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Abstract— Suppose that one observes an incomplete subset of
entries selected uniformly at random from a low-rank matrix.
When is it possible to complete the matrix and recover the
entries that have not been seen? We show that in very general
settings, one can perfectly recover all of the missing entries
from a sufficiently large random subset by solving a convex
programming problem. This program finds the matrix with
the minimum nuclear norm agreeing with the observed entries.
The techniques used in this analysis draw upon parallels in the
field of compressed sensing, demonstrating that objects other
than signals and images can be perfectly reconstructed from
very limited information.

I. INTRODUCTION

In many practical problems of interest, one would like

to recover a matrix from a sampling of its entries. As a

motivating example, consider the task of inferring answers

in a partially filled out survey. That is, suppose that questions

are being asked to a collection of individuals. Then we can

form a matrix where the rows index each individual and the

columns index the questions. We collect data to fill out this

table but unfortunately, many questions are left unanswered.

Is it possible to make an educated guess about what the

missing answers should be? How can one make such a

guess? Formally, we may view this problem as follows. We

are interested in recovering a data matrix M with n1 rows

and n2 columns but only get to observe a number m of its

entries which is comparably much smaller than n1n2, the

total number of entries. Can one recover the matrix M from

m of its entries? In general, everyone would agree that this

is impossible without some additional information.

In many instances, however, the matrix we wish to recover

is known to be structured in the sense that it is low-rank or

approximately low-rank. (We recall for completeness that a

matrix with n1 rows and n2 columns has rank r if its rows

or columns span an r-dimensional space.) Below are two

examples of practical scenarios where one would like to be

able to recover a low-rank matrix from a sampling of its

entries.

• The Netflix problem. In the area of recommender sys-

tems, users submit ratings on a subset of entries in

a database, and the vendor provides recommendations

based on the user’s preferences [19], [21]. Because users

only rate a few items, one would like to infer their

preference for unrated items.

A special instance of this problem is the now famous

Netflix problem [2]. Users (rows of the data matrix)

are given the opportunity to rate movies (columns of

the data matrix) but users typically rate only very few

movies so that there are very few scattered observed

entries of this data matrix. Yet one would like to

complete this matrix so that the vendor (here Netflix)

might recommend titles that any particular user is likely

to be willing to order. In this case, the data matrix of all

user-ratings may be approximately low-rank because it

is commonly believed that only a few factors contribute

to an individual’s tastes or preferences.

• Triangulation from incomplete data. Suppose we are

given partial information about the distances be-

tween objects and would like to reconstruct the low-

dimensional geometry describing their locations. For

example, we may have a network of low-power wire-

lessly networked sensors scattered randomly across a

region. Suppose each sensor only has the ability to

construct distance estimates based on signal strength

readings from its nearest fellow sensors. From these

noisy distance estimates, we can form a partially ob-

served distance matrix. We can then estimate the true

distance matrix whose rank will be equal to two if the

sensors are located in a plane or three if they are located

in three dimensional space [16], [20]. In this case, we

only need to observe a few distances per node to have

enough information to reconstruct the positions of the

objects.

These examples are of course far from exhaustive and there

are many other problems which fall in this general category.

For instance, we may have some very limited information

about a covariance matrix of interest. Yet, this covariance

matrix may be low-rank or approximately low-rank because

the variables only depend upon a comparably smaller number

of factors.

II. IMPEDIMENTS AND SOLUTIONS

Suppose for simplicity that we wish to recover a square

n × n matrix M of rank r.1 Such a matrix M can be

represented by n2 numbers, but it only has (2n− r)r degrees

of freedom. This fact can be revealed by counting parameters

in the singular value decomposition (the number of degrees

of freedom associated with the description of the singular

values and of the left and right singular vectors). When

1We emphasize that there is nothing special about M being square and
all of our discussion would apply to arbitrary rectangular matrices as well.
The advantage of focusing on square matrices is a simplified exposition and
reduction in the number of parameters of which we need to keep track.
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the rank is small, this is considerably smaller than n2. For

instance, when M encodes a 10-dimensional phenomenon,

then the number of degrees of freedom is about 20n offering

a reduction in dimensionality by a factor about equal to

n/20. When n is large (e.g. in the thousands or millions), the

data matrix carries much less information than its ambient

dimension suggests. The problem is now whether it is

possible to recover this matrix from a sampling of its entries

without having to probe all the n2 entries, or more generally

collect n2 or more measurements about M.

