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Abstract In reliability and life-testing experiments, the researcher is often interested
in the effects of extreme or varying stress factors such as temperature, voltage and
load on the lifetimes of experimental units. Step-stress test, which is a special class
of accelerated life-tests, allows the experimenter to increase the stress levels at fixed
times during the experiment in order to obtain information on the parameters of the
life distributions more quickly than under normal operating conditions. In this paper,
we consider the simple step-stress model from the exponential distribution when there
is time constraint on the duration of the experiment. We derive the maximum like-
lihood estimators (MLEs) of the parameters assuming a cumulative exposure model
with lifetimes being exponentially distributed. The exact distributions of the MLEs of
parameters are obtained through the use of conditional moment generating functions.
We also derive confidence intervals for the parameters using these exact distributions,
asymptotic distributions of the MLEs and the parametric bootstrap methods, and assess
their performance through a Monte Carlo simulation study. Finally, we present two
examples to illustrate all the methods of inference discussed here.
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1 Introduction

In many situations, it may be difficult to collect data on lift-time of a product under
normal operating conditions as the product may have a high reliability under normal
conditions. For this reason, accelerated life-testing (ALT) experiments can be used to
force these products (systems or components) to fail more quickly than under normal
operating condition. Some key references in the area of accelerated testing include
Nelson (1990), Meeker and Escobar (1998), and Bagdonavicius and Nikulin (2002).

A special class of the ALT is called the step-stress testing which allows the experi-
menter to choose one or more stress factors in a life-testing experiment. Stress factors
can include humidity, temperature, vibration, voltage, load or any other factor that
directly affects the life of the products. In such a life-testing experiment, n identical
units are placed on an initial stress level s0 under a m-step-stress model, and only
the successive failure times are recorded. The stress levels are changed to s1 , . . . , sm

at pre-fixed times τ1 < · · · < τm , respectively. The most common model used to
analyse these times-to-failure data is the “cumulative damage” or “cumulative expo-
sure” model. We consider here the situation when there is a time constraint on the
duration of the experiment, say τm+1 ; that is, the experiment has to terminate be-
fore or at time τm+1 . This is what is referred to as Type-I Censoring in reliability
literature.

We consider here a simple step-stress model with only two stress levels. This model
has been studied extensively in the literature. DeGroot and Goel (1979) proposed
the tampered random variable model and discussed optimal tests under a Bayesian
framework. Sedyakin (1966) introduced the cumulative exposure model in the simple
step-stress case which has been further discussed and generalized by Bagdonavicius
(1978) and Nelson (1980), while Miller and Nelson (1983) and Bai et al. (1989) dis-
cussed the determination of optimal time at which to change the stress level from s0

and s1 . Bhattacharyya and Zanzawi (1989) proposed the tampered failure rate model
which assumes that the effect of changing stress level is to multiply the initial failure
rate function by a factor subsequent to the change times. Madi (1993) generalized
this tampered failure rate model from the simple step-stress model (case m = 1)
to the multiple step-stress model (case m ≥ 2). Khamis and Higgins (1998) dis-
cussed the same generalization under the Weibull distribution. The tampered failure
rate model as well as the model of Khamis and Higgins (1998) are special cases of
Cox’s proportional hazards model under step-stresses; see Bagdonavicius and Nikulin
(2002). Xiong (1998) and Xiong and Milliken (1999) considered inference under the
assumption of exponential life-time. They assumed that the mean life of an experi-
mental unit is a log-linear function of the stress level, and developed inference for the
two parameters of the corresponding log-linear link function. Watkins (2001) argued
that it is preferable to work with the original exponential parameters eventhough the
log-linear link function provides a simple reparametrization. It is important to men-
tion here that the cumulative exposure model, under exponential lifetime distribution,
becomes an accelerated life-testing model. Balakrishnan et al. (2007) derived the exact
distributions of the MLEs (maximum likelihood estimators) under the exponential dis-
tribution when data are Type-II censored. Gouno and Balakrishnan (2001) reviewed
the developments on step-stress accelerated life-testing. Gouno et al. (2004) discussed
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inference for step-stress models under exponential distribution when the available data
are progressively Type-I censored.

In this article, we consider a simple step-stress model with two stress levels based on
the exponential distribution when there is time constraint on the duration of the exper-
iment. The model is described in detail in Sect. 2. Due to the form of time constraint,
the MLEs of the unknown parameters do not always exist. We then discuss the condi-
tional MLEs, and derive their conditional moment generating functions as well as the
exact conditional distributions of the MLEs and their properties in Sect. 3. In Sect. 4,
we discuss the exact method of constructing confidence intervals for the unknown
parameters as well as the asymptotic method and the bootstrap methods. Monte Carlo
simulation results and some illustrative examples are presented in Sects. 5 and 6,
respectively. Finally, we make some concluding remarks in Sect. 7.

2 Model description and MLEs

Suppose that the time-to-failure data come from a cumulative exposure model, and we
consider a simple step-stress model with only two stress levels s0 and s1 when there is
a time constraint (say, τ2 ) on the duration of the experiment. The lifetime distributions
at s0 and s1 are assumed to be exponential with failure rates θ1 and θ2, respectively.
The probability density function (PDF) and cumulative distribution function (CDF)
are given by

fk (t; θk) = 1

θk
exp

{ − t/θk
}
, t ≥ 0, θk > 0, k = 1, 2 (1)

and
Fk(t; θk) = 1 − exp

{ − t/θk
}
, t ≥ 0, θk > 0, k = 1, 2, (2)

respectively. We then have the cumulative exposure distribution (CED) G(t) as

G(t) =
{

G1(t) = F1(t; θ1) if 0 < t < τ1

G2(t) = F2

(
t − (

1 − θ2
θ1

)
τ1; θ2

)
if τ1 ≤ t < ∞ , (3)

where Fk(·) is as given in (2). The corresponding PDF is

g(t) =
{

g1(t) = 1
θ1

exp
{ − 1

θ1
t
}

if 0 < t < τ1

g2(t) = 1
θ2

exp
{ − 1

θ2
(t − τ1) − 1

θ1
τ1

}
if τ1 ≤ t < ∞ . (4)

We have n identical units under an initial stress level s0 . The stress level is changed
to s1 at time τ1 , and the life-testing experiment is terminated at time τ2 , where 0 <

τ1 < τ2 < ∞ are fixed in advance. Let N1 be the number of units that fail before
τ1 , and N2 be the number of units that fail before τ2 at stress level s1 , then, we will
observe the following observations:

{
t1:n < · · · < tN1 :n ≤ τ1 < tN1+1:n < · · · < tN1+N2 :n ≤ τ2

}
, (5)
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where ti :n denotes the i th smallest failure time of the n units placed under test. Now,
let t denote the vector of the (N1 + N2) smallest failure times in (5).

