Exact Graph Search Algorithms for Generalized Traveling

Salesman Path Problems

Michael N. Rice Vassilis J. Tsotras

University of California, Riverside (UCR)

11th International Symposium on Experimental Algorithms

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012

1/25

Motivation

b ‘\.J

i w
Exact Algorithms for GTSPP

Motivation

b ‘\.J

i w
Exact Algorithms for GTSPP

Motivation

=N
gorithms for GTSPP

Motivation

S O, o = S) O
Exact Algorithms for GTSPP SEA 2012 2 /25

Motivation

T2 s) A O
SEA 2012 2 /25

Problem Definition

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3/25

Problem Definition

e Weighted, directed graph G = (V, E)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3/25

Problem Definition

e Weighted, directed graph G = (V, E)

Category Set
o C={G,G,...,Cy} defined on G
o Ci={ci1,¢Ci2,---,Cic SV
e Category count k = |C|, category density g = lrg73<xk{|C,-|}

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3/25

Problem Definition

e Weighted, directed graph G = (V, E)

Category Set
o C={G,G,...,Cy} defined on G
o Ci={ci1,¢Ci2,---,Cic SV
e Category count k = |C|, category density g = 1mga<xk{|C,-|}

<i

Satisfying Path
A path, P, satisfies a category set C if, for 1 < i< k, PN C; # 0.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3/25

Problem Definition

e Weighted, directed graph G = (V, E)

Category Set
o C={G,G,...,Cy} defined on G
o Ci={ci1,¢Ci2,---,Cic SV

e Category count k = |C|, category density g = 1rgia<xk{|C,-\}

Satisfying Path
A path, P, satisfies a category set C if, for 1 < i< k, PN C; # 0.

Generalized Traveling Salesman Path Problem (GTSPP)

@ Instance: (s,t,C), for s,t € V and category set C

@ Solution: Minimum-weight satisfying path from s to t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 3/25

GTSPP Example

€11 €2
e Instance: (s, t, C)
o C={G,G}
% C12 o (1 ={c1,c12}
o C2 = {C271, C2’2}
2,1
s . "

GTSPP Example

C11 €22
e Instance: (s, t, C)
o C={C, G}
nlC12 ° Cl - {CL]-? C172}
o & ={c1, 02}
e Solution: is optimal
2,1
S - t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 4 /25

Background and Related Work

@ GTSP introduced in 1960s

@ NP-hard generalization of the classical TSP
@ Goes by many names...

e Errand Scheduling

e Group TSP

e Set TSP

o One-of-a-Set TSP

e Multiple-Choice TSP
TSP with Neighborhoods

e ...
@ Many exact, approximate, and heuristic approaches exist, but. ..

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012

5/ 25

Limitations of Existing Work

@ Existing work relies on complete-graph “abstraction”

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 6 /25

Limitations of Existing Work

@ Existing work relies on complete-graph “abstraction”

Physical Graph Abstract Complete Graph
1.1 .2 C1,2 .1
#C1,2 = C11 €22
Q1
S = t S t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012

6/ 25

Limitations of Existing Work

@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7/25

Limitations of Existing Work

@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

e O(kg) graph searches just to set up the problem for other algorithms

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7/25

Limitations of Existing Work

@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

e O(kg) graph searches just to set up the problem for other algorithms

o Our proposed algorithms have running times O*(2%)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7/25

Limitations of Existing Work

@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

e O(kg) graph searches just to set up the problem for other algorithms
o Our proposed algorithms have running times O*(2¥)

@ Advantageous for problems where k < g

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7/25

Limitations of Existing Work

@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms
Our proposed algorithms have running times O*(2)

Advantageous for problems where k < g
Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

o Very few “errands” per trip (i.e., small k)
o Many choices per “errand” (i.e., large g)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7/25

Limitations of Existing Work

@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms
Our proposed algorithms have running times O*(2)

Advantageous for problems where k < g
Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

o Very few “errands” per trip (i.e., small k)
o Many choices per “errand” (i.e., large g)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7/25

Limitations of Existing Work

@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms
Our proposed algorithms have running times O*(2)

Advantageous for problems where k < g
Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

o Very few “errands” per trip (i.e., small k)
o Many choices per “errand” (i.e., large g)

Canonical Example
e k=5, g=10,000
@ Constructing complete graph would require &~ 1 minute preparation

@ We solve it optimally in < 2 seconds!