A. Which matrices?

In general, one cannot hope to be able to recover a low-

rank matrix from a sample of its entries. Consider the rank-1

matrix M equal to

M = e1e∗n =

⎡
⎢⎢⎢⎣

0 0 · · · 0 1

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎦ , (II.1)

where here and throughout, ei is the ith canonical basis vector

in Euclidean space (the vector with all entries equal to 0 but

the ith equal to 1). This matrix has a 1 in the top-right corner

and all the other entries are 0. Clearly this matrix cannot

be recovered from a sampling of its entries unless we pretty

much see all the entries. The reason is that for most sampling

sets, we would only get to see zeros so that we would have

no way of guessing that the matrix is not zero. For instance,

if we were to see 90% of the entries selected at random, then

10% of the time we would only get to see zeroes.

It is therefore impossible to recover all low-rank matrices

from a set of sampled entries but can one recover most
of them? To investigate this issue, we introduce a simple

model of low-rank matrices. Consider the singular value

decomposition (SVD) of a matrix M

M =
r

∑
k=1

σkukv∗k , (II.2)

where the uk’s and vk’s are the left and right singular

vectors, and the σk’s are the singular values (the roots of

the eigenvalues of M∗M). Then we could think of a generic
low-rank matrix as follows: the family {uk}1≤k≤r is selected

uniformly at random among all families of r orthonormal

vectors, and similarly for the the family {vk}1≤k≤r. The two

families may or may not be independent of each other. We

make no assumptions about the singular values σk. In the

sequel, we will refer to this model as the random orthogonal
model. This model is convenient in the sense that it is both

very concrete and simple, and useful in the sense that it will

help us fix the main ideas. In the sequel, however, we will

consider far more general models. The question for now is

whether or not one can recover such a generic matrix from

a sampling of its entries.

B. Which sampling sets?

Clearly, one cannot hope to reconstruct any low-rank

matrix M—even of rank 1—if the sampling set avoids any

column or row of M. Suppose that M is of rank 1 and of

the form xy∗, x,y ∈ R
n so that the (i, j)th entry is given by

Mi j = xiy j.

Then if we do not have samples from the first row for exam-

ple, one could never guess the value of the first component

x1, by any method whatsoever; no information about x1 is

observed. There is of course nothing special about the first

row and this argument extends to any row or column. To

have any hope of recovering an unknown matrix, one needs

at least one observation per row and one observation per

column.

We have just seen that if the sampling is adversarial, e.g.

one observes all of the entries of M but those in the first

row, then one would not even be able to recover matrices of

rank 1. But what happens for most sampling sets? Can one

recover a low-rank matrix from almost all sampling sets of

cardinality m? Formally, suppose that the set Ω of locations

corresponding to the observed entries ((i, j) ∈ Ω if Mi j is

observed) is a set of cardinality m sampled uniformly at

random. Then can one recover a generic low-rank matrix

M, perhaps with very large probability, from the knowledge

of the value of its entries in the set Ω?

C. Which algorithm?

If the number of measurements is sufficiently large, and

if the entries are sufficiently uniformly distributed as above,

one might hope that there is only one low-rank matrix with

these entries. If this were true, one would want to recover

the data matrix by solving the optimization problem

minimize rank(X)
subject to Xi j = Mi j (i, j) ∈ Ω,

(II.3)

where X is the decision variable and rank(X) is equal to the

rank of the matrix X. The program (II.3) is a common sense

approach which simply seeks the simplest explanation fitting

the observed data. If there were only one low-rank object

fitting the data, this would recover M. This is unfortunately

of little practical use because this optimization problem is not

only NP-hard, but all known algorithms which provide exact

solutions require time doubly exponential in the dimension

n of the matrix in both theory and practice [11].

If a matrix has rank r, then it has exactly r nonzero

singular values so that the rank function in (II.3) is simply

the number of nonvanishing singular values. In this paper,

we consider an alternative which minimizes the sum of the

singular values over the constraint set. This sum is called the

nuclear norm,

‖X‖∗ =
n

∑
k=1

σk(X) (II.4)

where, here and below, σk(X) denotes the kth largest singular

value of X. The heuristic optimization is then given by

minimize ‖X‖∗
subject to Xi j = Mi j (i, j) ∈ Ω.

