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Abstract. We investigate the non-equilibrium dynamics of the symmetry-resolved Rényi
entropies in a one-dimensional gas of non-interacting spinless fermions by means of quantum
generalised hydrodynamics, which recently allowed to obtain very accurate results for the
total entanglement in inhomogeneous quench settings. Although our discussion is valid for
any quench setting accessible with quantum generalised hydrodynamics, we focus on the case
of a quantum gas initially prepared in a bipartite fashion and subsequently let evolve unitarily
with a hopping Hamiltonian. For this system, we characterise the symmetry-resolved Rényi
entropies as function of time t and of the entangling position x along the inhomogeneous
profile. We observe an asymptotic logarithmic growth of the charged moments at half
system and an asymptotic restoration of equipartition of entropy among symmetry sectors
with deviations which are proportional to the square of the inverse of the total entropy.
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4.2 Symmetry-resolved Rényi entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Summary and conclusions 20

Appendix A Some details on the numerical implementation 21

ar
X

iv
:2

20
5.

02
92

4v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

2 
A

ug
 2

02
2

mailto:sscopa@sissa.it
mailto:dahorva@sissa.it


2

1. Introduction

Since the birth of quantum mechanics, the concept of entanglement has been at the core of
any quantum theory. Its profound and sometimes subtle links to various aspects of physics,
ranging from the connection to thermal entropy [1, 2] to the applications in the early universe
e.g. [3–5], have been stimulating an enormous scientific activity in the last years. Nowadays,
entanglement measures have become a commonly recognised (and very efficient) tool for the
investigation and the understanding of quantum correlations. This is particularly true in low-
dimensional quantum systems, which are notable for hosting strong quantum correlations, see
e.g. [6–9] for recent reviews and e.g. [10–14] for some experimental tests. Alongside a still
fascinating research on entanglement in exotic and/or out-of-equilibrium contexts, it has been
initiated to formulate refined tools to go beyond the conventional entanglement measures and,
in this way, obtain more information on such quantum correlations. An example is the so-
called entanglement Hamiltonian e.g. [15–26] (and more recently the negativity Hamiltonian
[27]), which encodes in a single object the full description on the entanglement spectrum
and on its topological properties, or the understanding of the structure of entanglement with
respect to an internal symmetry of the model under analysis [14], which is the main character
of this work. Despite the enormous success that the idea of the symmetry resolution of
entanglement is experiencing, it was first applied to a concrete physical system only recently
in Ref. [28] and put forward in a more general context even later in Ref. [29]. Typically,
one considers models having U(1) internal symmetry associated with the conservation of the
particle number 〈N̂〉, but the case of non-abelian symmetries has been also investigated, see
Ref. [30]. Here, we focus on the usual case of an abelian internal symmetry by considering a
pure quantum state |Ψ〉 such that

[ρ̂, N̂ ] = 0 , ρ̂ = |Ψ〉〈Ψ| . (1)

Since the particle number operator is made out of the sum of local densities, i.e., N̂ =∑
j∈Z n̂j , by taking any spatial bi-partition A ∪ Ā ≡ [−∞, `] ∪ [` + 1,∞] of the system

with a cut at a certain position ` ∈ Z, one finds that

N̂ = N̂A ⊗ 1Ā + 1A ⊗ N̂Ā, (2)

where N̂A =
∑

j6` n̂j and similarly for N̂Ā. It is then easy to show [30] that the reduced
density matrix ρ̂A = trĀ(ρ̂), still commutes with N̂A, that is,

[ρ̂A, N̂A] = 0 . (3)

Moreover, it is evident that since N̂ is a global conserved quantity [N̂ , Ĥ] = 0, Eq. (3) remains
valid during the course of time evolution as well, i.e.,

[ρ̂A(t), N̂A] = 0 . (4)

The commutation relations (3) and (4) imply a block-diagonal structure of ρ̂A in terms of
the eigenvalues N of N̂A as

ρ̂A =
⊕
N

Π̂N ρ̂A =
⊕
N

[p(N)ρ̂A(N)] (5)
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where p(N) = tr(Π̂N ρ̂A) is the probability of having N particles in the subsystem A. The
symmetry-resolved Rényi entropy is then defined as usual

Sn,N =
1

1− n log tr (ρ̂A(N)n) , (6)

via the symmetry-resolved reduced density matrix ρ̂A(N). The calculation of ρ̂A(N) is
typically very challenging, due to the non-local action of the projector Π̂N on the subspace
with N particles, making the calculation of Sn,N almost out-of-reach, if one tries to work it
out directly from its definition. Nevertheless, it was noticed in Ref. [29] that an equivalent
(and very convenient) formulation of the problem can be done by focusing on the so-
called symmetry resolved charged moments using path-integral formalism or known lattice
techniques. These quantities were already introduced before their connection to symmetry-
resolved entropies were established [31–37], and in particular, are defined as

Zn(α) = tr
[
ρ̂nAe

iαN̂A
]
, (7)

implying that their computation is indeed feasible in the path integral formulation of the
replicated model at the price of introducing an additional flux on one of the Riemann sheets.
Equally importantly, one finds that

Zn(N) =

∫ π

−π

dα

2π
e−iNαZn(α) ≡ tr

[
Π̂N ρ̂

n
A

]
, (8)

for the Fourier transform of the charged moments, aka the symmetry-resolved partition
function, and hence the symmetry-resolved Rényi entropy (6) can be expressed as

Sn,N =
1

1− n log

[ Zn(N)

(Z1(N))n

]
. (9)

Immediately after the introduction of these concepts in Refs. [28, 29], the symmetry resolu-
tion of entanglement has been investigated in a large variety of systems, including e.g. 1+1
conformal field theories [28–30,38–47], free [48,49] and interacting integrable quantum field
theories [50–52] and also holographic settings [53–55]. These studies are generically car-
ried out in lattice models [28, 38–40, 56–64, 66, 67], but other systems exhibiting more exotic
types of dynamics have been also considered [69–75]. Moreover, the interest for symmetry-
resolved entanglement measures on the theoretical side is accompanied and consolidated by
their experimental feasibility, see e.g. Ref. [76, 77].

