
Exact Grading of Multiple Path Delay Faults ��

Saravanan Padmanaban Spyros Tragoudas

Abstract

The problem of fault grading for multiple path delay faults is
studied and a method of obtaining the exact coverage is pre-
sented. The faults covered are represented and manipulated
as sets by zero-suppressed binary decision diagrams (ZBDD),
which are shown to be able to store a very large number of path
delay faults. For the extreme case of memory problem, a method
to estimate the coverage of the test set is also presented. The
problem of fault grading is solved with a polynomial number of
BDD operations. Experimental results on the ISCAS’85 bench-
mark include test sets from ATPG tools and specifically designed
tests in order to investigate the limitations and properties of the
proposed method.

1 Introduction

The main objective of delay fault testing is to check for the tim-
ing performance of a designed circuit. The problem of calcu-
lating the number of faults identified by a given test set under
a specific fault model is termed as non-enumerative fault grad-
ing or fault coverage. Under the path delay fault (PDF) model,
a circuit is considered faulty if the propagation delay of a path
exceeds the pre-determined clock period of the circuit, the delay
fault can be observed by propagating a rising or falling transition
through the path. This requires that each of the test in the test set
consists of 2 vectors.

Existing enumerative and non-enumerative [1], [2], [8] fault
grading techniques only examine the single path delay faults
(SPDF).It has been shown that multiple path delay faults can
affect the timing performance of a circuit [3]. Even though there
exist methods for generating test patterns for this category of de-
lay faults, there is no existing technique to calculate the exact
coverage for the test sets aimed at multiple paths. This paper
introduces the first method to calculate the exact coverage of
multiple path delay faults for a given test set using a polynomial
number of basic ZBDD operations.

The paper is organized as follows. Section 2 gives prelimi-
nary definitions including the ZBDD data structure. Section 3
outlines our non-enumerative method to calculate the number of
MPDFs covered by a given test set. Section 5 presents a more
evolving ZBDD based methodology for calculating only those
PDFs that are useful in delay fault testing, which we term as
non-redundant multiple path delay fault (nr-PDF). nr-PDFs are
basically the set ofprimitive PDFs [3] identified by a given test
set. The proposed method to identify the nr-PDF behaves linear
to the number of MPDFs identified by the test set, in terms of
basic ZBDD operations. Section 5 shows how the approach of
Section 3 and 5 can be modified to handle memory intensive in-

�The authors are with the Department of Electrical and Computer Engineer-
ing, Southern Illinois University, Carbondale, IL 62901, USA

�Research supported by NSF grant CCR 0096119.

stances with minimal loss of accuracy in the coverage. However,
our experimental results show that memory problems arise only
on artificially constructed instances, where the number of de-
tected PDFs is enormous. Experimental results and conclusions
are presented in Section 6 and 7 respectively.

2 Preliminaries

A data structure to represent a combinational set in a compact
and canonical form is thezero suppressed binary decision di-
agram (ZBDD) [6]. A combination of n objects can be rep-
resented by ann bit vector���� ����� � � � � ��� ���, where each
bit �� � �� � expresses whether the corresponding object is in-
cluded in the combination or not. A set of combinations can
be represented by a set of then bit binary vectors. Such sets
are called combination sets. A combination set is sparse if the
number of elements is much smaller than the total number of
elements that may appear in the set. Combinational sets can be
represented by a boolean function, usingn variables for each of
the element of the set. These boolean functions are calledchar-
acteristic functions. It has been shown in [6] that ZBDD’s repre-
sents combinational sets effectively. The ZBDD does not depend
on the number of the variables as long as the combination sets
are the same. The number of variables need not be fixed before
generating the graph, as the variables for objects which does not
appear in any combination are automatically suppressed. This
property gives the advantage for the ZBDD over BDD in the
representation of sparse sets. The ZBDD representing the com-
bination set������ ��� ��������, is shown in Figure 1b.

{0001,0010}

0 1

d d

c

b

a

{0001,0010}

0 1

c

d

(a) BDD (b) ZDD

Figure 1: BDD and ZBDD for combination set��� ��

Let each line and gate of a circuit be assigned an unique vari-
able and a primary input with two variables - one for rising and
one for falling transitions. Each and every PDF in a given circuit
can be defined by a unique ordered combinational element. The
presence of a variable� in a combinational element representing
a PDF implies that� � � and the absence implies� � �. The
ability to represent a PDF as a combinational element reduces
the problem of path delay fault coverage to represent the PDFs
covered as a combinational set with each element of the set rep-
resenting a covered PDF. The ability of the ZBDDs to store a

large number of PDFs has been already shown experimentally
in [8].