From the CED in (3) and the corresponding PDF in (4), we obtain the likelihood
function of θ1 and θ2 based on the Type-I censored sample in (5) as follows:

1. If N1 = n and N2 = 0 in (5), the likelihood function of θ1 and θ2 is

L(θ1, θ2|t) = n!
n∏

k=1

g1

(
tk:n

) = n!
θn

1
exp

{
− 1

θ1

n∑

k=1

tk:n

}
,

0 < t1:n < · · · < tn:n < τ1; (6)

2. In all other cases, the likelihood function of θ1 and θ2 is

L(θ1, θ2|t) = n!
(n − N )!

{ N1∏

k=1

g1

(
tk:n

)
}{ N∏

k=N1+1

g2

(
tk:n

)
}{

1 − G2(τ2)
}n−N

= n!
(n − N )! θ

N1
1 θ

N2
2

exp

{
− 1

θ1
D1 − 1

θ2
D2

}
,

0 < t1:n < · · · < tN1 :n < τ1 ≤ tN1+1:n < · · · < tN :n < τ2 , (7)

where N = N1 + N2 (2 ≤ N ≤ n), and

D1 =
N1∑

k=1

tk:n + (
n − N1

)
τ1 and D2 =

N∑

k=N1+1

(
tk:n − τ1

) + (n − N )(τ2 − τ1).

It is useful to note that Di corresponds to the total time on test at stress si−1 (for
i = 1, 2). From the likelihood functions in (6) and (7), we observe some results listed
in the following 2 × 2 table:

N2 = 0 1 ≤ N2 ≤ n − N1

N1 = 0 θ̂1 and θ̂2 do not exist θ̂1 does not exist and D2 is a

complete sufficient statistic for θ2

N1 ≥ 1 θ̂2 does not exist and D1 is a θ̂1 and θ̂2 do exist and (D1, D2) is a

complete sufficient statistic for θ1 joint complete sufficient statistic for (θ1, θ2)

From the table, we can see that the MLEs of θ1 and θ2 exist only when N1 ≥ 1 and
N2 ≥ 1. In this situation, the log-likelihood function of θ1 and θ2 is given by

l(θ1, θ2|t) = log
n!

(n − N )! − N1 log θ1 − N2 log θ2 − D1

θ1
− D2

θ2
. (8)
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From (8), the MLEs of θ1 and θ2 are readily obtained as

θ̂1 = D1

N1
and θ̂2 = D2

N2
, (9)

respectively.

Remark 1 In the model considered above, we have not assumed any relationship
between the mean failure times under the two stress levels.

Remark 2 In some situations, we may know the mean failure time θ2 = λθ1 for a
known λ. In this situation, the MLE of θ1 exists when at least one failure occurs, and
its exact distribution can be derived explicitly. One can also use the likelihood ratio
test to test the hypothesis H0 : θ2 = λθ1 for a specified λ. Of course, the likelihood
ratio test can only be carried out conditionally (i.e., under Ni ≥ 1, i = 1, 2). The
properties of such a test will require further investigation.

Let us now consider the following data sets to illustrate the method of estimation
discussed here.

Example 1 We now consider the following data presented by Xiong (1998):

Stress Level Failure Times

θ1 = e2.5 2.01 3.60 4.12 4.34

θ2 = e1.5 5.04 5.94 6.68 7.09 7.17 7.49

7.60 8.23 8.24 8.25 8.69 12.05

The choices made by Xiong (1998) were

n = 20, θ1 = e2.5 = 12.18249, θ2 = e1.5 = 4.48169 and τ1 = 5.

In this case, had we fixed time τ2 = 6, 7, 8, 9, 12, we would obtain the MLEs of θ1
and θ2 from (9) to be

θ̂1 = 23.5175 and θ̂2 = 7.4900, 9.5533, 5.5729, 4.1291, 5.4927.

Example 2 Next, we consider the following data generated with n = 35, θ1 = e3.5 =
33.11545, θ2 = e2.0 = 7.389056 and τ1 = 8 :

Stress Level Times-to-Failure

θ1 = e3.5 1.46 2.22 3.92 4.24 5.47 5.60 6.12 6.56

θ2 = e2.0 8.19 8.30 8.74 8.98 9.43 9.87 11.14 11.76 11.85 12.14

14.04 14.19 14.24 14.33 15.28 16.58 16.85 16.92 17.80 20.45

13.05 13.49 20.98 21.09 22.01 26.34 28.66
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In this case, we chose the time τ2 = 16, 20, 24. The corresponding MLEs of θ1 and
θ2 are found from (9) to be

θ̂1 = 23.315467 and θ̂2 = 8.971297, 9.316378, 9.646305.

3 Conditional distributions of the MLEs

To find the exact distributions of θ̂1 and θ̂2, we first derive the conditional moment gen-

erating functions (CMGF) of θ̂1 and θ̂2, conditioned on the event A =
{

1 ≤ N1 ≤ n−1

and 1 ≤ N2 ≤ n − N1

}
. For notational convenience, we denote Mk

(
ω

)
for the CMGF

of θ̂k, k = 1, 2. Then, we can write

Mk|A
(
ω

) = E
{

eωθ̂k
∣
∣A

}

=
n−1∑

i=1

n−i∑

j=1

Eθ1,θ2

{
eωθ̂k

∣
∣N1 = i, N2 = j

}
· Pθ1,θ2

{
N1 = i, N2 = j |A

}
. (10)

Clearly, the numbers of failures occurring before τ1 and between τ1 and τ2 has a
trinomial distribution with probability mass function (pmf)

Pθ1,θ2

{
N1 = i, N2 = j

} =
(

n

i, j, n − i − j

)
pi

1
p j

2
pn−i− j

3
,

i = 0, 1, . . . , n, j = 0, . . . , n − i, (11)

where

p1 = G1(τ1) = 1 − e−τ1 /θ1 ,

p2 = G2(τ2) − G1(τ1) = (
1 − p1

){
1 − e−(τ2 −τ1 )/θ2

}
,

p3 = 1 − p1 − p2 ,

and
( n

i, j,n−i− j

)
is the extended multinomial coefficient defined by

(
n

i, j, n − i − j

)
= n!

i ! j !(n − i − j)! .

Consequently, we can write

Pθ1,θ2

{
N1 = i, N2 = j |A

}
= Cn · Pθ1,θ2

{
N1 = i, N2 = j

}
, (12)

where

Cn = 1

1 − (1 − p1)
n − (1 − p2)

n + pn
3

.
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Now, to derive Eθ1,θ2

{
eωθ̂k

∣
∣N1 = i, N2 = j

}
, we need the following Lemma.

Lemma 1 Let T1:n < · · · < Tn:n denote the n order statistics from PDF g(t) given in
(4). Then, the joint conditional PDF of T1:n, . . . , TN1+N2:n, given N1 = i and N2 = j ,
is (see Arnold et al. 1992, David and Nagaraja 2003)

f
(
t1, . . . , ti+ j |N1 = i, N2 = j

) = Ri j · exp

{
− 1

θ1

i∑

k=1

tk − 1

θ2

i+ j∑

k=i+1

(
tk − τ1

)
}
,

0 < t1 < · · · < ti ≤ τ1 < ti+1 < · · · < ti+ j ≤ τ2 ,

(13)

where

Ri j = n!pn−i− j
3

(1 − p1)
j

θ i
1θ

j
2 (n − i − j)!Pθ1,θ2

{
N1 = i, N2 = j

} .