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 7/25

Product Graph Framework

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 8/25

Product Graph Framework

Covering Graph
e For C = {Cl, G, ..., Ck}, let G(Bk) = (P(C), E(Bk))
e E(By) is the minimal set of edges representing inclusion

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 8/25

Product Graph Framework

Covering Graph
@ For C={GC,G,...,C}, let G(Bk) = (P(C), E(Bk))

e E(By) is the minimal set of edges representing inclusion

{G} {G, G} {G, &, G}

/ \ P N
16,6 {1G,GLF {6 Gy
{G} {G} P> >t

\ / {Cl}v\{?z}/v{cﬂ

{03 {0} {0}

Covering graphs for k =1, k =2, and k = 3.

Product Graph Framework

Covering Graph
@ For C={GC,G,...,C}, let G(Bk) = (P(C), E(Bk))

e E(By) is the minimal set of edges representing inclusion

{G} {G, G} {G, &, G}

/ \ ~~ | T
16,6 {1G,GLF {6 Gy
{G} {G} |

\ / {Cl}v\{crz}/v{cﬂ

{03 {0} {0}

Covering graphs for k =1, k =2, and k = 3.

v

= = = = = =T

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 8/25

Product Graph Framework

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 9/25

Product Graph Framework

Product Graph

o Let Gc = G x G(By) = (V x P(C), E1 UE)
e E; represents E for every subset in P(C)

e FE, represents accumulation of a new category via a category node

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 9/25

Product Graph Framework

Product Graph
o Let Gc = G x G(By) = (V x P(C), E1 UE)
e E; represents E for every subset in P(C)

e FE, represents accumulation of a new category via a category node

{Cl, Cz} Ci1 .2 Fo--
VAN Tk
}

{Cl {Cz} X nCl2 = T <4ijj
\ / €21 - ‘E} 3
{0} S = t O

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 9/25

Product Graph Framework

Product Graph

o Let Gc = G x G(By) = (V x P(C), E1 UE)
e E; represents E for every subset in P(C)

e FE, represents accumulation of a new category via a category node

{Cl, Cz} Ci1 .2 o
VAN T
}

{G} x MC12 = »L—} jiﬁ
VAR N o

{@} S - t (s,0 ____J‘

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 9/25

Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
optimal solution for instance (s, t, C) in the original graph G.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25

Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
optimal solution for instance (s, t, C) in the original graph G.

@ Any shortest path search algorithm will work

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25

Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
optimal solution for instance (s, t, C) in the original graph G.

@ Any shortest path search algorithm will work

o E.g., Dijkstra's algorithm is a natural choice

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25

Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
optimal solution for instance (s, t, C) in the original graph G.

@ Any shortest path search algorithm will work

o E.g., Dijkstra's algorithm is a natural choice

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25

Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
t

s
optimal solution for instance (s, t, C) in the original graph G.

@ Any shortest path search algorithm will work

o E.g., Dijkstra's algorithm is a natural choice

A Dijkstra search in G¢ runs in O(2%(m + nk + nlogn)) time.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25

Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
optimal solution for instance (s, t, C) in the original graph G.

@ Any shortest path search algorithm will work

o E.g., Dijkstra's algorithm is a natural choice

A Dijkstra search in G¢ runs in O(2%(m + nk + nlogn)) time.

Optimization

@ Do not explicitly construct the product graph
@ Materialize the graph implicitly as needed

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 10 / 25

Advanced Product Graph Search

@ We can do better!

