
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 351, Number 9, Pages 3725–3741
S 0002-9947(99)01982-0
Article electronically published on January 26, 1999

EXACT HAUSDORFF MEASURE AND INTERVALS OF
MAXIMUM DENSITY FOR CANTOR SETS

ELIZABETH AYER AND ROBERT S. STRICHARTZ

Abstract. Consider a linear Cantor set K, which is the attractor of a linear
iterated function system (i.f.s.) Sjx = ρjx + bj , j = 1, . . . , m, on the line
satisfying the open set condition (where the open set is an interval). It is
known that K has Hausdorff dimension α given by the equation

∑m
j=1 ρα

j = 1,

and that Hα(K) is finite and positive, where Hα denotes Hausdorff mea-

sure of dimension α. We give an algorithm for computing Hα(K) exactly as
the maximum of a finite set of elementary functions of the parameters of the
i.f.s. When ρ1 = ρm (or more generally, if log ρ1 and log ρm are commen-
surable), the algorithm also gives an interval I that maximizes the density
d(I) = Hα(K ∩ I)/|I|α. The Hausdorff measure Hα(K) is not a continuous
function of the i.f.s. parameters. We also show that given the contraction pa-
rameters ρj , it is possible to choose the translation parameters bj in such a
way that Hα(K) = |K|α, so the maximum density is one. Most of the results
presented here were discovered through computer experiments, but we give
traditional mathematical proofs.

1. Introduction

Let Sjx = ρjx + bj, j = 1, . . . , m, be a linear iterated function system on the
line, with contraction ratios satisfying 0 < ρj < 1. We assume the following form
of the open set condition: there exists an open interval I such that SjI ⊆ I and
the images SjI are disjoint. (There are examples where the open set condition
holds, but not with an interval.) Without loss of generality we take I = (0, 1), and
we assume the images SjI are in increasing order, with S1(0) = 0 and S1(1) = 1.
Let K denote the attractor of the i.f.s. Figure 1.1 shows a typical example. It is
a generalized Cantor set with diameter equal to one and Hausdorff dimension α,
where α satisfies

m∑
j=1

ρα
j = 1.(1.1)

We are interested in the exact computation of Hα(K), where Hα denotes Hausdorff
measure in dimension α. To avoid triviality we always assume m ≥ 2 and α < 1. It
is easy to see that Hα(K) ≤ 1, since K can be covered by its iterated images under
the i.f.s., but it is not always true that we have equality (for m ≥ 3). See Falconer
[F] for some examples with Hα(K) = 1.
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Figure 1.1. The first five levels of iteration of the generalized
Cantor set with parameters ρ1 = 0.2, b1 = 0, ρ2 = 0.3, b2 =
0.3, ρ3 = 0.2, b3 = 0.8. α for this example is approximately 0.7524.
Note that vertical bars have been added at island-lake boundaries.

Let µ denote the unique probability measure satisfying

µ =
m∑

j=1

ρα
j µ ◦ S−1

j .(1.2)

Then

µ = cHα

∣∣
K

(1.3)

for some constant c, and clearly Hα(K) is just the reciprocal c−1. Furthermore, the
constant c in (1.3) can be characterized as the maximum density of µ, since Hα

∣∣
K

has maximum density equal to one [F]. For any interval J we define the density

d(J) = µ(J)/|J |α,(1.4)

where |J | denotes the diameter of J . Then

c = sup{d(J) : J ⊆ [0, 1]}.(1.5)

Our goal is not only to find c, but to find an interval J which achieves the supremum,
if it exists. Since the density is preserved under the action of the i.f.s., there is no
uniqueness for intervals of maximum density; in fact, we can essentially cover K
by images of J (up to a set of measure zero), and this gives a simple proof that
Hα(K) = c−1.

The generation of the attractor K from the i.f.s. leads naturally to an increasing
sequence of finite fields Fn of subsets of [0, 1], where F0 is the trivial field (∅ and
[0, 1]), and Fn is generated by intervals of the form SJ ([0, 1]) = Sj1Sj2 · · ·Sjn([0, 1]).
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We call the intervals S1([0, 1]), . . . , Sm([0, 1]) the islands of the first generation, and
the intervals in between we call lakes. Let `j , . . . , `m−1 denote the lengths of these
lakes. Note that we allow `j = 0 in the case of touching islands, and indeed this
case leads to some of the most interesting phenomena. The identity

ρ1 + · · ·+ ρm + `1 + · · ·+ `m−1 = 1(1.6)

and the non–negativity of the ρ’s and `’s are the only restrictions on these param-
eters. From now on we will use these parameters to describe the i.f.s.