(II.5)

Whereas the rank function counts the number of nonvanish-

ing singular values, the nuclear norm sums their amplitude
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and in some sense, is to the rank functional what the convex

�1 norm is to the counting �0 norm in the area of sparse signal

recovery. The main point here is that the nuclear norm is a

convex function and, as we will discuss in Section V can be

optimized efficiently via semidefinite programming.

D. A first typical result

Our first result shows that, perhaps unexpectedly, this

heuristic optimization recovers a generic M when the number

of randomly sampled entries is large enough. We will prove

the following:

Theorem 2.1: Let M be an n1 × n2 matrix of rank r
sampled from the random orthogonal model, and put n =
max(n1,n2). Suppose we observe m entries of M with loca-

tions sampled uniformly at random. Then there are numerical

constants C and c such that if

m ≥C n5/4r logn , (II.6)

the minimizer to the problem (II.5) is unique and equal to

M with probability at least 1 − cn−3; that is to say, the

semidefinite program (II.5) recovers all the entries of M with

no error. In addition, if r ≤ n1/5, then the recovery is exact

with probability at least 1− cn−3 provided that

m ≥C n6/5r logn . (II.7)

The theorem states that a surprisingly small number of

entries are sufficient to complete a generic low-rank matrix.

For small values of the rank, e.g. when r = O(1) or r =
O(logn), one only needs to see on the order of n6/5 entries

(ignoring logarithmic factors) which is considerably smaller

than n2—the total number of entries of a squared matrix. The

real feat, however, is that the recovery algorithm is tractable

and very concrete. Hence the contribution is twofold:

• Under the hypotheses of Theorem 2.1, there is a unique

low-rank matrix which is consistent with the observed

entries.

• Further, this matrix can be recovered by the convex

optimization (II.5). In other words, for most problems,

the nuclear norm relaxation is formally equivalent to the

combinatorially hard rank minimization problem (II.3).

Theorem 2.1 is in fact a special instance of a far more

general theorem that covers a much larger set of matrices

M. We describe this general class of matrices and precise

recovery conditions in the next section.

III. MAIN RESULTS

As seen in our first example (II.1), it is impossible to

recover a matrix which is equal to zero in nearly all of its

entries unless we see all the entries of the matrix. To recover

a low-rank matrix, this matrix cannot be in the null space of

the sampling operator giving the values of a subset of the

entries. Now it is easy to see that if the singular vectors of

a matrix M are highly concentrated, then M could very well

be in the null-space of the sampling operator. For instance

consider the rank-2 symmetric matrix M given by

M =
2

∑
k=1

σkuku∗
k ,

u1 = (e1 + e2)/
√

2,

u2 = (e1 − e2)/
√

2,

where the singular values are arbitrary. Then this matrix

vanishes everywhere except in the top-left 2×2 corner and

one would basically need to see all the entries of M to be

able to recover this matrix exactly by any method whatsoever.

There is an endless list of examples of this sort. Hence,

we arrive at the notion that, somehow, the singular vectors

need to be sufficiently spread—that is, uncorrelated with

the standard basis—in order to minimize the number of

observations needed to recover a low-rank matrix.2 This

motivates the following definition.

Definition 3.1: Let U be a subspace of R
n of dimension

r and PU be the orthogonal projection onto U . Then the

coherence of U (vis-à-vis the standard basis (ei)) is defined

to be

μ(U) ≡ n
r

max
1≤i≤n

‖PU ei‖2. (III.1)

Note that for any subspace, the smallest μ(U) can be is 1,

achieved, for example, if U is spanned by vectors whose

entries all have magnitude 1/
√

n. The largest possible value

for μ(U) is n/r which would correspond to any subspace

that contains a standard basis element. We shall be primarily

interested in subspace with low coherence as matrices whose

column and row spaces have low coherence cannot really be

in the null space of the sampling operator. For instance, we

will see that the random subspaces discussed above have

nearly minimal coherence.

To state our main result, we introduce two assumptions

about an n1 × n2 matrix M whose SVD is given by M =
∑1≤k≤r σkukv∗k and with column and row spaces denoted by

U and V respectively.

A0 The coherences obey max(μ(U),μ(V )) ≤ μ0 for

some positive μ0.

