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Satisfying Path
A path, P, satisfies a category set C if, for 1 < i< k, PN C; # 0.
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Problem Definition

e Weighted, directed graph G = (V, E)

Category Set
o C={G,G,...,Cy} defined on G
o Ci={ci1,¢Ci2,---,Cic SV

e Category count k = |C|, category density g = 1rgia<xk{|C,-\}

Satisfying Path
A path, P, satisfies a category set C if, for 1 < i< k, PN C; # 0.

Generalized Traveling Salesman Path Problem (GTSPP)

@ Instance: (s,t,C), for s,t € V and category set C

@ Solution: Minimum-weight satisfying path from s to t
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GTSPP Example

€11 €2
e Instance: (s, t, C)
o C={G,G}
% C12 o (1 ={c1,c12}
o C2 = {C271, C2’2}
2,1
s . "




GTSPP Example

C11 €22
e Instance: (s, t, C)
o C={C, G}
nlC12 ° Cl - {CL]-? C172}
o & ={c1, 02}
e Solution: is optimal
2,1
S - t
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Background and Related Work

@ GTSP introduced in 1960s

@ NP-hard generalization of the classical TSP
@ Goes by many names...

e Errand Scheduling

e Group TSP

e Set TSP

o One-of-a-Set TSP

e Multiple-Choice TSP
TSP with Neighborhoods

e ...
@ Many exact, approximate, and heuristic approaches exist, but. ..
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Limitations of Existing Work

@ Existing work relies on complete-graph “abstraction”
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Limitations of Existing Work

@ Existing work relies on complete-graph “abstraction”

Physical Graph Abstract Complete Graph
1.1 .2 C1,2 .1
#C1,2 = C11 €22
Q1
S = t S t
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@ Requires intermediate processing stage during query to compute
many-to-many cost matrix
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@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms
Our proposed algorithms have running times O*(2)

Advantageous for problems where k < g
Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

o Very few “errands” per trip (i.e., small k)
o Many choices per “errand” (i.e., large g)
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Limitations of Existing Work

@ Requires intermediate processing stage during query to compute
many-to-many cost matrix

O(kg) graph searches just to set up the problem for other algorithms
Our proposed algorithms have running times O*(2)

Advantageous for problems where k < g
Most GTSPP problems in personal navigation domain have this
characteristic asymmetry:

o Very few “errands” per trip (i.e., small k)
o Many choices per “errand” (i.e., large g)

Canonical Example
e k=5, g=10,000
@ Constructing complete graph would require &~ 1 minute preparation

@ We solve it optimally in < 2 seconds!
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Product Graph Framework
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Product Graph Framework

Covering Graph
e For C = {Cl, G, ..., Ck}, let G(Bk) = (P(C), E(Bk))
e E(By) is the minimal set of edges representing inclusion
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Product Graph Framework

Covering Graph
@ For C={GC,G,...,C}, let G(Bk) = (P(C), E(Bk))

e E(By) is the minimal set of edges representing inclusion
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Covering graphs for k =1, k =2, and k = 3.
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Product Graph Framework

Product Graph

o Let Gc = G x G(By) = (V x P(C), E1 UE)
e E; represents E for every subset in P(C)

e FE, represents accumulation of a new category via a category node
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Product Graph Framework

Product Graph
o Let Gc = G x G(By) = (V x P(C), E1 UE)
e E; represents E for every subset in P(C)

e FE, represents accumulation of a new category via a category node

{Cl, Cz} Ci1 .2 Fo--
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Product Graph Framework

Product Graph

o Let Gc = G x G(By) = (V x P(C), E1 UE)
e E; represents E for every subset in P(C)

e FE, represents accumulation of a new category via a category node

{Cl, Cz} Ci1 .2 o
VAN T
}

{G} x MC12 = »L—} jiﬁ
VAR N o
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Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
optimal solution for instance (s, t, C) in the original graph G.
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Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
t

s
optimal solution for instance (s, t, C) in the original graph G.

@ Any shortest path search algorithm will work

o E.g., Dijkstra's algorithm is a natural choice

A Dijkstra search in G¢ runs in O(2%(m + nk + nlogn)) time.
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Product Graph Search Algorithms

A shortest path in G¢ from (s,()) to (t, C) represents an equivalent-cost,
optimal solution for instance (s, t, C) in the original graph G.

@ Any shortest path search algorithm will work

o E.g., Dijkstra's algorithm is a natural choice

A Dijkstra search in G¢ runs in O(2%(m + nk + nlogn)) time.