3 Non-Enumerative Grading of MPDFs

In the first step the circuit	 is simulated using a test vector

 from the test set� and the set of PDFs tested by
 (��) are
identified. In the second step, the set of PDFs�� are stored as a
ZBDD and the set of total PDFs tested by�
� �� vectors (� ����)
are updated with thenew PDFs (� ����) which is basically�� or
the subset of��.

Operation Symbol Description
Empty() (1) the empty set (0-terminal node).
Base() (0) the base set (1-terminal node).
Change(��) !(S, v) set	 for all combinations in set�.
IntSec(��
) � �
 the intersection operation.
Union(��
) � �
 the union operation .
SubSet(��) �(S, v) factor of� by 	.
Diff(��
) � �
 the set difference operation.
Prod(��
) � �
 the unate product operation.
Count(�) ��� the number of combinations in set�.

Table 1: Basic ZBDD Operations

The basic ZBDD operations used in the proposed method are
listed in Table 1. More details about the operations can be found
in [6] [7]. The pseudo-code of the basic algorithm is given in
Table 2. The input circuit and test set are denoted by	 and� .
We define sets� �	� and� ��� to represent the tested PDFs for
	, and the tested PDFs at the primary outputs for test pattern
.
This phase requires two topological traversals of the input cir-
cuit. A forward traversal performs the actual simulation for the
test patterns and a backward traversal marks the lines and nodes
(gates and primary inputs) along the sensitized paths. Procedure
StorePDFs() constructs the ZBDD that represents the set of all
PDFs tested under a single test pattern. The MPDFs are stored as
a ZBDD using theUnate Product Operator as shown in Table 3.

PROCEDURE PDFGrading(�� �)
� ��� = Empty()
FOR every test������ ����� � �� � � �� �� � �� � DO

Simulate(�� ������ �����)
� ����= StorePDFs(�� ����)
FOR every Primary Output node�� � � DO
� ���= Union(� ���,� ����)

Number of PDFs tested = Count(� ���)
END PDF Grading()

Table 2: Procedure PDFGrading

We define apartial PDF to be a PDF from some primary in-
put to some internal gate. The ZBDD of an internal gate contains
all the partial PDFs from the primary inputs to the gate. At the
end of the traversal, the primary outputs are reached and, for ev-
ery output, the ZBDD for all the PDFs from the primary inputs
to the primary output is constructed. At this point, the union
of all the ZBDDs for the primary outputs is computed and thus
the set of all the PDFs tested by a single test is derived. The
pseudo-code for Procedure StorePDFs() is shown in Table 3.

The rising and falling transitions are denoted by� and� ,
respectively. For a primary input, function VarR() (resp.
VarF()) returns the variable that represents an R (resp. F) tran-
sition on the input. If is a gate, Var() returns the variable for

PROCEDURE StorePDFs(�� ����)
DO

Select node�� � � to be processed
IF (�� is marked)

IF (�� is aPrimary Input)
IF (transition on�� is R)	 � � �������
ELSE IF (transition on�� is F)	 � � ��� ����
� ���� = Change(Base(),)

ELSE IF�� is singly sensitized
	 � � ������
� ���� = Empty()
FOR every input node�� of ��

IF (�� is marked)
� ���� = Union(� ����, Change(� ����,))

ELSE IF����=������
IF �� is co-sensitized
	 � � ������
� ���� = Empty()
FOR every input node�� of ��

IF (�� is marked)
� ���� = Prod(� ����, Change(� ����,))

ELSE
� ���� = Empty()

UNTIL all nodes are processed
Return� ���� ��� � Primary Output

END StorePDFs()

Table 3: Procedure StorePDFs

the gate.� �� denotes the ZBDD at gate that contains all the
partial PDFs from the inputs to.

