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Abstract: - Moving webs can be found in a wide range of industrial applications such as paper handling, textile 

manufacturing, and magnetic tape recording. The moving web in these applications, which is generally 

orthotropic, may experience speeds more than critical speed. Critical speed is defined as that axial speed where 

the system vibration has a vanishing eigenvalue and is subject to a buckling instability. At a supercritical 

speed, the web may experience types of instabilities and subsequently sever out of plane vibrations. 

In this paper, based on thin plate theory, the equation of out-of-plane motion is derived for an orthotropic web. 

Then an exact method is employed to evaluate free vibration of the web in sub- and super-critical speeds. This 

method is in fact the Levy-type solution of the equation of motion in a stiffness matrix form. The exact 

vibration eigenvalues which are generally complex values, are the roots of stiffness matrix determinant. Since 

the terms of the determinant are complex transcendental functions of eigenvalues, classical eigenvalue solver 

can not be used. So a suitable algorithm is used here to extract eigenvalues in the two-dimensional plane of 

complex numbers.  

Using a numerical example, the reliability of the formulation and the solution procedure is shown. The free 

vibration eigenvalues is extracted for a range of axial speeds. Based on the results, flutter and divergence 

instabilities of the moving web are studied at supercritical speeds.  

Keywords: - Free vibration, Axially moving, Orthotropic web, Supercritical speed, Levy-type solution, Exact 

method, Flutter Instability, Divergence Instability.  

 

1   Introduction 
Mechanical systems comprising moving elastic 

continua can be found in numerous fields of 

engineering application e.g. band saw blades, power 

transmission belts, steel plates in galvanizing line, 

paper handling and textile manufacturing. Due to this 

prevalence, the examination of moving continua has 

a long tradition and produced a large amount of 

publications, mostly on axially moving slender 

structures like strings or beams. Comprehensive 

literature reviews can be found in Marynowski’s 

book recently published by Springer [1]. 

Generally, axially moving continua in the form of 

thin, flat rectangular shape material with small 

flexural stiffness is called a web. Webs are moving at 

high speed, for example, in paper production the 

paper webs are transported with longitudinal speeds 

of up to 3000 m/min [2]. Because of their axially 

speed, moving materials experience a Coriolis 

acceleration component which renders such systems 

gyroscopic [3]. In a certain critical speed, first 

natural frequency of the gyroscopic system vanishes 

and the structure experience severe vibrations and 

bifurcation instability. In the speeds above the 

critical speed, termed supercritical speeds, the 

structure may experience divergence or flutter 

instability or become stable again.  

In this paper using a two dimensional model, the 

free vibration and stability of webs are exactly 

solved at sub and supercritical axial speeds. The 

web which generally has orthotropic property is 

modeled by thin plate theory. The analytical results 

provide a benchmark for evaluating approximate 

methods applied to moving continua. 

 

 

2   Theory 
The differential equation of motion for a moving 

orthotropic web is: 
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where 

66123 2DDD +=  

 
The web is assumed to be subjected to a basic state 

of plane stress which is invariant in direction of web 

width and simply supported along transport 
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direction (axial direction). Then in free vibration 

analysis, it can be postulated that, whatever type of 

vibration mode occurs, it is sinusoidal in the y-

direction. This means that along any line in the web 

structure parallel to y-axis, transverse displacement 

w vary sinusoidally, so w can be written in the form 
t

nnn eyikyikxWtyxw λ)]exp())[exp((),,( −−= (2) 

where kn =nπ/b is the wave number of the nth mode 

in y-direction (n =1,2,…), b is the web width, Wn(x) 

is shape function along axial direction obtaining by 

solution the equation of motion for nth mode and 

values of λ extracting from an eigenvalue problem, 

are in general complex numbers as: 

λ =σ + iω    
where σ and ω are the real and imaginary parts of 

eigenvalues λ, respectively. While all eigenvalues 

λ are pure imaginary (λ =iω), the traveling web is 

stable and the values of ω are the natural frequencies 

of the web. By increasing transport speed, the natural 

frequencies of the web decrease and at a certain 

speed, the first natural frequency of vibration 

vanishes (ω =0) and the web becomes unstable. This 

certain speed may be mentioned as critical speed v cr. 

