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Exact invariant solution reveals the origin
of self-organized oblique turbulent-laminar stripes
Florian Reetz1, Tobias Kreilos1 & Tobias M. Schneider1

Wall-bounded shear flows transitioning to turbulence may self-organize into alternating

turbulent and laminar regions forming a stripe pattern with non-trivial oblique orientation.

Different experiments and flow simulations identify oblique stripe patterns as the preferred

solution of the well-known Navier-Stokes equations, but the origin of stripes and their oblique

orientation remains unexplained. In concluding his lectures, Feynman highlights the unex-

plained stripe pattern hidden in the solution space of the Navier-Stokes equations as an

example demonstrating the need for improved theoretical tools to analyze the fluid flow

equations. Here we exploit dynamical systems methods and demonstrate the existence

of an exact equilibrium solution of the fully nonlinear 3D Navier-Stokes equations that

resembles oblique stripe patterns in plane Couette flow. The stripe equilibrium emerges from

the well-studied Nagata equilibrium and exists only for a limited range of pattern angles.

This suggests a mechanism selecting the non-trivial oblique orientation angle of turbulent-

laminar stripes.
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T
he complex laminar-turbulent transition in wall-bounded
shear flows is one of the least understood phenomena in
fluid mechanics. In the simple geometry of plane Couette

flow (PCF), the flow in a gap between two parallel plates moving
in opposite directions, the transitional flow spontaneously breaks
the translational symmetries in both the streamwise and the
spanwise direction causing regions of turbulent and laminar flow
to coexist in space1–5. Remarkably, the flow may further self-
organize into a regular pattern of alternating turbulent and
laminar stripes6–12 also observed in Taylor-Couette6, 13–17 and
channel flow18–22. The wavelength of these stripes or bands is
much larger than the gap size, the only characteristic scale of the
system, and they are oblique with respect to the streamwise
direction. Consequently, both the large-scale wavelength and the
oblique orientation of turbulent-laminar stripes must directly
follow from the flow dynamics captured by the governing
Navier–Stokes equations. Experiments and numerical flow
simulations reliably generate stripe patterns but a theory
explaining the origin of the pattern characteristics is still missing.
This is related to the Navier–Stokes equations being highly
nonlinear partial differential equations, whose theoretical analysis
remains challenging.

It was the early observation that an oblique turbulent-laminar
pattern can be the preferred solution of the Navier-Stokes
equations that motivated R. Feynman to stress the lack of
“mathematical power [of his time] to analyze [the Navier–Stokes
equations] except for very small Reynolds numbers”23. Recent
advances in numerical methods not only allow the simulation
of flows but also the construction of exact equilibria, traveling
waves and periodic orbits of the fully nonlinear 3D
Navier–Stokes equations. These exact invariant solutions are
believed to be embedded in a strange invariant set generating
the chaotic dynamics of turbulent flow in the system’s state
space24. Consequently, a picture emerges where turbulent flow
is described as a chaotic walk between dynamically unstable
invariant solutions which together with their entangled stable
and unstable manifolds support the turbulent dynamics25. Exact
invariant solutions are thus “building blocks” which resemble
characteristic flow structures that are observed in flow simula-
tions and experiments, when the dynamics transiently visits the
exact invariant solution. A theoretical explanation of oblique
stripe patterns within this dynamical systems description
requires the as yet unsuccessful identification of exact invariant
solutions resembling the detailed spatial structure of turbulent-
laminar stripes, including their oblique orientation and large-
scale periodicity.

Nagata discovered the first invariant solution of PCF26–28. Like
most invariant solutions of PCF found since then29, this so-called
Nagata equilibrium is periodic in the streamwise and spanwise
directions, repeating on the scale of the gap height. Such periodic
solutions do not capture the coexistence of turbulent and laminar
flow on scales much larger than the gap height and consequently
cannot underly oblique stripes. Spanwise localized invariant
solutions30, 31 and doubly localized invariant solutions in exten-
ded periodic domains32 show nonlinear flow structures coexisting
with laminar flow but no known invariant solution captures
oblique orientation or suggests a pattern wavelength matching
oblique stripe patterns.

