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Abstract

We describe an exact, unconditional, non-randomized procedure for producing confidence 

intervals for the grand mean in a normal-normal random effects meta-analysis. The procedure 

targets meta-analyses based on too few primary studies, ≤ 7, say, to allow for the conventional 

asymptotic estimators, e.g., DerSimonian and Laird (1986), or non-parametric resampling-based 

procedures, e.g., Liu et al. (2017). Meta-analyses with such few studies are common, with one 

recent sample of 22,453 heath-related meta-analyses finding a median of 3 primary studies per 

meta-analysis (Davey et al., 2011). Reliable and efficient inference procedures are therefore 

needed to address this setting. The coverage level of the resulting CI is guaranteed to be above the 

nominal level, up to Monte Carlo error, provided the meta-analysis contains more than 1 study and 

the model assumptions are met. After employing several techniques to accelerate computation, the 

new CI can be easily constructed on a personal computer. Simulations suggest that the proposed 

CI typically is not overly conservative. We illustrate the approach on several contrasting examples 

of meta-analyses investigating the effect of calcium intake on bone mineral density.
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1 ∣ INTRODUCTION

The random effects model is often used to account for between-study heterogeneity when 

conducting a meta-analysis. When the distribution of the primary study treatment effect 

estimates is approximately normal, the simple normal-normal model is commonly used, and 

the DerSimonian-Laird (“DL”) method and its variations are the most popular approach to 

estimating the model’s parameters and performing statistical inference (DerSimonian and 
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SUPPORTING INFORMATION

Web Appendices, Tables, and Figures referenced in Sections 3 and 4 are available with this paper at the Biometrics website on Wiley 

Online Library. Routines in the R programming language for computing exact CIs for the population mean by the method proposed in 

Section 2 are also available at the Biometrics website on Wiley Online Library, and may also be installed from CRAN as package 

rma.exact. Figure 1 was generated using rma.exact.
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Laird, 1986). However, the DL method is based on an asymptotic approximation and its use 

is only justified when the number of studies is large. In many fields, the number of studies 

used in a meta-analysis or sub-meta-analysis rarely exceeds 20 and is typically fewer than 7 

(Davey et al., 2011), leaving inferences based on the DL estimator questionable. Indeed, 

extensive simulation studies have found that the coverage probability of the DL-based 

confidence interval (CI) can be substantially lower than the nominal level in various settings 

(Kontopantelis et al., 2010; IntHout et al., 2014), leading to false positives. One reason for 

this poor performance is that the asymptotic approximation ignores the variability in 

estimating the heterogeneous variance, which can be substantial when the number of studies 

is small (Higgins et al., 2009).

Various remedies have been proposed to correct the under-coverage of DL-based confidence 

intervals. Hartung and Knapp (2001) proposed an unbiased estimator of the variance of the 

DL point estimator explicitly accounting for the variability in estimating the heterogenous 

variance. Sidik and Jonkman (2006) used the heavy-tailed t-distribution to approximate the 

distribution of a modified Wald-type test statistic based on the DL estimator. Using the more 

robust t- rather than normal distribution has also been proposed (Raghunathan, 1993; Berkey 

et al., 1995; Follmann and Proschan, 1999). Hardy and Thompson (1996), Vangel and 

Rukhin (1999), Viechtbauer (2005), and Raudenbush (2009) proposed procedures based on 

maximum-likelihood estimation. Noma (2011) further improved the performance of the 

likelihood-based inference procedure when the number of studies is small by using a 

Bartlett-type correction. Zeng and Lin (2015) describe a resampling procedure to 

approximate the “large cluster” asymptotic distribution, i.e., as the primary study sizes all 

grow. Bayesian approaches incorporating external information have been developed by 

many authors (Smith et al., 1995; Higgins and Whitehead, 1996; Bodnar et al., 2017). 

