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Abstract

To pre-process a scene for the purpose of visibility culling during walkthroughs it is necessary to solve visibility

from all the elements of a finite partition of viewpoint space. Many conservative and approximate solutions have

been developed that solve for visibility rapidly. The idealised exact solution for general 3D scenes has often been

regarded as computationally intractable. Our exact algorithm for finding the visible polygons in a scene from a

region is a computationally tractable pre-process that can handle scenes of the order of millions of polygons.

The essence of our idea is to represent 3-D polygons and the stabbing lines connecting them in a 5-D Euclidean

space derived from Plücker space and then to perform geometric subtractions of occluded lines from the set of

potential stabbing lines. We have built a query architecture around this query algorithm that allows for its practical

application to large scenes.

We have tested the algorithm on two different types of scene: despite a large constant computational overhead, it

is highly scalable, with a time dependency close to linear in the output produced.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Exact Visibility Culling

1. Introduction

It is important, given the burgeoning complexity of rendered

scenes, that geometry not visible from the viewpoint is iden-

tified and removed from the rendering pipeline as early as

possible. Over the past two decades many visibility-culling

techniques have been developed to perform this task. These

solutions can be loosely categorised into those applied either

at run-time or during a pre-process. With a few exceptions,

the former determine visibility from a single point, while the

latter establish the subset of geometry visible from any point

within a region.

From-region visibility partitions the view-point space

(VPS) into regions or cells, rather than attempting to prepro-

cess the infinite number of possible camera positions. The

principal advantage of these techniques is that their consid-

erable computation cost can be shifted to a pre-process, con-

sequently removing significant run-time visibility computa-

tion. The results may then be saved to disk for future use.

✁
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The disadvantage is that, as a pre-process, only static scenes

can be fully treated.

From-point visibility algorithms are less costly computa-

tionally than from-region approaches, allowing them to be

applied on a per-frame basis at run-time. They are also bet-

ter suited to unpredictably dynamic environments, where the

shape or position of objects may change between frames.

Visibility culling algorithms may be further categorised

according to their accuracy in differentiating between visible

and invisible polygons. We extend the taxonomy of Cohen-

Or et al.8 and we discriminate between conservative, aggres-

sive, approximate and exact visibility algorithms (Table 1).

Run-Time Performance

Image Quality Optimal Sub-optimal

Correct Exact Conservative

Errors Aggressive Approximate

Table 1: Properties of from-region visibility solutions.
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Conservative techniques consistently overestimate visi-

bility and incur a false visibility error: invisible polygons are

considered visible. This results in sub-optimal run-time per-

formance because these polygons are unnecessarily submit-

ted to the rendering pipeline.

In contrast, aggressive methods always underestimate the

set of visible geometry and exhibit false invisibility, where

visible polygons are erroneously excluded. Aggressive visi-

bility causes image error but can be useful in practice if: (a)

the perceptual impact of the error is acceptably small, (b)

the algorithm is computationally efficient or (c) it handles

scenes that cannot be solved effectively with a conservative

alternative due to excessive overestimation.

Approximate visibility techniques give both false visibil-

ity and false invisibility errors and are thus most useful when

efficiency is the overriding concern.

Exact visibility solutions provide both accurate images

and optimal rendering performance. An exact visibility

query will produce no more or less than the union of the

polygons visible from all viewpoints within the region. Of

course, this is somewhat conservative with respect to a single

viewpoint, incorporating as it does visibility from the region

as a whole.

Exact visibility solutions have several advantages beyond

the obvious rendering benefits:

✄
The magnitude of visibility error (both over and under

estimation) in conservative, aggressive and approximate

schemes is highly dependent on the type of scene. This is

not true of exact visibility. By definition, it is a unifying

treatment that deals with all scenes in the same way.✄
Exact visibility culling provides a benchmark for compar-

ing other approaches. The typical way of assessing the

quality of a visibility technique, namely the percentage

of polygons that it culls in a given scene, is a very crude

and imperfect metric. Such measures do not account for

the type (false visibility or false invisibility), distribution

(clustered or widespread) or exact magnitude, of visibility

error.

In this paper we present what is, to our knowledge, the

first exact from-region visibility-culling algorithm tractable

for realistically sized scenes (as many as 1.5 million poly-

gons). This represents a three order of magnitude improve-

ment over the previous state of the art12 ☎ 30, albeit these pre-

vious approaches were targeted at a slightly different appli-

cation.

Our approach is not a panacea. It offers an optimal ren-

dering time, by only submitting the necessary polygons in

a region to the rendering pipeline. It also yields correct im-

ages, by not falsely excluding visible polygons. Although

tractable for large scenes, the pre-processing costs are still

considerable. In circumstances where fast pre-processing is

more critical than image quality or run-time rendering speed,

a conservative, aggressive or approximate technique may be

more appropriate.

Our contribution depends on two novel techniques:

✄
Localised Exact Visibility. A novel algorithm which accu-

rately queries the visibility between two convex polygons.

