ
〈
δ

(
~d · ~N

)
, xp ⊗ ϕ2 (y − n)

〉

= −α sin θ

∫ n+L

n−L
ϕ2 (y − n)

∫
δ (−x sin θ + y cos θ + γ sin θ)xpdxdy

= −α sin θ

∫ n+L

n−L
ϕ2 (y − n)

∫
δ (−t + y cos θ + γ sin θ)

(
t

sin θ

)p dt

sin θ
dy

= −α

∫ n+L

n−L
ϕ2 (y − n)

(
y cos θ + γ sin θ

sin θ

)p

dy

= −α

∫ L

−L
ϕ2 (t)

(
t + n

tan θ
+ γ

)p

dt

=
−α

(tan θ)p

∫ L

−L
ϕ2 (t) (t + n + γ tan θ)p dt,

then applying Equation (26), we obtain: τp,n = −α
(tan θ)p

∑p
i=0

(p
i

)
mp−i (n + γ tan θ)i , where mi =

∫
tiϕ2 (t) dt

which finally yields:

τp,n = −α
p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i

(
γ +

n

tan θ

)i

.
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APPENDIX B

Let d [m, n] be the differentiated samples of the signal h (x, y) composed of K parallel step edges {αk, γk, θ}.

We have h (x, y) =
∑K

k=1 αkH
(〈

~dk, ~N
〉)

, with ~dk = (x − γk, y)T
.

• We now prove that for K parallel step edges, Equation (21) is true: tan θ = τ0,n

τ1,n+1−τ1,n

Proof: From the previous Appendix, it is straightforward to show that:

τp,n ≡
∑

m∈Sn

c(p)
m d [m, n]

=
K∑

k=1

−αk sin θ
∑

m∈Sn

c(p)
m

〈
δ

(
~dk · ~N

)
, ϕ (x − m, y − n) ∗ β0 (x − m)

〉

=
K∑

k=1

−αk

p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i

(
γk +

n

tan θ

)i

=
p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i

(
K∑

k=1

−αk (uk,n)i

)
, (27)

where uk,n = γk + n
tan θ

. We then have:

τ1,n+1 − τ1,n =

(
m1

tan θ

K∑

k=1

−αk + m0

K∑

k=1

−αkuk,n+1

)
−

(
m1

tan θ

K∑

k=1

−αk + m0

K∑

k=1

−αkuk,n

)

= m0

K∑

k=1

−αk (uk,n+1 − uk,n) = m0

K∑

k=1

−αk

tan θ
=

τ0,n

tan θ
,

which finally leads to the desired result.

• We now prove Equation (25) with λk = −m0αk and uk,n = γk + n
tan θ

:

τ̂p,n =
K∑

k=0

λk (uk,n)p , where τ̂p,n =





τ0,n, p = 0,

τp,n − ∑p−1
j=0

(p
j

) mp−j

m0(tan θ)p−j τ̂j,n. p > 0,

Proof: First, the case for p = 0 is straightforward since by definition, we have:

τ̂0,n = τ0,n = m0

K∑

k=0

−αk =
K∑

k=0

λk

For p > 0, we have:

τ̂p,n = τp,n −
p−1∑

j=0

(
p

j

)
mp−j

m0 (tan θ)p−j
τ̂j,n.

Moving the summation term to the left side of the expression gives:

τ̂p,n +
p−1∑

j=0

(
p

j

)
mp−j

m0 (tan θ)p−j
τ̂j,n = τp,n.

After assimilating τ̂p,n in the left summation and recalling the definition of τp,n in Equation (27), we

obtain:
p∑

j=0

(
p

j

)
mp−j

m0 (tan θ)p−j
τ̂j,n =

p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i

(
K∑

k=1

−αk (uk,n)i

)
.
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Then by identifying each term of the summation on each side of the expression above, we have:

1

m0
τ̂i,n =

K∑

k=1

−αk (uk,n)i .

We can then conclude with the desired result:

τ̂i,n =
K∑

k=1

−m0αk (uk,n)i =
K∑

k=1

λk (uk,n)i .

APPENDIX C

DERIVATION AND EVALUATION OF THE CRAMER-RAO BOUNDS

The signal we consider is made of K step edges, each step edge is determined by the three parameters

ai, θi, γi. We form a vector of the unknown parameters as follows:

Θ = (a0, a1, ..., aK , θ0, θ1, ..., θK , γ0, γ1, ..., γK)T .

We aim to retrieve Θ from the measured samples

ŷn,m = 〈f(x, y), ϕ(x/T − n, y/T − m)〉 + ǫn,m, n, m = 0, 1, ...N − 1,

where ǫn,m is i.i.d. additive Gaussian noise with zero mean and variance σ2. For simplicity we denote ŷn,m as

follows:

ŷn,m = f(Θ, n, m) + ǫn,m.

The performance of any unbiased estimator Θ̂ is lower bounded by the Cramer-Rao bound: var(Θ̂) ≥ I−1(θ),

where I(Θ) is the Fisher Information Matrix (FIM) defined as I(Θ) = E
(
∇l(Θ)∇l(Θ)T

)
and l(Θ) is the

log-likelihood function.

First notice that pŷ(ŷn,m|Θ) = pǫ(ŷn,m − f(θ, n, m)), where

pǫ(ǫn,m) =
1√

2πσ2
exp

(
−

ǫ2n,m

2σ2

)
.