A1 The n1 × n2 matrix ∑1≤k≤r ukv∗k has a maximum

entry bounded by μ1

√
r/(n1n2) in absolute value

for some positive μ1.

The μ’s above may depend on r and n1,n2. Moreover, note

that A1 always holds with μ1 = μ0

√
r since the (i, j)th entry

of the matrix ∑1≤k≤r ukv∗k is given by ∑1≤k≤r uikv jk and by

the Cauchy-Schwarz inequality,∣∣∣∣∣ ∑
1≤k≤r

uikv jk

∣∣∣∣∣ ≤
√

∑
1≤k≤r

|uik|2
√

∑
1≤k≤r

|v jk|2 ≤ μ0r√
n1n2

.

Hence, for sufficiently small ranks, μ1 is comparable to μ0.

As we show in the full version of this paper [10], for larger

ranks, both subspaces selected from the uniform distribution

and spaces constructed as the span of singular vectors with

bounded entries are not only incoherent with the standard

basis, but also obey A1 with high probability for values of

μ1 at most logarithmic in n1 and/or n2. We will assume that

μ1 is greater than or equal to 1.

We are in the position to state our main result: if a matrix

has row and column spaces that are incoherent with the

standard basis, then nuclear norm minimization can recover

2Both the left and right singular vectors need to be uncorrelated with the
standard basis. Indeed, the matrix e1v∗ has its first row equal to v and all
the others equal to zero. Clearly, this rank-1 matrix cannot be recovered
unless we basically see all of its entries.
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this matrix from a random sampling of a small number of

entries.

Theorem 3.2: Let M be an n1 × n2 matrix of rank r
obeying A0 and A1 and put n = max(n1,n2). Suppose we

observe m entries of M with locations sampled uniformly at

random. Then there exist constants C, c such that if

m ≥ C max(μ2
1,μ

1/2
0 μ1,μ0n1/4)nr(β logn) (III.2)

for some β > 2, then the minimizer to the problem (II.5) is

unique and equal to M with probability at least 1− cn−β.

For r ≤ μ−1
0 n1/5 this estimate can be improved to

m ≥C μ0 n6/5r(β logn) (III.3)

with the same probability of success.

Theorem 3.2 asserts that if the coherence is low, few samples

are required to recover M. For example, if μ0 = O(1) and the

rank is not too large, then the recovery is exact with large

probability provided that

m ≥C n6/5r logn . (III.4)

We give two illustrative examples of matrices with incoherent

column and row spaces. This list is by no means exhaustive.

1) The first example is the random orthogonal model.

For values of the rank r greater than logn, μ(U) and

μ(V ) are O(1), μ1 = O(logn) both with very large

probability. Hence, the recovery is exact provided that

m obeys (II.6) or (II.7). Specializing Theorem 3.2 to

these values of the parameters gives Theorem 2.1.

Hence, Theorem 2.1 is a special case of our general

recovery result.

2) The second example is more general and, in a nutshell,

simply requires that the components of the singular

vectors of M are small. Assume that the u j and v j’s

obey

max
i j

|〈ei,u j〉|2 ≤ μB/n, max
i j

|〈ei,v j〉|2 ≤ μB/n,

(III.5)

for some value of μB = O(1). Then the maximum

coherence is at most μB since μ(U) ≤ μB and μ(V ) ≤
μB. Further, we show in [10] that A1 holds most of

the time with μ1 = O(
√

logn). Thus, for matrices with

singular vectors obeying (III.5), the recovery is exact

provided that m obeys (III.4) for values of the rank not

exceeding μ−1
B n1/5.

The proof of Theorem 3.2 can be found in the full version

of this paper [10]. There we establish sufficient conditions

which guarantee that the true low-rank matrix M is the

unique solution to (II.5). One of these conditions is the

existence of a dual vector obeying two crucial optimality

conditions. We construct such a dual vector and then demon-

strate that it obeys the desired properties provided that the

number of measurements is sufficiently large.