However, with few exceptions, most of these methods still depend on an asymptotic 

approximation and their performance with very few studies has only been examined by 

specific simulation studies. To overcome these difficulties, potentially conservative but 

“exact” inference procedures for the random effects model have been proposed (Follmann 

and Proschan, 1999; Wang et al., 2010; Liu et al., 2017; Wang and Tian, 2017). A 

permutation rather than the asymptotic limiting distribution is used to approximate the 

distribution of the relevant test statistics and thus the validity of the associated inference is 

guaranteed for any number of studies. However, due to the discreteness of the permutation 

distribution, the highest significance level that may be achieved without randomization 

depends on the number of studies. For example, a 95% confidence interval can only be 

constructed with more than 5 studies. While Bayesian methods also permit statistical 

inference with fewer studies, the results are correspondingly sensitive to the choice of the 

prior distributions.

The main contribution of this paper is to propose a set of new methods for constructing 

exact, unconditional, non-randomized frequentist CIs for the location parameter of the 

normal-normal model by inverting exact tests. The coverage level of the resulting CI is 

guaranteed to be above the nominal level, up to Monte Carlo error, as long as the meta-

analysis contains more than 1 study. After employing several techniques to accelerate 

computation, the new CI can be easily constructed on a personal computer. Simulations 

suggest that the proposed CI typically is not overly conservative. In Section 2, we present 
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our procedure for constructing exact CIs for the population mean; in Section 3, we report 

results from comprehensive simulation studies; in Section 4, we illustrate the proposed 

method with a real data example; and in Section 5 we conclude the paper with additional 

discussion.

2 ∣ METHOD

The observed data consist of Y0 = {Y k, k = 1, …, K}, where Yk follows a random effects 

model,

Yk ∣ θk ∼
ind .

N(θk, σk
2), θk ∼

ind .
N(μ0, τ0

2), k = 1, …, K,

with the variances σk
2 > 0, k = 1, … , K, assumed known. The random effects model implies 

the simple parametric model

Y k ∼
ind .

N(μ0, σk
2 + τ0

2), k = 1, …, K . (1)

In the context of a meta-analysis, the pairs (Yk, σk
2), k = 1, … , K, are interpreted as observed 

effects and known within-study variances drawn from K studies, respectively. The 

unobserved population effect and between-study variance are μ0 and τ0
2, respectively. The 

goal is inference on the location parameter μ0, viewing τ0
2 as a nuisance parameter. The 

typical number of studies depends on the area of research and can be small, e.g., K ≤ 10.

With τ0
2 known, the uniformly minimum variance unbiased estimator of μ0 under (1) is given 

by

∑k = 1
K

Yk(τ0
2 + σk

2)−1

∑k = 1
K

(τ0
2 + σk

2)−1
.

As τ0
2 is unknown, DerSimonian and Laird (1986) propose substituting a simplified method 

of moments estimator,

τDL
2

= max 0,
∑k = 1

K
(Yk − μF )2 ∕ σk

2 − (K − 1)

∑k = 1
K

σk
−2 − (∑k = 1

K
σk

−4) ∕ (∑k = 1
K

σk
−2)

,

where

μF =
∑i = 1

K
Yk σk

−2

∑i = 1
K

σk
−2
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is the minimum variance unbiased estimator of μ0 under a fixed effects model, i.e., when 

τ0
2 = 0. The resulting estimator is known as the “DerSimonian-Laird” estimator of μ0:

μDL =
∑k = 1

K
Yk(τDL

2
+ σk

2)−1

∑k = 1
K

(τDL
2

+ σk
2)−1

.

By an analogous substitution, a level 1 − α confidence interval for μ0 is given by

μDL − z1 − α ∕ 2 ∑
k = 1

K

(τDL
2 + σk

2)−1
−1 ∕ 2

,

μDL + z1 − α ∕ 2 ∑
k = 1

K

(τDL
2 + σk

2)−1
−1 ∕ 2

.

(2)

The justification of the CI given in (2) relies on the asymptotic approximation

T0(μ0; Y) = (μDL − μ0)2 ∑
k = 1

K

(τDL
2 + σk

2)−1
χ1

2
(3)

as the number of studies, K, grows to infinity and max{σk}/ min{σk) is uniformly bounded. 