Proof The joint conditional PDF of T1:n, . . . , TN1+N2:n , given N1 = i and N2 = j ,
can be written as

f
(
t1, . . . , ti+ j |N1 = i, N2 = j

) = n!
(n − i − j)! Pθ1,θ2

{
N1 = i, N2 = j

}

×
{ i∏

k=1

g1(tk )

}{ i+ j∏

k=i+1

g2(tk )

}{
1 − G2(τ2)

}n−i− j
.

Upon substituting the expressions for g1, g2 and G2, (13) follows.

Corollary 1 The CMGF of θ̂1, given the event A =
{

1 ≤ N1 ≤ n − 1 and 1 ≤ N2 ≤
n − N1

}
, is

M1(ω|A) = Cn

n−1∑

i=1

i∑

k=0

Cik · exp
{

ω
i (n − i + k)τ1

}

(
1 − θ1

i ω
)i

, ω <
1

θ1
, (14)

where

Cik = (−1)k
(

n

i

)(
i

k

){(
1 − p1

)n−i − pn−i
3

}(
1 − p1

)k

and Cn, p1 , p2 and p3 are as defined earlier.

Proof Using (9), (11), (12) and the result in Lemma 1 into Eq. (10), and simplifying
the resulting expression, we obtain (14).

Corollary 2 The CMGF of θ̂2, given the event A =
{

1 ≤ N1 ≤ n − 1 and 1 ≤ N2 ≤
n − N1

}
, is
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Table 1 Estimated coverage probabilities (in %) of confidence intervals for θ1 and θ2 based on 1,000
simulations with n = 20, θ1 = e2.5, θ2 = e1.5 and R = 1, 000

90% CI 95% CI 99% CI

τ1 τ2 BCa App. Exact BCa App. Exact BCa App. Exact

θ1 1 2 80.2 75.2 90.7 85.1 74.0 95.1 90.4 90.1 98.7

3 81.8 74.4 90.9 86.4 76.9 95.5 91.9 90.2 98.7

4 80.4 74.4 90.2 85.7 73.2 94.7 92.5 91.7 98.5

5 80.5 76.8 89.4 85.2 73.7 94.4 92.1 93.2 99.4

6 81.4 73.9 90.6 85.6 71.8 95.2 92.5 91.5 99.3

7 81.3 75.8 89.7 86.4 75.8 95.6 90.4 92.6 98.7

8 82.1 74.4 89.9 87.7 74.5 95.0 91.0 92.1 99.2

9 81.9 73.5 90.7 86.0 75.4 94.1 93.3 92.4 99.5

10 83.1 75.0 90.2 86.7 73.7 94.9 91.8 92.5 98.8

2 3 87.2 84.1 90.6 88.6 81.8 94.9 92.0 92.3 99.4

4 83.9 81.9 90.7 90.0 81.2 94.3 91.6 91.6 98.6

5 82.5 81.9 89.4 89.1 81.3 94.6 93.8 93.2 98.8

6 82.8 82.0 89.8 89.5 83.0 95.5 93.2 94.2 99.1

7 81.8 84.3 90.7 89.8 81.3 95.8 92.9 92.3 98.5

8 84.4 80.3 88.9 89.6 82.9 95.9 93.6 91.3 99.1

9 83.9 81.8 90.3 89.0 81.1 95.3 93.1 91.8 98.9

10 82.7 83.0 90.5 90.3 80.0 95.7 93.7 93.0 99.0

3 4 84.9 82.3 90.8 86.4 87.0 94.6 91.3 94.3 99.0

5 86.5 81.7 89.9 86.6 84.2 94.1 91.0 94.9 99.3

6 85.4 85.6 90.9 89.4 88.1 95.8 92.1 93.3 99.3

7 83.0 83.1 90.1 87.8 88.3 94.9 91.6 94.0 98.9

8 85.1 85.7 90.4 89.2 88.4 94.7 92.8 94.3 99.3

9 84.8 82.2 89.9 89.2 87.7 95.8 93.9 93.8 99.8

10 84.0 85.0 90.8 88.6 87.5 94.9 91.4 94.4 99.1

4 5 86.3 83.7 90.7 90.1 88.1 95.0 95.3 92.0 98.9

6 87.0 84.1 90.8 88.4 89.6 95.4 95.8 94.6 99.1

7 88.9 82.0 89.9 90.0 91.1 94.9 94.9 95.4 99.5

8 87.4 83.3 90.9 90.5 87.1 94.9 95.4 93.9 98.7

9 85.6 83.1 89.6 89.7 89.1 95.6 93.3 94.9 99.3

10 86.8 82.5 89.4 90.2 88.6 94.6 95.9 94.3 99.1

θ2 1 2 84.3 87.1 89.9 89.3 85.2 95.9 91.9 92.6 98.8

3 90.4 84.5 90.7 92.8 90.7 95.8 94.4 93.9 99.5

4 87.2 85.9 89.2 93.0 90.4 95.6 97.1 95.2 99.4

5 90.5 87.6 90.5 95.2 90.5 94.6 98.1 95.7 98.5

6 90.2 87.7 89.9 95.5 92.1 94.3 98.9 94.9 99.1

7 90.0 86.1 89.5 94.3 92.1 95.5 98.8 95.0 99.4

8 90.7 89.7 90.7 95.1 92.0 95.2 98.5 96.2 99.3

9 90.4 88.4 90.4 95.6 92.4 95.9 98.0 96.7 98.8

10 89.6 89.6 90.5 94.5 94.1 95.5 99.2 96.3 99.6
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Table 1 continued

90% CI 95% CI 99% CI

τ1 τ2 BCa App. Exact BCa App. Exact BCa App. Exact

2 3 86.1 88.7 89.9 89.1 84.9 95.7 91.2 91.1 99.3

4 87.3 84.8 89.7 92.0 87.3 94.9 95.1 94.2 99.2

5 88.4 86.0 90.2 93.6 89.0 94.2 97.1 95.7 98.8

6 89.8 87.9 89.8 94.1 90.1 94.7 97.1 95.5 99.2

7 90.7 86.9 90.3 95.2 90.6 95.3 98.2 96.1 99.1

8 88.7 88.3 90.7 94.8 91.2 94.2 98.1 96.1 99.5

9 91.3 86.9 89.9 94.5 91.8 94.5 98.7 95.6 99.2

10 89.7 88.8 90.6 96.6 92.4 95.4 99.0 96.3 99.0

3 4 84.4 85.4 90.5 86.9 85.0 95.8 92.7 92.6 99.8

5 87.3 85.1 90.9 91.7 89.4 94.8 95.4 93.9 98.4

6 89.2 87.4 90.0 91.2 90.5 95.4 96.5 93.8 99.0

7 89.8 86.7 89.0 93.6 90.4 95.8 97.6 95.8 98.8

8 88.1 87.2 89.8 94.0 90.3 94.9 98.1 95.6 99.5

9 90.7 88.0 90.0 92.5 91.3 94.3 97.9 95.5 98.9

10 90.7 88.4 90.9 94.9 90.5 95.1 98.3 96.1 99.6

4 5 82.9 78.7 90.7 86.1 83.8 95.9 93.7 91.1 99.9

6 86.8 82.7 90.7 90.9 87.3 94.3 93.7 94.6 99.2

7 88.2 84.6 90.2 93.2 90.2 95.7 96.9 94.3 99.3

8 88.8 87.7 89.8 93.4 89.6 94.3 97.5 94.3 98.9

9 89.8 87.4 89.9 94.2 92.3 94.6 97.9 95.2 99.4

10 88.7 86.5 89.8 95.3 91.7 95.2 98.5 94.9 99.1

M2(ω|A) = Cn

n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk · exp
{

ω
j (n − i − j + k)(τ2 − τ1)