IV. EXTENSIONS

Our main result (Theorem 3.2) extends to a variety of other

low-rank matrix completion problems beyond the sampling

of entries. Indeed, suppose we have two orthonormal bases

f1, . . . , fn and g1, . . . ,gn of R
n, and that we are interested in

solving the rank minimization problem

minimize rank(X)
subject to f∗i Xg j = f∗i Mg j, (i, j) ∈ Ω,

. (IV.1)

This comes up in a number of applications. As a moti-

vating example, there has been a great deal of interest in

the machine learning community in developing specialized

algorithms for the multiclass and multitask learning problems

(see, e.g., [1], [4], [3]). In multiclass learning, the goal is

to build multiple classifiers with the same training data to

distinguish between more than two categories. For example,

in face recognition, one might want to classify whether

an image patch corresponds to an eye, nose, or mouth. In

multitask learning, we have a large set of data, but have a

variety of different classification tasks, and, for each task,

only partial subsets of the data are relevant. For instance,

in activity recognition, we may have acquired sets of obser-

vations of multiple subjects and want to determine if each

observed person is walking or running. However, a different

classifier is to be learned for each individual, and it is not

clear how having access to the full collection of observations

can improve classification performance. Multitask learning

aims precisely to take advantage of the access to the full

database to improve performance on the individual tasks.

In the abstract formulation of this problem for linear

classifiers, we have K classes to distinguish and are given

training examples f1, . . . , fn. For each example, we are given

partial labeling information about which classes it belongs

or does not belong to. That is, for each example f j and class

k, we may either be told that f j belongs to class k, be told f j
does not belong to class k, or provided no information about

the membership of f j to class k. For each class 1 ≤ k ≤ K,

we would like to produce a linear function wk such that

w∗
kfi > 0 if fi belongs to class k and w∗

kfi < 0 otherwise.

Formally, we can search for the vector wk that satisfies the

equality constraints w∗
kfi = yik where yik = 1 if we are told

that fi belongs to class k, yik = −1 if we are told that fi
does not belong to class k, and yik unconstrained if we

are not provided information. A common hypothesis in the

multitask setting is that the wk corresponding to each of the

classes together span a very low dimensional subspace with

dimension significantly smaller than K [1], [4], [3]. That is,

the basic assumption is that

W = [w1, . . . ,wK ]

is low-rank. Hence, the multiclass learning problem can be

cast as (IV.1) with observations of the form f∗i We j.

To see that our theorem provides conditions under which

(IV.1) can be solved via nuclear norm minimization, note

that there exist unitary transformations F and G such that

e j = Ff j and e j = Gg j for each j = 1, . . . ,n. Hence,

f∗i Xg j = e∗i (FXG∗)e j.

Then if the conditions of Theorem 3.2 hold for the matrix

FXG∗, it is immediate that nuclear norm minimization finds
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the unique optimal solution of (IV.1) when we are provided a

large enough random collection of the inner products f∗i Mg j.

In other words, all that is needed is that the column and row

spaces of M be respectively incoherent with the basis (fi)
and (gi).

From this perspective, we additionally remark that our

results likely extend to the case where one observes a small

number of arbitrary linear functionals of a hidden matrix M.

Set N = n2 and A1, . . . ,AN be an orthonormal basis for the

linear space of n× n matrices with the usual inner product

〈X,Y〉= trace(X∗Y). Then we expect our results should also

apply to the rank minimization problem

minimize rank(X)
subject to 〈Ak,X〉 = 〈Ak,M〉 k ∈ Ω,

(IV.2)

where Ω ⊂ {1, . . . ,N} is selected uniformly at random. In

fact, (IV.2) is (II.3) when the orthobasis is the canonical

basis (eie∗j)1≤i, j≤n. Here, those low-rank matrices which

have small inner product with all the basis elements Ak
may be recoverable by nuclear norm minimization. To avoid

unnecessary confusion and notational clutter, we leave this

general low-rank recovery problem for future work.

V. CONNECTIONS, ALTERNATIVES AND PRIOR ART

Nuclear norm minimization is a recent heuristic introduced

by Fazel in [15], and is an extension of the trace heuristic

often used by the control community, see e.g. [5], [17].

Indeed, when the matrix variable is symmetric and positive

semidefinite, the nuclear norm of X is the sum of the

(nonnegative) eigenvalues and thus equal to the trace of

X. Hence, for positive semidefinite unknowns, (II.5) would

simply minimize the trace over the constraint set:

minimize trace(X)
subject to Xi j = Mi j (i, j) ∈ Ω

X � 0

.