In addition, the investigation of symmetry-resolution in out-of-equilibrium situations has
also been initiated, although so far carried out only for very few cases, see [39,62,76,78–81].
The reason for this lack in literature is quite evident as the study of out-of-equilibrium en-
tanglement is known to be often challenging and its possible symmetry-resolved counterpart
is seen to be even harder to analyse. However, besides being interesting in its own right,
probing the non-equilibrium properties of the symmetry-resolved entanglement could signifi-
cantly help us thoroughly understand these quantities and the eventual physical systems they
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are associated with. With this scope, in this manuscript, we wish to connect the idea of sym-
metry resolution with the framework of quantum generalised hydrodynamics [82–89], which
recently enabled to obtain very accurate predictions for the non-equilibrium dynamics of the
total entropy in non-homogeneous quench settings.
More precisely, the aim of this work is twofold: on the one hand, we detail the exact asymp-
totic solution for a prototypical setting of non-homogeneous and out-of-equilibrium system,
that is, a bi-partitioning quench protocol made with a one-dimensional gas of free spinless
fermions, see e.g. Ref. [85–87, 89, 90] and Sec. 2.1 below. To our best knowledge there are
no similar studies about the symmetry-resolved entanglement of such inhomogeneous quench
protocols. On the other hand, and most importantly, our discussion on symmetry resolution
has a general validity and applies to any inhomogeneous quench protocol which is accessible
by quantum generalised hydrodynamics.

Outline — In Sec. 2.1, we briefly introduce the model and the quench protocol considered
in this work. Similarly, Sec. 2.2 is a short introduction to phase-space hydrodynamics, made
by following the discussions in recent works (e.g. [84–87,89,90]) and that of previous studies
on the quasi-classical evolution of the conserved charges (e.g. [91–100]). After preparing
this ground, in Sec. 2.3 we re-quantise the hydrodynamic solution at low energy in terms of
a Luttinger liquid by following the recent literature on quantum generalised hydrodynamics,
see e.g. [85, 88]. In Sec. 3 we specialise to the calculation of symmetry resolved quantities
and, in particular, we detail the strategy of calculation of the charged moments in the quantum
generalised hydrodynamic framework. Finally, Sec. 4 contains the analysis of the symmetry-
resolved partition function (8) and of the symmetry-resolved Rényi entropy (9) while Sec. 5
summarise our work and our results. We provide a numerical check of our major results based
on exact lattice calculations, whose implementation details are reported in Appendix A.

2. The model, the quench and the hydrodynamic descriptions

2.1. Quantum model and quench protocol

In this work, we consider a one-dimensional gas of non-interacting spinless fermions on a
semi-infinite lattice j ∈ [−L,∞] with nearest-neighbour hopping, whose Hamiltonian reads

Ĥ = −1

2

∞∑
j=−L

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
, (10)

where ĉ†j , ĉj are standard fermionic lattice operators satisfying canonical anti-commutation
relations {ĉi, ĉ†j} = δij . The system is initially prepared in a state |Ω〉 obtained as ground state
of the trapped Hamiltonian

Ĥt<0 = −1

2

∞∑
j=−L

(
ĉ†j ĉj+1 + ĉ†j+1ĉj + (Vj − µ)ĉ†j ĉj

)
, (11)
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where µ is a chemical potential and Vj is a confining potential specified as

Vj =

{
0 if −L 6 j 6 −1;

+∞ otherwise.
(12)

This setup can be equivalently interpreted as a quench protocol where the trap in Eq. (11)
is suddenly released at t = 0 and the model is subsequently evolved with Hamiltonian (10).
Notice that if we set µ = 0 in Eq. (11), the ground state contains exactly L/2 particles (we
assume L is even). This can be easily seen by diagonalising the Hamiltonian (11) with the
potential (12) yielding

Ĥt<0 = −
∑
k

cos(k) η̂†kη̂k, (13)

with Fourier modes of momentum k = πq/(L+ 1), q = 1, . . . , L, given as

η̂†k =

√
2

L+ 1

−1∑
j=−L

sin (kj) ĉ†j, {η̂†k, η̂k′} = δkk′ . (14)

Indeed, the single-particle energy− cos(k) is negative for q = 1, . . . , L/2 and the ground state
is obtained by acting on the fermion vacuum |0〉 with such single-particle creation operators

|Ω〉 ≡ |{ρ = 1/2}〉 = η̂†1η̂
†
2 . . . η̂

†
L/2 |0〉 . (15)

Here, we introduced the notation |{ρ = 1/2}〉 to emphasise that the ground state at µ = 0 is
half-filled, that is, on average, every second site is occupied by a fermion. Together with the
state in Eq. (15), we consider also the case of a fully-filled ground state, obtained by setting
µ < −1 in Eq. (11) as

|Ω〉 ≡ |{ρ = 1}〉 = η̂†1η̂
†
2 . . . η̂

†
L |0〉 . (16)

Both the variants of the initial states allow for an intuitive spin chain interpretation since the
model in Eq. (11) is known to map to a spin-1/2 XX-chain

Ĥ = −1

4

∞∑
j=−L

(
σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1

)
+

1

2

∞∑
j=−L

(Vj − µ)σ̂zj + constant (17)

through the Jordan-Wigner transformation [101]

ĉ†j = exp

(
iπ
∑
i<j

σ̂+
i σ̂
−
i

)
σ̂+
j , (18)

where σ̂±j = (σ̂xj ± iσ̂yj )/2 and σ̂aj , a = x, y, z, are spin-1/2 operators acting at site j. In par-
ticular, the specific choice |Ω〉 ≡ |{ρ = 1}〉 corresponds to the standard domain wall where
the left and the right parts of the system display opposite value of magnetisation equal to +1