The processing of nodes is done in a topological order. The
marking of the nodes is performed during the first phase of the
approach, in procedure Simulate(). The processing at each node
differs depending on whether the node is a primary input or a
gate. If the node is a primary input, an appropriate variable is
assigned depending on the type of the transition on the input. If
the node is a gate, the conditions for sensitization are checked.
If the gate is singly sensitized, a union operation of the sets of
the marked inputs, that represents the partial PDFs from the pri-
mary inputs to the respective particular lines is performed and
the variable of that gate is added to the resulting set. If the gate
is functionally sensitized, a unate product operation of the sets
of the marked inputs, that represents the partial PDFs from the
primary inputs to the respective particular lines is performed and
the variable of that gate is added to the resulting set. At the end
of the topological traversal,� �� of each output gate represents
all the tested PDFs from the primary inputs to the particular pri-
mary output. The union of sets� ��, of all the primary outputs
results in the total PDFs tested a test vector
.

Example: The following example is used to illustrate the pro-
posed method. Let the test vector�� � ������� ������ be ap-
plied to the circuit C17 as shown in Figure 2a. The numbers
marked on the lines are the variables used to denote that line. For
the primary inputs variables 1-5 are used to represent the rising
transitions on each input and variables 18-22 for the falling tran-
sitions. The bold lines in the circuit C17 indicate the sensitized
lines.

In circuit shown in Figure 2a, the partial PDFs from primary
inputs to line 12 and 13 are��� �� �	� and�

� �
� respec-
tively. Gate G19 is functionally sensitized, so a unate product
operation is performed between the two partial products to rep-
resent the co-sensitization between them. The PDFs covered by
the��� test vector�� is��=��� �� ��� ��� �� �� �
� �	�
���

�. The same procedure is followed for the
�� test vector
�� � ������� ������. The simulation of circuit C17 by�� is
shown in Figure 2c. The PDFs covered by the test vector�� is

G10

G11

G16

G19

G22

G23

G1

G2

G3

G4

G5

7

6 14

15

16

17

10

11

13

12

8

94

22

s1

s1

s1 s0 s1

T1

 4

 9

11

12

13

16

17

22

1 0

G10

G11

G16

G19

G22

G23

G1

G2

G3

G4

G5

7

6 14

15

16

17

10

11

13

12

8

9

22

s1

s0

s0

1

s1

s1

 1

T2

6

12

14

17

22

0 1

(a) Simulation of�� (b) PDFs Tested by�� (c) Simulation of�� (d) PDFs Tested by��

Figure 2: Output of the Iteration Process

��=��� �� ��� �
� ���

�. So if the test set� comprises
of 2 vectors�� and��, the total PDFs covered by test set� is
������ � �� � �� (i.e 4 PDFs are covered).

4 Elimination of Redundant MPDFs

Consider paths��, �� and �� to be single path delay faults
(SPDF) and������ be a multiple path delay fault. If any one of
the three SPDF is singly sensitized, then the multiple path is not
needed to be tested [3]. Such MPDFs which need not be tested
are termed asredundant PDFs, and should be eliminated from
the set of PDFs tested which will result in the set of nr-PDFs.

The basic scheme proposed in Section 3 does not eliminate
such redundant MPDFs from the graded fault set. The illustra-
tion provided for the basic scheme shows that the PDFs tested
by test vectors 1 and 2 are��=��� �� ��� ��� �� �� �
�
�	����

�and��=�������� �
����

�, the total PDFs
tested as 4. But�
� ���

 which is a SPDF, is a subset of the
MPDF (� � � � �
 � �	 � �� �

). It would be hence more
appropriate to eliminate the MPDF (�� �� �
� �	� ���

)
from the set of nr-PDFs tested by the test set������ so that the
coverage of the test set would be 3.

PROCEDURE (� 	
)

IF (
 � �) Return�
IF (� � � or� � �) Return 0
IF (� �
) Return 1
�� cache(� �
)
IF (� exists) return�
x �
.top
(��� ��) � Factors of� by x
(
��
�) � Factors of
 by x
IF (
� �� 0)�� (�� 	
�)
IF (
� �� 0)��� � (�� 	
�)
cache (��
) ��
Return�

Table 4: Containment Algorithm

In terms of delay fault testing, the coverage obtained by the
basic scheme it is not very appropriate even though it is exact. A
modification to the basic scheme is provided so as to eliminate
the redundant MPDFs from the set of PDFs covered by the test
set. A new operation, thecontainment operation (�) is intro-
duced to identify the containment of elements of one set within
another. Its implementation is similar to other existing ZBDD
basic operators and is used to eliminate the redundant MPDFs.

The example below illustrates the operation of the containment
operator.