However, the exact distribution of T0(μ0; Y) depends on τ0
2 and may be very different from a 

χ1
2 distribution when K is moderate or small (Hoaglin, 2016). Consequently, the finite-

sample performance of the CI given by (2) is often unsatisfactory. We propose constructing 

an exact CI for μ0 by first constructing an exact confidence region for (μ0, τ0
2). To this end, 

let T{(μ, τ2); Y0} denote a scalar test statistic, which may depend on the null parameter (μ, 

τ2), for the simple hypothesis (μ0, τ0
2) = (μ, τ2). The specific choice of T{(μ, τ2); Y0} will be 

discussed later and here we only assume that a high value of T{(μ, τ2); Y0} represents 

grounds for rejection. For a given choice of T{(μ, τ2); Y0}, a 1 − α level CI for μ0 can be 

constructed as follows:

1. Obtain bounds [μmin, μmax] and [τmin
2 , τmax

2 ] for μ0 andτ0
2.

2. For each pair of μ and τ2 in an R × R grid of points on [μmin, μmax] × [τmin
2 , τmax

2 ],

a. Compute the null distribution of T{(μ, τ2); Y(μ, τ2)}, where

Y(μ, τ2) = Y k, k = 1, …, K

with Y k ~
ind .

N(μ, σk
2 + τ2), k = 1, … , K.

b. Compute the p-value 

pμ, τ2(Y0) ≔ P [T{(μ, τ2); Y0} > T{(μ, τ2); Y(μ, τ2)}].
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3. Obtain a confidence region for (μ0, τ0
2) asΩ1 − α(Y0) ≔ {(μ, τ2): pμ, τ2(Y0) > α}.

4. Project Ω1 − α(Y0) onto the μ axis to obtain a CI for μ0:{μ: (μ, τ2) ∈ Ω1 − α(Y0)}.

We discuss below the selection of appropriate bounds for the first step; here, we assume 

their existence for purposes of illustration.

This method generates the exact CI for μ0 in the sense that

pr μ0 ∈ {μ : (μ, τ2) ∈ Ω1 − α(Y0)} ≥ 1 − α .

This is due to the fact that

pr μ0 ∈ {μ : (μ, τ2) ∈ Ω1 − α(Y0)}

≥ pr {(μ0, τ0
2) ∈ Ω1 − α(Y0)}

= pr pμ0, τ0
2(Y0) ≥ α

= pr(U ≥ α) = 1 − α,

where the random variable U follows the unit uniform distribution. Here, we assume that 

τ0 ∈ [τmin
2 , τmax

2 ]. If τmin
2  and τmax

2  are chosen depending on the data in such a way that 

pr(τmin
2 < τ2 < τmax

2 ) ≥ 1 − β, then the guaranteed coverage probability of the proposed CI is 1 

− α ≈ 1 − α for very small β. The error of the approximation, i.e., the magnitude of β, can 

be made arbitrarily small by methods described further below.

The cumulative distribution function of T{(μ, τ2); Y(μ, τ2)} may not be analytically tractable, 

but it is well defined for any given grid point (μ, τ2) and can always be approximated by a 

Monte Carlo simulation. To be specific, given (μ, τ2), we may approximate the distribution 

of T{(μ, τ2); Y(μ, τ2)} in 2a as follows:

2(a) For b = 1, … , B,

a.
Generate e1b

∗ , … , eKb
∗ ~

ind .
N(0, 1).

b. Let Y kb
∗ = μ + (σk

2 + τ2)1 ∕ 2
ekb

∗ , k = 1, … , K, and let Yb
∗ = {Y kb

∗ , k = 1, …, K}.

c. Let Tb
∗ = T{(μ, τ2); Yb

∗} be the corresponding test statistic based on the generated 

data Yb
∗. The empirical distribution of {T1

∗, … ,TB
∗} can be used to approximate 

the distribution of T{(μ, τ2); Y(μ, τ2)}.