2

and −1
2

respectively, while |Ω〉 ≡ |{ρ = 1/2}〉 is regarded as a zero-magnetisation ground
state.
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Hence, the quench dynamics takes place by switching off the initial potential Vj at time
t = 0. Consequently, the gas expands freely to the right side of the chain and develops a
non-trivial profile of density around the junction at j = 0, which enlarges with time. More
precisely, in the hydrodynamic limit L → ∞, t → ∞, j → ∞ with t 6 L and j/t fixed (see
Subsec. 2.2), a non-trivial density profile forms in the region−t 6 j 6 t according to [91,92]

ρ(j, t) =

{
1

2π
arccos j

t
if |Ω〉 = |{ρ = 1/2}〉

1
π
arccos j

t
if |Ω〉 = |{ρ = 1}〉

(19)

at times 0 < t 6 L.
As a result of the expansion of the gas, quantum correlations spread from the junction

j = 0 towards outer regions, leading to a growth of the entanglement with a non-homogeneous
behaviour along the chain. In Refs. [85,98,102] (resp. Refs. [87,89,90]) such growth for the
n-Rényi entropy, defined as

Sn(j, t) =
1

1− α log tr (ρ̂A(t))n, (20)

and its limit n→ 1 where it reduces to the von Neumann entanglement entropy

S1(j, t) = − tr ρ̂A(t) log ρ̂A(t), (21)

has been thoroughly studied for the reduced density matrix of the subsystem A = [j,+∞]

for the half-filled (resp. fully-filled) case. In this work, we compute and study the symmetry-
resolved counterparts of the above quantities, that are

Sn,N(j, t) =
1

1− α log tr (ρ̂A(t, N))n (22)

for the symmetry-resolved n-Rényi entropy and

S1,N(j, t) = − tr ρ̂A(t, N) log ρ̂A(t, N) (23)

for the von Neumann entanglement. Here, ρ̂A(t, N) is defined via Eq. (5) by taking the
hydrodynamic limit of the expanding quantum gas in Eq. (10), as further specified below.

2.2. Phase-space hydrodynamics

As a first step towards the calculation of the symmetry-resolved entanglement during the
quench dynamics, we move to a hydrodynamic description of the problem. In this way, we
eventually obtain a quasi-classical description of the time evolution from which asymptoti-
cally exact result for the conserved charges readily follows, see e.g. Ref. [91–96]. However,
this machinery is not sufficient for the description of quantum effects such as entanglement at
zero temperature. In fact, the latter are captured only after the re-introduction of large-scale
quantum fluctuations on top of the phase-space hydrodynamics, as detailed in the next sub-
section.
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The quasi-classical treatment consists of taking an appropriate hydrodynamic limit i.e.,
considering the model at large space-time scales by sending L, j, t → ∞ keeping fixed the
ratio j/t. In such a limit, the model can be described in terms of fluid cells ∆x labeled by x
each containing a large number of particles ∆x = [j, j +M ] with M � 1. It follows that the
Hamiltonian (10) can be rewritten as [85, 103]

Ĥ = −1

2

∫ ∞
−L

dx

∫ ∆x

0

dy

∆x

(
ĉ†x+y ĉx+y+1 + h.c.

)
(24)

and can be diagonalised in Fourier basis within each fluid cell as

Ĥ = −
∫ ∞
−L

dx

∫ π

−π

dk

2π
cos k η̂†k,x η̂k,x (25)

where
ĉ†x+y =

∫ π

−π

dk

2π
eiky η̂†k,x, η̂k,x = (η̂†k,x)

†. (26)

The two variants of the initial state that we investigate fill the left part of the system with
modes −πρ0 6 k 6 πρ0 (0 6 ρ0 6 1), leaving empty the right side. The specific choice
ρ0 = 1 (resp., ρ0 = 1/2) associated with |{ρ = 1}〉 (|{ρ = 1/2}〉) corresponds to l.h.s. of the
system being entirely filled (half filled).
Crucially, both initial states are asymptotically described by a Wigner function which is, in
our cases, equivalent to the local occupation function of the free particles and reads as

W0(x, k) =

1, if x 6 0 and −πρ0 6 k 6 πρ0;

0, otherwise.
(27)

Its evolution in phase-space is dictated by the Euler equation [82, 85]

∂t Wt(x, k) + sin k ∂x Wt(x, k) = 0 (28)

with the simple solution
Wt(x, k) = W0(x− t sin k, k), (29)

see also Ref. [104, 105] for details on the derivation. An important consequence of the
above solution is that the dynamics at zero-temperature is characterised by the zero-entropy
condition Wt = {0, 1} of the local macro-states at each time. It follows that one can focus
only on the hydrodynamic evolution of local Fermi points k±F (x, t), satisfying the so-called
zero-entropy GHD equation [106](

∂t + sin k±F ∂x
)
k±F = 0. (30)

The solution of Eq. (30) allows us to built the Fermi contour Γt as

Γt =
{

(x, k) : k−F (x, t) 6 k 6 k+
F (x, t)

}
(31)
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and to re-construct the time-evolved Wigner function simply as

Wt(x, k) =

1, if k−F (x, t) 6 k 6 k+
F (x, t);

0, otherwise.
(32)

Notice that the quench problem under analysis is characterised by a connected Fermi sea at
each time [85,86,90,100,102], i.e., it displays only two local Fermi points k−F (x, t) 6 k+

F (x, t)

resulting in the Fermi contour of Eq. (31). The time-evolved Fermi contour Γt is a key quantity
for our study, not only because it fully encodes the quasi-classical dynamics of the model, but
also because it constitutes the background over which quantum fluctuations are re-introduced,
as shortly presented.

As already mentioned, once the Fermi contour is determined, one has immediate access
to the exact asymptotic profile of conserved charges densities q and currents jq as

q(x, t) =

∫ k+F (x,t)

k−F (x,t)

dk

2π
hq(k); (33a)

jq(x, t) =

∫ k+F (x,t)

k−F (x,t)

dk

2π
sin k hq(k), (33b)

where hq(k) is the single-particle eigenvalue associated to the charge q (for instance: h1 ≡ 1

for the particle density, h2 ≡ − cos k for the energy density and so on).