We present a fully nonlinear equilibrium solution of PCF
(Fig. 1b), resembling the oblique stripe pattern observed in direct
numerical simulations (Fig. 1a). Parametric continuation
demonstrates that this stripe equilibrium is connected to the well-
studied Nagata equilibrium via two successive symmetry-
breaking bifurcations, and that its existence is limited to obli-
que orientations.

Results
Simulating stripe patterns. For direct numerical simulations
(DNS) of oblique stripe patterns in PCF we use a parallelized
version of the pseudo-spectral code CHANNELFLOW25, 33. The
numerical domain is periodic in two perpendicular dimensions
along the plates (x and z) with periods of (Lx, Lz)= (10, 40) in
units of half the gap height. No-slip boundary conditions are
imposed at the moving plates located at y= ±1. Inversion sym-
metry with respect to the domain center is enforced. The relative
plate velocity and the associated base flow are tilted against the
periodic domain dimensions at an angle of θ= 24° following
Barkley and Tuckerman7. At Reynolds number Re=Uh/ν= 350,
with the relative plate velocity 2U, gap height 2h and kinematic
viscosity ν the flow organizes into self-sustained turbulent-lami-
nar stripes, as shown in Fig. 1a, where we periodically repeat the
computational domain to highlight the large-scale structure of the
pattern.

Equilibrium resembling stripes. An invariant equilibrium solu-
tion capturing the stripes was found by introducing a large-scale
amplitude modulation to a known spatially periodic equilibrium
using a suitable window function, similar to ref. 31. Specifically,
the Nagata equilibrium was periodically extended in the spanwise
direction for n= 9 periods, then sheared to align the velocity
streaks with the base flow in the tilted domain and finally mul-
tiplied with a scalar window function equal to a scaled mean field
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Fig. 1 Equilibrium solution underlies turbulent-laminar stripes. a The self-

organized pattern of oblique turbulent-laminar stripes is observed in direct

numerical simulations of plane Couette flow at Re = 350. Following ref. 7

a tilted x-z-periodic domain outlined on the left side with (θ, Lx, Lz) =

(24°, 10, 40) is used for computations. b The observed stripe pattern is

captured by an exact invariant equilibrium solution of the fully nonlinear

3D Navier–Stokes equations. The contours are turbulent kinetic energy

saturating at u2 = 0.25 (green), where u is the velocity fluctuation field

around the laminar base flow (c). The plane of visualization is at 3/4 of

the`` gap height
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of turbulent kinetic energy of the oblique stripe pattern from
several DNS runs. Using the constructed velocity field as initial
guess, Newton iteration yields the stripe equilibrium (Fig. 1b).

The stripe equilibrium shares the small-scale wavy modulation
with the Nagata equilibrium but also shows the large-scale
oblique amplitude modulation of the turbulent-laminar stripe
pattern. The amplitude modulation between the high-amplitude
turbulent region and the low-amplitude laminar region of the
equilibrium on average follows a sinusoidal profile closely
resembling the pattern mean flow found in DNS at identical
boundary conditions8. The stripe equilibrium moreover captures
detailed features of the turbulent-laminar interfaces. A base flow
directed into a turbulent region leads to a sharper “upstream”

interface than a base flow directed out of a turbulent region at a
“downstream” interface. The direction of the base flow is reversed
for y → −y. An upstream interface in the upper half thus
corresponds to a downstream interface in the lower one. This
gives rise to so-called overhang regions1, 34 and an asymmetry
between the left and right interface in Fig. 1 where turbulent
kinetic energy is visualized at y= 0.5 above the midplane. Finally,
the stripe equilibrium is symmetric under inversion σi[u, v, w](x,
y, z)= [−u, −v, −w] (−x, −y, −z), a symmetry also found for the
mean flow of stripe patterns8. The sinusoidal amplitude
modulation, the captured overhang regions and the inversion
symmetry, all characteristic of the pattern’s mean flow, together
with the visual comparison in Fig. 1 show that the stripe
equilibrium has the spatial features of the oblique stripe pattern.
We have thus identified a first exact invariant solution underlying
oblique turbulent-laminar patterns.

The unstable eigenspace of the evolution operator linearized
around the equilibrium is spanned by 15 directions. The
remaining ~106 directions are attracting. Consequently, the
dynamics is attracted towards the stripe equilibrium from almost
all directions. The exponential growth rates ωr along the unstable
directions are small compared to typical turbulent time scales in
the flow, given by the oscillatory frequencies ωi in the spectrum of
eigenvalues (Fig. 2). The low dimensional unstable eigenspace
and the small exponential growth rates suggest a weakly unstable
exact invariant solution that is a dynamically relevant transiently
visited “building block” of the chaotic saddle underlying the
turbulent flow.