For axial speeds higher than the critical speed, the 

web can experience divergence or flutter instability 

that in the unstable conditions the real part of at least 

one of the eigenvalues λ is non-zero (σ ≠ 0). 

The critical speed can also be obtained by a static 

stability analysis based on the fact that the axially 

moving web becomes unstable if multiple 

equilibrium positions exist at any problem 

specification. The critical speed is the lowest speed 

at which multiple equilibrium positions exist [4]. 

From equation (1), the equilibrium position in static 

stability analysis satisfies following equation: 
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Also, the displacement function for buckling modes 

in the exact method can be written as: 

)]exp())[exp((),( yikyikxWyxw nnn −−=      (4) 

In the present method, the web is divided to a small 

number of components that each component fills 

the domain between two rollers or a roller and an 

end boundary. Fig. 1b shows one of these 

components. The assumption of sinusoidally modes 

implies that the displacements (w1, θ1, w2, and θ2) 

and the additional forces (Q1, M1, Q2, and M2), that 

appear on the edge of every web component due to 

vibration or buckling, vary sinusoidally in the y-

direction (Fig. 1b).  
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Fig. 1: (a) A web moving between some rollers  

(b) Nodal displacements and forces for one of the web components. 

 

 

The exact stiffness matrix is extracted for each 

component and by assembling stiffness matrices of 

all components, overall stiffness matrix of the 

structure will be obtained. 

In the free vibration study, the determination of the 

exact stiffness matrix for the component shown in 

Fig. 1b requires solution of differential equation of 

motion presented in equation (1) as satisfy the 

boundary conditions. Substituting w from equation 

(2) into equation of motion (1) in the absence of Ny 

and Nxy, gives an ordinary differential equation with 

complex terms for nth mode as 
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where Amn are coefficients deriving from boundary 

conditions at x =0 and x =l and rmn, the wave 

numbers in x-direction, can be obtained by 

substituting equation (6) into equation (5), that yields 

an polynomial equation for nth mode as  
22

3

24

11 )2( mnnxmn rkDNhrD −−+ vρ  

0)(2
4

22

2 =+++ nmn kDhrh λρλρ  v                          (7) 

Equation (7) has four roots (m =1 to 4) 

corresponding to each mode (n =1, 2, 3…), which 

are complex in general.  

In the stability study, by using equations (3), (4) and 

(6), equation (7) is eliminated as the following form 

02

2

1
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where 
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and four series of roots are 

2

2

112

1 4ααα −±±=mnr                          (9) 

For a component of the moving web shown in Fig. 

2b, displacement function of equations (6) or (8) 

satisfies the boundary conditions at y =0 and y =b as 

at these two sides the transverse displacement w and 

resultant bending moment per unit length of x-

direction My vanish. By satisfying the boundary 

conditions on two other sides, stiffness matrix of the 

component can be obtained. These edges conditions, 

as shown in Fig. 2b, are defined by  

at x =0:        Qx = Q1     ,   w = −w1 

                    Mx = −M1  ,   1θ−=
∂
∂

x

w
                 (10) 

at x =l:         Qx = −Q2   ,   w = −w2 

                    Mx = M2    ,   2θ−=
∂
∂

x

w
                 (11) 

where, the resultant shear force and bending 

moment per unit length of y-direction (Qx and Mx 

respectively) are related to w by the following 

equations. 

2

3

66123

3

11 )4(
yx

w
DD

x

w
DQx ∂∂

∂
+−

∂
∂

−=  

        
t

w
h

x

w
hN x ∂

∂
+

∂
∂

−− vv ρρ )( 2
                 (12) 

][
2

2

122

2

11
y

w
D

x

w
DM x ∂

∂
+

∂
∂

−= .                     (13) 

In the equation of shearing force Qx, allowance has 

been made for the Kirchhoff edge effect and for the 

components of the in-plane loads arising from 

distortion of the web. The effect of the axial 

velocity on the edge shear has also been considered. 