Example: Assume�� = �abd, abe, abg, cde, ceg, egh� be the
set of partial PDFs tested by vector-1 and�� = �ab, ce� be the
set of partial PDFs tested by vector-2.��� � ��� is obtained
as:

(�� � ��) = (�abd, abe, abg, cde, ceg, egh�/�ab�)
� (�abd, abe, abg, cde, ceg, egh�/�ce�)
=�d, e, g� � �d, g�
=�d, e, g�

PROCEDURE Eliminate(��
)
 � �� � �� � �
 � �� 	
����
��� � � �� �
�
return (���)

END Eliminate()

Table 5: Procedure Eliminate

A basic algorithm describing the operation of the containment
operator is described in Table 4. If� and� are sets of PDFs then
the non-redundant set of PDFs of� with respect to� can be
calculated using PROCEDURE Eliminate shown in Table 5. The
procedure uses the containment operation to calculate the set of
non-redundant PDFs of P (���). The procedure to grade a test
for nr-PDF is given in Table 6. The set of SPDF tested by the test
set are stored as a ZBDD-� �	������ �, the set of MPDFs tested
are stored as a ZBDD-� �	������ �. Performing the elimination
process of� �	������ � with respect to� �	������ � will result
in the set of nr-PDFs.

5 Overcoming Memory Problems

This section presents a technique to estimate the coverage of a
given test set, in case the basic method fails to store the PDFs
tested as a ZBDD. The method uses the framework proposed in
[8], but the method is more complicated because the elimination
of redundant MPDF is involved in the process of estimation of
the coverage. An independent cut� is used to virtually partition
the circuit into subcircuits [8]. Using arguments as in [8] that
The number of new PDFs from the primary inputs to the primary
output�� and passes through the line��, tested by the��! vector
is estimated as

��� ���� ��� � �	�� � �	��� 	 ���� � �	� 	 ��� � �	���
 ���� �

PROCEDURE nr-PDFGrading(�� �)
FOR every test������ ����� � �� � � �� �� � �� � DO

Simulate(�� ������ �����)
� ����= StorePDFs(�� ����,����)
FOR every Primary Output node�� � � DO
� �����	
�

�= Union(� �����	
�
�,� ����)

FOR every test������ ����� � �� � � �� �� � �� � DO
Simulate(�� ������ �����)
� ����= StorePDFs(�� ����,����)
FOR every Primary Output node�� � � DO
� �����	

�
�= Union(� �����	

�
�,� ����)

FOR every Primary Output node�� � � DO
M = � �����	

�
�

N = � �����	
�
�

� �"�� ���#����� ��� = Eliminate(� , ")
Tested = Union(Tested,� �"�� ���#����� ���)

END PDF Grading()

Table 6: Procedure nr-PDFGrading

Let	� denote the non redundant set of partial PDFs from the
primary input and terminating at the line� � for the��! test vec-
tor. Let�� be the non redundant set of partial PDFs originating
from the primary inputs and terminating at the line� � for the test
vectors from 1 to�� � �� respectively.	��� and���� are the
non-redundant sets of partial PDFs originating at line� � and ter-
minating at the line�� for the��! test vectors and all the previous
��� �� test vectors respectively.

Let���� be the set of redundant partial PDFs eliminated from
�� with respect to	�. Let ������ be the set of redundant partial
PDFs eliminated from���� with respect to	��� . ���� and� �����

have been used to estimate the coverage of the��� �� test vec-
tors, which makes the method optimistic. The coverage of the
�� � �� vectors have to be re-calculated before the number of
new PDFs covered by the��! test vector is added to the cover-
age of all the����� test vectors. Thus the number of new PDFs
tested by the� test vectors is estimated as

��� � ����$�����$���� ���� ��� ������� �����

The last term������� ����� is the coverage of the�� � ��
vectors calculated again by revisiting the first�� � �� vectors
to eliminate the PDF count by the�� � �� test vectors. We use
the redundant sets� ��� and� ����� identified by the��! test vec-
tors is used for this purpose. The redundant set of partial PDFs
���� and� ����� is eliminated from the sets	� and	��� before the
calculation of the new PDFs identified by each of the�� � ��
vectors. The process of re-calculation ensures that the solution
of the proposed method is always pessimistic.

6 Experimental Results

The experiments were run on a 750MHz SUN Blade-1000 work-
station with 1GB RAM. Table 7 and Table 8 report the number
of nr-PDFs covered by test sets generated using the methods
proposed in [4] and [5]. The test sets from [4] and [5] were
chosen for expermentation as they provably generate tests with
very high coverage for path delay faults than most of the existing
methods. Results shown in Table 7 is the coverage obtained for
test set generated by [5]. Column 2 in the table represents the
size of the test set, Column 3 represents the number of MPDFs
covered by the test set, which also includes the redundant PDFs.

