
Exact Graph Search Algorithms for Generalized Traveling
Salesman Path Problems

Michael N. Rice Vassilis J. Tsotras

University of California, Riverside (UCR)

11th International Symposium on Experimental Algorithms

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 1 / 25



Motivation

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 2 / 25



Motivation

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 2 / 25



Motivation

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 2 / 25



Motivation

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 2 / 25



Motivation

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 2 / 25



Problem Definition

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3 / 25



Problem Definition

Graph

Weighted, directed graph G = (V ,E )

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3 / 25



Problem Definition

Graph

Weighted, directed graph G = (V ,E )

Category Set

C = {C1,C2, . . . ,Ck} defined on G

Ci = {ci ,1, ci ,2, . . . , ci ,|Ci |} ⊆ V

Category count k = |C |, category density g = max
1≤i≤k

{|Ci |}

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3 / 25



Problem Definition

Graph

Weighted, directed graph G = (V ,E )

Category Set

C = {C1,C2, . . . ,Ck} defined on G

Ci = {ci ,1, ci ,2, . . . , ci ,|Ci |} ⊆ V

Category count k = |C |, category density g = max
1≤i≤k

{|Ci |}

Satisfying Path

A path, P , satisfies a category set C if, for 1 ≤ i ≤ k , P ∩ Ci 6= ∅.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3 / 25



Problem Definition

Graph

Weighted, directed graph G = (V ,E )

Category Set

C = {C1,C2, . . . ,Ck} defined on G

Ci = {ci ,1, ci ,2, . . . , ci ,|Ci |} ⊆ V

Category count k = |C |, category density g = max
1≤i≤k

{|Ci |}

Satisfying Path

A path, P , satisfies a category set C if, for 1 ≤ i ≤ k , P ∩ Ci 6= ∅.

Generalized Traveling Salesman Path Problem (GTSPP)

Instance: 〈s, t,C 〉, for s, t ∈ V and category set C

Solution: Minimum-weight satisfying path from s to t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3 / 25



GTSPP Example

s t

c1,1

c1,2

c2,1

c2,2

G

Instance: 〈s, t,C 〉

C = {C1,C2}

C1 = {c1,1, c1,2}

C2 = {c2,1, c2,2}



GTSPP Example

s t

c1,1

c1,2

c2,1

c2,2

G

Instance: 〈s, t,C 〉

C = {C1,C2}

C1 = {c1,1, c1,2}

C2 = {c2,1, c2,2}

Solution: Ps,t is optimal

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 4 / 25



Background and Related Work

GTSP introduced in 1960s

NP-hard generalization of the classical TSP

Goes by many names...

Errand Scheduling

Group TSP

Set TSP

One-of-a-Set TSP

Multiple-Choice TSP

TSP with Neighborhoods

. . .

Many exact, approximate, and heuristic approaches exist, but. . .

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 5 / 25



Limitations of Existing Work

Existing work relies on complete-graph “abstraction”

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 6 / 25



Limitations of Existing Work

Existing work relies on complete-graph “abstraction”

Physical Graph Abstract Complete Graph

s t

c1,1

c1,2

c2,1

c2,2

G ≡

s t

c1,1

c1,2 c2,1

c2,2

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 6 / 25



Limitations of Existing Work

Requires intermediate processing stage during query to compute
many-to-many cost matrix

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7 / 25



Limitations of Existing Work

Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7 / 25



Limitations of Existing Work

Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms

Our proposed algorithms have running times O∗(2k)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7 / 25



Limitations of Existing Work

Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms

Our proposed algorithms have running times O∗(2k)

Advantageous for problems where k ≪ g

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7 / 25



Limitations of Existing Work

Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms

Our proposed algorithms have running times O∗(2k)

Advantageous for problems where k ≪ g

Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

Very few “errands” per trip (i.e., small k)
Many choices per “errand” (i.e., large g)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7 / 25



Limitations of Existing Work

Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms

Our proposed algorithms have running times O∗(2k)

Advantageous for problems where k ≪ g

Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

Very few “errands” per trip (i.e., small k)
Many choices per “errand” (i.e., large g)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7 / 25



Limitations of Existing Work

Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms

Our proposed algorithms have running times O∗(2k)

Advantageous for problems where k ≪ g

Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

Very few “errands” per trip (i.e., small k)
Many choices per “errand” (i.e., large g)

Canonical Example

k = 5, g = 10, 000

Constructing complete graph would require ≈ 1 minute preparation

We solve it optimally in < 2 seconds!