For sake of concreteness, in the cases ρ0 = {1, 1/2}, one finds the solutions for
0 6 x/t 6 1

k±F (x, t) =

{π − arcsin(x/t); arcsin(x/t)} ; ρ0 = 1

{π/2; arcsin(x/t)} ; ρ0 = 1/2
(34)

for the Fermi points, and

ρ(x, t) =


(ρ0/π) arccos(x/t), if |x|/t 6 1;

ρ0, if x/t < −1;

0, otherwise

(35)

for the density profile. Given a bi-partition of the system as

A ∪ Ā with A = [−L, x], (36)

we compute, for future convenience, the number of particles in A as function of the cutting
point x and of time t

NA(x, t) =

∫ x

−L
dy ρ(y, t) ≡ ρ0 N (x, t) (37)
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(a) (b)
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Figure 1. (a) Particle density ρ(x, t) in Eq. (35) and (b) rescaled particle number N (x, t) of
the subsystem A = [−L, x] in Eq. (38) as function of the rescaled position at different instants
of time. The symbols are numerical data obtained for a lattice of 300 sites while the full line
is the hydrodynamic prediction.

with scaling function

N (x, t) =



L− t/π
√

1− x2/t2 + (x/π) arccos(x/t),

if |x|/t 6 1;

(L+ x), if x/t < −1;

L, otherwise.

(38)

At x = 0, we find simply
N (0, t) = L− t/π. (39)

In Fig. 1, the semi-classical hydrodynamic results in Eqs. (35) and (37) for the particle density
ρ(x, t) and number NA(x, t) are compared to exact numerical data obtained for the lattice
model in Eq. (10), see Appendix A for details on the numerical implementation.

2.3. Quantum fluctuating hydrodynamics

As we above mentioned, for the calculation of the entanglement entropy it is essential to
restore the quantum fluctuations on top of the semi-classical hydrodynamic solution that we
previously determined [82–85,88]. A useful and successful way to do so is to incorporate only
those quantum processes that are relevant at low-energy, which can be described in terms of a
Luttinger liquid. Therefore, we introduce a large-scale density fluctuation field as

δρ̂ =
1

2π
∂xϕ̂ (40)
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and we expand the time-dependent fermionic operators in terms of the low-energy fields of
the underlying Luttinger liquid

ĉ†x(t) ∝ exp
[
i
2

(ϕ̂+ − ϕ̂−)
]

+ . . .

ĉx(t) ∝ exp
[
i
2

(ϕ̂− − ϕ̂+)
]

+ . . .
(41)

retaining only the leading order terms, i.e., those with smallest scaling dimensions. The above
identification is valid up to a non-universal amplitude and to a semi-classical phase that are
unimportant for our scopes. It is customary and useful to denote the chiral components of
ϕ̂ as ϕ̂ = ϕ̂+ + ϕ̂−. The dynamics of these quantum fluctuations is then established by the
following effective Hamiltonian [82, 83, 85, 86, 89, 90, 107–110]

Ĥ[Γt] =

∫
Γt

dθ

2π
J (θ) sin(k(θ)) (∂θϕ̂a)

2 (42)

together with the parametrisation of the Fermi contour

Γt = {(x(θ), k(θ)) : k(θ) = kF (x(θ), t)} , (43)

in terms of θ ∈ 2πR/Z, which is a coordinate along the contour Γt, a ≡ a(θ) = ± iff k(θ) ≷ 0

and J (θ) is simply the Jacobian of the coordinate change. In our cases, the large-scale quan-
tum fluctuations are obtained from the ground state of the Luttinger liquid Hamiltonian (42) at
time t = 0. Over the course of time evolution, these fluctuations are then simply transported
along the Fermi contour, which gets modified according to the semi-classical hydrodynamics
of Sec. 2.2.
Importantly, in our quench setting, any bi-partition of the system A∪ Ā with cut in real space
at position x (i.e., A = [−L, x]) can be identified with two boundary points θ1,2 along the
curve Γt such that k(x(θ1,2), t) = k±F (x, t), see Fig. 2 for an illustration.

We conclude this section with a remark. Although the semi-classical hydrodynamics of
Sec. 2.2 is found to be the same for ρ0 = {1, 1/2} (up to a simple rescaling of the profiles), the
same is not true for the behaviour of quantum fluctuations. In fact, the parametrisation of the
Fermi contour Γt as well as the final result for the entanglement entropy is strongly dependent
on the value of ρ0, see the subsequent section for a brief summary and Refs. [90]- [85] for a
comprehensive discussion of the two cases.

3. Total Rényi entropies and charged moments

The quantum fluctuating hydrodynamic framework enable us to exactly determine the non-
equilibrium dynamics of both the total Rényi entropies (first computed in Ref. [85,90]) and of
the symmetry-resolved charged moments (cf. Eq. (7)) in a similar fashion, as we now discuss.
In the original formulation, the essence of this computation for Sn is in fact the determination
of the one-point function of a specific field, namely the branch-point twist field T̂n, associated
with the permutation symmetry of the n copies of the Luttinger liquid (42) in the replica
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Figure 2. Illustration of the Fermi contour Γt at t > 0 (left panel) and at t = 0 (right panel)
for the cases ρ0 = 1/2, 1. It is shown that a bi-partition A = [−L, x] at a time t > 0 can be
encoded by the coordinates θ1,2 along the Fermi contour, which are then mapped backward in
time to the initial Fermi contour where they can be more easily parametrised, see Ref. [85] for
details.

approach, see e.g. Refs. [111–113] and the discussion below. Similarly, the extension to
symmetry resolution requires the replacement of T̂n with the so-called composite (branch
point) twist fields T̂n,α, first introduced in Ref. [114,115] and recently used for the calculation
of charged moments [29]. This field can be regarded as the fusion of the standard branch point
twist field T̂n with a U(1) vertex field V̂α, that is,

T̂n,α = T̂n × V̂α . (44)