Since the estimation of the null distribution in 2a does not depend on any asymptotic 

approximation, both the p-value, pμ, τ2(Y0), and the confidence region, Ω1 − α(Y0), are 

“exact” if we can safely ignore the errors of the grid approximation and the Monte Carlo 

simulation above, which can be controlled by increasing the grid density and B in step 2a, 

respectively.
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Because the data Yk, k = 1, … , K, are distributed as N(μ, σk
2 + τ0

2), k = 1, … , K, whenever 

the shifted data Yk − μ, k = 1, … , K, are distributed as N(0, σk
2 + τ0

2), k = 1 … , K, we restrict 

our focus to equivariant statistics (Lehmann and Romano, 2006), that is, T satisfying 

T{(μ, τ2); Y0} = T{(0, τ2); Y0 − μ}, where Y0 − μ = {Y k − μ, k = 1, …, K}. In this situation, 

testing the null H0: (μ0, τ0
2) = (μ, τ2) based on the data Y0 is the same as testing the null 

H0 : (μ0, τ0
2) = (0, τ2) based on the shifted data Y0 − μ. When the test statistic is equivariant, 

the computations in step (2)(a) need only be performed once for each τ2 in the grid rather 

than each pair (μ, τ2). Thus, although a 2-dimensional grid is used in the algorithm, the 

computational complexity remains linear in the grid size, R. More specifically, steps (2)–(3) 

become:

2′.For each τ2 of an R-sized grid on [τmin
2 , τmax

2 ],

a. Compute the distribution of T{(0, τ2); Y(0, τ2)}.

b. Compute q1−α;τ2, the 1 − α quantile of T{(0, τ2); Y(0, τ2)}.

c. Compute Ω1 − α(τ2; Y0) = {(μ, τ2) ∣ T{(μ, τ2); Y0} = T{(0, τ2); Y0 − μ} < q1 − α; τ2}.

3′.Compute a (1 − α)-level confidence region for (μ0, τ0
2) as

⋃
τ2 ∈ [τmin

2 , τmax
2 ]

Ω1 − α(τ2; Y0) .

We propose the test statistics

T (μ, τ2); Y = T0(μ; Y) + c0T lik (μ, τ2); Y , (4)

where T0(μ; Y) is the sameWald-type test statistic used in the Dersimonian-Laird procedure,

Tlik (μ, τ2); Y =

−
1
2 ∑

k = 1

K (Yk − μDL)2

τDL
2

+ σk
2

+ log {2π(τDL
2

+ σk
2)}

+ ∑
k = 1

K
1
2

(Yk − μ)2

τ2 + σk
2

+ log {2π(τ2 + σk
2)} ,

and c0 is a tuning parameter controlling the relative contributions of these two statistics. 

While T0(μ; Y) directly focuses on the location parameter μ0, Tlik{(μ, τ2); Y}, similar to the 

likelihood ratio test statistic, targets the combination of μ0 and τ0
2 and helps to construct a 

narrower CI of μ0 when the number of studies is small. The proposed test statistics satisfy 

the equivariance condition, ensuring speedy computation when carrying out the procedure 

on a typical personal computer.
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A further simplification afforded by this choice of test statistics is that step 2′c may be 

carried out by solving the quadratic inequality

A(τ)μ0
2 + B(τ)μ0 + C(τ) < 0,

where

A(τ) = ∑
k = 1

K
1

τDL
2 + σk

2
+

c0

2(τ2 + σk
2)

> 0,

B(τ) = − ∑
k = 1

K 2μ0 DL

τ0 DL
2 + σk

2
+

c0Y k

τ2 + σk
2

,

C(τ) = ∑
k = 1

K c0

2

Y k
2

τ2 + σk
2

+ log
τ2 + σk

2

τDL
2 + σk

2
−

(Y k − μDL)2

τDL
2 + σk

2

+ μDL
2 ∑

k = 1

K
1

τDL
2 + σk

2
− q1 − α; τ2 .