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7 / 25



Product Graph Framework

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 8 / 25



Product Graph Framework

Covering Graph

For C = {C1,C2, . . . ,Ck}, let G (Bk) = (P(C ),E (Bk))

E (Bk) is the minimal set of edges representing inclusion

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 8 / 25



Product Graph Framework

Covering Graph

For C = {C1,C2, . . . ,Ck}, let G (Bk) = (P(C ),E (Bk))

E (Bk) is the minimal set of edges representing inclusion

Examples

{∅}

{C1}

{∅}

{C1,C2}

{C1} {C2}

{∅}

{C1,C2,C3}

{C1} {C2} {C3}

{C1,C2} {C1,C3} {C2,C3}

Covering graphs for k = 1, k = 2, and k = 3.



Product Graph Framework

Covering Graph

For C = {C1,C2, . . . ,Ck}, let G (Bk) = (P(C ),E (Bk))

E (Bk) is the minimal set of edges representing inclusion

Examples

{∅}

{C1}

{∅}

{C1,C2}

{C1} {C2}

{∅}

{C1,C2,C3}

{C1} {C2} {C3}

{C1,C2} {C1,C3} {C2,C3}

〈C2,C1,C3〉

Covering graphs for k = 1, k = 2, and k = 3.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 8 / 25



Product Graph Framework

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 9 / 25



Product Graph Framework

Product Graph

Let GC = G × G (Bk) = (V × P(C ),E1 ∪ E2)

E1 represents E for every subset in P(C )

E2 represents accumulation of a new category via a category node

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 9 / 25



Product Graph Framework

Product Graph

Let GC = G × G (Bk) = (V × P(C ),E1 ∪ E2)

E1 represents E for every subset in P(C )

E2 represents accumulation of a new category via a category node

Example

{∅}

{C1,C2}

{C1} {C2} × =

s t

c1,1

c1,2

c2,1

c2,2

〈s, ∅〉

〈t,C 〉

G

∅

C1 C2

C

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 9 / 25



Product Graph Framework

Product Graph

Let GC = G × G (Bk) = (V × P(C ),E1 ∪ E2)

E1 represents E for every subset in P(C )

E2 represents accumulation of a new category via a category node

Example

{∅}

{C1,C2}

{C1} {C2} × =

s t

c1,1

c1,2

c2,1

c2,2

〈s, ∅〉

〈t,C 〉

G

∅

C1 C2

C

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 9 / 25



Product Graph Search Algorithms

Theorem

A shortest path in GC from 〈s, ∅〉 to 〈t,C 〉 represents an equivalent-cost,

optimal solution for instance 〈s, t,C 〉 in the original graph G.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25



Product Graph Search Algorithms

Theorem

A shortest path in GC from 〈s, ∅〉 to 〈t,C 〉 represents an equivalent-cost,

optimal solution for instance 〈s, t,C 〉 in the original graph G.

Any shortest path search algorithm will work

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25



Product Graph Search Algorithms

Theorem

A shortest path in GC from 〈s, ∅〉 to 〈t,C 〉 represents an equivalent-cost,

optimal solution for instance 〈s, t,C 〉 in the original graph G.

Any shortest path search algorithm will work

E.g., Dijkstra’s algorithm is a natural choice

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25



Product Graph Search Algorithms

Theorem

A shortest path in GC from 〈s, ∅〉 to 〈t,C 〉 represents an equivalent-cost,

optimal solution for instance 〈s, t,C 〉 in the original graph G.

Any shortest path search algorithm will work

E.g., Dijkstra’s algorithm is a natural choice

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25



Product Graph Search Algorithms

Theorem

A shortest path in GC from 〈s, ∅〉 to 〈t,C 〉 represents an equivalent-cost,

optimal solution for instance 〈s, t,C 〉 in the original graph G.

Any shortest path search algorithm will work

E.g., Dijkstra’s algorithm is a natural choice

Theorem

A Dijkstra search in GC runs in O(2k(m + nk + nlogn)) time.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25



Product Graph Search Algorithms

Theorem

A shortest path in GC from 〈s, ∅〉 to 〈t,C 〉 represents an equivalent-cost,

optimal solution for instance 〈s, t,C 〉 in the original graph G.

Any shortest path search algorithm will work

E.g., Dijkstra’s algorithm is a natural choice

Theorem

A Dijkstra search in GC runs in O(2k(m + nk + nlogn)) time.

Optimization

Do not explicitly construct the product graph

Materialize the graph implicitly as needed

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25



Advanced Product Graph Search

We can do better!

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 11 / 25



Advanced Product Graph Search

We can do better!

We take advantage of two key aspects:

Recent progress in speedup techniques for road networks

Useful structural properties of the product graph

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 11 / 25



Advanced Product Graph Search

We can do better!