A principal efficiency advantage of this algorithm is that it

can be applied on-demand to a localised swathe of scene

geometry between the two polygons. The nature of the

computation is such that it is considerably more suited to

from-region computation, than any obvious adaptation of

existing exact global visibility techniques11 ☎ 12.✄
Query Driven Architecture. In terms of computational

load, it is not sufficient to naively query each polygon in

the scene. A combination of conservative and aggressive

queries are used to cull groups of polygons and to trivially

accept others. Results from previous computations are ex-

ploited in order to further accelerate the query process.

This architecture also has the benefit of output-sensitivity.

The rest of this paper is as follows: After a review of pre-

vious work and a short background on the relevant mathe-

matics and terminology, we discuss our exact visibility algo-

rithm. This is followed by details of the localised exact visi-

bility queries. We then discuss the architecture which allows

us to handle large scenes efficiently. Finally, we present the

results of a series of experiments used to quantify the overall

performance of our exact visibility technique.

2. Previous Work

This paper focuses on both from-region and exact visibility.

From-point visibility methods are not relevant and we refer

the interested reader to the excellent surveys by Cohen-Or et

al.8, Durand10 and Zhang33.

Cell-portal rendering1 ☎ 28 ☎ 31 attempts to establish the rela-

tive visibility of entire cells. The visibility of one cell from

another depends on the existence of a line of sight between

them, intersected only by portals – the non-opaque bound-

aries between cells. Teller28 ☎ 31 derived an analytic solution to

this problem. Teller30 further extended the cell-portal tech-

nique in order to determine exactly which parts of visible

cells are indeed visible. These algorithms are suited to archi-

tectural scenes, but aren’t a general visibility solution. They

work well for scenes where the combinatorial complexity of

portal sequences is low.

Cohen-Or et al.9 and Saona-Vásquez et al.24 provide a

more general, but more conservative solution. They only

classify an object as invisible from a particular view-cell if a

single polygon occludes it from every point inside that view-

cell. This is so conservative that it only achieves significant

results if view-cells are small, relative to the size of scene

polygons. For highly detailed scenes, this often requires a

prohibitive number of view-cells and hence excessive run-

times.
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To counter this, it is necessary to consider the aggregated

occlusion by a set of smaller occluders. Recent work has

focused either on fusing occluders, or on the construction

of larger virtual occluders, which represent the occlusion of

multiple smaller occluders.

Durand et al.10 ☎ 13 have recently developed a general solu-

tion to visibility culling using an extended projection opera-

tor.

Law and Tan20 use occlusion preserving simplification

to generate a lower level of detail and thus larger poly-

gon occluders while ensuring conservativity. The occlusion

achieved by the fusion of these coarser representations is not

considered.

Koltun et al.18 make use of separating lines to build larger

more effective virtual occluders to represent many smaller

occluders. They note that by building their virtual occlud-

ers as a pre-process and performing the occlusion culling at

run-time (on a per cell basis), the cost of storing the visi-

bility sets for each cell is removed. They only implement a

2 1
2 D (height field) solution. Schaufler et al.25 present a simi-

lar conservative approach in 3D, where virtual occluders are

generated from a volumetric discretisation of the interior of

scene objects.

Wonka et al.32 have a conservative 2 1
2 D solution. They

shrink a subset of occluders and then sample visibility (ef-

fectively fusing occluders). Occluder shrinking allows the

sampling process to maintain conservativity. There is a

trade-off between samples required (and hence time) and the

degree of shrinkage. This algorithm tends towards an exact

solution as the number of samples, and hence the amount of

time required, tends towards infinity.

The techniques surveyed above are all conservative in na-

ture. They provide accurate images, but for many scenes

there is a large margin between the size of the visibility sets

they generate and those of an exact visibility solution.

Recently, aggressive from-point based solutions have

been developed that admit false invisibility errors using ap-

proximate culling34 ☎ 5. These techniques aim to reduce ren-

dering costs by removing objects that contribute little to the

image. Andújar et al.2 use hardly visible sets to cull or sim-

plify scene objects where only a small proportion of their

geometry is visible. Klosowski and Silva17 present a priori-

tised layer projection algorithm that uses a heuristic priority

ordering that tries to draw visible polygons first. This is a

good time-critical solution, since one gets reasonable results

even if rendering is prematurely terminated.

Gotsman et al.16 present a novel sample-based visibility

solution. They use a 5D sub-division over three spatial and

two angular dimensions. Each 5D cell maps to a beam in

3D space. The use of two angular divisions is intended to

accelerate frustum culling at run-time. To determine from-

region visibility, rays are cast from a random point in the cell

to random points on an object’s bounding box. A statistical

model based on whether the rays hit the target object, is then

used to decide if the object is visible, invisible or whether

more rays need to be cast. Error thresholding allows a trade-

off between pre-processing time and accuracy.

Turning to exact visibility, various solutions have been

developed for answering general visibility queries. These

techniques typically build a structure in some form of dual

line space that directly exposes visibility events. A visibility

event occurs when a topological change in visibility occurs

in the scene (eg. the set of view-points from which a partic-

ular vertex of a previously occluded triangle may cross an

edge of another and become visible). Structures represent-

ing this for general scenes are the aspect graph15(changes

in aspect are also encoded) and the 3D visibility complex11,

an extension of the 2D visibility complex22 and the visibil-

ity map 23. Earlier, Teller30 showed how the construction of

the anti-penumbra through a set of portals may be computed

via a similar structure, using the Plücker parameterisation

of line space. The usefulness of these algorithms is severely

limited by combinatorial complexity and robustness issues.