The defining self–similar identity (1.2) enables us to compute

µ(SJ([0, 1]) = ρα
j1 · · · ρα

jn
,(1.7)

and so the density of any interval in Fn is expressible as an elementary function of
the parameters. There is an obvious algorithm for finding the maximum density of
intervals in Fn. We say that the i.f.s. has the finiteness property if the supremum
in (1.5) is attained for an interval in Fn, for some n. In Section 2 we show that
the finiteness property holds in many cases: if the lakes are all non–zero, or if
log ρ1 and log ρm are commensurable numbers. We also give an estimate for the
size of n (in the second case it is independent of the lake parameters, but in the
first case it increases without bound if one of the lake parameters tends to zero).
In Section 3 we show that the finiteness property does not hold (generically) if one
of the lake parameters is zero and if log ρ1 and log ρm are incommensurable. In
that case the supremum is not attained, and we show how to obtain a sequence
of intervals of length tending to zero whose densities approximate the supremum
from below. These intervals all contain the point where the two first generation
islands touch. Combining the two results, we have an algorithm for computing the
maximum density in all cases. However, the maximum density is not a continuous
function of the parameters. (In contrast, the probability measure determined by
(1.2) does depend continuously on the parameters [CV].) Also, we can conclude
that if the maximum density is attained, then the finiteness property holds.

In Section 4 we investigate the question of whether we can always choose the lake
parameters, once the ρ’s are chosen, to make the maximum density equal to one.
We show that this is always possible, and it follows from the interesting observation
that the maximum density is one if the maximum density of intervals in F1 is one.
It is not true in general that if the maximum density of intervals in Fn is the same
as for intervals in Fn−1, then the maximum density is attained in Fn−1. This
invalidates the seductive “dumb search” algorithm: compute the maximum density
of intervals in F0,F1,F2, . . . and stops when there is no increase.

In Section 5 we consider the slightly more general case of i.f.s.’s that contain
orientation reversing similarities, so we allow negative ρ’s. The results are quite
similar, except the finiteness property can occur without commensurability.

In Section 6 we discuss briefly the situation in the plane, but our results are all
negative: all the obvious generalizations of our results are false.

Most of the results in this paper were first conjectured on the basis of extensive
numerical experiments. We will not report in detail about these experiments, since
the proofs stand on their own. The basic experimental procedure is described in
[STZ]. There is one conjecture suggested by the experimental evidence that we
have not succeeded in proving: when m = 3, the maximum density of an interval of
the form [0, x] occurs when x = Sk

2 (1) for some k. It is not clear what the analogous
conjecture should be for m > 3.
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Figure 1.2. The density of intervals of the form [0, x] as a function
of x of the i.f.s. given by ρ1 = 0.2, b1 = 0, ρ2 = 0.3, b2 = 0.3, ρ3 =
0.2, b3 = 0.8, the same i.f.s. as in Figure 1.1.

The proofs of our theorems are based on calculus, specifically Lemmas 2.2 and
3.1. However, the functions we are maximizing are highly non–differentiable. For
example, Figure 1.2 shows the graph of the density d([0, x]) of intervals of the form
[0, x] as a function of x for a typical example. The secret of success is to find a
differentiable upper bound for the non–differentiable function with equality holding
at the point where the derivative is zero.

After this work was completed, we became aware of earlier work of Marion
[M1], [M2], on these problems (we are grateful to Rolf Riedi for pointing out these
references). Our Theorems 2.4 and 4.2 were first proved in [M1], but the proofs we
give are considerably shorter.

2. Finiteness results

Let Fk denote the finite field of sets generated by k applications of the i.f.s.
to [0, 1]. We call Fk the k–th generation field. Thus F1 is generated by the sets
Sj([0, 1]), which we call the first generation islands. In this section we give results
that say that an interval of maximum density will occur in Fk, with estimates on
the value of k. Since the density is preserved under the action of Sj , and also S−1

j

provided the interval lies in Sj([0, 1]), we have the following blow–up principle:

Lemma 2.1. If I is any interval, there exists another interval I ′, not contained in
a first generation island, with the same density. Moreover, if one endpoint of I is
0 or 1, then I ′ can be chosen with the same endpoint.
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Proof. If I ⊆ Sj([0, 1]), then S−1
j I is a larger interval of the same density. We

iterate this procedure until we obtain I ′ not lying in any first generation island. If
0 is the left endpoint of I, then we must have j = 1 in all stages of this procedure,
so 0 is also the left endpoint of I ′. Similarly if 1 is the right endpoint. Q.E.D.

Thus we need only consider intervals not contained in first generation islands.
The following elementary calculus lemma is the key tool in studying densities of
intervals whose length is bounded from below.

Lemma 2.2. Suppose 0 < α < 1, p ≤ p0, a ≥ a0 and y ≥ λxα. Then

0 < x ≤ (a0λ/p0)1/(1−α)(2.1)

implies
p− y

(a− x)α
<

p

aα
.(2.2)

Proof. Define f(x) = (p − λxα)/(a − x)α. Note that (p − y)/(a − x)α ≤ f(x) by
the assumption y ≥ λxα, and p/aα = f(0), so it suffices to show f ′(x) < 0 on
the interval (2.1). A direct computation gives f ′(x) = α(a− x)−α−1(p− aλxα−1),
which is negative if x < (aλ/p)1/(1−α) (this uses 0 < α < 1). This holds on the
interval (2.1) because a ≥ a0 and p ≤ p0. Q.E.D.

Let ρmax = max(ρ1, . . . , ρm) and ρmin = min(ρ1, . . . , ρm). Our first finiteness
result concerns the maximum density of intervals of the form [0, x]. It will be useful
for obtaining non–finiteness results in Section 3.