Column 4 represents the number of non-redundant PDFs which
is the sum of SPDFs and non-redundant MPDFs.

Circuit Vectors MPDF nr-PDF Time (min)
C1355 389,400 71,457 70,054 8.4
C1908 218,964 106,980 99,079 23.2
C2670 211,725 85,647 16,509 21.9
C3540 179,589 1,214,926 1,102,638 96.35
C5315 655,776 431,478 91,017 151.22
C6288 714,955 422,810 375,594 199.71
C7552 540,597 540,597 68,389 162.9

Table 7: Coverage using Test Sets from [5]

The methods of [1] and [2] failed (either due to memory over-
flow problem or internal data structure problem) for test sets with
more than 25,000 vectors, even though it targets only SPDFs.
The results presented here shows the superiority of the proposed
method when compared to any existing method as the method
does not depend on the number of vectors in the test set. The
method is expected to fail only when the coverage of the test set
is extremely high and makes the system run out of memory. The
PDFs covered is not a monotonous function of the test sets unlike
the technique in [8]. This behavior is caused by the elimination
of the redundant MPDFs.

The results in Table 8, shows the results for the test patterns
generated by the method proposed in [4]. It shows the compari-
son between the performance of the two method proposed here -
coverage in the presence and in the absence of the cuts. Column
10 shows the number of nr-PDFs missed from being counted
because of the pessimistic approach of the technique. Column
11 shows the reduction in memory (reduction in the number of
nodes in the ZBDD) with respect to the method without the cuts.
The method of using cuts was not experimented for the test set
in Table 7 due to size of the test set. The results of Table 8 and
9 show the effectiveness of using the cuts, an average coverage
loss of 5% is justified by an average memory reduction of 40%.

The proposed methods out performs any existing method
even for coverage of SPDFs. But any existing ATPG tool does
not have very high coverage to check for the memory limits of
the proposed method. We use a fictitious setup to check the
memory limits of the proposed method. In the fictitious setup,
all PDFs are assumed to be sensitizable. So a transition at a pri-
mary input can be propagated through all sub graphs originating
at that input. With such a setup, we generate a test set that can
cover all the possible PDFs in the circuit.

Let � and� be the primary inputs and outputs of a combina-
tional circuit	. The subgraph� for an I/O pair is derived and
all the inputs of the internal gates are randomly assigned to be
singly sensitized or co-sensitized together with some other in-
put of the gate. The ZBDD representing all the PDFs of� is
formed. The same procedure is performed for all possible I/O
pairs, this defines an iteration of the approach. Similarly 100
iterations are performed for each benchmark with different ran-
dom assignments for each iteration. After the 1�� iteration, the
number of PDFs covered are more than 100% of the total num-
ber of PDFs in the circuit due to the presence of the MPDFs.
However with the increase in the number of the iterations, the
number of PDFs reduces towards the total SPDFs of the circuit.
The assignments on the input of the internal gates are done so
that the ratio between the SPDFs to the MPDFs for a sub-graph
for an iteration is 75:25. The results of the fictitious tests are
shown in Table 9. The same setup with a ratio of 25:75 be-

Basic Scheme With Cuts
Circuit Vectors MPDF nr-PDFs ZBDD Time nr-PDFs ZBDD nr-PDFs Nodes Time

Covered Nodes (sec) Covered Nodes Lost(%) Gained(%) (sec)
C1355 2,501 3,236 3,204 1,905 5.6 3,034 1,508 5.3 20.8 125.6
C1908 1,443 5,254 4,730 2,124 17.23 4,537 1,746 4.08 17.8 370.34
C2670 1,883 6,263 4,867 2,218 46.19 4,697 1,791 3.49 19.25 1435.75
C3540 1,204 818,531 720,726 43,982 1323.44 691,806 23,562 4.01 46.42 7963.93
C5315 5,848 33,653 21,719 12,386 481.62 21,176 8,220 2.5 33.6 1678.22
C6288 1,548 67,686 46,019 20,889 1930.37 45,006 10,120 2.2 51.56 6734.53
C7552 6,842 54,671 37,409 14,781 1485.27 35,988 8,927 3.8 39.6 7732.18

Table 8: Coverage using Test Sets from [4]