This is a semidefinite program. Even for the general matrix

M which may not be positive definite or even symmetric,

the nuclear norm heuristic can be formulated in terms of

semidefinite programming as, for instance, the program (II.5)

is equivalent to

minimize trace(W1)+ trace(W2)
subject to Xi j = Mi j (i, j) ∈ Ω[

W1 X
X∗ W2

]
� 0

with optimization variables X, W1 and W2, (see, e.g., [15],

[22]). There are many efficient algorithms and high-quality

software available for solving these types of problems.

Our work is inspired by results in the emerging field

of compressive sampling or compressed sensing, a new

paradigm for acquiring information about objects of interest

from what appears to be a highly incomplete set of measure-

ments [7], [9], [14]. In practice, this means for example that

high-resolution imaging is possible with fewer sensors, or

that one can speed up signal acquisition time in biomedical

applications by orders of magnitude, simply by taking far

fewer specially coded samples. Mathematically speaking, we

wish to reconstruct a signal x ∈ R
n from a small number

measurements y = Φx, y∈R
m, and m is much smaller than n;

i.e. we have far fewer equations than unknowns. In general,

one cannot hope to reconstruct x but assume now that the

object we wish to recover is known to be structured in the

sense that it is sparse (or approximately sparse). This means

that the unknown object depends upon a smaller number of

unknown parameters. Then it has been shown that �1 mini-

mization allows recovery of sparse signals from remarkably

few measurements: supposing Φ is chosen randomly from

a suitable distribution, then with very high probability, all

sparse signals with about k nonzero entries can be recovered

from on the order of k logn measurements. For instance, if

x is k-sparse in the Fourier domain, i.e. x is a superposition

of k sinusoids, then it can be perfectly recovered with high

probability—by �1 minimization—from the knowledge of

about k logn of its entries sampled uniformly at random [7].

From this viewpoint, the results in this paper greatly

extend the theory of compressed sensing by showing that

other types of interesting objects or structures, beyond sparse

signals and images, can be recovered from a limited set

of measurements. Moreover, the techniques for proving our

main results build upon ideas from the compressed sensing

literature together with probabilistic tools such as the pow-

erful techniques of Bourgain and of Rudelson for bounding

norms of operators between Banach spaces.

Our notion of incoherence generalizes the concept of the

same name in compressive sampling. Notably, in [6], the

authors introduce the notion of the incoherence of a unitary

transformation. Letting U be an n × n unitary matrix, the

coherence of U is given by

μ(U) = nmax
j,k

|Ujk|2.

This quantity ranges in values from 1 for a unitary trans-

formation whose entries all have the same magnitude to n
for the identity matrix. Using this notion, [6] showed that

with high probability, a k-sparse signal could be recovered

via linear programming from the observation of the inner

product of the signal with m = Ω(μ(U)k logn) randomly

selected columns of the matrix U. This result provided a

generalization of the celebrated results about partial Fourier

observations described in [7], a special case where μ(U) = 1.

This paper generalizes the notion of incoherence to problems

beyond the setting of sparse signal recovery.

In [18], the authors studied the nuclear norm heuristic

applied to a related problem where partial information about

a matrix M is available from m equations of the form

〈A(k),M〉 = ∑
i j

A(k)
i j Mi j = bk, k = 1, . . . ,m, (V.1)

where for each k, {A(k)
i j }i j is an i.i.d. sequence of Gaussian

or Bernoulli random variables and the sequences {A(k)} are

also independent from each other (the sequences {A(k)} and

{bk} are available to the analyst). Building on the concept

of restricted isometry introduced in [8] in the context of
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sparse signal recovery, [18] establishes the first sufficient

conditions for which the nuclear norm heuristic returns the

minimum rank element in the constraint set. They prove

that the heuristic succeeds with large probability whenever

the number m of available measurements is greater than

a constant times 2nr logn for n × n matrices. Although

this is an interesting result, a serious impediment to this

approach is that one needs to essentially measure random

projections of the unknown data matrix—a situation which

unfortunately does not commonly arise in practice. Further,

the measurements in (V.1) give some information about all
the entries of M whereas in our problem, information about

most of the entries is simply not available. In particular, the

results and techniques introduced in [18] do not begin to

address the matrix completion problem of interest to us in

this paper. As a consequence, our methods are completely

different; for example, they do not rely on any notions of

restricted isometry. Instead, as we discussed above, we prove

the existence of a Lagrange multiplier for the optimization

(II.5) that certifies the unique optimal solution is precisely

the matrix that we wish to recover.