Theorem 2.3. Let k be the smallest integer such that

ρk
max ≤ (ρ1ρ

α
m)1/(1−α).(2.3)

Then the maximum density of intervals of the form [0, x] is attained by an interval
in Fk.

Proof. By the blow–up principle we can take x0 ≥ ρ1 in the interval [0, x0] of
maximum density (by compactness, the maximum is attained). Let [0, a] be the
smallest interval in Fk that contains [0, x]. Then x0 = a − x for some x ≤ ρk

max,
because ρk

max is the length of the largest island generating Fk (the point x0 cannot
fall in a lake of Fk because then [0, x0] would not have maximum density). Set
ρ = µ([0, a]) and y = µ([a − x, a]). Then d([0, a − x]) = (p − y)/(a − x)α and
d([0, a]) = p/aα. Thus the conclusion (2.2) of Lemma 2.2 would give d([0, a−x]) <
d([0, a]) unless x = 0, which implies that [0, a] attains the maximum density.

To complete the proof we will verify the hypotheses of Lemma 2.2 with p0 = 1,
a0 = ρ1 and λ = ρα

m. We already know a ≥ ρ1, and p ≤ 1 is trivial. To verify
y ≥ λxα we observe that y/xα = d([a − x, a]), and by the blow–up principle this
is equal to the density of an interval of the form [b, 1] which contains Sm([0, 1]).
An obvious lower bound for the density of such an interval is ρα

m (this is a lower
bound for the measure, and 1 is an upper bound for the length). The hypotheses
of Lemma 2.2 are verified, and condition (2.1) follows from x ≤ ρk

max and the
hypothesis (2.3). Q.E.D.

Let `min = min(`1, . . . , `m−1) be the minimum length of the lakes separating
the first generation islands. We have `min = 0 if two islands touch, and this is the
case when finiteness may fail. With a minimum separation `min > 0 we have the
following quantitative finiteness result. The same result, with a slightly different
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estimate for k, was proved in [M1] (Corollaire 6.4). In fact this work treats self–
similar sets in Rn of dimension less than one.

Theorem 2.4. Assume `min > 0, and let k be the smallest integer such that

2ρk
max ≤ (`min)1/(1−α)(min(ρ1, ρm))α/(1−α).(2.4)

Then the maximum density is attained for an interval in Fk.

Proof. By the blow–up principle we may restrict attention to intervals containing
at least one lake, so we have the lower bound `min for the length of the interval,
which implies by compactness that the maximum density is attained. If [x1, x2] is an
interval of maximum density we let [z1, z2] be the smallest interval in Fk containing
[x1, x2]. Write a = z2 − z1 for the length of the interval, x = (z2 − z1)− (x2 − x1)
for the difference of the lengths, p = µ([z1, z2]) and y = µ([z1, x1]) + µ([x2, z2]),
so that d([x1, x2]) = (p − y)/(a − x)α and d([z1, z2]) = p/aα. Once again we will
complete the proof by applying Lemma 2.2.

We take p0 = 1 and a0 = `min, so that a ≥ a0 and p ≤ p0. We choose λ =
(min(ρ1, ρm))α. For the right side interval [x2, z2] we have

µ([x2, z2])/(z2 − x2)α ≥ ρα
m

as in the proof of Theorem 2.3, and similarly for the left side interval [z1, x1] we
have

µ([z1, x1])/(x1 − z1)α ≥ ρα
1 .

Thus we have

y ≥ λ((z2 − x2)α + (x1 − z1)α) ≥ λxα

since 0 < α < 1. Thus the hypotheses of Lemma 2.2 are verified, and condition
(2.1) follows from (2.4) since x is the sum of two terms, x1 − z1 and z2 − x2, each
being at most ρk

max. Q.E.D.

Even if we allow touching islands, we can still obtain a finiteness result if we
assume a (logarithmic) arithmetic relation between ρ1 and ρm. Of course this is
not a generic condition, and in the next section we will show that it is close to being
necessary. Notice that in the next theorem the condition on k depends only on the
contraction ratios.

Theorem 2.5. Suppose there exist positive integers n1 and nm such that ρn1
1 =

ρnm
m . Let k be the smallest integer satisfying

2ρk
max ≤ (ρminρ

n1
1 )1/(1−α)(min(ρ1, ρm))α/(1−α).(2.5)

Then the maximum density is attained for an interval in Fk.

Proof. We claim that it suffices to look at intervals of length at least ρminρ
n1
1 . To

see this we need a variant of the blow–up principle that shows us how to replace
smaller intervals with larger intervals of greater density. Start with any interval not
contained in a first generation island. If it actually contains a first generation island
its length is at least ρmin, and we are done. If not, it begins at a point in Sj([0, 1])
and ends at a point in Sj+1([0, 1]). Now consider the intervals J = SjS

nm
m ([0, 1])

and J ′ = Sj+1S
n1
1 ([0, 1]) which lie on the extreme ends of the lake Lj separating

Sj([0, 1]) and Sj+1([0, 1]). These intervals have length ρjρ
nm
m = ρjρ

n1
1 and ρj+1ρ

n1
1 ,

so if our interval contains one of them we are done.
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Figure 2.1. The maximum density versus `1 for the first three
iterations of the i.f.s with contraction parameters ρ1 = 0.3, ρ2 =
0.2, ρ3 = 0.2. The maximum density for this example occurs in F3.