Hence, using independency of the noise samples we have:

l(θ) = lnP (ŷ0,0, ŷ1,0, ..., ŷN−1,N−1|Θ) = ln
N−1∏

n=0

N−1∏

m=0

pŷ(ŷn,m|Θ) =
N−1∑

n=0

N−1∑

m=0

ln pǫ(ŷn,m − f(Θ, n, m)).

Next, we compute the partial derivative of the log-likelihood with respect to the parameters θi. We obtain:

∂l(Θ)

∂θi

=
1

σ2

N−1∑

n=0

N−1∑

m=0

ǫn,m
∂f(Θ, m, n)

∂θi

∇l(Θ) =
1

σ2

N−1∑

n=0

N−1∑

m=0

ǫn,m∇f(Θ, n, m).
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We can now determine the Fisher information matrix:

I(Θ) = E
(
∇l(Θ)∇l(Θ)T

)

= E

(
1

σ4

∑

n

∑

m

∑

l

∑

k

ǫn,mǫl,k∇f(Θ, n, m)∇f(Θ, l, k)T

)

(a)
=

1

σ4

∑

n

∑

m

∑

l

∑

k

E(ǫn,mǫl,k)∇f(Θ, n, m)∇f(Θ, l, k)T

(b)
=

1

σ2

N−1∑

n=0

N−1∑

m=0

∇f(Θ, n, m)∇f(Θ, n, m)T ,

where (a) follows from the linearity of the expectation and (b) from the fact that the noise is uncorrelated

(independent). The Cramér-Rao bound is thus given by:

CRB(Θ) = σ2

(
N−1∑

n=0

N−1∑

m=0

∇f(Θ, n, m)∇f(Θ, n, m)T

)−1

.

The evaluation of the FIM is not straightforward, however, if we assume that the edges are sufficiently apart,

then we can treat each edge independently. Moreover, since our main interest is the localization of the edge, we

assume that the edge has fixed known amplitude a0 = 1 so that the parametric space is reduced to Θ = (θ, γ).

We assume that the signal f(x, y) is defined over the domain [0, τ ]× [0, τ ] with the sampling period T = τ/N .

The sampling kernel is ϕ(x, y) = β0(x)β0(y), where β0(x) = 1 for x ∈ [0, 1]. We thus obtain:

∂f(Θ, n, m)

∂γ
=

∂

∂γ

∫
∞

−∞

∫
∞

−∞

f(x, y)β0(x/T − n)β0(y/T − m)dxdy

=

∫
∞

−∞

∫
∞

−∞

∂

∂γ
u(−x sin θ + y cos θ + γ sin θ)β0(x/T − n)β0(y/T − m)dxdy

=

∫
∞

−∞

∫
∞

−∞

sin θδ(−x sin θ + y cos θ + γ sin θ)β0(x/T − n)β0(y/T − m)dxdy

=

∫
∞

−∞

∫
∞

−∞

sin θδ(−t + y cos θ + γ sin θ)β0(t/(T sin θ) − n)β0(y/T − m)
dt

sinθ
dy

=

∫
∞

−∞

β0

(
y cos θ + γ sin θ

T sin θ
− n

)
β0

(
y

T
− m

)
dy

=

∫ (m+1)T

mT
β0

(
y

T tan θ
+

γ

T
− n

)
dy

and

∂f(Θ, n, m)

∂θ
=

∂

∂θ

∫
∞

−∞

∫
∞

−∞

f(x, y)β0(x/T − n)β0(y/T − m)dxdy

=

∫
∞

−∞

∫
∞

−∞

∂

∂θ
u(−x sin θ + y cos θ + γ sin θ)β0(x/T − n)β0(y/T − m)dxdy

=

∫ ∫
(−x cos θ − y sin θ + γ cos θ)δ(−x sin θ + y cos θ + γ sin θ)β0(x/T − n)β0(y/T − m)dxdy

=

∫ ∫
(
−t

tan θ
− y sin θ + γ cos θ)δ(−t + y cos θ + γ sin θ)β0(t/(T sin θ) − n)β0(y/T − m)

dt

sin θ
dy
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=
1

sin θ

∫
∞

−∞

(
−y cos θ + γ sin θ

tan θ
− y sin θ + γ cos θ

)
β0

(
y cos θ + γ sin θ

T sin θ
− n

)
β0

(
y

T
− m

)
dy

=

∫ (m+1)T

mT
− y

sin2 θ
β0

(
y

T tan θ
+

γ

T
− n

)
dy.

Given the above two equations, it is possible to evaluate (at least numerically) the Fisher information matrix

for specific values of γ and θ. Disregarding the trivial cases θ = 0 and θ = π/2, an interesting scenario is

when γ = 0 and θ = π/4. In this case we have:

∂f(Θ, n, m)

∂γ
=





T for n = 0, 1, ..., N − 1 and m = n.

0 Otherwise

and

∂f(Θ, n, m)

∂θ
=





−(2n + 1)T 2 for n = 0, 1, ..., N − 1 and m = n.

0 Otherwise

This leads to the following Fisher information matrix:

I(Θ)11 =
1

σ2

N−1∑

n=0

(
∂f

∂θ

)2

=
T 4

σ2

N−1∑

n=0

(2n + 1)2,

I(Θ)22 =
1

σ2

N−1∑

n=0

(
∂f

∂γ

)2

=
NT 2

σ2
,

I(Θ)12 = I(Θ)21 =
1

σ2

N−1∑

n=0

∂f

∂γ

∂f

∂θ
=

−N2T 3

σ2
.
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