Edge displacements and edge forces vectors can be 

defined by 
Twwd },,,{}{ 2211 θθ=                                     (14) 

TQMQMp },,,{}{ 2211=                                 (15) 

Using expressions (2), (6) and (10) through (15) 

edge displacements and edge forces vectors in free 

vibration may be written as: 

 
t

nn eyikyikdd λ)]exp()}[exp({}{ −−=           (16) 

t

nn eyikyikpp λ)]exp()}[exp({}{ −−=           (17) 

where 

∑
=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=
4

1

)exp(

)exp(

1
}{

m

mn

mn

mnmn

mn

n A

lr

lrr

r

d               

144414 }{][}{ ××× =⇒ nnn AXd                              (18) 

 

mn

m

mnmnxnnmn

mnnmn

mnxnnmn

nmn

n A

lrhrhNkDkDrD

lrkDrD

hrhNkDkDrD

kDrD

p ∑
=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+−++−
−−

−−+++−
−

=
4

1

22

66

2

12

3

11

2

12

2

11

22

66

2

12

3

11

2

12

2

11

)exp(])4([

)exp()(

)4(
}{

vv

vv

λρρ

λρρ
 

144414 }{][}{ ××× =⇒ nnn AYp                                                                                                             (19) 

 

 

 

 

RECENT ADVANCES IN APPLIED MATHEMATICS AND COMPUTATIONAL AND INFORMATION SCIENCES - Volume I

ISBN: 978-960-474-071-0ISSN: 1790-5117 136



Combining equations (18) and (19) by elimination 

{An} yields 

}]{[}{ nnn dsp =                                              (20) 

where 
1]][[][ −= nnn XYs                                            (21) 

Here [sn] is the exact stiffness matrix of a component 

of the web that in general contains complex elements 

associated with the transport speed v ; however, it is 

Hermitian in form. In the free vibration analysis, the 

elements of the stiffness matrix are transcendental 

functions of the natural frequencies, axial velocity, 

in-plane force, and of the wave numbers in x and y-

directions. By assembling stiffness matrix of all 

elements of the moving web and eliminating 

constrained degrees of freedom, the overall exact 

stiffness matrix of the multi-span orthotropic web 

moving over an elastic foundation [Sn] is obtained. 

By the present method, precise results can be 

obtained by only a few components, leading to small 

order of overall stiffness matrix. The natural 

frequencies can be determined by vanishing the 

determinant of [Sn], i.e. 

det[Sn(λ)] =0    

The terms in the determinant are transcendental 

functions of ω and therefore the conventional 

techniques of eigensolving cannot be used. At 

supercritical speeds, the eigenvalues are complex 

numbers and therefore an algorithm is required to 

search for the eigenvalues in the two-dimensional 

plane of complex numbers. In the current study the 

use is made of such an algorithm as is presented 

later. 

As mentioned before, with a change of axial speed 

value, stability of the moving web can change to 

instability. This happens when one or several 

eigenvalues λ cross the imaginary axis [5]. The case 

when a pair of complex conjugate eigenvalues 

crosses the imaginary axis with a frequency ω =Imλ 

≠ 0 is known in technical literature as flutter 

instability, and the case when a real negative 

eigenvalue  λ  crosses the zero and becomes positive 

is called divergence instability. Flutter and 

divergence are dynamic and static forms of 

instability, respectively. 

Equations (18) through (21) can be used for static 

stability analysis too, only by replacement λ with 

zero. Here, an eigenvalue problem is also produced, 

but its eigenvalue is the axial speed. Thus the critical 

speed v cr is obtained by the following expression. 

det[Sn(v cr)] =0                                                (22) 

 

 

 

3   Numerical Results 
Non-dimensional variables used in the results are 

introduced as 
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where Ω  and Γ  are dimensionless imaginary and 

real parts of vibration eigenvalues. r is aspect ratio 

of the web. c and ccr denote non-dimensional axial 

speed and critical axial speed of the web, 

respectively. kx is in-web load parameter along x 

(positive when tensile). D11 in the relations (23) is 

defined as:  

)1(12
11

yxxy

xE
D
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=                                               (24) 

In this section, the free vibration and stability of an 

orthotropic web is studied at low and high speeds. It 

is assumed that the web deflection and rotation at 

x=0, L are zero (Fig. 1a). The web has aspect ratio 

of r=3 and subjected to a uniform axial load with 

kx=1.0. Dimensionless material properties are as 

follows: 

 Ey/Ex=0.5, Gxy/Ex=0.25, νxy=0.2, νxy/νyx=Ex/Ey 

where Ex and Ey are major and minor elastic 

modulus of the web, respectively and Gxy is shear 

modulus.  