(5)

As a result, the confidence interval of μ0 when τ0 = τ, Ω1 − α(τ2; Y0), is simply the segment 

with endpoints

−B(τ) − Δ(τ)1 ∕ 2

2A(τ)
,

−B(τ) + Δ(τ)1 ∕ 2

2A(τ)
,

when Δ(τ) = B(τ)2 − 4A(τ)C(τ) ≥ 0, and an empty set, otherwise.

To choose τmin
2  and τmax

2  in step (1) of the algorithm, we may use the endpoints of a 100(1 – 

β)%, e.g., 99.9%, confidence interval of τ0
2. This CI can be constructed by inverting the 

pivotal statistic

T3(τ2) = (WY)′ WΣ(τ)W′ −1 (WY),

where Y = (Y1, … , YK)′, Σ(τ) = diag {σ1
2 + τ2, …, σK

2 + τ2}, and

W =

σ1
−2 ∕ ∑i = 1

K
σi

−2 − 1 σ2
−2 ∕ ∑i = 1

K
σi

−2 ⋯ σK
−2 ∕ ∑i = 1

K
σi

−2

σ1
−2 ∕ ∑i = 1

K
σi

−2 σ2
−2 ∕ ∑i = 1

K
σi

−2 − 1 ⋯ σK
−2 ∕ ∑i = 1

K
σi

−2

⋯ ⋯ ⋯ ⋯

σ1
−2 ∕ ∑i = 1

K
σi

−2 σ2
−2 ∕ ∑i = 1

K
σi

−2 ⋯ σK
−2 ∕ ∑i = 1

K
σi

−2 − 1

.

The pivot follows a χK − 1
2  distribution when τ2 = τ0

2.
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Since our goal is a CI for μ0, the shape of the confidence region is crucial to its performance: 

the projection of Ω1 − α(Y0) onto the μ axis should be as small as possible, relative to the 

area of the confidence region. Figure 1 plots two confidence regions with the same 

confidence coefficient, but substantially different projected lengths. To avoid an overly 

conservative CI, we prefer a confidence region with boundaries parallel to the τ-axis, or 

nearly so. The shape of Ω1 − α(Y0) is determined by the way we combine T0(μ; Y) and 

Tlik{(μ, τ2); Y} or, more generally, by the choice of T{(μ, τ2); Y}. Because the proposed 

statistics (4) are quadratic in μ, the resulting confidence regions are a union of intervals with 

similar centers and tend not to produce overly conservative CIs when the tuning parameter 

c0 is chosen appropriately.

The proposed test statistic was chosen to balance performance and computation costs. For 

example, the true likelihood ratio test statistic under model (1) may be more informative 

than Tlik{(μ, τ2); Y), but its evaluation involves computing the maximum likelihood estimate 

and is substantially slower. The proposed algorithm is easily parallelized, so further gains in 

computing speed are available.

3 ∣ NUMERICAL STUDY

In this section, we study the small-sample performance of the proposed method through a 

comprehensive simulation study. Observed data are simulated under the random effects 

model

Yk ∼ N(μ0, τ0
2 + σk

2), k = 1, …, K,

where σ1, … , σK, are K equally spaced points in the interval [1, 5], that is, σk = 1 + 4(k − 

1)/(K − 1), k = 1, … , K. The population variance τ0
2 takes values 0, 12.5, and 25 to mimic 

settings with low, moderate, and high study heterogeneity, respectively. The corresponding 

I2 measures of heterogeneity are approximately 0, 50%, and 70%, respectively.

In the first set of simulations, we examine the effect of the tuning parameter c0 on the 

performance of the proposed method. For each set of simulated data, we construct a series of 

CIs using the proposed method with c0 ranging from 0 to 2.5 in increments of 0.1, and the 

number of studies K ranges from 3 to 20. Based on results from 10,000 simulated datasets 

under each combination of settings, we calculate the empirical coverage levels and average 

lengths of the resulting 95% CIs. In all settings, the empirical coverage levels of the 

proposed CIs are above the nominal level and therefore we optimize power by selecting the 

value of c0 with the shortest CI lengths. When K ≥ 10, the choice of c0 does not have a 

pronounced effect on CI length. When K is between 3 and 6, the setting of primary interest, 

assigning more weight to the likelihood ratio-type statistic typically reduces the length of the 

CIs. We summarize the value of c0 achieving the minimum mean 95% CI length in Figure 2. 