Optimization

@ Do not explicitly construct the product graph
@ Materialize the graph implicitly as needed
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Advanced Product Graph Search

@ We can do better!
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Advanced Product Graph Search

@ We can do better!
@ We take advantage of two key aspects:

e Recent progress in speedup techniques for road networks

o Useful structural properties of the product graph
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Advanced Product Graph Search

@ We can do better!
@ We take advantage of two key aspects:

e Recent progress in speedup techniques for road networks

o Useful structural properties of the product graph

@ Extend product graph search to incorporate the state-of-the-art
Contraction Hierarchies technique
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Contraction Hierarchies: Overview
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Contraction Hierarchies: Overview

CH Preprocessing

Establish strict total ordering of nodes (i.e., the “hierarchy”), and
“contract” nodes in this order.
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Contraction Hierarchies: Overview

CH Preprocessing
Establish strict total ordering of nodes (i.e., the “hierarchy”), and

“contract” nodes in this order.
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Contraction Hierarchies: Overview

CH Query

Bidirectional-Dijkstra search (forward from s, backward from t), relaxing

only “upward-leading” edges.
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Contraction Hierarchies: Overview

CH Query
Bidirectional-Dijkstra search (forward from s, backward from t), relaxing
only “upward-leading” edges.

A\

Example

Order

.
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CH Path Types

Path Type #1:
Increasing Rank
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CH Path Types

Path Type #1: Path Type #3:
Increasing Rank Decreasing Rank
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CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank
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CH Path Types

Path Type #1.: Path Type #2: Path Type #3:
Increasing Rank Bitonic Rank Decreasing Rank
/! AN \

Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
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Alternate Algorithm: Sweeping Search

@ Take the union of “upward-reachable” search spaces from s and t
@ Sweep the unioned search space by node rank order

@ Upsweep: relax outgoing “upward-leading” edges in increasing rank
@ Downsweep: relax incoming “upward-leading” edges in decreasing rank
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Many (S)ources/(T)argets
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Utilizing Structural Properties of the Product Graph

Abstract Product Graph
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Utilizing Structural Properties of the Product Graph

2

-
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Abstract Product Graph

Level-Sweeping Search (LESS) Algorithm
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Utilizing Structural Properties of the Product Graph
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Utilizing Structural Properties of the Product Graph

: 2

5 i

% [G{clf} ][G{q,a} J(G{C?Cs} j G,

?g (ctar J(et@ J(et& ) G

zz «

Level-Sweeping Search (LESS) Algorithm

© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:
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Utilizing Structural Properties of the Product Graph

: 2

5 i

% [G{clf} ][G{q,a} J(G{C?Cs} j G,
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Level-Sweeping Search (LESS) Algorithm

© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:
@ Sweep the unioned search space for all (’f) subsets per node at level G;
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Utilizing Structural Properties of the Product Graph
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Level-Sweeping Search (LESS) Algorithm

© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:

@ Sweep the unioned search space for all (’f) subsets per node at level G;
@ If i < k, transfer costs to G;y; along (zero-cost) E, edges
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© Take the union of “upward-reachable” search spaces from s, t, and C
@ For 0 </ <k, at each level G;:

@ Sweep the unioned search space for all (’f) subsets per node at level G;
@ If i < k, transfer costs to G;y; along (zero-cost) E, edges
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Pruning

LESS runs in O(2K(m' + nk)) time, where m' = |E U E'|.
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Pruning

LESS runs in O(2K(m’ + nk)) time, where m’ = |E U E'|.

@ In practice, its runtime is proportional to the size of the unioned
search space (influenced by g)

@ Question: can we reduce the size of the search space?

o If we can identify suboptimal category nodes, we can remove them

Pruning (requires an admissible heuristic function h: V' x V — Rx)

© Establish upper bound on optimal solution:
@ Construct satisfying path P’ via greedy, nearest-neighbor strategy
® 1= w(P)

@ For1<i<k forall¢je C:
@ Prune ¢ if p < h(s,cij)+ h(cij,t)

@ After pruning, carry out LESS search, as before
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Experiments

o Dataset:
o Road network of US/Canada with |V| = 21M and |E| = 52M
@ Environment:
e Server: 2.53GHz CPU, 18GB RAM
o Language: C++
@ Preprocessing:
e CH: 18 minutes preprocessing time
o Pre-Computed Cluster Distances (PCD): 7 minutes (using CH)
Algorithms:

o Unidirectional Dijkstra (U. Dijkstra)
o Bidirectional Dijkstra (B. Dijkstra)
o Level-Sweeping Search (LESS)

o LESS + Pruning (P-LESS)

Queries:

e Non-Local Queries: cases where s # t
o Local Queries: cases where s =t
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Category Density Experiments: Non-Local Queries
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Category Density Experiments: Local Queries
(s =t ,k=5)
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Category Count Experiments: Non-Local Queries
(s # t,g = 10,000)
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Category Count Experiments: Local Queries
(s =t,g = 10,000)
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Summary

@ New product graph framework for efficient graph search

@ Can solve real-world GTSPP instances to optimality in seconds!
@ Two competitive algorithms with performance tradeoffs:

o Dijkstra: good for highly-local, very-dense queries (no pre-processing
required)

o LESS (with pruning): more consistent performance across various sizes
and localities

Michael Rice (mrice@cs.ucr.edu) (UCR) Exact Algorithms for GTSPP SEA 2012 23 /25



Future Work

@ Better space utilization (e.g., reduced memory overhead, better cache
locality)
@ More aggressive pruning strategies

@ Incorporate goal-direction (e.g., A*)

Parallelization (exploiting subgraph independence)

@ Approximation algorithms
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Questions?
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