Without Cuts With Cuts
Circuit Vectors MPDF nr-PDFs ZBDD Time nr-PDFs ZBDD nr-PDFs Nodes Time

Covered Nodes (min) Covered Nodes Lost(%) Gained(%) (min)
C1355 4,100 10,662,774 8,442,212 124,208 71.37 7,994,774 65,508 5.3 47.2 238.94
C1908 3,300 1,985,904 1,458,388 85,224 38.21 1,388,385 59,864 4.8 29.7 96.45
C2670 23,300 1,849,902 1,361,636 55,564 120.82 1,298,277 40,912 4.6 26.3 653.38
C3540 5,000 68,676,482 56,549,121 156,689 180.5 53,495,468 90,876 5.4 42.0 420.91
C5315 17,800 4,633,280 2,741,090 110,802 135.5 2,595,812 66,036 5.3 40.4 588.2
C6288 3,200 1.98 * 10�� 1.98 * 10�� 1,967,242 428.25 1.98 * 10�� 1,034,769 4.9 47.4 769.5
C7552 20,700 2,100,448 1,453,458 132,018 108.5 1,402,586 74,854 3.5 43.3 610.35

Table 9: Fictitious Test

tween the SPDFs and MPDFs was used and the system ran out
of memory for the following benchmarks - C5225, C7552. Sim-
ilar memory problems can be eliminated by using the method of
cuts proposed in Section 5.

7 Conclusion

It has been shown that the fault coverage problem can be reduced
to a set manipulation problem, which is equivalent to basic op-
erations over zero suppressed binary decision diagrams. The ex-
perimental results and the results from [8] show the ability of
the ZBDDs to store and manipulate large number of PDFs. The
results also support the fact that the proposed method does not
depend on the number of vectors in the test set unlike existing
methods, and can store a very large number of PDFs.

The method can also be extended to diagnose delay failure in
circuits. In the problem of diagnosis, two sets of PDFs are stored
- one corresponding to the set that pass the delay test(termed as
fault free set) and one for the failed test (termed as suspect set).
The suspect set can be reduced by eliminating redundant PDFs.
The method [9] uses a complicated data structure which is not
efficient to store and represent MPDFs. The problem can be
solved by using two ZBDDs - one to represent the fault free set
of PDFs and one for the suspect set. Theeliminate procedure
proposed here can be used to eliminate the fault free PDFs from
the suspect set. The resulting suspect set can be used to locate
the cause of the delay fault.

References

[1] Deodhar J.V and Tragoudas .S,Color Counting Technique
for Fault Coverage, Proc. International Symposium on
Quality of Electronic Design, March 2001.

[2] Gharaybeh M. A., Bushnell M. L. and Agrawal V. D.,An
exact non-enumerative fault simulator for path-delay faults,
Proc. of International Test Conference, 1996, pp. 276-285.

[3] Ke W. and Menon P.R.,Synthesis of Delay-Verifiable Com-
binational Circuits, IEEE Trans. on Computers, vol. 44,
pp.213-222, Feb. 1995.

[4] Michael M., and Tragoudas S.,ATPG for Path Delay Faults
without Path Enumeration, Proc. International Symposium
on Quality of Electronic Design, March 2001.

[5] Michael M., and Tragoudas S.,ATPG for Path Delay Faults
at Functional Level, to appear in ACM Trans. on Design
Automation of Electronic Systems, Vol. 7, No. 1, Jan. 2002.

[6] Minato S-I.,Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems, Proc. of Design Automation Con-
ference, 1993, pp. 272-277.

[7] Minato S-I.,Calculation of Unate Cube Set Algebra Using
Zero-Suppressed BDDs, Proc. of Design Automation Con-
ference, 1994, pp. 420-424.

[8] Padmanaban S., Michael M. and Tragoudas S.,Exact Path
Delay Grading with Fundamental BDD Operations, Proc.
of International Test Conference, 2001, pp.642-651.

[9] Pant P., Yuan .C.H., Gupta. S.K. and Chatterjee A.,Path
Delay Fault Diagnosis in Combinational Cicuits with Im-
plicit Fault Enumeration, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20, no. 10,
Oct. 2001,pp. 1226-1235.

[10] Tragoudas S. and Denny N.,Testing of Path Delay Faults
using Test Points, Proc. of IEEE Symposium on Defect and
Fault Tolerance in VLSI Systems, Nov. 1999, pp.86-94.