It is adequate to divide the web into two 

components, derive the exact stiffness matrix of 

each component and assemble them. Finally we 

have to equalize the determinant of the overall 

stiffness matrix to zero and compute its roots. The 

determinant has so a complicated form forces us to 

utilize a numerical code to determine the roots. 

Also, since these roots may generally have both real 

and imaginary parts, the iterations must be done 

over the complex plane rather than an axis in 

simpler ones. Exact values of dimensionless real 

and imaginary parts of eigenvalues at different 

dimensionless speed are presented in Table 1. This 

values are relevant the first mode of free vibration 

derived with n=1.  The normalized critical speed of 

the web derived by Equation (22) is ccr=3.60008. 
To show how the numerical algorithm is employed 

to extract the eigenvalues, the variation of the 

absolute value of the det[Sn(λ)] in logarithmic scale 

over the complex plane for the cases in which the 

dimensionless speed are equal to 4 and 5 is drawn in 

Fig. 2. Also to have a prospect about the web 

vibration, the qualitative behaviors (but not the 

exact response) of the web at dimensionless speeds 

are drawn in Fig. 3. According to this figure, 
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methods. Nevertheless the method has 

mple, different types of web instability 

ivergence or flutter) were shown in different axial 

peeds. 

Re

between c=3.6 which is completely oscillatory and 

c=3.8 which has divergence instability, we must have 

a critical speed, in which; the system begins to show 

instability. Fig. 5 shows also that between c=4 and 

c=5 we have another instability since the behavior of 

system switches

instability one. 
To show how the numerical algorithm is employed 

to extract the eigenvalues, the variation of the 

absolute value of the det[Sn(λ)] in logarithmic scale 

over the complex plane for the cases in which the 

dimensionless speed are equal to 4 and 5 is drawn in 

Fig. 2. Also to have a prospect about the web 

vibration, the qualitative behaviors (but not the exact 

response) of the web at dimensionless speeds are 

drawn in Fig. 3. According to this figure, between 

c=3.6 which is completely oscillatory and c=3.8 

which has divergence instability, we must have a 

critical speed, in which; the system begins to show 

instability. Fig. 5 shows also that between c=4 and 

c=5 we have another instability since the behavior of 

system switches

in

 
 

4   Conclusions 
The Levy-type solusion has been employed to 

analyze free vibration of axially moving orthotropic 

webs in sub- and super-critical speeds. The exact 

stiffness matrix of each component of the web has 

been obtained, so precise results can be derived for a 

multi-span moving web, by only a few numbers of 

elements. Terms of this matrix are implicit functions 

of the eigenvalues of free vibration, in-plane forces 

act on the web, axial speed and the geometry of the 

web. The vibration eigenvalues are extracted within 

the domain of complex numbers using a suitable 

algorithm. 

The free vibration eigenvalues of such webs 

obtained by the method can be served as a 

benchmark for checking the accuracy of other 

numerical 

some restrictions about boundaries and in-plane 

loads.  

An example has been presented to examine the 

ability of the method for modeling of problems. In 

the exa

(d

s
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Table 1: Exact free vibration eigenvalues for the first 

on mode of the moving orthotropic web vibrati

Normalized 

Axial Speed 
Normalized Eigenvalue 

c 
Real Part 

(Γ ) 
Imagi  Part nary

(Ω ) 

0.0 0 0.694714 

1.0 0 0.644181 

2.0 0 0.491919 

3.0 0 0.453442 

3.2 0 0.165807 

3.4 0 0.0914237 

3.6 0 0.000 6352 64

3.8 0.0 85 20 0 

4.0 0 0  .0490121

5.0 0.080648 0.30 75 27

6.0 0.182754 0 
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Fig. 2. Overall stiffness matrix determinant  

respect to the real and imaginary parts of eigenvalues. (a) c=4, (b) c=5 
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Fig. 3. Lateral deformation of the web center respect to time  
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