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 11 /25

Advanced Product Graph Search

@ We can do better!
@ We take advantage of two key aspects:

e Recent progress in speedup techniques for road networks

o Useful structural properties of the product graph

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 11 /25

Advanced Product Graph Search

@ We can do better!
@ We take advantage of two key aspects:

e Recent progress in speedup techniques for road networks

o Useful structural properties of the product graph

@ Extend product graph search to incorporate the state-of-the-art
Contraction Hierarchies technique

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012

11/ 25

Contraction Hierarchies: Overview

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 12 /25

Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 12 /25

Contraction Hierarchies: Overview

CH Preprocessing
Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.

Example

Order

AN

A\

Contraction Hierarchies: Overview

CH Preprocessing
Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.

Example

Order

OV

A\

Contraction Hierarchies: Overview

CH Preprocessing
Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.

Example

Order

~{()\/

A\

Contraction Hierarchies: Overview

CH Preprocessing
Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.

Example

Order

A\

Contraction Hierarchies: Overview

CH Preprocessing
Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.

Example

Order

A\

Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.

Order

A\

Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.

Order

A\

Contraction Hierarchies: Overview

CH Preprocessing
Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.
3
3 >
*

Exact Algorithms for GTSPP

Example

Order

A\

SEA 2012 12 /25

Michael Rice (mrice@cs.ucr.edu) (UCR)

Contraction Hierarchies: Overview

CH Query

Bidirectional-Dijkstra search (forward from s, backward from t), relaxing

only “upward-leading” edges.

A\

Example

Order

Contraction Hierarchies: Overview

CH Query

Bidirectional-Dijkstra search (forward from s, backward from t), relaxing

only “upward-leading” edges.

A\

Example

Order

Contraction Hierarchies: Overview

CH Query

Bidirectional-Dijkstra search (forward from s, backward from t), relaxing

only “upward-leading” edges.

A\

Example

Order

Contraction Hierarchies: Overview

CH Query
Bidirectional-Dijkstra search (forward from s, backward from t), relaxing
only “upward-leading” edges.

A\

Example

Order

.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 13 /25

“F z o

CH Path Types

Path Type #1:
Increasing Rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1: Path Type #3:
Increasing Rank Decreasing Rank
ot S 9

/ \
/ \

Sé ot

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

/7 \

AN

Sae

\
\

@

\

ot

Michael Rice (mrice@cs.ucr.edu) (UCR)

Exact Algorithms for GTSPP

SEA 2012

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank
/! AN \

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank
/! AN \

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank
/! AN \

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order
@ Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank
/! AN \

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order
@ Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank
/! AN \

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order
@ Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank
/! AN \

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order
@ Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

ot Vv Sa
”’Q | ‘,’_,’,J \g \o

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order
@ Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

ot °\“/ S s
Py ././;J A \°

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order
@ Upsweep: relax outgoing “upward-leading” edges in increasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

ot °\“/ S s
Py ././;J A \°

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order

@ Upsweep: relax outgoing “upward-leading” edges in increasing rank
@ Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

ot °\“/ S5
Py ././;J A \°

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order

@ Upsweep: relax outgoing “upward-leading” edges in increasing rank
@ Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

ot AV sS4

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order

@ Upsweep: relax outgoing “upward-leading” edges in increasing rank
@ Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

ot AV sS4

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order

@ Upsweep: relax outgoing “upward-leading” edges in increasing rank
@ Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

ot AV sS4

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order

@ Upsweep: relax outgoing “upward-leading” edges in increasing rank
@ Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank

ot AV sS4

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order

@ Upsweep: relax outgoing “upward-leading” edges in increasing rank
@ Downsweep: relax incoming “upward-leading” edges in decreasing rank

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 14 / 25

Many (S)ources/(T)argets

@ @

S: °) > > > @
51 52 S3 "7 55| t1 b t3 7 t\T\

—T

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 15 / 25

S =

T
. N

51

S S3

5|

*]
t

' <

ty t

e
7|

O T <

S1

«O>» «Fr «=>» «=)>» DA

S2 53

9IS

t1 b t3 7 t|T|

Many (S)ources/(T)argets

S1 S22 S3

" §s) ti o t3 7t

Michael Rice (mrice@cs.ucr.edu) (UCR)