The vertex operator is associated with the internal symmetry of the non-replicated model and
corresponds to the insertion of the flux on one of the Riemann sheets. Notice that in absence
of flux-insertions (i.e., setting α = 0), the vertex field V̂0 ≡ 1 and we recover the usual
twist field. With these considerations, we can relate the charged moments in Eq. (7) to the
expectation value of the composite twist field as [29]

logZn,α(x, t) ≡ log tr
[
ρ̂nA e

iαN̂A
]

= log
[
ε(x, t)2∆n,α 〈T̂n,α(x, t)〉

]
+ iαNA(x, t)

= log

(
ε(x, t)2∆n,α

∣∣∣∣dθdx

∣∣∣∣∆n,α

θ=θ1

∣∣∣∣dθdx

∣∣∣∣∆n,α

θ=θ2

〈τ̂+
n,α(θ1)τ̂−n,α(θ2)〉

)
+ iαNA(x, t) ,

(45)

where τ̂±n,α are the chiral components of the composite (or standard if α = 0) branch point
twist field T̂n,α living at the boundary points θ1,2 of subsystem A with scaling dimension

∆n,α =
hn
2

+
hα
2n

(46)

where

hn =
c

12

(
n− n−1

)
, hα =

α2

(2π)2
(47)

are the scaling dimension of T̂n and V̂α respectively, and the central charge c = 1 for the free
Fermi gas. The factor ε(x, t) appearing in Eq. (45) is a short-distance regularisation, which
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also guarantees that the quantity in the r.h.s of Eq. (45) is dimensionless. As was already
shown in Ref. [85–90], the expression of ε for a connected Fermi sea is

ε(x, t) =
Cn,α

sin πρ(x, t)
, (48)

where ρ(x, t) is the particle density in Eq. (35) and Cn,α is a known non-universal constant,
see Ref. [116, 117] and the discussion below.

Eq. (45) is the building block for the calculation of the total and of the symmetry-resolved
entropies. For concreteness, we report below the explicit derivation for the saturated case
ρ0 = 1. The same logic applies then to the half-filled case ρ0 = 1/2, with some additional
technicalities for which we address the interested reader to Ref. [85].
For ρ0 = 1, one finds that the coordinate θ along the Fermi contour can be simply written as

θ ≡ k + π (49)

and, therefore, one obtains

θ1 = 2π − arcsin
x

t
; θ2 = π + arcsin

x

t
, (50)

for the Fermi points. The Weyl factors in Eq. (45) associated with the change of coordinates
read as ∣∣∣∣dθdx

∣∣∣∣
θ=θ1,2

=

(
t

√
1− x2

t2

)−1

(51)

and the two-point correlation function is expressed as

〈τ̂+
n,α(θ1)τ̂−n,α(θ2)〉 =

∣∣∣∣2 sin
θ1 − θ2

2

∣∣∣∣−2∆n,α

=

(
2

√
1− x2

t2

)−2∆n,α

. (52)

Finally, using Eq. (35), we write the UV cutoff ε in Eq. (48) explicitly as

ε(x, t) =
Cn,α√

1− x2/t2
. (53)

Putting all the elements together, one eventually obtains

logZn,α = −2∆n,α log

[
2t

∣∣∣∣1− x2

t2

∣∣∣∣3/2
]

+ iαNA(x, t) + Υn,α, (54)

(with NA given in (37)) which we rewrite as

logZn,α = −2∆n,α logL(x, t) + iαρ0 N (x, t) + Υn,α , (55)

in terms of the function L(x, t), introduced for convenience. Indeed, it is possible to show
that the structure in Eq. (55) for the charged moments holds also for the case ρ0 = 1/2 and
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that the details of the specific quench protocol under consideration enters only through the
definition of L(x, t). From Eq. (54) and Refs. [85, 90], we find that

L(x, t) =



2t
∣∣∣1− x2

t2

∣∣∣3/2 ; if ρ0 = 1;

2L
π

√
|x
t
− t(1− x2

t2
)|×

|
√

1 +
√

1− x2

t2
− sgn(x)

√
1−

√
1− x2

t2
|| sin π(x−t)

2L
|;

if ρ0 = 1/2.

(56)

The additive constant Υn,α in Eq. (55) is related to Cn,α in Eq. (53) as

Υn,α ≡ 2∆n,α log
Cn,α

2
(57)

and it has been analytically determined in Ref. [56] exploiting the Fisher-Hartwig conjecture

Υn,α =
in

2

∫ ∞
−∞

dw (tanh(πw)− tanh(πnw + iα/2)) log
Γ(1

2
+ iw)

Γ(1
2
− iw)

− 2∆n,α log(2). (58)

It is then customary to rewrite this constant as

Υn,α = Υn + α2νn + en,α, (59)

with

νn = − log(2)

4π2n
+

in

8

∫ ∞
−∞

dw
(
tanh3(πnw)− tanh(πnw)

)
log

Γ(1
2

+ iw)

Γ(1
2
− iw)

, (60)

and en,α = O(α4) (cf. Ref. [56]), such that the first term Υn ≡ Υn,0 reproduces the non-
universal constant obtained in Ref. [116, 117] in the absence of fluxes α = 0.

The total Rényi entropies are recovered from Eq. (45) by plugging the correct prefactor
1/(1− n) and by setting the flux α = 0 [85, 90] i.e.,

Sn(x, t) =
1

1− n logZn,α

∣∣∣
α=0

=
n+ 1

12n
logL(x, t) +

Υn

1− n. (61)

Notice that the constant Υn/(1− n) is related to Cn,0 in (53) as

Υn

1− n = −n+ 1

12n
log

Cn,0
2
, (62)

and gives for n→ 1

lim
n→1

Υn

1− n =
Υ̃ + log(2)/3

2
, (63)

where Υ̃ ≈ 0.49502 is the Korepin-Jin constant [117], consistently with the known results for
the total entropy [85,86,118]. In Fig. 3, we show the exact numerical results for the total von
Neumann entanglement entropy alongside with the hydrodynamic formula in Eq. (61) for the
cases ρ0 = 1/2, 1 respectively. The agreement of the hydrodynamic prediction with the data
is remarkably good.
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Figure 3. Total von Neumann entanglement entropy for (a) ρ0 = 1/2 and (b) ρ0 = 1.
The solid line shows the analytical prediction in Eq. (61) provided by quantum fluctuating
hydrodynamics while symbols show the numerical data obtained for a lattice of 300 sites.
Although the two settings are characterised by the same semi-classical description (up to a
rescaling), cf. Fig. 1, the entanglement properties are very different. In both the cases (a)-(b),
the hydrodynamic prediction is very accurate.