Durand et al.12 present a construction of visibility event

surfaces through the direct computation of the lower dimen-

sional elements (skeleton) of the visibility complex. The na-

ture of this construction is that errors resulting from degen-

eracies are localised, making the construction of the visi-

bility skeleton more robust than the construction of the full

visibility complex.

Koltun et al.19 build a representation of the rays between

segments in a dual ray-space. Occlusion is computed by de-

termining whether the space of occluded rays contains all

rays between the view-cell and the object in question. This

2D exact visibility solution is approximated efficiently via

discretisation through rendering hardware. Independently,

Bittner et al.6 also developed an exact visibility solution in

the plane, based on similar principles.

The query algorithm presented in this paper is effectively

an efficient 3D approach to the on-demand construction of

part of a visibility complex-like structure. Unlike Durand,

we follow Teller’s convention and use the Plücker coor-

dinate line space parameterisation. Further clarification (in

Section 3.4) of the relationship with previous work must be

deferred until after our algorithm is presented.

2.1. Plücker Line Space

In order to describe our exact visibility algorithm, we first

give a brief overview of the fundamental underlying theory

of our algorithm, Plücker line space. Teller28 gives a discus-

sion of this in a similar context.

Plücker space is a special case of a Grassmann coordinate

system26 ☎ 27 ☎ 7. Grassmann coordinates allow for the parame-

terisation of a k-dimensional affine sub-space embedded in

an n-dimensional space as a point in a projective ✆ n ✝ 1
k ✝ 1 ✞✠✟ 1
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dimensional space. Plücker space in particular corresponds

to lines (k ✡ 1) in ☛ 3 (n ✡ 3). This results in a projective five

dimensional space ☞ 5. This parameterisation exposes a nat-

ural and elegant means of dealing with directed lines in ☛ 3 .

The Plücker mapping of a directed line ✌ passing through the

point ✍ px ✎ py ✎ pz ✏ and then through ✍ qx ✎ qy ✎ qz ✏ , is defined as

Π ✍✑✌ ✏ ✡✒✍ π0 ✎ π1 ✎ π2 ✎ π3 ✎ π4 ✎ π5), where:

π0 ✡ Qx ✟ Px π1 ✡ Qy ✟ Py

π2 ✡ Qz ✟ Pz π3 ✡ QzPy ✟ QyPz

π4 ✡ QxPz ✟ QzPx π5 ✡ QyPx ✟ QxPx

This homogeneous six-tuple of ☞ 5 is a unique representa-

tion of ✌ to within multiplication by a positive scale factor.

Negating the scale factor flips the orientation of the line.

We next consider a duality mapping within ☞ 5. Given

π ✎ x ✓✔☞ 5, we define Dπ ✍ x ✏ : ☞ 5 ✕ ☛ to be the quantity

π0x3 ✖ π1x4 ✖ π2x5 ✖ π3x0 ✖ π4x1 ✖ π5x2. This is a permuted

inner product of π and x. The set of solutions x ✓✗☞ 5 of

Dπ ✍ x ✏ ✡ 0 gives rise to the so-called dual hyperplane of π
in ☞ 5.

Given lines ✌ 1 and ✌ 2, let π1 ✡ Π ✍✑✌ 1 ✏ and π2 ✡ Π ✍✑✌ 2 ✏ ;✌ 1 and ✌ 2 are incident if and only if π1 lies on the dual hy-

perplane of π2 (and vice versa). Formally, they are incident

if and only if Dπ1 ✍ π2 ✏ ✡ 0. If Dπ1 ✍ π2 ✏ is not equal to zero,

then the relative orientation of ✌ 1 and ✌ 2 is directly specified

by the sign of Dπ1 ✍ π2 ✏ . See Figure 1 for an illustration.

Figure 1: Line orientation and Plücker space. The three dia-

grams on the left shows the three qualitatively different ways

for one directed line to pass another. The figure on the right

is a visualisation of how these lines relate in the dual Plücker

space. The surface G is a visualisation of the Plücker hyper-

surface embedded in ☞ 5. Lines b and d pass by line a on the

right and left respectively. Line c is incident on a. If lines b, c

and d are mapped to ☞ 5 via Π (visualised as the three dots),

then respectively they will lie above, on and below the plane

defined by DΠ ✘ a ✙ ✍ x ✏ ✡ 0.

Although all lines in ☛ 3 map to points in ☞ 5, not all points

in ☞ 5 map to lines in ☛ 3 . Rather, Π is a bijection between the

lines in ☛ 3 and a particular four-dimensional quadric sur-

face embedded in ☞ 5 known as the Grassmann manifold, the

Klein quadric or the Plücker hypersurface. This surface is

described by the following set of points:

G ✡✛✚ Dx ✍ x ✏ ✡ 0 : x ✓✜☞ 5 ✢✤✣ ✚ 0 ✢ (1)

Since, at least for the purposes of this paper, we are only

interested in real lines, this surface is used consistently.