Based on these results, we suggest for a tuning parameter c0 = 1.2 for meta-analyses with 

fewer than 6 studies, c0 = 0.6 for meta-analysess with 6–10 studies, c0 = 0.2 for meta-

analysis with 10–20 studies, and c0 = 0 for analysis with more than 20 studies.
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In the second set of simulations, we compare the performance of the proposed CIs with 

existing alternatives. For 10,000 replicates at each data-generation setting described above, 

we construct CIs using the DerSimonian-Laird, Sidik-Jonkman, and restricted maximum 

likelihood asymptotic variance estimates, as well as the proposed CI with the recommended 

tuning parameter. In Figure 3 we summarize the average coverage and lengths of these CIs. 

In the presence of moderate heterogeneity, I2 = 0.5, the empirical coverage level of the DL 

method is below 90% when K ≤ 10, with the lowest coverage ~ 75% when the number of 

studies is 3. The CIs based on the Sidik-Jonkman estimator have better coverage, but still 

drop below 90% when K ≤ 5. In contrast, the proposed exact CIs using the recommended 

tuning parameter settings do not fall below the nominal 95% coverage level. Morover, the 

coverage level is not overly conservative even for small Ks. The length of the 95% CI is 

comparable to the lengths of the asymptotic CIs, when these match the nominal coverage 

level, e.g., K = 20. When I2 = 0, i.e., the random effects model degenerates to the fixed 

effects model, all methods, including the asymptotic estimators, control the Type 1 error. 

Sidik-Jonkman’s CI is overly conservative even for moderate K values, while the proposed 

CIs, also overly conservative at lower values of K, improve steadily as K increases. When I2 

= 0.70, only the proposed CIs maintain the proper coverage level, while other methods fall 

below the nominal level for K as large as 10–20.

Several other common estimators, including Hedges-Olkin, Hunter-Schmidt, and maximum 

likelihood, were also tested, with performance found to be generally intermediate between 

the performance of the DerSimonian-Laird and Sidik-Jonkman estimators. These other 

comparisons are reported in the Supplementary Materials. Also reported in the 

Supplementary Materials are results for a Bayesian estimator using a non-informative prior, 

as recently implemented by Röver (2017). The simulation results of the Bayesian estimator 

are on the whole comparable to our estimator but slightly more conservative. However, its 

theoretical basis is somewhat incomplete and our evaluation of its performance is limited to 

the investigated simulation settings.

In a third set of simulations, we compare the performance of the proposed estimator to other 

common estimators under misspecifications of the model, such as a skew or heavy-tailed 

distribution. Specifically, rather than using a normal distribution, we used a centered chi-

square variable (Supplementary Material, Table 2), a Cauchy distribution (Supplementary 

Material, Table 3), a centered exponential distribution (Supplementary Material, Table 4), 

and a uniform distribution on the interval [−5, 5] (Supplementary Material, Table 5) to 

generate θk. We typically find that the coverage rate of the proposed estimator is somewhat 

conservative, whereas the asymptotic estimators fall below the nominal level, sometimes 

significantly so. The bayesian estimator with non-informative prior performs similarly to the 

proposed estimator, though somewhat more conservatively, at least under the default 

parameters of the selected implementation.

4 ∣ EXAMPLE

Tai et al. (2015) conduct a random effects meta-analysis of 59 randomized controlled trials 

to determine if increased calcium intake affects bone mineral density (“BMD”). Altogether, 

these trials measured the changes in BMD at five skeletal sites over three time points and 
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measured the effect of calcium intake on BMD from dietary sources and from calcium 

supplements. We illustrate the proposed method using four meta-analyses. The first meta-

analysis investigates changes in BMD of the lumbar spine and is based on the findings of 27 

trials that lasted fewer than 18 months. As shown in Table 1, the 95% CI produced by the 

proposed exact method does not differ very much from the 95% CI based on the DL method. 