4. Symmetry-resolved Rényi entropies

We now move towards the calculation of the symmetry-resolved Rényi entropies, starting
from the charged moments that we computed in the previous section.
First, let us write down explicitly the real part of the charged moments in Eq. (55)

Re logZn,α(x, t) = −2∆n,α logL(x, t) + Υn,α (64)

which at half system and for large times becomes

Re logZn,α(0, t) ∼ −2(2− ρ0)∆n,α log t+ δn,α(ρ0) (65)

with δn,α(ρ0) ≡ Υn,α − 2∆n,α log(2ρ0), and it displays a logarithmic growth for both
ρ0 = {1, 1/2}, see Fig. 5. The imaginary part reads instead

Im logZn,α(x, t) = αρ0 N (x, t) , (66)

and at half-system it decreases linearly in time

Im logZn,α(0, t) = αρ0 (L− t/π) . (67)

In Figs. 4-6, the above predictions for Zn,α given by quantum fluctuating hydrodynamics are
tested against exact lattice calculations. In particular, Fig. 4 shows the real part of the charged
moments as function of x at different t and α while Fig. 5 is an analysis of the logarithmic
growth in Eq. (65) observed at half system. Finally, Fig. 6 contains the result for the imaginary
part of Zn,α. In all cases, the hydrodynamic results are found in a very good agreement.
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Figure 4. Real part of the charged moments in Eq. (64) as function of the cutting position x
for n = 1, different values of α (see plots legend) and at different times t/L = 0.5, 0.67, 0.8

from the left to rightmost panel. The top (bottom) row shows the results for a half (fully) filled
initial state ρ0 = 1/2 (ρ0 = 1). In each plot, the symbols show the numerical data obtained for
a lattice of 300 sites while the solid line is the analytical prediction in (64); the vertical axes
mark the light cone position |x| = t.

(a) (b)

Figure 5. Half system behaviour of the real part of the charged moments as function of time
for different values of n and α (see plots legend) for (a) half-filled initial state ρ0 = 1/2;
(b) fully-filled initial state ρ0 = 1. The analytical prediction in Eq. (65) (thick solid line) is
compared with exact lattice calculations (symbols) obtained for a lattice of 300 sites.

4.1. Fourier transform of the charged moments

The next step is to compute the Fourier transform of the charged moments yielding the
symmetry-resolved partition function (8), which we denote by Zn,N(x, t) to stress the space-
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Figure 6. Imaginary part of the charged moments as function of time for different cutting
position x (panels) and values of α, n (see plots legend). The hydrodynamic prediction in
Eq. (67) is found in agreement with exact numerical data obtained for a system of size 300.

time dependence. When explicitly written, one obtains for Zn,N

Zn,N(x, t) =

∫ π

−π

dα

2π
e−iNαZn,α(x, t)

= Zn,0(x, t)

∫ π

−π

dα

2π
e−iα(N−NA(x,t))e−bn(x,t)α2+e(n,α)

(68)

where
bn(x, t) =

1

4π2n
logL(x, t)− νn (69)

and
Zn,0(x, t) = exp (−hn logL(x, t) + Υn) . (70)

The computation of the integral in Eq. (68) is performed using the saddle-point (in our
case equal to a quadratic order) approximation. In particular, this amounts to ignore the
contribution of exp(en,α) (since exp(en,α) = 1 +O(α4), cf. Ref. [56]) and hence obtaining

Zn,N(x, t) =
Zn,0(x, t)√
4πbn(x, t)

exp

(
−(N −NA(x, t))2

4bn(x, t)

)
. (71)

It is useful to comment on the validity of this approximation, for which one can use the
analogous argument of Ref. [51]. In our case, one can identify the small parameter ε of
Ref. [51] with the inverse of bn(x, t), which indeed becomes small as time progresses. The
comparison to [51] tells us that neglecting exp(en,α) is legitimate if bn(x, t) � 1 and more
importantly,

(N −NA(x, t))2 � bn(x, t) , (72)

that is, (N −NA(x, t))2 does not have to be large but can take small values if bn(x, t) is large.
In Fig. 7, we show the probabilities Z1,N at half system as function of the charge imbalance
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Figure 7. Symmetry-resolved partition function in Eq. (68) at half system (x = 0) as function
of ∆N , at n = 1 and at different times t/L = 0.33, 0.8 (see plots legend). In each plot, the
symbols show the numerical data obtained for a lattice of 300 sites while the solid line is the
analytical prediction in (71).

∆N ≡ N −NA(x, t) at different times. Notice that, due to particle number conservation, the
width bn(x, t) of the Gaussian in (71) is really small (for instance, the variance at half-system
for large times is bn(0, t) ∝ L(0, t) ∼ log(t)) and therefore the fluctuations with |∆N | & 2

particles are strongly suppressed. In Fig. 8, Z1,N is visualised as function of x for different
choices of N and t, and compared with exact lattice numerics.

4.2. Symmetry-resolved Rényi entropies

Finally, from the symmetry-resolved partition function in Eq. (71), the symmetry-resolved
Rényi entropies are straightforwardly obtained as (cf. Eq. (9))

Sn,N(x, t) ≡ 1

1− n log

[ Zn,N(x, t)

(Z1,N(x, t))n

]
= Sn(x, t) +

1

1− n

[
n(N −NA(x, t))2

4b1(x, t)
− (N −NA(x, t))2

4bn(x, t)

]
− log(2

√
π) +

1

1− n log

[
b1(x, t)n/2

bn(x, t)1/2

]
.