3. Visibility Query

3.1. Overview

In order to compute exact visibility, we begin by construct-

ing a representation of the space of lines stabbing (incident

on both of) a pair of polygons. This is equivalent to the con-

struction performed by Teller and Hohmeyer29. Ideally, we

would like to deal with the line segments between these poly-

gons. It is, however, sufficient to simply clip all polygon ge-

ometry to the interior of the convex hull defined by the ver-

tices of the polygon pair, and then to deal only with infinite

stabbing lines.

Every occluder polygon within this convex hull “blocks” a

set of lines between the pair of query polygons. If every line

between the query polygons is blocked by some occluder,

then the polygons are mutually invisible.

The analogue presented in this section, is that the space

of lines between two polygons is represented as a connected

subset of points on the Plücker hypersurface, G (see Sec-

tion 2.1). Similarly, each occluder is represented by a set of

points on G, which corresponds directly to the set of lines it

blocks.

The algorithm presented here is one which incrementally

removes, for each occluder, the set of occluder points from

that of the currently un-obstructed volume. The initial un-

obstructed volume is the space of lines between the two

query polygons. This removal is achieved by using construc-

tive solid geometry(CSG) in five dimensions. After all oc-

cluder points have been removed, the points in the remaining

volume are the set of lines that are not obstructed by occlud-

ers. If no such points exist, the objects are mutually invisible.

If at least one such point does exist, then the query polygons

are mutually visible, and a full description of the space of

un-obstructed lines between them has been computed.

3.2. The Space of Lines Between Two Polygons

Ideally, we would like a generic representation of the space

of lines between two polygons that is both easy to repre-

sent and to manipulate. Working directly on the surface of

the Plücker hypersurface is difficult due to its curvature. In-

stead, we build a polyhedral representation of this line space,

c
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whose intersection with the Plücker hypersurface gives the

desired set of points. This polyhedron may be constructed as

follows:

For a line s to stab two given polygons, it is necessary and

sufficient for all edges passed by a directed version of s to

have the same particular relative orientation. This is illus-

trated in Figure 2. Given the (appropriately directed) set of

edges of these two polygons e1 ✎ e2 ✎✦✥✦✥✦✥✧✎ en, verifying whether

s is a stabber is equivalent to testing whether:

Dπ ✍ Π ✍ s ✏★✏✤✩ 0 ✎✫✪ π ✓✬✚ Π ✍ e1 ✏✭✎ Π ✍ e2 ✏✭✎✦✥✦✥✦✥✮✎ Π ✍ en ✏ ✢ (2)

Figure 2: Stabbing constraints. Directed lines e1 to e8 corre-

spond to the edges of two quadrilaterals. Note that the stab-

bing line s passes all e1 to e8 to the left. This condition is

both necessary and sufficient for stabbing.

The projective space ☞ 5 is simply ☛ 5 with two addi-

tional hyperplanes at positive and negative infinity. These

additional hyperplanes are useful as an elegant means of

uniformly handling cases which appear as singularities in

other parameterisations. Recall that the Plücker six-tuples

are unique to within a positive scale factor. It is therefore

possible to normalise the projective six-tuple by dividing

through by one of its components, and then excluding that

component (normalised to one). This of course assumes that

the normalisation component is non-zero. It is trivial to pre-

rotate the scene geometry so as to prevent this possibil-

ity from occurring. This process is equivalent to projecting

down to ☛ 5 . This approach was also taken by Teller and

Hohmeyer in29 and is necessary (although not sufficient) to

represent the structure as a bounded polytope. Our motiva-

tion for boundedness is discussed in Section 3.2.1.

After this projection, the function Dπ ✍ x ✏ : ☞ 5 ✕ ☛ be-

comes D ✯π ✍ x ✏ : ☛ 5 ✕ ☛ where D ✯π ✍ x ✏ ✡ π0 ✖ π1x4 ✖ π2x5 ✖
π3x0 ✖ π4x1 ✖ π5x2. In this case, the third element has

been selected as the normalisation component, and thus

x3 ✡ 1 and may be omitted. The six tuple which was x ✡
✍ x0 ✎ x1 ✎ x2 ✎ x3 ✎ x4 ✎ x5 ✏ becomes the tuple x ✡✰✍ x0 ✎ x1 ✎ x2 ✎ x4 ✎ x5 ✏
in ☛ 5 . Where the old form of the equation Dπ ✍ x ✏ ✡ 0 ✍ x ✓
☛ 6 ✏ defined a plane through the origin in ☛ 6 , D ✯π ✍ x ✏ ✡ 0

✍ x ✓✱☛ 5 ✏ defines a less restricted plane in ☛ 5 . Using D ✯ rather

than D, the solution space for the constraints of a stabbing

line s given in Equation 2 may be transformed to define a

volume in ☛ 5 . This volume completely represents the space

of lines between the two query polygons. This construction

and mapping is depicted in Figure 3a and Figure 3c.

There are various techniques which may be used to ex-

tract a polyhedral representation from several half-space in-

tersections. We used a version of the double description

method3 to extract the extreme points. With this and the hy-

perplane information, it is possible to construct the full face

lattice/graph of the polyhedron using a combinatorial face

enumeration algorithm such as that presented in14. The full

face lattice is a requirement of the CSG algorithm presented

in Section 3.2.1.