Finally, we would like to briefly discuss the possibility of

other recovery algorithms when the sampling happens to be

chosen in a very special fashion. For example, suppose that

M is generic and that we precisely observe every entry in

the first r rows and columns of the matrix. Write M in block

form as

M =
[

M11 M12

M21 M22

]

with M11 an r × r matrix. In the special case that M11

is invertible and M has rank r, then it is easy to verify

that M22 = M21M−1
11 M12. One can prove this identity by

forming the SVD of M, for example. That is, if M is

generic, and the upper r × r block is invertible, and we

observe every entry in the first r rows and columns, we

can recover M. This result immediately generalizes to the

case where one observes precisely r rows and r columns

and the r× r matrix at the intersection of the observed rows

and columns is invertible. However, this scheme has many

practical drawbacks that stand in the way of a generalization

to a completion algorithm from a general set of entries. First,

if we miss any entry in these rows or columns, we cannot

recover M, nor can we leverage any information provided by

entries of M22. Second, if the matrix has rank less than r,

and we observe r rows and columns, a combinatorial search

to find the collection that has an invertible square sub-block

is required. Moreover, because of the matrix inversion, the

algorithm is rather fragile to noise in the entries.

VI. DISCUSSION

A. Improvements

The results discussed here show that under suitable condi-

tions, one can reconstruct an n× n matrix of rank r from

a small number of its sampled entries provided that this

number is on the order of n1.2r logn, at least for moderate

values of the rank. One would like to know whether better

results hold in the sense that exact matrix recovery would

be guaranteed with a reduced number of measurements. In

particular, recall that an n× n matrix of rank r depends on

(2n−r)r degrees of freedom; is it true then that it is possible

to recover most low-rank matrices from on the order of nr—

up to logarithmic multiplicative factors—randomly selected

entries? Can the sample size be merely proportional to the

true complexity of the low-rank object we wish to recover?

In this direction, we would like to emphasize that there

is nothing in our approach that apparently prevents us

from getting stronger results. Our proof architecture requires

bounding an infinite matrix series in the operator norm. We

develop a bound on the spectral norm of each of the first

four terms of this series and a general argument to bound

the remainder of the series in [10]. Presumably, one could

bound higher order terms by the same techniques. Getting an

appropriate bound on the fifth term would lower the exponent

of n from 6/5 to 7/6. The appropriate bound on the sixth

term would further lower the exponent to 8/7, and so on.

To obtain an optimal result, one would need to reach bound

O(logn) terms. We refer the interested reader to [10] for an

discussion of how such an extension might be achieved.

B. Further directions

It would be of interest to extend our results to the

case where the unknown matrix is approximately low-rank.

Suppose we write the SVD of a matrix M as

M = ∑
1≤k≤n

σkukv∗k ,

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 and assume for simplicity

that none of the σk’s vanish. In general, it is impossible to

complete such a matrix exactly from a partial subset of its

entries. However, one might hope to be able to recover a good

approximation if, for example, most of the singular values

are small or negligible. For instance, consider the truncated

SVD of the matrix M,

Mr = ∑
1≤k≤r

σkukv∗k ,

where the sum extends over the r largest singular values and

let M� be the solution to (II.5). Then one would not expect to

have M� = M but it would be of great interest to determine

whether the size of M�−M is comparable to that of M−Mr
provided that the number of sampled entries is sufficiently

large. For example, one would like to know whether it is

reasonable to expect that ‖M� −M‖∗ is on the same order

as ‖M−Mr‖∗ (one could ask for a similar comparison with

a different norm). If the answer is positive, then this would

say that approximately low-rank matrices can be accurately

recovered from a small set of sampled entries.

Another important direction is to determine whether the

reconstruction is robust to noise as in some applications, one

would presumably observe

Yi j = Mi j + zi j, (i, j) ∈ Ω,

where z is a deterministic or stochastic perturbation. In this

setup, one would perhaps want to minimize the nuclear norm
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subject to ∑(i, j)∈Ω(Xi j − Mi j)2 ≤ ε2 where ε is an upper

bound on the mean noise level. Can one expect that this

algorithm or a variation thereof provides accurate answers?

That is, can one expect that the error between the recovered

and the true data matrix be proportional to the noise level?
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