(73)

At this point, we wish to consider the analytic continuation of Sn,N in (73) for n → 1 and
obtain a closed expression for the symmetry-resolved von Neumann entropy. To this end,
we write the symmetry-resolved von Neumann entropy as S1,N = −∂n

[
Zn,N/Zn1,N

] ∣∣∣
n=1

and differentiate the quantity −Zn,N/Zn1,N with respect to n, exploiting the product form
Zn,N ≡ Zn,0 × gn,N with

gn,N(x, t) =
exp

(
− (N−NA(x,t))2

4bn(x,t)

)
√

4πbn(x, t)
. (74)



18

Figure 8. Symmetry-resolved partition function in Eq. (68) as function of the cutting position
x for n = 1, different values of ∆N = 0,±1 (see plots legend) and at different times
t/L = 0.5, 0.67, 0.8 from the left to rightmost panel. The top (bottom) row shows the results
for a half (fully) filled initial state ρ0 = 1/2 (ρ0 = 1). In each plot, the symbols show the
numerical data obtained for a lattice of 300 sites while the solid line is the analytical prediction
in (71); the vertical axes mark the light cone position |x| = t.

Doing so, the analytic continuation of the symmetry-resolved von Neumann entropy takes the
form

S1,N(x, t) = logZ1,0 + log g1,N −
gn,N ∂nZn,0 + Z1,0 ∂ngn,N

Z1,0 g1,N

= S1(x, t) + log g1,N(x, t)− ∂ng1,N(x, t)

g1,N(x, t)

(75)

since Z1,0 ≡ 1 by construction, even in the non-homogeneous quench setting under analysis.
This means that the symmetry-resolved von Neumann entropy can eventually be expressed as

S1,N(x, t) = S1(x, t)− (N −NA(x, t))2

4b1(x, t)
− log

[
(4πb1(x, t))1/2

]
− b′1(x, t)

(N −NA(x, t))2 − 2b1(x, t)

4b1(x, t)2
,

(76)



19

Figure 9. Symmetry-resolved von Neumann entropy in Eq. (76) as function of the cutting
position x at different values of ∆N = 0,±1 (see plots legend) and at different times
t/L = 0.5, 0.67, 0.8 from the left to rightmost panel. The top (bottom) row shows the results
for a half (fully) filled initial state ρ0 = 1/2 (ρ0 = 1). In each plot, the symbols show the
numerical data obtained for a lattice of 300 sites while the solid line is the analytical prediction
in (76); the vertical axes mark the light cone position |x| = t. The additive constants are fitted
with numerics at half system.

where b′1(t, x) denotes the derivative of bn with respect to n evaluated at n = 1, i.e.,

b′1(x, t) ≡ ∂nbn(x, t)
∣∣∣
n=1

= −(b1(x, t) + ν1 + ν ′1) , (77)

following directly from the definition of bn in (69). We recall that νn is related to the non-
universal constant appearing in Eq. (59). In Fig. 9, the result for the symmetry-resolved von
Neumann entropy in Eq. (76) is compared with exact lattice numerics. As for the charged
moments in Fig. 4, we observe oscillations around the hydrodynamic result. In Ref. [40, 56],
similar oscillations were detected and attributed to leading correction in the subsystem size.
Including such subleading effects in our approach is non trivial and goes beyond our scopes.
Nevertheless, it is quite remarkable that quantum generalised hydrodynamics is able to predict
the functional behaviour of the symmetry-resolved quantities modulo oscillations.
From the analytic expressions of the symmetry-resolved von Neumann entropy in Eq. (76),

one can easily investigate the limit b1(x, t)→∞, which physically corresponds to a long time
limit beyond the Euler scaling regime. Expanding Eq. (76) in such a b1(x, t) → ∞ limit, we
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Figure 10. Configurational S(c) and number S(n) entanglement entropy as function of the
cutting position x at time t/L = 0.67, for different initial states ρ0 = 1, 1/2 (see plots legend).
The data are obtained for a system of 300 sites with exact lattice numerics, retaining only terms
with |∆N | 6 2 in Eq. (80). The sum of the two contributions (symbols) is found in remarkable
agreement with the hydrodynamic prediction in Eq. (61) (solid line).

find that

S1,N(x, t) =S1(x, t)− log
[
(4πb1(x, t))1/2

]
− 1

2
− 2(ν(1) + ν ′(1))

4b1(x, t)

+
(ν(1) + ν ′(1)) (N −NA(x, t))2

b1(x, t)2
+O

(
b1(x, t)−3

)
,

(78)

and we recall that the validity of the above expression requires that ∆N2 � b1(x, t),
(notice that ν(1) + ν ′(1) differs from zero). Since b1(x, t) ∝ S1(x, t), we conclude that the
equipartition of entanglement in the symmetry sectors is asymptotically restored according to

δS1,N(x, t) ∼ (N −NA(x, t))2

S1(x, t)2
, (79)

with a non-trivial prefactor that depends on non-universal quantities. We finally notice that
the total von Neumann entropy profile in Eq. (61) can be recovered, for each position x and
time t, as

S1(x, t) =
∑
N

Z1,N(x, t)S1,N(x, t)−
∑
N

Z1,N(x, t) logZ1,N(x, t) ≡ S(c) + S(n). (80)

The two terms appearing in the sum are known as configurational entanglement entropy S(c),
measuring the total entropy due to each charge sector, and the number entropy S(n), which
accounts for the entropy due to the charge fluctuations among different sectors, see e.g. [14].
In Fig. 10, we show these two contributions and we compare their sum to the hydrodynamic
prediction in Eq. (61). Notice that the oscillations observed in S(c) and S(n) (coming from
those of the charged moments, cf. Fig. 4) nicely disappear once the two contributions are
summed.