Origin of the equilibrium. At small scales, the stripe equilibrium
reflects the wavy streak structure of the spatially periodic Nagata
equilibrium. This suggests that the stripe equilibrium emerges
from the Nagata equilibrium in a bifurcation creating oblique

long-wavelength modulations. To identify this pattern-forming
bifurcation numerically, the Nagata equilibrium needs to “fit” in
an extended tilted periodic domain aligned with the wave-vector
of the neutral mode creating the oblique long-wavelength mod-
ulation. The Nagata equilibrium indeed not only satisfies the
streamwise and spanwise periodic boundary conditions of the
commonly studied minimal flow domain but may also be periodic
with respect to selected larger tilted domains. The symmetry
group of the Nagata equilibrium, including all combined discrete
translations over streamwise-spanwise periods (λst, λsp), intersects
with the group of translations of a tilted rectangular domain, with
periodicity (Lx, Lz), if

Lx ¼
k λst
cosθ

¼
l λsp

sinθ
; Lz ¼

m λst

sinθ
¼

n λsp

cosθ
ð1Þ

is satisfied for ðk; l;m; nÞ 2 N and 0° < θ < 90°. Geometrically,
condition (1) describes how the x–z coordinate lines of the tilted
domain wind on a torus defined by the streamwise-spanwise
periodic minimal domain. The condition is satisfied if the
coordinate lines are closed curves (Fig. 3a). For the domain
(θ, Lx, Lz)= (24°, 10, 40) considered so far, the geometric condition
(1) implies wavelengths (λst, λsp)= (1.02, 4.06) at which the Nagata
equilibrium does not exist. Keeping Lz= 40 and choosing winding
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Fig. 2 Eigenvalue spectrum characterizing the linear stability of the stripe

equilibrium. Shown are the 100 leading eigenvalues in the complex plane

(ωr, ωi), computed by Arnoldi iteration at Re= 35033. 15 eigenvalues with a

positive real part ωr > 0 quantify the exponential growth rate ωr along the

unstable directions in the linear eigenspace of the stripe equilibrium. The

imaginary parts ωi quantify the oscillatory frequencies in the eigenspace

and the absolute values indicate typical turbulent time scales in the flow in

units of U/h. The wide aspect ratio of the spectrum (uniform axes)

graphically illustrates that the maximum growth rate ωr= 0.034 is small

compared to the typical turbulent time scales. The stripe equilibrium shown

in Fig. 1b is thus weakly unstable
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Fig. 3 Instability of the Nagata equilibrium creates oblique amplitude

modulations. a Torus representing a streamwise–spanwise periodic domain.

If tilted rectangular coordinate lines x and z (black) close on themselves, all

solutions on the torus also respect the periodicity of a domain spanned by

those lines. Specifically, the Nagata equilibrium with streamwise–spanwise

periodicity (λst, λsp)= (12.65, 4.22) (gray lines) is also periodic with respect

to the tilted domain (black) with (θ, Lx, Lz)= (18.4°, 40/3, 40), shown in b

for ReI= 164. In this tilted domain, a bifurcation with neutral eigenmode (c)

can be detected at ReI. This bifurcation introduces oblique long-wavelength

amplitude modulations on the Nagata equilibrium. Red (blue) contours

represent positive (negative) streamwise velocity in the midplane
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numbers (k, l, m, n)= (1, 1, 1, 9) however leads to a slightly
modified domain (θ, Lx, Lz)= (18.4°, 40/3, 40) in which the Nagata
equilibrium with (λst, λsp)= (12.65, 4.22) exists, as displayed in
Fig. 3b. On the lower branch of the Nagata equilibrium close
to the saddle-node bifurcation, there is a pitchfork bifurcation
at ReI= 164. Its neutrally stable long-wavelength eigenmode,
whose eigenvalue changes sign at ReI, is plotted in Fig. 3c. This is
the initial pattern-forming bifurcation creating oblique amplitude
modulations on the Nagata equilibrium.