Next suppose our interval begins with a point in J and ends with a point in J ′,
say I = J0 ∪Lj ∪J ′0 where J0 = I ∩J and J ′0 = I ∩J ′ and Lj is the lake separating
J and J ′. We generate another interval I1 = J1 ∪ Lj ∪ J ′1 by blowing up J0 to J1

and J ′0 to J ′1 by a factor ρ−n1
1 = ρ−nm

m ; specifically, we set J1 = SjS
−nm
m S−1

j J0 and
J ′1 = Sj+1S

−n1
1 S−1

j+1J
′
0. Note that SjS

nm
m S−1

j maps J onto Sj([0, 1]) and fixes the
right endpoint, while Sj+1S

n1
1 S−1

j+1 maps J ′ onto Sj+1([0, 1]) and fixes the left end
point, so I1 is an interval. Also

d(I) =
µ(J0) + µ(J ′0)

(|J0|+ `j + |J ′0|)α
,

while

d(I1) =
ρ−nmα

m µ(J0) + ρ−n1α
1 µ(J ′0)

(ρ−nm
m |J0|+ `j + ρ−n1

1 |J ′0|)α

=
µ(J0) + µ(J ′0)

(|J0|+ ρ−n1
1 `j + |J ′0|)α

,

so d(I1) ≥ d(I). By iterating this blow–up construction we eventually arrive at an
interval containing either J or J ′, and we are done. This completes the proof of
the existence of the lower bound ρminρn1

1 for the length of the interval.
The rest of the argument is identical to the proof of Theorem 2.4, except we take

a0 = ρminρn1
1 . Q.E.D.
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Figure 2.2. The island configurations which give rise to the max-
imum densities for the i.f.s. of Figure 2.1 for four representative
values of `1.

Corollary 2.6. If all ρj are equal to ρ, then the maximum density is attained by
an interval in Fk where k is the smallest integer satisfying k ≥ (2 + α)/(1 − α) +
log 2/ log(1/ρ).

Figure 2.1 shows the maximum densities of intervals in Fk for k = 1, 2, 3, as a
function of the lake parameter `1 in a typical example (ρ1, ρ2, ρ3 fixed) with m = 3
and ρ1 = ρ3. In this case, the maximum density occurs already in F3, for all values
of `1 (when m = 3 the second lake parameter `2 is determined by (1.6)). Figure
2.2 shows the island configurations that give rise to these maximum densities for
typical values of `1.

3. Non–finiteness results

We consider now the case when the contraction ratios ρ1 and ρm do not satisfy
the arithmetic condition of Theorem 2.5. We will need another elementary calculus
lemma.

Lemma 3.1. For positive constants a1, a2, q1, q2, and 0 < α < 1, consider the
function

F (x) =
q1 + q2x

α

(a1 + a2x)α
(3.1)

of a positive variable. Then F attains the maximum value of(
(q1/aα

1 )1/(1−α) + (q2/aα
2 )1/(1−α)

)1−α
(3.2)
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at the point

x0 = (a1q2/a2q1)1/(1−α).(3.3)

Furthermore, F (x) is strictly increasing on 0 ≤ x ≤ x0, and strictly decreasing on
x > x0.

Proof. We directly compute F ′(x) = α(a1+a2x)−α−1(a1q2x
α−1−a2q1), so F ′(x0) =

0 and F ′(x) > 0 when 0 < x < x0, while F ′(x) < 0 for x > x0. Q.E.D.

Theorem 3.2. Suppose Sj([0, 1]) and Sj+1([0, 1]) are touching islands, and ρ1 and
ρm are non–arithmetic in the sense that ρn1

1 6= ρnm
m for any positive integers n1 and

nm. Then the maximum density of intervals beginning in Sj([0, 1]) and ending in
Sj+1([0, 1]) is

(d1/(1−α)
1 + d

1/(1−α)
2 )1−α,(3.4)

where d1 denotes the maximum density of intervals of the form [0, x], and d2 denotes
the maximum density of intervals of the form [y, 1]. Furthermore, with the exception
of a set of Lebesgue measure zero in the parameters ρ1, . . . , ρm, `1, . . . , `m−1, the
maximum value (3.4) is not attained.

Proof. Any such interval can be written I = I1 ∪ I2 where I1 ⊆ Sj([0, 1]) extends
to the right endpoint of Sj([0, 1]), and I2 ⊆ Sj+1([0, 1]) begins at the left endpoint
of Sj+1([0, 1]). For any positive integers k1 and k2 we can form the interval

I(k1, k2) = SjS
k1
m S−1

j I1 ∪ Sj+1S
k2
1 S−1

j+1I2,

which contracts I1 by a factor of ρk1
m and I2 by a factor of ρk2

1 , keeping their common
endpoint fixed. Then

d(I(k1, k2)) =
ραk1

m q1 + ραk2
1 q2

(ρk1
m a1 + ρk2

1 a2)α
,(3.5)

where aj = |Ij | and qj = µ(Ij) for j = 1, 2. Notice that this is exactly of the form
(3.1) with x = ρk2