Exact Algorithms for GTSPP

Dacr
SEA 2012 15 /25

Many (S)ources/(T)argets

. dl(V) dg(v)

d3(V)

d|s|(v) -

85|

t1 o t3

Michael Rice (mrice@cs.ucr.edu) (UCR)

=] F
Exact Algorithms for GTSPP

Dacr
SEA 2012

15 / 25

Utilizing Structural Properties of the Product Graph

Abstract Product Graph

o F - =] E DA

*Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25

Utilizing Structural Properties of the Product Graph

2

-
[G{CI,Q}][G{q,cs,}][G{Q,cg}] G
1 1
[clay] [clc)] [clG}] @

G

Abstract Product Graph

Level-Sweeping Search (LESS) Algorithm

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25

Utilizing Structural Properties of the Product Graph

: 2

5 i

% [G{CI{.}} J (G{C11C3} J [G{C2’TC3} J G2

?g (ctar J(et@ J(et&) G

é «

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25

Utilizing Structural Properties of the Product Graph

: 2

5 i

% [G{clf}][G{q,a} J(G{C?Cs} j G,

?g (ctar J(et@ J(et&) G

zz «

Level-Sweeping Search (LESS) Algorithm

© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25

Utilizing Structural Properties of the Product Graph

: 2

5 i

% [G{clf}][G{q,a} J(G{C?Cs} j G,

?g (ctar J(et@ J(et&) G

zz «

Level-Sweeping Search (LESS) Algorithm

© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:
@ Sweep the unioned search space for all (’f) subsets per node at level G;

= =7 = = = S aNe)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25

Utilizing Structural Properties of the Product Graph

; G

S f

% [G{CI{.}} J (G{C11C3} J [G{C2’TC3} J G2

?g (ctar)(eter J(etor) G 2 ceal
G i

0 o
~ o

Level-Sweeping Search (LESS) Algorithm

© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:

@ Sweep the unioned search space for all (’f) subsets per node at level G;
@ If i < k, transfer costs to G;y; along (zero-cost) E, edges

= =7 = = v

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25

Utilizing Structural Properties of the Product Graph

[v]

5 r

8 (ctaw J(ctaw J(ct@s) G

'8 o '] o

2 (G{ch} %f@{cz} %f@{g}) Gi ? ? ? ?

8 Y P00V N

=] A A A A

a8 [B
G190} G L I B

< ﬁ 0 PN

S t

Level-Sweeping Search (LESS) Algorithm

© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:

@ Sweep the unioned search space for all (’f) subsets per node at level G;
@ If i < k, transfer costs to G;y; along (zero-cost) E, edges

= = = = o

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25

Utilizing Structural Properties of the Product Graph

E @ e 9 09 @

G}) AAA A

8 (ctaw J(ctaw J(ct@s) G ERE

g VTS

2 [G{ch} %f@{cz} %f@{cz}) Gi ERE

8 2 aaadh

p=i A A A A

a8 [
G190} G L I B

< ﬁ 0 i

0 o
~ o

Level-Sweeping Search (LESS) Algorithm

© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:

@ Sweep the unioned search space for all (’f) subsets per node at level G;
@ If i < k, transfer costs to G;y; along (zero-cost) E, edges

= = = = o

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 16 / 25

Pruning

LESS runs in O(2K(m' + nk)) time, where m' = |E U E'|.

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m' + nk)) time, where m' = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m' + nk)) time, where m' = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)
@ Question: can we reduce the size of the search space?

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m' + nk)) time, where m' = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m' + nk)) time, where m' = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

© Establish upper bound on optimal solution:

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

© Establish upper bound on optimal solution:
@ Construct satisfying path P’ via greedy, nearest-neighbor strategy

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

© Establish upper bound on optimal solution:

@ Construct satisfying path P’ via greedy, nearest-neighbor strategy
@ u=w(P)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

© Establish upper bound on optimal solution:
@ Construct satisfying path P’ via greedy, nearest-neighbor strategy
® 1= w(P)

@ For1<i<k forall¢je C:

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

© Establish upper bound on optimal solution:
@ Construct satisfying path P’ via greedy, nearest-neighbor strategy
® 1= w(P)