We note that the polyhedron defined by the intersection of

these spaces is, in general, unbounded. We observe that al-

though the polyhedron is unbounded, the intersection with

the polyhedron and the Plücker hypersurface cannot be.

This, the space of real lines between the two polygons, is

indeed bounded. It is trivial to cap the polyhedron by adding

additional constraints which will not alter the intersection of

the polyhedron with the hypersurface.

3.2.1. CSG in Plücker Space

To remove an occluder from the polyhedron, we have to find

a representation for it. In the same fashion as for the initial

polytope, we map the edges of the occluder to hyperplanes

in ☛ 5 using the Π and D ✯ operators. The volume enclosed by

the intersection of the half-spaces described by these hyper-

planes is used. We maintain the volume as a set of oriented

hyperplanes, ✲ . This volume is unbounded. We depict the

mapping of an occluder to ☛ 5 in Figure 3b, and the subtrac-

tion of this volume from the initial polytope in Figure 3d.

Subtraction of one polyhedron from a polytope in five di-

mensions is a non-trivial task. Given an algorithm that splits

any polytope into two, each half falling on either side of a

specified hyperplane, it is possible to partition a polytope

into a set, or complex, of polytopes that have at most one

face incident on any hyperplane of ✲ . The polytopes of the

complex that fall within the volume enclosed by ✲ can then

easily be identified and removed. An intersection of the re-

maining complex with the Plücker hypersurface provides the

set of lines unblocked by the occluder ✲ .

This approach is applied iteratively, until either there are

no polytopes left in the complex, or there are no occluder

volumes left to subtract. The former implies that the query

polygons are mutually occluded, the latter implies that they

are mutually visible if and only if at least one of the poly-

c
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Figure 3: Plücker-complex construction. (a) A typical query setup between two polygons (the quadrilaterals), and one occluder

(the triangle). (b) A visualisation of the mapping of the edges of the triangle occluder to a volume in ☛ 5 . Again, G is a

visualisation of the Plücker hypersurface. (c) A visualisation of the mapping of each edge of the quadrilaterals to form a volume

in ☛ 5 . (d) The subtraction of the occluder volume from the initial volume. This fully represents the space of lines between the

quadrilaterals that miss the occluding triangle.

topes, within the complex, intersects the Plücker hypersur-

face.

We use an algorithm similar to the multi-dimensional

polytope splitting algorithm of Bajaj and Pascucci4. The

algorithm requires the highest dimensional elements to be

bounded polytopes and the existence of the full face lat-

tice. The original algorithm maintains the whole polytope-

complex as a single face graph structure. Each split opera-

tion requires the traversal of every d-dimensional face (for

0 ✳ d ✴ 5). Instead, after each split, we construct two sep-

arate polytopes. This introduces redundancy into the rep-

resentation, since shared faces are duplicated, but we gain

the performance advantage of quickly being able to isolate

which polytopes are split, reducing the set of polytopes tra-

versed to that of the set of polyhedra incident on the hyper-

plane. This is also known as the zone of the hyperplane. To

query whether a polytope intersects a hyperplane, we use 5D

bounding spheres for a conservative test. If this test shows no

intersection, then the polytope is trivially classified as non-

intersecting, otherwise the result is indicative of a potential

intersection. In the latter case, an accurate vertex-hyperplane

sidedness test is then used to determine whether any two ver-

tices lie on opposite sides (or on) the hyperplane. If and only

if this proves true, will the polytope intersect the hyperplane.

3.3. Optimisation Strategies

The query algorithm is the core of our visibility technique.

We have therefore spent considerable effort in developing

optimisation strategies. Firstly, when splitting the polytope-

complex by a set of occluder hyperplanes ✲ , we split only

those polytopes that cross the boundary of the polyhedron

described by ✲ . After each split operation, if one of the

newly created polytopes does not intersect the Plücker hy-

persurface, it is removed from the complex. This allows the

complex to exist only in the zone of the Plücker hypersur-

face.

Our second strategy is aimed at trivial acceptance. By

casting rays from one polygon to another it is possible to

accept a visible polygon as being trivially visible. If a ray

c
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originating at one polygon reaches another (without inter-

secting any occluders), the polygon is accepted as visible. If

no such ray exists, then we resort to the exact query algo-

rithm.

If a large number of rays is cast without proving visibility,

it is very likely that the object is invisible. In scenes where

occlusion culling would be of most use, a majority of the

scene geometry is invisible. Furthermore, by casting suffi-

cient rays, a vast majority of the scene that is visible can

be trivially accepted. We refer the interested reader to 16 to

view a strategy for quantifying this likelihood. It is there-

fore of enormous benefit that the visibility query algorithm

presented here manages to terminate early when complete

occlusion is found.

Our subtractive 5D CSG is more efficient if it can re-

move as many potential stabbing lines as quickly as possi-

ble. So, our third strategy is to accelerate early termination

by analysing the previously cast rays in an attempt to iso-

late the smallest set of polygons that are sufficient to declare

the likely result of invisibility. Our approach is iterative: The

occluder with the largest number of incident rays (i.e. those

cast in the previous stage) is subtracted from the line-space

volume first. The occluder with the next largest number of

incident rays, excluding those rays accounted for by any pre-

viously subtracted occluders, is subtracted next. This contin-

ues until all rays have been accounted for. Any remaining

occluders are then subtracted. At any point in this iteration,

if there is no longer a complex from which to subtract, invis-

ibility is established and the query may terminate.