}

(
1 − θ2

j ω
) j

, ω <
1

θ2
,

(15)
where

Ci jk = (−1)k
(

n

i, j, n − i − j

)(
j

k

)
pi

1
pn−i− j+k

3

(
1 − p1

) j−k
,

and Cn, p1 , p2 and p3 are as defined earlier.

Proof Using (9), (11), (12) and the result in Lemma 1 into Eq. (10), and simplifying
the resulting expression, we obtain (15).

Now, in order to obtain the exact PDFs of θ̂1 and θ̂2 in (9), we need the following
Lemma.

Lemma 2 If X is a gamma random variable with parameters α and β, then the PDF
of Y = X + ζ is of the form
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Table 2 Estimated coverage probabilities (in %) of confidence intervals for θ1 and θ2 based on 1,000
simulations with n = 35, θ1 = e2.5, θ2 = e1.5 and R = 1, 000

90% CI 95% CI 99% CI

τ1 τ2 BCa App. Exact BCa App. Exact BCa App. Exact

θ1 1 2 85.8 86.1 90.6 85.8 84.6 95.2 93.0 89.8 98.8

3 86.9 83.2 90.8 86.9 94.0 95.4 92.5 90.0 98.9

4 84.5 82.7 90.1 84.5 82.5 94.6 93.2 91.1 99.5

5 85.7 82.1 89.3 85.7 86.9 94.5 93.1 91.1 99.6

6 96.7 82.2 89.9 84.5 85.8 95.0 92.9 91.2 99.4

7 84.0 84.5 89.8 87.2 84.7 95.3 92.8 91.1 98.9

8 84.4 84.3 89.9 87.6 85.8 95.0 92.8 91.0 99.3

9 87.0 83.7 90.6 88.4 83.7 94.9 91.7 92.2 99.7

10 83.2 82.4 90.1 88.1 84.1 94.9 92.4 90.8 98.9

2 3 83.7 85.5 90.2 88.0 86.1 94.8 92.5 92.6 99.9

4 83.9 85.4 90.7 88.6 86.8 94.8 94.1 93.0 98.9

5 84.3 85.3 89.8 89.4 87.1 94.9 93.4 93.3 99.8

6 83.6 85.1 89.9 88.8 87.1 95.3 93.3 91.5 99.7

7 84.5 85.8 90.5 86.8 86.0 95.1 92.8 93.6 99.5

8 83.9 86.8 89.9 90.1 85.2 95.3 93.0 92.8 99.5

9 83.1 83.3 90.2 88.7 86.8 95.2 93.6 93.7 98.9

10 81.8 83.8 90.5 88.0 86.2 95.6 94.9 93.4 99.5

3 4 86.6 85.1 90.4 91.8 89.6 94.9 95.7 94.8 99.8

5 89.1 87.6 89.9 92.1 89.3 94.8 97.2 94.5 99.2

6 87.3 86.0 90.3 91.9 89.8 95.1 96.9 94.9 99.8

7 87.4 86.9 90.0 90.4 89.5 94.9 96.6 94.1 99.9

8 87.9 84.6 90.4 92.0 88.6 94.8 96.6 93.4 100.0

9 89.8 85.7 89.9 92.7 88.2 95.4 96.8 94.2 99.7

10 89.1 85.9 90.5 91.3 88.8 94.9 96.3 94.3 99.2

4 5 88.8 84.4 90.5 92.0 91.3 95.0 97.5 95.5 99.9

6 89.9 86.8 90.3 94.5 90.3 95.1 97.0 94.3 99.6

7 89.5 87.0 89.9 92.3 91.9 94.9 96.7 94.8 99.1

8 89.2 87.8 90.4 93.8 91.9 94.7 96.5 94.9 99.7

9 88.7 87.3 89.7 93.7 91.7 95.1 97.1 95.6 99.4

10 89.6 86.7 89.5 92.2 91.5 94.8 96.6 95.7 99.5

θ2 1 2 88.1 82.5 89.9 88.1 88.7 95.3 96.9 94.0 98.9

3 87.9 88.2 90.2 87.9 90.5 95.2 97.4 96.5 99.9

4 89.1 87.8 89.2 89.1 93.7 95.1 97.6 96.4 99.8

5 89.3 89.4 90.2 89.3 93.2 94.9 98.5 96.1 98.9

6 90.8 89.8 89.9 90.8 92.1 94.8 98.9 96.9 99.3

7 90.9 90.0 89.8 95.8 92.5 95.5 99.0 97.3 99.5

8 89.2 89.2 90.1 93.5 94.2 95.1 98.9 96.9 99.8

9 89.6 91.2 90.4 95.0 93.5 95.4 98.2 98.0 98.8

10 90.2 89.9 90.2 95.5 93.3 95.0 99.1 97.8 99.6
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Table 2 continued

