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Ci = {ci ,1, ci ,2, . . . , ci ,|Ci |} ⊆ V

Category count k = |C |, category density g = max
1≤i≤k

{|Ci |}

Satisfying Path

A path, P , satisfies a category set C if, for 1 ≤ i ≤ k , P ∩ Ci 6= ∅.

Generalized Traveling Salesman Path Problem (GTSPP)

Instance: 〈s, t,C 〉, for s, t ∈ V and category set C

Solution: Minimum-weight satisfying path from s to t
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GTSPP Example

s t

c1,1

c1,2

c2,1

c2,2

G

Instance: 〈s, t,C 〉

C = {C1,C2}

C1 = {c1,1, c1,2}

C2 = {c2,1, c2,2}

Solution: Ps,t is optimal
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Background and Related Work

GTSP introduced in 1960s

NP-hard generalization of the classical TSP

Goes by many names...

Errand Scheduling

Group TSP

Set TSP

One-of-a-Set TSP

Multiple-Choice TSP

TSP with Neighborhoods

. . .

Many exact, approximate, and heuristic approaches exist, but. . .
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Requires intermediate processing stage during query to compute
many-to-many cost matrix
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many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms

Our proposed algorithms have running times O∗(2k)

Advantageous for problems where k ≪ g

Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

Very few “errands” per trip (i.e., small k)
Many choices per “errand” (i.e., large g)

Canonical Example

k = 5, g = 10, 000

Constructing complete graph would require ≈ 1 minute preparation

We solve it optimally in < 2 seconds!
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Product Graph Framework

Covering Graph

For C = {C1,C2, . . . ,Ck}, let G (Bk) = (P(C ),E (Bk))

E (Bk) is the minimal set of edges representing inclusion
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Examples

{∅}

{C1}

{∅}

{C1,C2}

{C1} {C2}

{∅}

{C1,C2,C3}

{C1} {C2} {C3}

{C1,C2} {C1,C3} {C2,C3}

〈C2,C1,C3〉

Covering graphs for k = 1, k = 2, and k = 3.
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Product Graph Framework

Product Graph

Let GC = G × G (Bk) = (V × P(C ),E1 ∪ E2)

E1 represents E for every subset in P(C )

E2 represents accumulation of a new category via a category node
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Product Graph Search Algorithms

Theorem

A shortest path in GC from 〈s, ∅〉 to 〈t,C 〉 represents an equivalent-cost,

optimal solution for instance 〈s, t,C 〉 in the original graph G.
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optimal solution for instance 〈s, t,C 〉 in the original graph G.

Any shortest path search algorithm will work

E.g., Dijkstra’s algorithm is a natural choice

Theorem

A Dijkstra search in GC runs in O(2k(m + nk + nlogn)) time.
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Product Graph Search Algorithms

Theorem

A shortest path in GC from 〈s, ∅〉 to 〈t,C 〉 represents an equivalent-cost,

optimal solution for instance 〈s, t,C 〉 in the original graph G.

Any shortest path search algorithm will work

E.g., Dijkstra’s algorithm is a natural choice

Theorem

A Dijkstra search in GC runs in O(2k(m + nk + nlogn)) time.

Optimization

Do not explicitly construct the product graph

Materialize the graph implicitly as needed
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Advanced Product Graph Search

We can do better!

We take advantage of two key aspects:

Recent progress in speedup techniques for road networks

Useful structural properties of the product graph

Extend product graph search to incorporate the state-of-the-art
Contraction Hierarchies technique
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Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.
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Increasing Rank
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Many (S)ources/(T)argets

S = s1 s2 s3
... s|S |

= T
t1 t2 t3

...
t|T |
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Many (S)ources/(T)argets
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Pruning

Theorem

LESS runs in O(2k(m′ + nk)) time, where m′ = |E ∪ E ′|.
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2 µ = w(P ′)

2 For 1 ≤ i ≤ k , for all ci ,j ∈ Ci :
1 Prune ci,j if µ < h(s, ci,j) + h(ci,j , t)

After pruning, carry out LESS search, as before
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Experiments

Dataset:

Road network of US/Canada with |V | = 21M and |E | = 52M

Environment:

Server: 2.53GHz CPU, 18GB RAM
Language: C++

Preprocessing:

CH: 18 minutes preprocessing time
Pre-Computed Cluster Distances (PCD): 7 minutes (using CH)

Algorithms:

Unidirectional Dijkstra (U. Dijkstra)
Bidirectional Dijkstra (B. Dijkstra)
Level-Sweeping Search (LESS)
LESS + Pruning (P-LESS)

Queries:

Non-Local Queries: cases where s 6= t

Local Queries: cases where s = t
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Category Density Experiments: Non-Local Queries
(s 6= t, k = 5)
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Category Density Experiments: Local Queries
(s = t, k = 5)
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Category Count Experiments: Non-Local Queries
(s 6= t, g = 10, 000)
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Summary

New product graph framework for efficient graph search

Can solve real-world GTSPP instances to optimality in seconds!

Two competitive algorithms with performance tradeoffs:

Dijkstra: good for highly-local, very-dense queries (no pre-processing
required)

LESS (with pruning): more consistent performance across various sizes
and localities
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Future Work

Better space utilization (e.g., reduced memory overhead, better cache
locality)

More aggressive pruning strategies

Incorporate goal-direction (e.g., A∗)

Parallelization (exploiting subgraph independence)

Approximation algorithms
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Questions?
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