We take advantage of two key aspects:

Recent progress in speedup techniques for road networks

Useful structural properties of the product graph

Extend product graph search to incorporate the state-of-the-art
Contraction Hierarchies technique

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 11 / 25



Contraction Hierarchies: Overview

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 12 / 25



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 12 / 25



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Example

O
rd
er



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Example

O
rd
er



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Example

O
rd
er

2



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Example

O
rd
er

2



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Example

O
rd
er

2



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Example

O
rd
er

2



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Example

O
rd
er

2

2



Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Example

O
rd
er

2

23

3

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 12 / 25



Contraction Hierarchies: Overview

CH Query

Bidirectional-Dijkstra search (forward from s, backward from t), relaxing
only “upward-leading” edges.

Example

O
rd
er s

t

2

23

3



Contraction Hierarchies: Overview

CH Query

Bidirectional-Dijkstra search (forward from s, backward from t), relaxing
only “upward-leading” edges.

Example

O
rd
er s

t

2

23

3



Contraction Hierarchies: Overview

CH Query

Bidirectional-Dijkstra search (forward from s, backward from t), relaxing
only “upward-leading” edges.

Example

O
rd
er s

t

2

23

3



Contraction Hierarchies: Overview

CH Query

Bidirectional-Dijkstra search (forward from s, backward from t), relaxing
only “upward-leading” edges.

Example

O
rd
er s

t

2

23

3

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 13 / 25



CH Path Types

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #3:
Decreasing Rank

s

t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank
2 Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank
2 Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank
2 Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank
2 Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank
2 Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



CH Path Types

Path Type #1:
Increasing Rank

s

t

Path Type #2:
Bitonic Rank

s

v

t

Path Type #3:
Decreasing Rank

s

t

Alternate Algorithm: Sweeping Search

1 Take the union of “upward-reachable” search spaces from s and t

2 Sweep the unioned search space by node rank order
1 Upsweep: relax outgoing “upward-leading” edges in increasing rank
2 Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25



Many (S)ources/(T)argets

S = s1 s2 s3
... s|S |

= T
t1 t2 t3

...
t|T |

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 15 / 25



Many (S)ources/(T)argets

S = s1 s2 s3
... s|S |

= T
t1 t2 t3

...
t|T |

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 15 / 25



Many (S)ources/(T)argets

S = s1 s2 s3
... s|S |

= T
t1 t2 t3

...
t|T |

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 15 / 25



Many (S)ources/(T)argets

S = s1 s2 s3
... s|S |

= T
t1 t2 t3

...
t|T |

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 15 / 25



Many (S)ources/(T)argets

S = s1 s2 s3
... s|S |

= T
t1 t2 t3

...
t|T |

. . . d1(v) d2(v) d3(v) . . . d|S |(v) . . .

v

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 15 / 25



Utilizing Structural Properties of the Product Graph

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b
st
ra
ct

P
ro
d
u
ct

G
ra
p
h

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25



Utilizing Structural Properties of the Product Graph

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b
st
ra
ct

P
ro
d
u
ct

G
ra
p
h

Level-Sweeping Search (LESS) Algorithm

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25



Utilizing Structural Properties of the Product Graph

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b
st
ra
ct

P
ro
d
u
ct

G
ra
p
h

s t

Level-Sweeping Search (LESS) Algorithm

1 Take the union of “upward-reachable” search spaces from s, t, and C

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25



Utilizing Structural Properties of the Product Graph

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b
st
ra
ct

P
ro
d
u
ct

G
ra
p
h

s t

Level-Sweeping Search (LESS) Algorithm

1 Take the union of “upward-reachable” search spaces from s, t, and C

2 For 0 ≤ i ≤ k , at each level Gi :

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25



Utilizing Structural Properties of the Product Graph

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b
st
ra
ct

P
ro
d
u
ct

G
ra
p
h

s t

Level-Sweeping Search (LESS) Algorithm

1 Take the union of “upward-reachable” search spaces from s, t, and C

2 For 0 ≤ i ≤ k , at each level Gi :
1 Sweep the unioned search space for all

(

k
i

)

subsets per node at level Gi

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25



Utilizing Structural Properties of the Product Graph

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b
st
ra
ct

P
ro
d
u
ct

G
ra
p
h

s t

Level-Sweeping Search (LESS) Algorithm

1 Take the union of “upward-reachable” search spaces from s, t, and C

2 For 0 ≤ i ≤ k , at each level Gi :
1 Sweep the unioned search space for all

(

k
i

)

subsets per node at level Gi

2 If i < k , transfer costs to Gi+1 along (zero-cost) E2 edges

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25



Utilizing Structural Properties of the Product Graph

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b
st
ra
ct

P
ro
d
u
ct

G
ra
p
h

s t

Level-Sweeping Search (LESS) Algorithm

1 Take the union of “upward-reachable” search spaces from s, t, and C

2 For 0 ≤ i ≤ k , at each level Gi :
1 Sweep the unioned search space for all

(

k
i

)