90% CI 95% CI 99% CI

τ1 τ2 BCa App. Exact BCa App. Exact BCa App. Exact

2 3 86.3 85.7 89.9 91.0 89.2 95.1 95.3 95.2 99.5

4 87.6 87.6 89.8 93.0 90.8 94.9 97.4 95.0 99.1

5 88.5 89.2 90.2 94.9 91.8 94.9 98.4 95.7 99.8

6 89.4 89.9 89.8 93.5 92.7 94.7 98.3 96.9 99.6

7 88.5 89.1 90.3 95.1 93.6 95.3 98.1 97.2 99.1

8 88.5 88.7 90.3 92.5 93.2 94.7 99.2 97.4 99.4

9 89.5 90.4 89.9 95.1 93.8 94.9 98.8 97.6 99.9

10 89.7 91.9 90.1 94.6 93.0 95.3 98.8 97.2 99.1

3 4 86.8 84.3 90.2 90.5 89.4 95.2 94.7 94.5 99.8

5 87.9 85.9 90.2 93.2 90.2 94.8 97.0 95.2 99.4

6 89.0 89.2 90.0 93.4 92.6 95.0 97.5 96.2 99.0

7 88.7 89.4 89.9 94.4 92.3 95.1 98.4 96.3 99.8

8 90.4 91.2 89.9 94.9 92.6 94.9 97.7 96.3 99.5

9 90.5 88.7 90.0 94.7 92.5 94.9 98.4 97.8 99.7

10 91.1 90.9 90.3 94.8 92.9 95.1 98.5 96.9 99.6

4 5 86.5 81.9 90.4 88.3 86.7 95.2 93.2 93.5 99.9

6 88.7 86.1 90.3 94.2 89.7 94.8 97.3 93.7 99.6

7 89.0 89.4 90.1 94.1 90.5 95.3 97.7 96.7 99.6

8 91.2 87.9 89.8 93.4 91.7 94.8 97.0 96.7 98.9

9 89.9 89.7 89.9 95.1 92.7 94.9 98.5 96.5 99.2

10 88.5 88.8 89.8 94.9 93.2 95.2 98.3 97.1 99.3

γ
(
x − ζ ;α, β

) =
{

1
	(α)β

α

(
x − ζ

)α−1
e−(x−ζ )/β if x > ζ

0 otherwise
, (16)

and the MGF of Y = X + ζ is of the form

MY (ω) = eωζ

(
1 − βω

)α , |ω| < 1/β. (17)

Proof The proof follows from the well-known properties of the gamma distribution
(see Johnson et al. 1994).

Theorem 1 The conditional PDF of θ̂1, given the event A =
{

1 ≤ N1 ≤ n − 1 and

1 ≤ N2 ≤ n − N1

}
, is

f
θ̂1

(x) = Cn

n−1∑

i=1

i∑

k=0

Cik · γ

(
x − τik ; i,

θ1

i

)
, (18)

where τik = 1
i (n − i + k)τ1 and γ (·) is as defined in (16).
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Proof From (14), we have CMGF of θ̂1, given the event A as

M1(ω|A) = Cn

n−1∑

i=1

i∑

k=0

Cik · MYik (ω),

where Yik’s are random variables distributed as Xik + τik with Xik being distributed
as gamma with shape parameter α = i and scale parameter β = θ1

i . Result in (18) is
obtained by inverting the above relation between the moment generating functions.

Remark 3 It is important to note here that the conditional PDF of θ̂1 derived in Theorem
1 will enable to develop exact conditional inference for the parameter θ1 conditioned

on the event
{

1 ≤ N1 ≤ n − 1 and 1 ≤ N2 ≤ n − N1

}
. So, this should be considered

as conditional inference for θ1 during the joint estimation of the parameters θ1 and
θ2. One can instead consider the conditional density of θ̂1 conditioned on the event
N1 ≥ 1 (which will then simply be the conditional density of the MLE θ̂1 based on
an ordinary Type-I censored sample from the Exponential(θ1) distribution), but the
corresponding inference in this case will not be in the framework of joint estimation
of θ1 and θ2. For this reason, change in τ2 will have an effect on the inference for θ1,
but it will be negligible (see, for example, Table 3).

Theorem 2 The conditional PDF of θ̂2, given A =
{

1 ≤ N1 ≤ n − 1 and 1 ≤ N2 ≤
n − N1

}
, is

f
θ̂2

(x) = Cn

n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk · γ

(
x − τi jk ; j,

θ2

j

)
, (19)

where τi jk = 1
j (n − i − j + k)(τ2 − τ1) and γ (·) is as defined in (16).

Proof The result follows immediately from (15) upon using Lemma 2.

Corollary 3 The first two raw moments of θ̂1 are

E
(
θ̂1

) = θ1 + Cn

n−1∑

i=1

i∑

k=0

Cik · τik (20)

and

E
(
θ̂2

1

) = θ2
1 + Cn

n−1∑

i=1

i∑

k=0

Cik ·
(

τ 2
ik

+ 2τik θ1 + 1

i
θ2

1

)
, (21)

respectively.
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Proof These expressions follow readily from (18).

Corollary 4 The first two raw moments of θ̂2 are

E
(
θ̂2

) = θ2 + Cn

n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk · τi jk (22)

and

E
(
θ̂2

2

) = θ2
2 + Cn

n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk ·
(

τ 2
i jk

+ 2τi jk θ2 + 1

j
θ2

2

)
, (23)

respectively.

Proof These expressions follow readily from (19).

Corollary 5 The tail probabilities of θ̂1 and θ̂2 are

Pθ1

{
θ̂1 > ξ

}
= Cn

n−1∑

i=1

i∑

k=0

Cik · 	

(
i

θ1

〈
ξ − τik

〉; i

)
(24)

and

Pθ2

{
θ̂2 > ξ

}
= Cn

n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk · 	

(
j

θ2

〈
ξ − τi jk

〉; j

)
, (25)

where
〈
w

〉 = max {0, w} and

	(w;α) =
∫ ∞

w

γ
(
x;α, 1

)
dx =

∫ ∞

w

1

	(α)
xα−1e−x dx .

Proof The expressions in (24) and (25) follow by integration from (18) and (19),
respectively.

Incidentally, proceeding exactly along the same lines as above, we can derive the joint
CMGF and joint conditional density function of θ̂1 and θ̂2 as given in the following
theorem.

Theorem 3 The joint CMGF of θ̂1 and θ̂2, given the event A =
{

1 ≤ N1 ≤ n − 1 and

1 ≤ N2 ≤ n − N1

}
, is

M12
(
ν, ω|A) = Cn

n−1∑

i=1

n−i∑

j=1

i∑

k=0

j∑

l=0

Ai jkl · e
ν
i (n−i+k)τ 1

(
1 − θ1

i ν
)i

· e
ω
j (n−i− j+l)(τ 2−τ 1)

(
1 − θ2

j ω
) j

, (26)
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and the joint conditional density of θ̂1 and θ̂2 is

f12(x, y) = Cn

n−1∑

i=1

n−i∑

j=1

i∑

k=0

j∑

l=0

Ci jkl · γ

(
x − τik; i,

θ1

i

)
γ

(
y − τi jl; j,

θ2

j

)
, (27)

where Cn, p1 , p2 , p3 , γ (·), and τik are all as defined earlier, τi jl = 1
j (n − i − j + l)

× (τ2 − τ1), and

Ci jkl = (−1)k+l
(

n

i, j, n − i − j

)(
i

k

)(
j

l

)
pn−i− j+l

3

(
1 − p1

) j+k−l
.

Corollary 6 From (26), we readily obtain

E
(
θ̂1θ̂2

) = Cn

n−1∑

i=1

n−i∑

j=1

i∑

k=0

j∑

l=0

Ci jkl · (θ1 + τik)(θ2 + τi jl), (28)

and

Cov
(
θ̂1, θ̂2

) = Cn

n−1∑

i=1

n−i∑

j=1

i∑

k=0

j∑

l=0

Ci jkl · τikτi jl

−C2
n

( n−1∑

i=1

i∑

k=0

Cik · τik

)( n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk · τi jk

)
, (29)

where Cik and Ci jk are as defined earlier. From (29), it can be seen that θ̂1 and
θ̂2 are correlated in case of small samples eventhough they become asymptotically
independent as shown in Sect. 4.2.