1 ρ−k1
m , and by the non–arithmetic hypothesis x takes on a dense

set of values on the positive line. Thus (3.5) has maximum value

(d(I1)1/(1−α) + d(I2)1/(1−α))1−α(3.6)

by Lemma 3.1, and the maximum is attained if and only if

(a1q2/a2q1)1/(1−α) = ρk2
1 ρ−k1

m(3.7)

for some integers k1 and k2.
Since (3.6) is an increasing function of d(I1) and d(I2), it is clear that its maxi-

mum is attained when d(I1) and d(I2) assume their maxima, and these are clearly
d1 and d2, proving (3.4). Furthermore, the maximum of (3.5) for this choice of I1

and I2 will not be attained unless (3.7) holds. Now Theorem 2.3 (and its reverse
analog) implies that I1 and I2 belong to Fk for some k. So the set of exceptional
values for which the maximum is attained is contained in the set of solutions to
(3.7) for all integer values of k1 and k2, where a1 and a2 are lengths and q1 and
q2 are measures of sets in Fk. For each fixed choice of k1, k2, a1, a2, q1, q2, the
set of solutions to (3.7) clearly has measure zero, so the entire exceptional set is
contained in a countable union of sets of measure zero. Q.E.D.
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Theorem 3.3. Suppose ρ1 and ρm are non–arithmetic. Define k, k1 and k2 in
terms of the i.f.s. parameters as the least integers such that

2ρk
max ≤ λ1/(1−α)(min(ρ1, ρ2))α/(1−α),(3.7)

ρk1
max ≤ (ρ1ρ

α
m)1/(1−α),(3.8)

ρk2
max ≤ (ρα

1 ρm)1/(1−α),(3.9)

where λ is the minimum of the ρj and the non–zero `j. Then the maximum density
is equal to the maximum of the finite set of values d(I) as I varies over all intervals
in Fk, and (if at least one `j = 0) (d(I1)1/(1−α) + d(I2)1/(1−α))(1−α) as I1 varies
over all intervals of the form [0, x] in Fk1 and I2 varies over all intervals of the
form [y, 1] in Fk2 .

Proof. By a minor variant of Theorem 2.4, the maximum density over all intervals
that contain either a non–zero lake or a first generation island is attained by an
interval in Fk (since the length of such intervals is bounded below by λ). The
only other possibility is that one `j = 0, in which case we apply Theorem 3.2,
which means we have to consider also the values of (3.4). But by Theorem 2.3 the
maximum value of d1 is attained for an interval of the form [0, x] in Fk1 , and by
the reverse analog the maximum value of d2 is attained by an interval of the form
[y, 1] in Fk2 . Q.E.D.

Corollary 3.4. In all cases, either the maximum density is attained for some in-
terval in Fk for some k, or it is never attained.

Proof. In the arithmetic case Theorem 2.5 says that the maximum density is at-
tained in some Fk, while in the non–arithmetic case Theorem 3.3 says either the
maximum density is attained in some Fk or it is never attained. Q.E.D.

It is now easy to see that the maximum density is not a continuous function of
the i.f.s. parameters. To be specific, take m = 3 and `1 = 0. It is not difficult
to see that an interval of maximum density cannot contain the second lake (this
follows from Lemma 4.1 below), and so we need only consider intervals beginning
in S1([0, 1]) and ending in S2([0, 1]). If ρ1 and ρ3 are non–arithmetic then Theorem
3.2 applies, and the maximum density is

(d1/(1−α)
1 + 1)1−α,(3.10)

where d1 is the maximum density of intervals of the form [0, x], since it is easy to
see that one is the maximum density of intervals of the form [y, 1]. Furthermore,
the density d1 is attained in Fk for suitable k, but the density (3.10) is not attained
(with the exception of a set of parameter values of measure zero). In contrast, if
ρ1 and ρ3 are arithmetic, then by Theorem 2.5 the maximum is attained in Fk,
and this maximum value is strictly less than (3.10). But (3.10) varies continuously
with the parameters. Thus for any ρ1 and ρ3 that are arithmetic, the lim sup of
the maximum density for neighboring values exceeds the value at the point.

Figure 3.1, similar to Figure 2.1, shows the maximum density of intervals in
Fk for 0 ≤ k ≤ 5 as a function of the lake parameter `1 in a typical example
with m = 3, but this time ρ1 and ρ3 are non–arithmetic. In this case, for values
of `1 close to zero, the maximum density increases with k. Figure 3.2 shows the
corresponding island configurations for this example, with the size of the intervals
tending to zero.
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Figure 3.1. The maximum density versus `1 for F0 − F5 of the
i.f.s. with contraction parameters ρ1 = 0.1, ρ2 = 0.45, ρ3 = 0.2.
The maximum density for this example does not occur in any Fk.

4. When is the maximum density one?

The maximum density is never less than one, since d([0, 1]) = 1. In this section
we give a new proof that the maximum density is one if and only if the maximum
density of all intervals in F1 is one ([M1], Theorem 7.1). In other words, if you are
ever going to get off the ground, you have to do it right away! We will then show
that, given any contraction ratios ρ1, . . . , ρm with ρ1 + · · ·+ ρm < 1, it is possible
to choose the lake parameters `1, . . . , `m−1 so that the maximum density is one.
This is clear in the examples shown in Figures 2.1 and 3.1.