3.4. Discussion of our Contribution

Both the visibility complex and skeleton have been designed

as tools for performing exact visibility queries rapidly be-

tween scene objects, as opposed to queries between cells and

objects. Furthermore, these approaches attempt to extract not

just the qualitative states of visible or invisible, but also an

exact description of which parts of each objects are visible.

Their goal is to use visibility primarily for accurate illumi-

nation simulations, whereas ours is from-region qualitative

per-polygon visibility.

Our visibility query algorithm is essentially a direct con-

struction of a localised subset of the visibility complex. It

is more suited to queries, since the construction is local to

the pair of polygons in question, and is sensitive only to the

smallest number of occluders necessary for occlusion, as op-

posed to sensitivity in the number of visibility interrelation-

ships between all occluders.

Durand et al.12 present an on-demand construction of the

visibility skeleton. The construction of the skeleton involves

an explicit combinatorial iteration through the various ele-

ments of the scene geometry, in order to construct the lower

dimensional elements of the complex. As for the visibility

complex, this computes more than is required for our pur-

poses, namely the visibility relationships between all the

occluders. The skeleton construction algorithm can also be

adapted to terminate early when an object is found to be vis-

ible. As we have shown, this is generally unlikely for the

scenes in which we are most interested. The lack of topo-

logical information in the skeleton (due to the ommission

of the higher dimensional elements) makes it impossible to

gauge whether an object is invisible during construction. In-

visibility may only be ascertained when the whole skeleton

(relative to the query polygons) has been constructed.

As for the visibility-complex, the Plücker hyper-plane

arrangement21 is a superstructure of the structure computed

by our query algorithm. The respective combinatorial com-

plexities of this hyper-plane arrangement and the visibility-

complex are O ✍ n4 logn ✏ and O ✍ n4 ✏ . Two lines are defined

to be in qualitatively distinct regions if they are both passed

by the directed lines extended from the scene polygon edges

in the same way. The Plücker hyper-plane arrangement en-

codes all qualitatively distinct regions of line space (the

visibility-complex accounts for line segments). A necessary

implication of this, is that if two lines fall in the same region,

then they must stab the same polygons.

To put our algorithm into context, we only compute the

subset of qualitatively distinct regions relating to lines inter-

secting our pair of query polygons. This is explicit in our

initial polytope construction. For our purposes it is also ir-

relevant how a region of line space is blocked (i.e. by which

occluders). We are only interested in if it is blocked. By

subtracting blocked regions, rather than simply enumerating

them, we avoid the computation and internal representation

of further refinements.

The first advantage of our algorithm, is that it terminates

early in the most common case. Secondly, for all but the

most contrived of scenes, the combinatorial complexity of

the information in which we are interested, is very much

smaller than that of global visibility techniques. Our algo-

rithm exploits this fact, and is sensitive to this lower com-

plexity. Experimentally, Durand noted that the average time

complexity for the construction of the visibility skeleton ap-

pears to be O ✍ n2 ✵ 4 ✏ . Since we compute significantly less in-

formation, we expect the average case time complexity of

the query algorithm to be significantly lower. We demon-

strate this experimentally (see Section 5).

4. Query Architecture

The objective of our architecture is to group polygons to-

gether effectively, so that clusters of polygons may be clas-

sified using the fewest possible queries. We also wish to take

advantage of previously computed results.

Our approach is most similar to that of Koltun et al.19.

Once again, this solution is for the much simpler 2 1
2 D prob-

lem. We use discrete sampling as a heuristic for determin-
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ing an efficient order of subtraction. Our architecture is also

somewhat different in that it takes advantage of previously

computed results. We believe this last technique could fur-

ther enhance the algorithm of Koltun et al.

4.1. Cluster Queries

There are many ways to order a scene hierarchically. We take

advantage of natural scene coherence and use a simple two

level hierarchy, where the scene consists of a set of objects,

which in turn consist of individual polygons. If objects are

very large (based on a volume and polygon count threshold),

we split them into separate objects.

From a source view cell (an element of a partitioned 3-

dimensional camera space), we first query the bounding box

of an object. If the bounding box is invisible, then clearly,

all its contained geometry is also invisible. If, however, the

box is determined to be visible, then the geometry contained

may be considered potentially visible from the source cell.

The true visibility status of each child may then be queried

individually (from each side of the source cell).

The source cell to bounding box query is effectively the

combination of the queries between all pairs of faces of the

two boxes. There are 36 possible pairings; however, back-

face removal will quickly reject most of these as mutually

invisible. If all side to side queries return “invisible”, then the

object bounding box is invisible. If one such pairing returns

“visible”, then the object bounding box is considered visible.

It is sufficient to terminate the pair querying early if visibility

between any one pair is shown. However, in the next section

we will see the advantage of completing this query.