4 Confidence intervals

In this section, we present different methods of constructing confidence intervals (CIs)
for the unknown parameters θ1 and θ2. From Theorems 1 and 2, we can construct the
exact CIs for θ1 and θ2, respectively. Since the exact conditional PDF of θ̂1 and θ̂2
are quite complicated, we also present the approximate CI for θ1 and θ2 for larger
sample sizes. Finally, we use the parametric bootstrap method to construct CI for
θ1 and θ2.

4.1 Exact confidence intervals

To guarantee the invertibility for the parameters θ1 and θ2, we assume that the tail
probabilities of θ̂1 and θ̂2 presented in Corollary 5 are increasing functions of θ1 and
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θ2, respectively. Several authors including Chen and Bhattacharyya (1988), Gupta
and Kundu (1998), Kundu and Basu (2000), and Childs et al. (2003) have used this
approach to construct exact CI in different contexts. Like all of them, we are also
unable to establish the required monotonicity, but the extensive numerical computa-
tions we carried out seem to support this monotonicity assumption; see Fig. 1, for
example.

(1) CI for θ1
The exact CI for θ1 can be constructed by solving the equations

Pθ1L

{
θ̂1 > θ̂obs

}
= α

2
and Pθ1U

{
θ̂1 > θ̂obs

}
= 1 − α

2

for θ1L (the lower bound of θ1) and θ1U (the upper bound of θ1), respectively.
A two-sided 100(1 − α)% CI for θ1, denoted by (θ1L, θ1U), can be obtained by
solving the following two non-linear equations (either using the Newton–Raphson
method or bisection method):

α

2
= Cn

(
θ1L, θ̂2

) n−1∑

i=1

i∑

k=0

Cik
(
θ1L, θ̂2

) · 	

(
i

θ1L

〈
θ̂1 − τik

〉; i

)

and

1 − α

2
= Cn

(
θ1U, θ̂2

) n−1∑

i=1

i∑

k=0

Cik
(
θ1U, θ̂2

) · 	

(
i

θ1U

〈
θ̂1 − τik

〉; i

)
,

where Cn, Cik, τik and 	(w;α) are all as defined earlier.
(2) CI for θ2

Similarly, a two-sided 100(1 − α)% CI for θ2, denoted by (θ2L, θ2U), can be
obtained by solving the following two non-linear equations:

α

2
= Cn

(
θ̂1, θ2L

) n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk
(
θ̂1, θ2L

) · 	

(
j

θ2L

〈
θ̂2 − τi jk

〉; j

)

and

1 − α

2
= Cn

(
θ̂1, θ2U

) n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk
(
θ̂1, θ2U

) · 	

(
j

θ2U

〈
θ̂2 − τi jk

〉; j

)
,

where Cn, Ci jk, τi jk and 	(w;α) are all as defined earlier.
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Tail Probability Plot of Theta1

When n=10, xi=exp(1.25), mle2=exp(0.75), t1=1, t2=2
theta2

Tail Probability Plot of Theta2

When n=10, mle1=exp(1.25), xi=exp(0.75), t1=1, t2=2

theta1

Tail Probability Plot of Theta1

When n=20, xi=exp(2.5), mle2=exp(1.5), t1=5, t2=10
theta2

Tail Probability Plot of Theta2

When n=20, mle1=exp(2.5), xi=exp(1.5), t1=5, t2=10

theta1

Tail Probability Plot of Theta1

When n=35, xi=exp(2.5), mle2=exp(1.5), t1=15, t2=30
theta2

Tail Probability Plot of Theta2

When n=35, mle1=exp(2.5), xi=exp(1.5), t1=15, t2=30

10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

Fig. 1 Tail probability plot of θ̂1 and θ̂2

4.2 Approximate confidence intervals

For large N1 and N2, the observed Fisher information matrix of θ1 and θ2 is

Î
(
θ1, θ2

) =
[

Î11 Î12

Î21 Î22

]

θ1=θ̂1,θ2=θ̂2

, (30)

where

Îi j = −E

{
∂l(θ1, θ2|t)

∂θi∂θ j

}∣
∣
∣
∣
θ1=θ̂1,θ2=θ̂2

, i, j = 1, 2,
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and θ̂1 and θ̂2 are as in (9). Therefore, we have

Î11 = −E

{
N1

θ̂2
1

+ 2D1

θ̂3
1

}
= N1

θ̂2
1

,

Î12 = 0 = Î21,

Î22 = −E

{
N2

θ̂2
2

+ 2D2

θ̂3
2

}
= N2

θ̂2
2

.

The asymptotic variances of θ̂1 and θ̂2 can be obtained from (26) as

V11 = Var
(
θ̂1

) = θ̂2
1

N1
and V22 = Var

(
θ̂2

) = θ̂2
2

N2
.

We can then use the pivotal quantities for θ1 and θ2 as

θ̂1 − E
(
θ̂1

)

√
V11

and
θ̂2 − E

(
θ̂2

)

√
V22

,

where E
(
θ̂1

)
and E

(
θ̂2

)
are as given in (20) and (22), respectively. We can then

express a two-sided 100(1 − α)% approximate CI for θ1 and θ2 as

(
θ̂1 − W1

) ± z1−α/2

√
V11

and

(
θ̂2 − W2

) ± z1−α/2

√
V22,

where

W1 = Cn
(
θ̂1, θ̂2

) n−1∑

i=1

i∑

k=0

Cik
(
θ̂1, θ̂2

) · τik ,

W2 = Cn
(
θ̂1, θ̂2

) n−1∑

i=1

n−i∑

j=1

j∑

k=0

Ci jk
(
θ̂1, θ̂2

) · τi jk ,

and z1−α/2 is the upper (α/2) percentile of the standard normal distribution.

4.3 Bootstrap confidence intervals

The exact confidence intervals presented in Sect. 4.1 are computationally quite involved
and become difficult to construct when sample size is large. Also, as we show later
in Sect. 5, the approximate confidence intervals presented in Sect. 4.2 do not have
satisfactory coverage probabilities unless the sample size is quite large. Hence, it is
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naturally of interest to check whether a bootstrap method provides a good alternate for
this purpose. As will be seen later in Sect. 5, the adjusted percentile bootstrap method
proposed here does perform well for large sample sizes and is also easy to implement.
This suggests that one should therefore use the exact method in case of small to mod-
erate sample sizes (up to 35) and the adjusted percentile bootstrap method for sample
sizes larger than that as the exact method faces computational difficulties in this situa-
tion. In this subsection, we therefore describe a bootstrap method to construct CIs for θ1
and θ2, viz., the Adjusted percentile (BCa) interval; see Efron and Tibshirani (1988)
for details. First, we describe the algorithm to obtain the Type-I censored sample.
This algorithm will be utilized in the resampling needed for the bootstrap confidence
interval in Sect. 4.3.2.