The two intervals have a similar length and are centered around a BMD difference of about 

1.2. We also construct the exact CI by permuting a Hodge-Lehman type estimator (Liu et al., 

2018). The resulting interval is very similar to the interval produced by the proposed 

method. These similarities are to be expected since the normality assumptions of the DL 

estimator may not be too unreasonable for a meta-analysis based on this number of primary 

studies.

Two of the other random effects meta-analyses investigate changes in BMD in the hip and 

forearm for trials of size six and five, respectively, that lasted for more than two years. The 

fourth analysis we consider here is the meta-analysis of three trials that lasted fewer than 18 

months and measured changes in BMD for the total body of subjects. For these three meta-

analyses, however, the number of studies is small, and the DL method may be expected to 

fall short of the nominal level. In the hip study, the proposed exact method and the DL 

method both yield the same conclusion, producing 95% confidence intervals rejecting the 

null of no change in BMD, although the exact method produces confidence intervals that are 

wider than their DL counterparts. In contrast, the DL 95% confidence intervals for the 

forearm and total body studies find a significant change in BMD whereas the exact method 

does not, suggesting that the DL method may be giving a false positive in these two cases. 

The intervals and their lengths are given in Table 1. Note that the exact 95% CI based on the 

permutation method is not available for the last two meta analyses, since the number of 

studies is fewer than 6.

A table including confidence intervals obtained using other common estimators of τ2 is 

included in the Supplementary Materials.

5 ∣ DISCUSSION

We have proposed a method to construct an exact CI for the population mean under the 

normal-normal model commonly used in meta-analysis. Appropriate coverage is guaranteed, 

up to Monte Carlo error, even when the number of studies used in the meta-analysis is as 

small as 2. As an important limitation, the proposed “exact” inference procedure is 

developed under stringent parametric assumptions, which cannot be effectively examined 

from the data when the number of studies is small. We have examined by simulation a few 

common misspecifications, but the results still need to be interpreted with extreme caution. 

On the other hand, there is a practical need for meta-analyses with few studies, where 

unverifiable assumptions are unavoidable. The main objective of this paper is to propose a 

valid statistical method when those assumptions hold true. This incremental contribution is 

arguably warranted by the frequency with which meta-analyses with few studies are 

conducted using existing methods making the same parametric assumptions.
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While convenient, the normal assumption for the study-specific treatment effect estimate 

may not be valid in other settings. For example, the treatment effect estimate may be an odds 

ratio from a 2 × 2 contingency table. If the total sample sizes are small or if cell entries are 

close to 0, the normal assumption for the odds ratio may be inappropriate. More generally, 

Yk may be a quantity relevant to a treatment effect with Yk∣θk following a non-normal, e.g., 

hypergeoemtric, distribution depending on the study-specific parameter θk. In such a case, 

the model for θk and the corresponding inference procedure warrant further research. More 

recently, there have been several new developments on confidence distribution and related 

generalized fiducial inference that have facilitated new inference procedures for meta-

analysis (Xie and Singh, 2013; Claggett et al., 2014). These developments may also be 

promising directions for developing exact inference procedures for meta-analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The projection of the confidence region; the solid and dashed thick lines are boundaries of 

two confidence regions.
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FIGURE 2. 
The choice of c0 achieving the minimum mean 95% CI length is plotted against the number 

K of studies, at 3 levels of between-study heterogeneity.
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FIGURE 3. 
Comparison by 95% CI coverage and length of the proposed estimator with 3 commonly 

used estimators based on asymptotic approximations. Data was generated according to 

model (1) with the number of studies K varying between 3 and 20 and the ratio of between- 

to average within-variance adjusted to give 3 levels of between-study heterogeneity. The 

proposed estimator achieves the nominal size at all configurations, with overcoverage 

evident where the heterogeneity is low or the studies is very few (3-4).
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