Lemma 4.1. Fix j < k, and assume d(Ijk) ≤ 1, where Ijk is the interval that
extends from the beginning of Sj([0, 1)) to the end of Sk([0, 1]). For any interval I
that begins in Sj([0, 1]) and ends in Sk([0, 1]),

d(I) ≤ max
(
1, d(I ∩ Sj([0, 1]), d(I ∩ Sk([0, 1]))

)
.(4.1)

Furthermore, the inequality is strict unless d(I) = 1.

Proof. Let M denote the right side of (4.1). We can write

d(I) =
p + ρα

j+1 + · · ·+ ρα
k−1 + q

(a + `j + ρj+1 + · · ·+ ρk−1 + `k−1 + b)α
,(4.2)

where a = |I ∩ Sj([0, 1])|, p = µ(I ∩ Sj([0, 1])), b = |I ∩ Sk([0, 1])| and q =
µ(I ∩ Sk([0, 1])). Note that p ≤ Maα and q ≤ Mbα by the definition of M ,
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F0

F1

F2

F3

F4

F5

Figure 3.2. The island configurations which give rise to the max-
imum densities for the first five iterations of the i.f.s. of Figure 3.1
for `1 = 0.1.

and also a ≤ ρj and b ≤ ρk. Since M ≥ 1 we obtain d(I) ≤ MQ, where

Q =
aα + ρα

j+1 + · · ·+ ρα
k−1 + bα

(a + `j + ρj+1 + · · ·+ ρk−1 + `k−1 + b)α
,(4.3)

so it remains to show that Q ≤ 1, with strict inequality unless a = ρj and b = ρk.
Now Q = Q(a, b) is a function of the form (3.1) in both variables, so we can

apply Lemma 3.1. By hypothesis we have Q(ρj, ρk) = d(Ijk) ≤ 1, and we need
to show that Q(a, b) ≤ 1 for all a ≤ ρj and b ≤ ρk. First fix a = ρj and look at
Q(ρj, b) as a function of b. By Lemma 3.1 it first increases until b = x0, where it
assumes a value > 1 (because q2 = a2 = 1 in (3.1)). But also lim

b→∞
Q(ρj , b) = 1,

so Q(ρj , ρk) ≤ 1 implies ρk < x0, since Q(ρj, b) > 1 for b ≥ x0. Thus Q(ρj , b) is
increasing for b ≤ ρk; hence Q(ρj , b) ≤ 1 for b ≤ ρk, with strict inequality unless
b = ρk.

Now fix b ≤ ρk and look at Q(a, b) as a function of a. We can run the exact same
argument as before because we know Q(ρj , b) ≤ 1. Thus Q(a, b) ≤ 1 for a ≤ ρj and
b ≤ ρk, with strict inequality unless a = ρj and b = ρk. Q.E.D.

Theorem 4.2 ([M1], Theorem 7.1). If the maximum density of intervals in F1 is
≤ 1, then the maximum density of all intervals is ≤ 1.

Proof. Since Ijk ∈ F1, the hypothesis of Lemma 4.1 holds for all j < k. If the
maximum density is attained by an interval I, then strict inequality in (4.1) is
impossible, so d(I) = 1. On the other hand for intervals of the form I ∩Sj([0, 1]) or
I∩Sk([0, 1]) in Lemma 4.1, the maximum density is attained, since by the blow–up
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principle we can put a lower bound of ρm or ρ1 on the length of an interval of equal
density (in fact Theorem 2.3 shows the maximum is attained in some Fk). But
(4.1) implies that this gives the maximum density over all intervals. Q.E.D.

To verify the hypotheses of the theorem, it suffices to show that d(Ijk) ≤ 1 for
all j < k. In terms of the i.f.s. parameters this can be written

`j + · · ·+ `k−1 ≥ (ρα
j + · · ·+ ρα

k )1/α − (ρj + · · ·+ ρk).(4.4)

In particular, if we fix the contraction ratios ρ1, . . . , ρm, then the set of lake param-
eters `1, . . . , `m−1 in Rm−1 for which the maximum density is one forms a convex
polytope given by the lower bounds (4.4) and the positivity conditions `j ≥ 0,
intersected with the hyperplane

`1 + · · ·+ `m−1 = 1− (ρ1 + · · ·+ ρm).(4.5)

We will show that this polytope is always non–empty, and in fact (for m ≥
3) has non–empty interior in the hyperplane (4.5). To see this we introduce the
abbreviation

cjk = (ρα
j + · · ·+ ρα

k )1/α − (ρj + · · ·+ ρk).(4.6)

Then the equations for the polytope are of the form

`j + · · ·+ `k−1 ≥ cjk for 1 ≤ j < k ≤ m,(4.7)

`1 + · · ·+ `m−1 = c1m(4.8)

(this uses ρα
1 + · · ·+ ρα

m = 1).