4.3.1 Bootstrap sample

Step 1. Given τ1 , τ2 and the original Type-I censored sample, we obtain θ̂1 and θ̂2
from (9).

Step 2. Based on n, τ1 , θ̂1 and θ̂2, we generate a random sample of size n from
Uniform (0, 1) distribution, and obtain the order statistics (U1:n, . . . , Un:n).

Step 3. Find N1 such that

UN1:n < 1 − e−τ1 /θ̂1 ≤ UN1+1:n .

For 1 ≤ i ≤ N1, we set

t∗i :n = −θ̂1 log
(
1 − Ui :n

)
.

Step 4. Next, we generate a random sample of size m = n − N1 from Uniform(0, 1)

distribution, and obtain the order statistics (V1:m, . . . , Vm:m).
Step 5. Find N2 such that

VN2:m < 1 − e−(τ2 −τ1 )/θ̂2 ≤ VN2+1:m .

For 1 ≤ j ≤ N2, we then set

t∗
N1+ j :n = τ1 − θ̂2 log

(
1 − Vj :m

)
.

Step 6. Based on n, N1, N2, τ1 , τ2 , and ordered observations
{

t∗1:n, . . . , t∗N1:n,

t∗N1+1:n, . . . , t∗N1+N2:n
}

, we obtain θ̂∗
1 and θ̂∗

2 from (9).

Step 7. Repeat Steps 2–6 R times and arrange all θ̂∗
1 ’s and θ̂∗

2 ’s in ascending order
to obtain the bootstrap sample

{
θ̂

∗[1]
k , θ̂

∗[2]
k , . . . , θ̂

∗[R]
k

}
, k = 1, 2.
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4.3.2 Adjusted percentile (BCa) interval

A two-sided 100(1 − α)% BCa bootstrap confidence interval for θk is

(
θ̂

∗[α1k R]
k , θ̂

∗[(1−α2k )R]
k

)
, k = 1, 2,

where

α1k = 

{
ẑ0k + ẑ0k + zα/2

1 − âk (ẑ0k + zα/2)

}
and α2k = 

{
ẑ0k + ẑ0k + z1−α/2

1 − âk (ẑ0k + z1−α/2)

}
.

Here, (·) is the CDF of the standard normal distribution, and

ẑ0k = −1
{

# of θ̂
∗[ j]
k < θ̂k

R

}
, j = 1, . . . , R, k = 1, 2.

A good estimate of the acceleration ak is

âk =
∑Nk

i=1

[
θ̂

(·)
k − θ̂

(i)
k

]3

6

{
∑Nk

i=1

[
θ̂

(·)
k − θ̂

(i)
k

]2
}3/2 , i = 1, . . . , Nk , k = 1, 2,

where θ̂
(i)
k is the MLE of θk based on the simulated Type-I censored sample with the

i th observation deleted (i.e., the jackknife estimate), and

θ̂
(·)
k = 1

Nk

Nk∑

i=1

θ̂
(i)
k , i = 1, . . . , Nk, k = 1, 2.

In addition to this adjusted percentile bootstrap interval, the percentile bootstrap
interval and the Studentized-t bootstrap interval were also included in the comparative
study; but, since the adjusted percentile (BCa) interval yielded the best results overall
among these three methods, only the results for this method are presented.

5 Simulation Study

In this section, we present the results of a Monte Carlo simulation study carried out in
order to compare the performance of all the methods of inference described in Sect. 4.
We chose the values of the parameters θ1 and θ2 to be e2.5 and e1.5, respectively; we
also chose for n the values of 20 and 35, and several different choice for (τ1 , τ2).
We then determined the true coverage probabilities of the 90%, 95%, 99% confidence
intervals for θ1 and θ2 by all the methods presented in Sect. 4. These values, based on
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1,000 Monte Carlo simulations and R = 1,000 bootstrap replications, are presented
in Tables 1 and 2.

From these tables, it is clear that the exact method of constructing confidence inter-
vals (based on the exact conditional densities of θ̂1 and θ̂2 derived in Sect. 3) always
maintains its coverage probability at the pre-fixed nominal level. The approximate
method of constructing confidence intervals (based on asymptotic normality of θ̂1
and θ̂2) has its true coverage probability to be always less than the nominal level.
Though the coverage probability improves for large sample size, we still find it to be
unsatisfactory even for n as large as 35 particularly when τ1 and τ2 are not too large.
Therefore, the approximate CI should not be used unless n is considerably large.

Among the three bootstrap methods of constructing confidence intervals mentioned
in Sect. 4, it was observed that the Studentized-t interval seems to have considerably
low coverage probabilities compared to the nominal level. The percentile interval
and the adjusted percentile interval had their coverage probabilities to be better and
somewhat closer to the nominal level. Eventhough the percentile method seems to be
sensitive (for θ1 when τ1 is small), the method did improve a bit for larger sample size.
Overall, the adjusted percentile method was observed to be the one (among the three
bootstrap methods) with somewhat satisfactory coverage probabilities (not so for θ1
when τ1 is small), and so the results for this bootstrap method alone are included in
the tables. Hence, this method may be used in case of large sample sizes when the
computation of the exact CI becomes difficult.

6 Illustrative examples

In this section, we consider three examples. First, we revisit Examples 1 and 2 pre-
sented earlier in Sect. 2 in order to illustrate all the methods of inference developed in
preceding sections. Example 3 gives some plots to show the monotonicity of the tail
probabilities of θ̂1 and θ̂2 given in Corollary 5.

Example 1 (Revisited) From the formulas in Eqs. (20)–(23), we obtain the standard
error of the MLEs of θ1 and θ2 to be

τ1 = 5 τ2 = 6 τ2 = 7 τ2 = 8 τ2 = 9 τ2 = 12

ŜE
(
θ̂1

)
21.44440 21.28597 21.18302 21.18202 21.18202

ŜE
(
θ̂2

)
4.79362 8.105016 3.604153 1.642129 1.880477

Further, the confidence intervals for θ1 and θ2 obtained by all three methods are pre-
sented in Tables 3 and 4, respectively. Note that the approximate confidence interval
and the bootstrap confidence interval are both unsatisfactory upon comparing them
with the exact confidence intervals. The problem is due to the small values of N1 and
N2 in this case.

Example 2 (Revisited) From the formulas in Eqs. (20)–(23), we obtain the standard
error of the MLEs of θ1 and θ2 to be
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τ1 = 8 τ2 = 16 τ2 = 20 τ2 = 24

ŜE
(
θ̂1

)
10.27773 10.28401 10.28193

ŜE
(
θ̂2

)
2.718509 2.411893 2.303771

Further, the confidence intervals for θ1 and θ2 obtained by all three methods are pre-
sented in Table 5. Note that all the intervals for θ2 are close to the exact confidence
interval, and the approximate and bootstrap confidence intervals for θ1 are highly
unsatisfactory compared to the exact confidence interval. This is so because N1 is
small and N2 is large in this case.