5. Summary and conclusions

We considered a one-dimensional gas of non-interacting fermions initially prepared in a bi-
partite state |Ω〉, characterised by the absence of particles on the right part (j > 0) and by
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a filling on the left part (j < 0) of the chain with density ρ0 = 1/2 or 1. We subsequently
let |Ω〉 evolve unitarily with the hopping Hamiltonian in Eq. (10) and we studied the non-
equilibrium dynamics after the quench in the Euler hydrodynamic limit of large space-time
scales j, t → ∞ at fixed j/t, see Sec. 2.2 for details. For this prototypical model of
inhomogeneous quench setting, the non-equilibrium dynamics of conserved charges has been
determined long ago (see e.g. Ref. [91–96, 99]) and recently complemented by results on the
dynamics of the total entanglement (Ref. [85,90]) and on the entanglement Hamiltonian [87],
obtained through quantum generalised hydrodynamics. In this manuscript, we eventually
completed the study on entanglement providing a careful analysis of the symmetry-resolved
Rényi entropies as function of time and of the entangling position along the inhomogeneous
system, see Sec. 3 and 4. We found that the charged moments at half system display a
logarithmic growth in time (see Eq. (65) and Fig. 5) and that the symmetry-resolved von
Neumann entropy is distributed among symmetry sectors with equal weights, up to corrections
that scale as the inverse of the square of the total entanglement (see Eq. (79)). Our analytical
results for symmetry resolved quantities are based on quantum generalised hydrodynamics
and have been checked with numerical exact lattice calculations (see Appendix A for details
on the implementation), returning a very good agreement of the hydrodynamic prediction with
data.
Beside the per se interest of our results for the initial bi-partite state, our work aims to connect
two current branches of research on entanglement, that are, symmetry resolution and quantum
generalised hydrodynamics. Indeed, our discussion in Sec. 3 and 4 has general validity
and can be straightforwardly extended to the study of symmetry resolved quantities in any
inhomogeneous quench setting that is accessible with quantum generalised hydrodynamics,
opening the doors to several subsequent analysis. For instance, it would be interesting to
consider the symmetry resolution in a quartic-to-quadratic quench protocol (see e.g. [119]),
whose total entanglement has been calculated recently in Ref. [88] and realised in Ref. [120]
with rubidium atom chips for an experimental test of the hydrodynamic results on conserved
charges.
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Appendix A. Some details on the numerical implementation

In this section we consider the exact numerical calculation for free fermionic lattice
Hamiltonian

Ĥ = −1

2

L−1∑
j=−L

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
(A.1)
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which differs from that in Eq. (10) for the presence of a right boundary. For this model, it is
sufficient to determine the expression of the two-point correlation matrix

G(t) =
[
〈ψ(t)|ĉ†i ĉj|ψ(t)〉

]L−1

i,j=−L
(A.2)

from which other quantities becomes accessible exploiting Wick’s theorem. The latter is
initially obtained as G(0) = |Ω〉 〈Ω| by following the state preparation discussed in Sec. 2.1
and subsequently evolved in the post-quench eigenstate basis Ĥ |wn〉 = En |wn〉 of the
Hamiltonian (A.1) as

G(t) =
L−1∑

n,m=−L

|wn〉 e−itEn 〈wn|Ω〉 〈Ω|wm〉 eitEm 〈wm| , (A.3)

see e.g. Ref. [85,98] for more details. At this point, the density profile in Eq. (35) is given by

ρ(i, t) = Gi,i(t) (A.4)

and the number of particles NA in a subsystem A (cf. Eq. (37)) is obtained with a simple
numerical integration. The next step is to build the correlation matrix restricted to the sub-
system A as

GA(t) = [Gi,j(t)]i,j∈A (A.5)

and eventually to compute the set of its eigenvalues {ζj}`Aj=1, with `A the number of sites
contained in A. The von Neumann entanglement entropy is then obtained as [121–126]

S1 = −
`A∑
j=1

[ζj log ζj + (1− ζj) log(1− ζj)] . (A.6)

Similarly, the charged moments can be expressed in terms of the eigenvalues {ζj}`Aj=1 as [29]

logZn,α =

`A∑
j=1

log
[
ζnj e

iα + (1− ζj)n
]
. (A.7)

From Eq. (A.7), the other quantities (such as symmetry-resolved partition functions and
entropies) are obtained via simple numerical manipulations.
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[35] J. S. Dowker, Charged Rényi entropies for free scalar fields, J. Phys. A: Math. Theor. 50, 165401 (2017).
[36] H. Shapourian, K. Shiozaki, and S. Ryu, Partial time-reversal transformation and entanglement negativity

in fermionic systems, Phys. Rev. B 95, 165101 (2017).
[37] H. Shapourian, P. Ruggiero, S. Ryu, and P. Calabrese, Twisted and untwisted negativity spectrum of free

fermions, SciPost Phys. 7, 037 (2019).
[38] J. C. Xavier, F. C. Alcaraz, and G. Sierra, Equipartition of the entanglement entropy, Phys. Rev. B 98,

041106 (2018).
[39] N. Feldman and M. Goldstein, Dynamics of Charge-Resolved Entanglement after a Local Quench, Phys.

Rev. B 100, 235146 (2019).
[40] R. Bonsignori and P. Calabrese, Boundary effects on symmetry resolved entanglement, J. Phys. A: Math.

Theor. 54, 015005 (2021).
[41] L. Capizzi, P. Ruggiero, and P. Calabrese, Symmetry resolved entanglement entropy of excited states in a

CFT, J. Stat. Mech. (2020) 073101.
[42] B. Estienne, Y. Ikhlef, A. Morin-Duchesne, Finite-size corrections in critical symmetry-resolved

entanglement, SciPost Phys. 10, 054 (2021).
[43] S. Murciano, R. Bonsignori, and P. Calabrese, Symmetry decomposition of negativity of massless free

fermions, SciPost Phys. 10, 111 (2021).
[44] H.-H. Chen, Symmetry decomposition of relative entropies in conformal field theory, JHEP 07 084

(2021).
[45] L. Capizzi and P. Calabrese, Symmetry resolved relative entropies and distances in conformal field theory,

JHEP 10 195 (2021).
[46] M. Ghasemi, Universal Thermal Corrections to Symmetry-Resolved Entanglement Entropy and Full

Counting Statistics, preprint – arXiv:2203.06708 (2022).
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