Lemma 4.3. If 1 ≤ i < j < k ≤ m then

cij + cjk < cik.(4.9)

Proof. Let x = ρα
i + · · · + ρα

j−1, y = ρα
j , z = ρα

j+1 + · · · + ρα
k and p = 1/α. Note

that x, y, z are positive and p > 1. Then (4.9) is just

(x + y)p + (y + z)p < yp + (x + y + z)p.(4.10)

But we have equality when z = 0, and the z–derivatives of both sides of (4.10)
clearly satisfy p(y + z)p−1 < p(x + y + z)p−1. Q.E.D.

Theorem 4.4. Let cjk be positive constants for 1 ≤ j < k ≤ m and m ≥ 3
satisfying (4.9). Then there exist solutions of (4.7) and (4.8); for example{

`m−1 = c(m−1)m,

`j = cjm − c(j+1)m, 1 ≤ j < m− 1.
(4.11)

Furthermore, the set of solutions has non–empty interior in the hyperplane (4.8).

Proof. It is easy to verify that (4.11) gives a solution, for we have `j + · · ·+ `m−1 =
cjm, and `j + · · ·+ `k−1 = cjm − ckm if k < m. Thus (4.8) follows by setting j = 1
in the first equation, and (4.7) follows from (4.9).

To show that the solution set has non–empty interior we reason by induction on
m. When m = 3 we have only three conditions, `1+`2 = c13, `1 ≥ c12 and `2 ≥ c23.
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Thus we may take any `1 satisfying c12 ≤ `1 ≤ c13− c23, and this interval has non–
empty interior by the strict inequality in (4.9) (then `2 = c13 − `1 is determined).
For the induction step, we choose `m−1 to satisfy

c(m−1)m ≤ `m−1 ≤ min
k<m−1

ckm − ck(m−1).(4.12)

This interval has non–empty interior by the strict inequality in (4.9). We define
new constants c̃jk for 1 ≤ j < k ≤ m− 1 by{

c̃jk = cjk if k ≤ m− 2,

c̃j(m−1) = cjm − `m−1.
(4.13)

We verify that c̃jk satisfy (4.9) for 1 ≤ i < j < k ≤ m− 1, since this follows from
the analogous properties of cjk. By the induction hypothesis, there is an open set
of solutions to the inequalities

`j + · · ·+ `k−1 ≥ c̃jk for 1 ≤ j < k ≤ m− 1(4.14)

in the hyperplane (in Rm−2)

`1 + · · ·+ `m−2 = c̃1(m−1).(4.15)

To complete the proof we need to show that if `m−1 satisfies (4.12) and `1, . . . , `m−2

satisfy (4.14) and (4.15), then `1, . . . , `m−1 satisfy (4.7) and (4.8). Now (4.8) is just
(4.15) in view of the second equation in (4.13), and (4.7) for k < m−1 is just (4.14)
in view of the first equation in (4.13). Thus it remains to verify (4.7) for k = m and
k = m−1. Note that when j = m−1 and k = m then (4.7) is the left inequality in
(4.12). When j < m−1 and k = m then (4.7) is `j +· · ·+`m−2 ≥ cjm−`m−1, which
follows from (4.14) and the second equation in (4.13). Finally, when k = m − 1
and j < k then (4.14) and (4.13) yield `j + · · ·+ `m−2 ≥ c̃j(m−1) = cjm − `m−1 and
cjm − `m−1 ≥ cj(m−1) by the right inequality in (4.12). Q.E.D.

Corollary 4.5. Given ρ1, . . . , ρm with α < 1, the choice{
`j = (ρα

j + · · ·+ ρα
m)1/α − (ρα

j+1 + · · ·+ ρα
m)1/α − ρj for j < m− 1,

`m−1 = (ρα
m−1 + ρα

m)1/α − ρm−1 − ρm

(4.16)

yields an i.f.s. for which the maximum density is one. For m ≥ 3, we may increase
`j slightly for j < m− 1 and obtain the same conclusion.

5. Orientation reversing similarities

In this section we consider i.f.s.’s which contain orientation reversing similarities,
which simply means that we allow some of the ρj to be negative. We again normalize
by assuming that Sj((0, 1)) are disjoint subintervals of (0, 1) in increasing order,
with S1([0, 1]) containing 0 and Sm([0, 1]) containing 1. This means either ρ1 > 0
and S1x = ρ1x, or ρ1 < 0 and S1x = |ρ1|(1 − x); similarly, either ρm > 0 and
Smx = ρmx + 1− ρm, or ρm < 0 and Smx = 1− |ρm|x.

We indicate briefly how to extend the results of Sections 2, 3 and 4 to this
case. The results of Section 4 extend easily, with the same proof. For the results
of Sections 2 and 3 we have to consider three cases, according to the signs of ρ1

and ρm.

Case I. ρ1 and ρm are both positive. The results are the same, and the proofs are
essentially the same.
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Case II. ρ1 and ρm are both negative. In this case we can replace the i.f.s. with its
iterated square, i.e., all compositions SjSk. When we do this, the transformation
S1Sm maps 0 to 0 with contraction ratio ρ1ρm, and SmS1 maps 1 to 1 with the
same contraction ratio. Thus Theorem 2.5 always applies. In terms of the original
i.f.s., an interval of maximum density occurs in Fk as soon as

2ρk
max ≤ ρ

2/(1−α)
min (ρ1ρm)(1+α)/(1−α)(5.1)

(of course ρmax and ρmin are defined in terms of |ρj |). Since the finiteness property
is always valid, the results of Section 3 are irrelevant.