Example 3 Although we can not prove the monotonic increasing property of the tail

probability functions given in Corollary 5, we present some plots of P
{
θ̂ > ξ

}
for

different choices of n, and τ1 and τ2 , in Fig. 1. These plots all display the monotonicity
of the probabilities of interest.

7 Conclusions

In this paper, we have considered a simple step-stress model with two stress levels from
exponential distributions when there is time constraint on the duration of the exper-
iment. We have derived the MLEs of the unknown parameters θ1 and θ2, and their
exact conditional distributions. We have also proposed several different procedures
for constructing confidence intervals for θ1 and θ2. We have carried out a simulation

Table 3 Interval estimation for θ1 based on the data in Example 1 with τ1 = 5 and different τ2

τ 2 Method 90% 95% 99%

6 Bootstrap BCa (11.8452, 97.0986) (10.4813, 97.9780) (7.9084, 98.7994)

Approximation (0.0000, 35.1448) (0.0000, 38.8501) (0.0000, 46.0919)

Exact (11.4823, 71.8781) (10.1474, 93.3925) (8.0940, 166.5306)

7 Bootstrap BCa (11.6452, 97.1715) (10.0295, 98.2370) (8.0759, 99.1133)

Approximation (0.0000, 35.4373) (0.0000, 39.1426) (0.0000, 46.3844)

Exact (11.5931, 72.5194) (10.2461, 94.2236) (8.1736, 168.0092)

8 Bootstrap BCa (11.5395, 95.6438) (10.2748, 97.3843) (8.6848, 98.9594)

Approximation (0.0000, 35.6525) (0.0000, 39.3578) (0.0000, 46.5997)

Exact (11.6965, 72.9479) (10.3429, 94.7722) (8.2602, 168.9658)

9 Bootstrap BCa (11.8333, 96.1042) (10.1246, 98.1306) (7.4839, 98.6661)

Approximation (0.0000, 35.6561) (0.0000, 39.3614) (0.0000, 46.6032)

Exact (11.7003, 72.9524) (10.3471, 94.7774) (8.2656, 168.9753)

12 Bootstrap BCa (11.4474, 96.4329) (10.3128, 98.5669) (7.4530, 99.8978)

Approximation (0.0000, 35.6561) (0.0000, 39.3614) (0.0000, 46.6032)

Exact (11.7006, 72.9580) (10.3467, 94.7793) (8.2639, 168.9228)
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Table 4 Interval estimation for θ2 based on the data in Example 1 with τ1 = 5 and different τ2

τ2 Method 90% 95% 99%

6 Bootstrap BCa (2.8799, 16.6801) (2.4932, 17.3774) (1.7947, 18.0875)

Approximation (0.0000, 14.9771) (0.0000, 16.6460) (0.0000, 19.9077)

Exact (2.7403, 61.6015) (2.3523, 117.4822) (1.7900, 561.5936)

7 Bootstrap BCa (4.0308, 26.5112) (2.9103, 29.9906) (3.1983, 33.2359)

Approximation (0.0000, 15.8027) (0.0000, 17.5407) (0.0000, 20.9376)

Exact (4.1066, 32.9363) (3.5998, 45.9218) (2.8281, 99.5966)

8 Bootstrap BCa (2.5731, 8.2473) (2.2987, 9.8267) (2.0628, 12.0612)

Approximation (1.2354, 8.1647) (0.5717, 8.8284) (0.0000, 10.1256)

Exact (3.1190, 11.2912) (2.8251, 13.2468) (2.3466, 18.6546)

9 Bootstrap BCa (2.1930, 5.2337) (2.3852, 5.8879) (2.3917, 7.1737)

Approximation (1.7884, 5.8839) (1.3961, 6.2762) (0.6293, 7.0430)

Exact (2.5643, 7.3382) (2.3566, 8.3046) (2.0086, 10.7583)

12 Bootstrap BCa (3.4681, 6.4423) (2.9746, 7.4671) (2.1930, 9.0009)

Approximation (2.4996, 7.9478) (1.9778, 8.4697) (0.9578, 9.4896)

Exact (3.5333, 9.3778) (3.2633, 10.5022) (2.8071, 13.2944)

Table 5 Interval estimation for θ1 and θ2 based on the data in Example 2 with τ1 = 8 and different τ2

τ2 Method 90% 95% 99%

θ1 16 Bootstrap BCa (15.4715, 44.0562) (14.0231, 53.2283) (12.6611, 110.4923)

Approximation (8.8162, 33.0712) (6.4928, 35.3945) (1.9521, 39.9352)

Exact (14.3235, 39.5828) (13.1967, 45.3996) (11.3027, 56.2873)

20 Bootstrap BCa (14.9623, 43.4934) (13.5602, 53.1624) (12.6110, 66.9014)

Approximation (8.8184, 33.0734) (6.4951, 35.3967) (1.9543, 39.9375)

Exact (14.3235, 39.4201) (13.1967, 45.1434) (11.3027, 56.3097)

24 Bootstrap BCa (14.7173, 43.3530) (13.9817, 51.7492) (13.0987, 88.3893)

Approximation (8.8171, 33.0721) (6.4938, 35.3954) (1.9530, 39.9362)

Exact (14.3235, 40.0600) (13.1967, 45.2894) (11.3027, 56.2863)

θ2 16 Bootstrap BCa (6.1549, 14.7354) (5.8507, 16.9423) (5.1816, 22.5316)

Approximation (4.7326, 12.3528) (4.0027, 13.0827) (2.5761, 14.5093)

Exact (6.0103, 14.2983) (5.5908, 15.7817) (4.8775, 19.3389)

20 Bootstrap BCa (6.3969, 13.9389) (6.1930, 16.0229) (5.6165, 22.1152)

Approximation (5.4263, 12.6502) (4.7344, 13.3421) (3.3820, 14.6945)

Exact (6.4928, 14.2075) (6.0793, 15.5093) (5.3570, 18.5517)

24 Bootstrap BCa (6.9175, 14.6662) (6.6156, 17.3868) (5.6610, 23.8502)

Approximation (5.8964, 12.9923) (5.2167, 13.6719) (3.8883, 15.0004)

Exact (6.8614, 14.3892) (6.4449, 15.6304) (5.7166, 18.4912)

study to compare the performance of all these procedures. We have observed that the
approximate method of constructing confidence intervals (based on the asymptotic
normality of the MLEs θ̂1 and θ̂2) and the Studentized-t bootstrap conference interval
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are both unsatisfactory in terms of the coverage probabilities. Eventhough the percen-
tile bootstrap method seems to be sensitive for small values of τ1 and τ2 , the method
does improve for larger sample size. Overall, the adjusted percentile method seems to
be the one (among the three bootstrap methods) with somewhat satisfactory coverage
probabilities (not so for θ1 when τ1 is small). Hence, our recommendation is to use
the exact method whenever possible, and the adjusted percentile method in case of
large sample size when the computation of the exact confidence interval becomes dif-
ficult. We have also presented some examples to illustrate all the methods of inference
discussed here as well as to support the conclusions drawn.
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