subsets per node at level Gi

2 If i < k , transfer costs to Gi+1 along (zero-cost) E2 edges

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25



Utilizing Structural Properties of the Product Graph

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b
st
ra
ct

P
ro
d
u
ct

G
ra
p
h

s t

Level-Sweeping Search (LESS) Algorithm

1 Take the union of “upward-reachable” search spaces from s, t, and C

2 For 0 ≤ i ≤ k , at each level Gi :
1 Sweep the unioned search space for all

(

k
i

)

subsets per node at level Gi

2 If i < k , transfer costs to Gi+1 along (zero-cost) E2 edges

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h : V × V → R≥0)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h : V × V → R≥0)

1 Establish upper bound on optimal solution:

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h : V × V → R≥0)

1 Establish upper bound on optimal solution:
1 Construct satisfying path P ′ via greedy, nearest-neighbor strategy

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h : V × V → R≥0)

1 Establish upper bound on optimal solution:
1 Construct satisfying path P ′ via greedy, nearest-neighbor strategy
2 µ = w(P ′)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h : V × V → R≥0)

1 Establish upper bound on optimal solution:
1 Construct satisfying path P ′ via greedy, nearest-neighbor strategy
2 µ = w(P ′)

2 For 1 ≤ i ≤ k , for all ci ,j ∈ Ci :

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h : V × V → R≥0)

1 Establish upper bound on optimal solution:
1 Construct satisfying path P ′ via greedy, nearest-neighbor strategy
2 µ = w(P ′)

2 For 1 ≤ i ≤ k , for all ci ,j ∈ Ci :
1 Prune ci,j if µ < h(s, ci,j) + h(ci,j , t)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h : V × V → R≥0)

1 Establish upper bound on optimal solution:
1 Construct satisfying path P ′ via greedy, nearest-neighbor strategy
2 µ = w(P ′)

2 For 1 ≤ i ≤ k , for all ci ,j ∈ Ci :
1 Prune ci,j if µ < h(s, ci,j) + h(ci,j , t)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.

In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Question: can we reduce the size of the search space?

If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h : V × V → R≥0)

1 Establish upper bound on optimal solution:
1 Construct satisfying path P ′ via greedy, nearest-neighbor strategy
2 µ = w(P ′)

2 For 1 ≤ i ≤ k , for all ci ,j ∈ Ci :
1 Prune ci,j if µ < h(s, ci,j) + h(ci,j , t)

After pruning, carry out LESS search, as before

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25



Experiments

Dataset:

Road network of US/Canada with |V | = 21M and |E | = 52M

Environment:

Server: 2.53GHz CPU, 18GB RAM
Language: C++

Preprocessing:

CH: 18 minutes preprocessing time
Pre-Computed Cluster Distances (PCD): 7 minutes (using CH)

Algorithms:

Unidirectional Dijkstra (U. Dijkstra)
Bidirectional Dijkstra (B. Dijkstra)
Level-Sweeping Search (LESS)
LESS + Pruning (P-LESS)

Queries:

Non-Local Queries: cases where s 6= t

Local Queries: cases where s = t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 18 / 25



Category Density Experiments: Non-Local Queries
(s 6= t, k = 5)

Category Density (g)

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

s
)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

U. Dijkstra
B. Dijkstra

LESS
P−LESS

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 19 / 25



Category Density Experiments: Local Queries
(s = t, k = 5)

Category Density (g)

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

s
)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

U. Dijkstra
B. Dijkstra

LESS
P−LESS

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 20 / 25



Category Count Experiments: Non-Local Queries
(s 6= t, g = 10, 000)

Category Count (k)

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

s
)

10
−1

10
0

10
1

10
2

1 2 3 4 5 6 7

U. Dijkstra
B. Dijkstra

LESS
P−LESS

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 21 / 25



Category Count Experiments: Local Queries
(s = t, g = 10, 000)

Category Count (k)

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

s
)

10
−3

10
−2

10
−1

10
0

10
1

1 2 3 4 5 6 7

U. Dijkstra
B. Dijkstra

LESS
P−LESS

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 22 / 25



Summary

New product graph framework for efficient graph search

Can solve real-world GTSPP instances to optimality in seconds!

Two competitive algorithms with performance tradeoffs:

Dijkstra: good for highly-local, very-dense queries (no pre-processing
required)

LESS (with pruning): more consistent performance across various sizes
and localities

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 23 / 25



Future Work

Better space utilization (e.g., reduced memory overhead, better cache
locality)

More aggressive pruning strategies

Incorporate goal-direction (e.g., A∗)

Parallelization (exploiting subgraph independence)

Approximation algorithms

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 24 / 25



Questions?

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 25 / 25