@ For1<i<k forall¢je C:
@ Prune ¢ if p < h(s,cij)+ h(cij,t)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

© Establish upper bound on optimal solution:
@ Construct satisfying path P’ via greedy, nearest-neighbor strategy
® 1= w(P)

@ For1<i<k forall¢je C:
@ Prune ¢ if p < h(s,cij)+ h(cij,t)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

© Establish upper bound on optimal solution:
@ Construct satisfying path P’ via greedy, nearest-neighbor strategy
® 1= w(P)

@ For1<i<k forall¢je C:
@ Prune ¢ if p < h(s,cij)+ h(cij,t)

@ After pruning, carry out LESS search, as before

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 17 / 25

Experiments

o Dataset:
o Road network of US/Canada with |V| = 21M and |E| = 52M
@ Environment:
e Server: 2.53GHz CPU, 18GB RAM
o Language: C++
@ Preprocessing:
e CH: 18 minutes preprocessing time
o Pre-Computed Cluster Distances (PCD): 7 minutes (using CH)
Algorithms:

o Unidirectional Dijkstra (U. Dijkstra)
o Bidirectional Dijkstra (B. Dijkstra)
o Level-Sweeping Search (LESS)

o LESS + Pruning (P-LESS)

Queries:

e Non-Local Queries: cases where s # t
o Local Queries: cases where s =t

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012

18 / 25

Category Density Experiments: Non-Local Queries

(s #t,k =5)

10°

/
\
|
|
|
I

10°

i\
Ji N

Query Time (seconds)

b o
N
o D/A/
107 5 a——a—
48— —— U. Dijkstra—8— LESS
. = B. Dijkstra—&— P-LESS
e T T T T T T
10° 10' 10° 10° 10* 10° 10°

Category Density (g)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 19 / 25

Category Density Experiments: Local Queries
(s =t ,k=5)

10° E|
3§t
102 = x\+
3 /D
7 A e
2
s 10 3 * /
g 3 B o
2 = .
g] /
E b e A
> (|
g 10 e E/E y—‘"A/
(e} |
] \ ¥
107 g
3 +
3 X\
7 X
—— U. Dijkstra=8— LESS
1072 — =% B.Dijkstra—a~ P-LESS

T T T T T T T
10° 10’ 10° 10° 10 10° 10°

Category Density (g)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 20 / 25

Category Count Experiments: Non-Local Queries
(s # t,g = 10,000)

] /’*’
102 5 24
E ~ */
Z A +
g 10' o +/ /n/u
- - X
i§ E P a—"
§’ B /n/ /
a
¢} 100; /n A/
] ° A/
] A/
107" A/ Dijkstra—&— P-LESS

T T T T
1 2 3 4

— U. Dijkstra—8— LESS
-« B

T

5 6 7

Category Count (k)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 21 /25

Category Count Experiments: Local Queries
(s =t,g = 10,000)

10' 5§ n/u
E a— +
] a— /A
) /n/ A
_ 10" 5 /‘:| $/
) 3
IR ==
a8 A7+ *
E 107" o /+ x/
£ 3 A i
3 1a + x/
10 o X/
3+ /
7 /><
1 x U. Dijkstra—8— LESS
10 4 B. Dijkstra— P-LESS

T T T T
1 2 3 4

-
IV
T
5 6 7

Category Count (k)

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 22 /25

Summary

@ New product graph framework for efficient graph search

@ Can solve real-world GTSPP instances to optimality in seconds!
@ Two competitive algorithms with performance tradeoffs:

o Dijkstra: good for highly-local, very-dense queries (no pre-processing
required)

o LESS (with pruning): more consistent performance across various sizes
and localities

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 23 /25

Future Work

@ Better space utilization (e.g., reduced memory overhead, better cache
locality)
@ More aggressive pruning strategies

@ Incorporate goal-direction (e.g., A*)

Parallelization (exploiting subgraph independence)

@ Approximation algorithms

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 24 / 25

Questions?

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 25 /25