Using parametric continuation we follow both the periodic
Nagata equilibrium (named A hereafter) and the emerging
modulated equilibrium solution Bð Þ from its primary bifurcation
point at (Re, θ, Lx)I= (164, 18.4°, 40/3) to the parameters
ðRe; θ; LxÞC ¼ ð350; 24�; 10Þ of the stripe equilibrium Cð Þ. In the
three dimensional parameter space we choose a continuation
path parametrized by tilt angle θ with the Reynolds number linear
in θ, such that ReðθÞ ¼ ReIðθC � θÞ þ ReCðθ � θIÞð Þ=ðθC � θIÞ
and domain length Lx(θ)= Lz/(n tan(θ)) for n= 9 and constant
domain width of Lz = 40. The resulting bifurcation diagram
demonstrates that the Nagata equilibrium A, is connected to the
stripe equilibrium C (Fig. 4).

The primary bifurcation is of pitchfork type, subcritical,
forward in Re and breaks the streamwise–spanwise translation
symmetry of A. Along the bifurcating branch of B significant
amplitude modulations of the small-scale periodic signal form
with period Lz/2 along z, as indicated by the double-pulse profile
of the z-dependent and x–y-averaged fluctuations |u|(z) at Re=
225 in Fig. 4b. The modulation period reflects a discrete
translation symmetry σB over half the domain diagonal,

σB½u; v;w�ðx; y; zÞ ¼ ½u; v;w�ðx þ Lx=2; y; z þ Lz=2Þ. Equilibrium
B inherits this symmetry from A because σB is not broken by the
neutral mode of the primary bifurcation (Fig. 3c).

A secondary pattern-forming bifurcation occurs at (Re, θ,
Lx)II = (332, 23.4°, 10.3) along solution branch B (blue line
in Fig. 4). This subcritical pitchfork bifurcation breaks the
translation symmetry σB. The spatial period of the amplitude
modulation is doubled and gives rise to solution branch C
forming a single-pulse equilibrium. Solution branch C (red line in
Fig. 4) reaches ReC ¼ 350 after undergoing an additional saddle-
node bifurcation at (Re, θ, Lx)= (243, 20.8°, 11.7). The amplitude
profiles of single-pulse and double-pulse equilibria show that
the single-pulse with period Lz= 40 has large modulations at
Re= 350 and θ= 24°, while the modulations in the double-
pulse equilibrium are reduced (Fig. 4c). This agrees with the
observations that stripes tend to have pattern wavelengths λ in
the range of 40 ≤ λ ≤ 60 at Re around 3506, 10. In summary, two
bifurcations successively break discrete translation symmetries of
the Nagata equilibrium to create the stripe equilibrium solution.

Small-scale velocity streaks carry a wavy modulation which has
a streamwise phase that is clearly evident when plotting the
streamwise vorticity at the midplane. We illustrate streamwise
wave fronts by lines connecting vorticity maxima or minima in
the spanwise direction (red/blue lines in Fig. 5). Straight and
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Fig. 4 Pattern forming bifurcations give rise to the stripe equilibrium.

a A sequence of pattern-forming bifurcations from the small-scale periodic

Nagata equilibrium A (Fig. 3b) leads to the large-scale modulated stripe

equilibrium C (Fig. 1b). The solution branches are plotted in terms of the

domain averaged velocity square jjujj2 ¼ ð2LxLzÞ
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over

linearly coupled bifurcation parameters θ (top axis) and Re(θ) (see text). A

primary pattern-forming bifurcation on A at (Re, θ, Lx)I = (164, 18.4°, 40/3)

creates equilibrium B with double-pulse profile of x–y averaged squared
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�1=2 R

u2dxdy
� �1=2

(inset panel b). A secondary

pattern-forming bifurcation at (Re, θ, Lx)II = (332, 23.4°, 10.3) creates the

single-pulse solution branch of equilibrium C (inset panel c). Points mark

the exact invariant solutions shown in Fig. 5
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sequence (points in Fig. 4). Red (blue) lines connecting vorticity maxima