4.2. Parent Line-space Reuse

If the bounding box of a target object is visible, and we al-

low the completion of all side to side query pairs, we ef-

fectively have a representation of all un-obstructed line seg-

ments originating from the source cell and terminating on the

target box. This may be visualised as a similar structure to

Teller’s anti-penumbra30 . By extending these line segments

(anti-penumbra) through the bounding box, we have the set

of lines for which it is necessary for any visible object within

the bounding box to intersect.

This allows a fast, conservative, but relatively accurate re-

jection test to be applied: Each polygon within the bounding

box is transformed to its hyper-plane representation in the

Plücker coordinate system, and if each polytope of the pre-

viously computed complex (for the bounding box) does not

intersect the polyhedron defined by this transformation, then

the polygon is necessarily invisible. This can be efficiently,

but conservatively, computed by testing to see whether ev-

ery polytope complex falls exterior to at least one half-space

defined by the transformed polygon. Any polygons that pass

this test will have to be queried individually.

4.3. Virtual Occluders

During the process of computing the visibility status of

bounding boxes, opportunities arise where it is possible to

extract “virtual occluders”. As coined by Koltun et al.18, vir-

tual occluders are occluders that are not part of the geometry,

but still represent a set of blocked lines. We observe that if

the side of a bounding box is determined to be invisible from

a source view cell, it may then be used as an occluder for any

object behind it. In fact, if the whole bounding box of an ob-

ject is invisible, then none of the polygon geometry within

need be incorporated as occluders, since the bounding box is

sufficient. In truth, the bounding box is more than sufficient,

since a bounding box occludes at least as large a volume of

line-space, as the geometry it contains.

By processing the scene objects in an approximate front

to back order, it is possible to fully exploit this feature. This

is key to our algorithm’s output sensitive nature. Geometry

behind the nearest occluded “layer” (with a similar conno-

tation to that of Klosowski and Silva17), is quickly rejected

since the relatively large size of the virtual occluders imply

that only very few occluder are necessary to confirm invis-

ibility. Output sensitivity persists as long as the query algo-

rithm can use virtual occluders for trivial rejection (as ours

does).

5. Results and Discussion

We have implemented the exact visibility query algorithm of

Section 3 and integrated it into the architecture proposed in

Section 4. We present the results obtained from testing our

algorithm on two different representative scenes.

Firstly, we tested the algorithm on a town scene depict-

ing the geometry of a small 16th century town. The scene

consists of 1.33 million triangles and includes several highly

detailed component objects which are visible through doors

and windows. This scene is fully 3-dimensional in nature.

Our second scene is the forest scene used by Durand10. This

scene consists of 1.45 million triangles, organised into 1450

trees each with 1000 triangles. This represents a much more

difficult scene to cull. In terms of the algorithm presented

here, it is an extreme case, since occlusion only occurs as the

aggregate of a large number of triangles and consequently

subtractions on the Plücker dual polytope. See Figure 5 for

screen-shots of these scenes showing the output of our im-

plementation.

For the town scene we choose a uniform subdivision of

cells. The base grid is a 32x32 partition of the base of the

bounding box, and we consider two such levels, for a total

of 2048 cells. This selection of cells should cover the camera

view-space used in any reasonable walkthrough application.

16384 (32x32x16) such cells would fully partition the scene

bounding box. For the forest scene, we apply a 20x20 parti-

tion for compatibility with Durand.

We executed the tests on a dual Pentium 4 1.7Ghz, and
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solved for distinct cells in parallel. For both scenes we have

culled and timed the visibility of a random selection of 100

cells. For the town and forest scene we considered a full so-

lution to be one consisting of 2048 and 400 cells respec-

tively. These timings, are presented in Table 2.

Scene Time/Cell Culling Full solution

Town 2min 33sec 99.45% 3 days 15hrs

Forest 10min 30sec 99.12% 2 days 22hrs

Table 2: Experimental result summary.

To solve for the whole town scene, would require 3 days

and 15 hours on our PC. Similarly, the forest scene would

take 2 days and 22 hours. Such requirements are high by

the standards of most existing approximate or conservative

algorithms, but the preprocess is a once only cost, and is

more than offset by the advantages of our approach. Note

the large degree of culling achieved (Table 2).

When only a single workstation is available for pre-

processing, this algorithm can be used as a final and perma-

nent visibility solution applied after a large model has been

fully generated; as an accurate solution for smaller models;

or as the only possible acceptable solution for difficult mod-

els.

We advocate the use of this algorithm on machine clusters,

which are often readily available. It is easy to parallelise our

technique, since each cell can be solved independently. The

computation is very loosely coupled, making it suitable even

for informal clusters with a low bandwidth infrastructure.

The scalability of visibility pre-processing algorithms is

of crucial importance. The run-time of our algorithm is de-

pendent on the particular scene in terms of the number of vis-

ibility queries performed, and the time taken to solve these

queries.

The visibility query algorithm quickly rejects occluders

which fall outside of the space of lines between the query

polygons. During line space subtraction, it also quickly

rejects occluders which have already been accounted for.

Hence there is little correlation between the number of poly-

gons in the scene and the time complexity of the query algo-

rithm. In order to quantify time complexity, we have devel-

oped an alternative measure, namely the number of effective

occluders subtracted.