Case III. Exactly one of ρ1 and ρm is positive, and one is negative. For example,
suppose ρ1 < 0 and ρm > 0. In this case we will again have the finiteness property,
with a maximum density interval in Fk provided

2ρk
max ≤ (ρmin|ρ1ρm|)1/(1−α)(min |ρ1|, |ρm|)α/(1−α).(5.2)

This requires a slight modification of the proof of Theorem 2.5 as follows. We
need to show that we can take ρmin|ρ1ρm| as a lower bound for an interval of
maximum density. We take J = SjSm([0, 1]) if Sj is orientation preserving, and
J = SjS1Sm([0, 1]) if Sj is orientation reversing; in either case J lies at the left
end of the lake Lj. Similarly, we take J ′ = Sj+1S1Sm([0, 1]) if Sj+1 is orientation
preserving and J ′ = Sj+1Sm([0, 1]) if Sj+1 is orientation reversing; again J ′ lies
at the right end of Lj . Note that ρmin|ρ1ρm| is a lower bound for the length
of any of these intervals. For our blow–up procedure we set J1 = SjS

−1
m SjJ0

if Sj is orientation preserving, and J1 = SjS1S
−1
m S−1

1 S−1
j J0 if Sj is orientation

reversing. Also J ′1 = Sj+1S1S
−1
m S−1

1 S−1
j J ′0 if Sj+1 is orientation preserving, and

J ′1 = Sj+1S
−1
m SjJ0 if Sj+1 is orientation reversing. The rest of the proof is the

same.

6. Sierpinski gaskets

We indicate briefly in this section why the results of this paper will not generalize
to linear self–similar sets in higher dimensional Euclidean spaces. One obvious
obstacle is that our applications of calculus in Lemmas 2.2 and 3.1 require α < 1.
But even if we were to limit attention to self–similar sets of dimension α < 1, it is
unlikely that the same results would hold.

Consider the usual Sierpinski gasket on an equilateral triangle T of diameter one.
The i.f.s. is given by S1(x, y) =

(
1
2x, 1

2y
)
, S2(x, y) =

(
1
2x + 1

2 , 1
2y

)
and S3(x, y) =(

1
2x + 1

4 , 1
2y +

√
3

4

)
. The dimension α is log 3/ log 2, and the diameter is one. The

analogues of the fields Fk are generated by the images of the equilateral triangle T
under k iterations of the i.f.s. The maximum density (for the probability measure
satisfying (1.2)) of sets in F1 is one, achieved by the triangle T and its images SjT ,
because a union of two small triangles, say S1T ∪ S2T , already has diameter one,
and measure only 2/3. Nevertheless the maximum density of subsets of the gasket
is greater than one. A search among all convex sets in F3 yielded the set pictured
in Figure 6.1 with density 1.098405. (Any set can be replaced by its convex hull
without decreasing the density, so it is reasonable to limit any search algorithm to
convex sets. However, it does not follow that the maximum density among Fk sets
is achieved by a convex set, since the convex hull of a set in Fk may not belong to
Fk. Also, the time involved in searching all sets in Fk rapidly becomes impractical,
already when k = 3.)
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Figure 6.1. Set of maximum density (1.098405) in F3 of the Sier-
pinski gasket.
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Figure 6.2. At every Fk more measure may be added to the set
without increasing the diameter, so the maximum density is never
reached.

But this set cannot have maximum density, because we can enlarge the set
without increasing the diameter. There are exactly three pairs of points (labeled
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Aj , Bj in Figure 6.1) in the set which achieve the diameter 7/8. If we take a circular
arc centered at A1 of radius 7/8 starting from B1 and extending midway down the
deleted lower right triangle, followed by a circular arc centered at A2 of radius 7/8
continuing down to B2, we trace the boundary of a slice of the deleted triangle that
can be added to our set without increasing the diameter (see Figure 6.2). It is clear
that this slice has positive measure, so the enlarged set has greater density.

It is clear that this enlarging process could be applied to any set in any Fk.
Thus the finiteness property does not hold for the Sierpinski gasket. But it fails for
a reason different from the non–arithmetic case in Section 3, since it is not hard
to show that the maximum density is attained. To see this we observe that the
blow–up principle (the analog of Lemma 2.1) continues to hold, so we can restrict
attention to sets not contained entirely in some triangle SjT . If the set contains
points in all three triangles, then we have a lower bound of 1/2 for its diameter. If
it lies in the union of two triangles, say S1T ∪S2T , then we can blow up by a factor
of 2k about the intersection point

(
1
2 , 0

)
without changing the density, until the set

extends beyond either S1S2T or S2S1T , which gives a lower bound of 1/4 for the
diameter. Once we have a lower bound for the diameter, a compactness argument
shows that the maximum density is attained.

Generally speaking, a set of maximal density should have constant breadth, as
well as being convex, since otherwise we could enlarge the set without increasing the
diameter. (Of course, this only increases the density if the enlargement increases
the measure.) An intelligent search procedure for sets of maximal density should
involve sets of constant breadth, yet this seems to rule out the sets in Fk. Some
new ideas will be needed here.
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