(minima) represent wave fronts of constant streamwise phase. The Nagata

equilibriumA has wave fronts oriented in the spanwise direction. The stripe

equilibrium C has sigmoidal wave fronts. In the turbulent region the wave

fronts are oriented at θ= 24° (red/blue arrows), and align with the pattern

wave vector (in the z-direction). Bottom panel indicates turbulent and

laminar regions in C (see also Fig. 1b)
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strictly spanwise oriented wave fronts indicate a constant
streamwise phase of all streaks of the (spanwise periodic) Nagata
equilibrium A. The primary pattern forming bifurcation from A
to B introduces local phase shifts which dislocate vorticity
extrema away from a straight alignment and bend the wave front.
The dislocations introduced into B are symmetric with respect to
half-domain translations σB and centered at z= 0 and z= 20. For
the stripe equilibrium C formed from B in the second pattern
forming bifurcation, the topology of the wave fronts is preserved
but they are geometrically deformed into sigmoidal structures.

In the turbulent region of equilibrium C, the wave fronts of the
wavy streaks are skewed at θ= 24° against the spanwise direction
and oriented exactly along the pattern wave vector (C in Fig. 5).
Assuming that all exact invariant solutions underlying stripe
patterns show this alignment of wave fronts in the turbulent
region with the pattern orientation, we conjecture that the range of
possible skewing angles Nagata-type equilibria can sustain35 limits
the range of angles at which oblique stripe patterns can exist.

Pattern angle selection. We identified equilibrium C at pattern
angle θ= 24°. Continuation in θ for fixed pattern wavelength λ=

40 determines the range in θ for which the stripe equilibrium
exists. At Re= 350, the equilibrium exists in the range 16.5° ≤ θ ≤

26.1° before it undergoes saddle-node bifurcations (Fig. 6). Out-
side this range the stripe equilibrium is not sustained. The range
of orientation angles over which the stripe equilibrium exists
agrees with the range over which oblique stripe patterns of
wavelength λ= 40 are observed in simulations8. At lower Re, the
range of allowed pattern angles shrinks and shifts towards larger
values (Fig. 6). This trend of allowed θ for varying Re aligns with

simulations and experiments of turbulent-laminar stripes8. The
finite existence range of the fully nonlinear exact equilibirum
solution of the 3D Navier–Stokes equations thus appears to select
the non-trivial angle at which self-organized turbulent-laminar
stripes emerge in transitional shear flows.

Discussion
Experimental and numerical observations of self-organized obli-
que turbulent-laminar stripes in wall-bounded extended shear
flows suggest the existence of exact invariant solutions underlying
these patterns. We present the first such invariant solution of
the fully nonlinear 3D Navier–Stokes equations in plane Couette
flow that captures the detailed spatial structure of oblique stripe
patterns. The stripe equilibrium emerges from the known Nagata
equilibrium via a sequence of two pattern-forming bifurcations
with long-wavelength oblique neutral modes. The existence of
the stripe equilibrium at wavelength λ= 40 is limited to oblique
orientations in a finite range of pattern angles around θ= 24°.
The existence range agrees with simulations and experimental
observations of turbulent-laminar stripes. This suggests a selec-
tion mechanism for the pattern angle and provides a route
towards explaining why turbulent-laminar stripes are oblique.

Data availability
The fully resolved velocity field of the stripe equilibrium is provided as a data file in
the supplementary material. The file format is NetCDF and can be directly imported
in many post-processing and visualization tools. Below, we specify the names of grid
variables in the file and how to reproduce the equilibrium using the open source
software CHANNELFLOW. The velocity field is numerically resolved in a domain of
size (Lx, H, Lz)= (10, 2, 40) using a grid of size (Nx, Ny, Nz)= (42, 33, 340). The variables
of the grid dimensions are named “X”, “Y” and “Z”, where “Y” is the wall-normal
dimension. The components of the velocity vectors along each dimension are called
“Velocity_X”, “Velocity_Y”, and “Velocity_Z”. The equilibrium solution can be checked
for convergence and further analyzed using CHANNELFLOW. The Reynolds number of
Re= 350 for plane Couette flow must be set using the flag “-R 350”. To define the tilt
angle of θ= 24° of the laminar base flow with respect to the domain dimensions, the flag
“-theta 0.4182” must be specified. Numerical stability requires a CFL-number in the
range of 0.2 < CFL < 0.4. The provided data file allows to reconstruct the data supporting
the findings of this study. The data is also available from the corresponding author upon
reasonable request.

Code availability
All numerical algorithms used in the present study are open source and can be
downloaded via https://www.channelflow.ch.
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