An effective occluder is an element of the set of occlud-

ers generated by the ray-casting performed in Section 3.3.

This set approximates (one of) the smallest possible sets of

occluders required to block the total occluded line space.

We timed approximately 48000 visibility queries, running

on a single processor. For each of these we counted the num-

ber of effective occluders, and computed the average time

taken to query this many effective occluders. We used a

least-squares fit, and found the growth to be in the order of

O ✍ m1 ✵ 15 ✏ . This is depicted in Figure 4a. To increase the con-

fidence of our fit, we excluded timings corresponding to less

than 5 samples. The data resulting from this noise reduction

is plotted in Figure 4b. We note that this excludes most of the

larger queries, since these are infrequent. We further note a

distinct inflection where the number of effective occluders

is 30. Further investigation has shown the cause to be that

at this point, the storage required by our polytope complex

becomes larger than the L2 cache of our test machine. This

behaviour is reproduced with both the town and the forest

scene. Fitting two curves, one from 0 to 30, and one from 31

to 57, we observe the order to be O ✍ m1 ✵ 15 ✏ and O ✍ m ✏ respec-

tively. The second curve pertains to a larger, hardware in-

duced constant. Given our justification for anticipating such

a result (see Section 3.4), we do not expect this complexity

to vary significantly for any realistic scene.

To estimate the global scalability of our approach, we con-

sider first the complexity of a naïve solution, where visibility

is computed for a single cell by simply querying every sin-

gle polygon. This would require n queries. At most, each

query may be given n ✟ 1 polygons as input, and find each

of these to be effective occluders. This gives a computation

cost of O ✍ n2 ✵ 15 ✏ . For a real scene, n ✟ 1 effective occluders

is highly unlikely. For our forest and town scenes, we have

found the maximum number of effective occluders to be 472

and 250 respectively, whereas the average number of effec-

tive occluders are respectively 3.6 and 1.7 per query (recall

that large virtual occluders are used).

If we let, m be the maximum number of effective occlud-

ers required in any query for a particular scene, then we

can expect a complexity of O ✍ nm1 ✵ 15 ✏ , where in practice,

m ✳✶✳ n. This algorithm is already scalable, however, by in-

corporating our general architecture, the number of queries

can typically be greatly reduced (approx. 55000 queries per

cell for the forest scene and approx. 42900 queries per cell

for the town scene). Furthermore, m is an upper bound. We

cannot give a full depiction of our algorithm’s average case

performance, since this would be a complex function of ge-

ometric distribution, cell configuration and scene size. Such

a statistical analysis is beyond the scope of this paper. It is

clear however, that the average order is below O ✍ nm1 ✵ 15 ✏ ,
thereby showing scalability.

The significant run-times of our experiments can be ex-

plained as a large constant factor introduced due to the initial

complexity of the exact query algorithm. Indeed, the initial

polytope of a query typically consists of hundreds of faces.

Returning to the number of queries performed; for the for-

est scene, the output sensitivity of our algorithm (see Sec-

tion 4.3) results in approximately 97% of the preprocess

computation time being spent on the first, and therefore near-

est, 8% of the scene. For general high depth complexity

scenes, we can expect the dominant component of the run-
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(a) (b)

Figure 4: Time vs. Effective occluders. (a) The average time for queries consisting of varying numbers of effective occluders.

The fitting curve shows growth of the order O ✍ m1 ✵ 15 ✏ . The average distance from the fitting curve to the sample data is 1285(ms).

(b) The same data set as for (a), however those averages computed with less than 5 samples are excluded. A two curve fit is

applied, showing O ✍ m1 ✵ 15 ✏ growth up to 30 and O ✍ m ✏ to 57. The average distance from the fitting curve to the sample data is

38(ms).

time complexity to be a function of what is visible. Thus

illustrating the output sensitivity of our algorithm.

6. Conclusion

We have presented a tractable exact visibility query algo-

rithm and effectively integrated it into an architecture that

allows for the efficient, output sensitive computation of ac-

curate from-region visibility.

Our solution to the visibility problem can be used to ob-

tain the smallest possible set of visible polygons (for the

given partition), while making no sacrifice in image correct-

ness. This is the first general 3D solution that allows for both

optimal run-time performance and correctness.

Since it is an exact solution, we can expect our solution to

be slower than that of approximate/conservative solutions.

Our tests confirm this. Fortunately, the algorithm is scalable,

implying that if the high constant cost of the algorithm is by-

passed, either by simply accepting the run-time, or through

amortisation via a distributed solution, then an exact and

practical solution to the from-region visibility problem has

been found.

6.1. Future Work

We intend to further analyse the time complexity of the gen-

eral algorithm. We intend to catalogue the qualitative distinc-

tions of line space which are made in global visibility struc-

tures, but not within our query algorithm. We believe such

combinatorial analysis will lead to tight theoretical bounds.

Needless to say, we will continue to investigate performance

enhancement strategies which may reduce the required run-

times.
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Figure 5: Algorithm results. The top image shows a view of our town scene, while the bottom image shows a view of the forest.

In both images, the yellow block corresponds to a view-cell. The geometry visible from the view cell is rendered in green, while

occluded geometry is rendered in red.
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