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Abstract We consider a problem of considerable practical interest: the recovery of a

data matrix from a sampling of its entries. Suppose that we observe m entries selected

uniformly at random from a matrix M . Can we complete the matrix and recover the

entries that we have not seen?

We show that one can perfectly recover most low-rank matrices from what appears

to be an incomplete set of entries. We prove that if the number m of sampled entries

obeys

m ≥ C n1.2r logn

for some positive numerical constant C, then with very high probability, most n × n

matrices of rank r can be perfectly recovered by solving a simple convex optimization

program. This program finds the matrix with minimum nuclear norm that fits the data.

The condition above assumes that the rank is not too large. However, if one replaces

the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar

results hold for arbitrary rectangular matrices as well. Our results are connected with

the recent literature on compressed sensing, and show that objects other than signals

and images can be perfectly reconstructed from very limited information.
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1 Introduction

In many practical problems of interest, one would like to recover a matrix from a

sampling of its entries. As a motivating example, consider the task of inferring an-

swers in a partially filled out survey. That is, suppose that questions are being asked

to a collection of individuals. Then we can form a matrix where the rows index each

individual and the columns index the questions. We collect data to fill out this table

but unfortunately, many questions are left unanswered. Is it possible to make an ed-

ucated guess about what the missing answers should be? How can one make such a

guess? Formally, we may view this problem as follows. We are interested in recover-

ing a data matrix M with n1 rows and n2 columns, but only get to observe a number

m of its entries which is comparably much smaller than n1n2, the total number of

entries. Can one recover the matrix M from m of its entries? In general, everyone

would agree that this is impossible without some additional information.

In many instances, however, the matrix we wish to recover is known to be struc-

tured in the sense that it is low-rank or approximately low-rank. (We recall for com-

pleteness that a matrix with n1 rows and n2 columns has rank r if its rows or columns

span an r-dimensional space.) Below are two examples of practical scenarios where

one would like to be able to recover a low-rank matrix from a sampling of its entries.

• The Netflix problem. In the area of recommender systems, users submit ratings on

a subset of entries in a database, and the vendor provides recommendations based

on the user’s preferences [30, 34]. Because users only rate a few items, one would

like to infer their preference for unrated items.

A special instance of this problem is the now famous Netflix problem [1]. Users

(rows of the data matrix) are given the opportunity to rate movies (columns of the

data matrix), but users typically rate only very few movies so that there are very few

scattered observed entries of this data matrix. Yet, one would like to complete this

matrix so that the vendor (here Netflix) might recommend titles that any particular

user is likely to be willing to order. In this case, the data matrix of all user-ratings

may be approximately low-rank because it is commonly believed that only a few

factors contribute to an individual’s tastes or preferences.

• Triangulation from incomplete data. Suppose we are given partial information

about the distances between objects and would like to reconstruct the low-

dimensional geometry describing their locations. For example, we may have a

network of low-power wirelessly networked sensors scattered randomly across a

region. Suppose each sensor only has the ability to construct distance estimates

based on signal strength readings from its nearest fellow sensors. From these noisy

distance estimates, we can form a partially observed distance matrix. We can then
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estimate the true distance matrix whose rank will be equal to two if the sensors are

located in a plane or three if they are located in three dimensional space [25, 33].

In this case, we only need to observe a few distances per node to have enough

information to reconstruct the positions of the objects.

These examples are, of course, far from exhaustive and there are many other problems

which fall in this general category. For instance, we may have some very limited

information about a covariance matrix of interest. Yet, this covariance matrix may

be low-rank or approximately low-rank because the variables only depend upon a

comparably smaller number of factors.

1.1 Impediments and Solutions

Suppose for simplicity that we wish to recover a square n × n matrix M of rank r .1

Such a matrix M can be represented by n2 numbers, but it only has (2n− r)r degrees

of freedom. This fact can be revealed by counting parameters in the singular value

decomposition (the number of degrees of freedom associated with the description of

the singular values and of the left and right singular vectors). When the rank is small,

this is considerably smaller than n2. For instance, when M encodes a 10-dimensional

phenomenon, then the number of degrees of freedom is about 20n offering a reduc-

tion in dimensionality by a factor about equal to n/20. When n is large (e.g., in the

thousands or millions), the data matrix carries much less information than its ambient

dimension suggests. The problem is now whether it is possible to recover this matrix

from a sampling of its entries without having to probe all the n2 entries, or more

generally collect n2 or more measurements about M .

1.1.1 Which Matrices?

In general, one cannot hope to be able to recover a low-rank matrix from a sample of

its entries. Consider the rank-1 matrix M equal to

M = e1e
∗
n =

⎡

⎢

⎢

⎢

⎣

0 0 · · · 0 1

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

⎤

⎥

⎥

⎥

⎦

, (1.1)

where here and throughout, ei is the ith canonical basis vector in Euclidean space

(the vector with all entries equal to 0 but the ith equal to 1). This matrix has a 1

in the top-right corner and all the other entries are 0. Clearly, this matrix cannot be

recovered from a sampling of its entries unless we pretty much see all the entries.

The reason is that for most sampling sets, we would only get to see zeros so that we

would have no way of guessing that the matrix is not zero. For instance, if we were

1We emphasize that there is nothing special about M being square and all of our discussion would apply

to arbitrary rectangular matrices as well. The advantage of focusing on square matrices is a simplified

exposition and reduction in the number of parameters of which we need to keep track.
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to see 90% of the entries selected at random, then 10% of the time we would only get

to see zeroes.

It is therefore impossible to recover all low-rank matrices from a set of sampled en-

tries but can one recover most of them? To investigate this issue, we introduce a sim-

ple model of low-rank matrices. Consider the singular value decomposition (SVD) of

a matrix M

M =
r
∑

k=1

σkukv
∗
k, (1.2)

where the uk’s and vk’s are the left and right singular vectors, and the σk’s are the sin-

gular values (the roots of the eigenvalues of M∗M). Then we could think of a generic

low-rank matrix as follows: the families {uk}1≤k≤r and {vk}1≤k≤r are sampled uni-

formly at random among all families of r orthonormal vectors independently of each

other. (The independence between these two families simplifies the exposition, and is

not crucial.) We make no assumptions about the singular values σk . In the sequel, we

will refer to this model as the random orthogonal model. This model is convenient in

the sense that it is both very concrete and simple, and useful in the sense that it will

help us fix the main ideas. In the sequel, however, we will consider far more general

models. The question for now is whether or not one can recover such a generic matrix

from a sampling of its entries.

1.1.2 Which Sampling Sets?

Clearly, one cannot hope to reconstruct any low-rank matrix M—even of rank 1—if

the sampling set avoids any column or row of M . Suppose that M is of rank 1 and of

the form xy∗, x,y ∈ R
n so that the (i, j)th entry is given by

Mij = xiyj .

Then if we do not have samples from the first row, for example, one could never guess

the value of the first component of x1 by any method whatsoever; no information

about x1 is observed. There is of course nothing special about the first row and this

argument extends to any row or column. To have any hope of recovering an unknown

matrix, one needs at least one observation per row and one observation per column.

We have just seen that if the sampling is adversarial, e.g., one observes all of the

entries of M but those in the first row, then one would not even be able to recover

matrices of rank 1. But what happens for most sampling sets? Can one recover a

low-rank matrix from almost all sampling sets of cardinality m? Formally, suppose

that the set � of locations corresponding to the observed entries ((i, j) ∈ � if Mij

is observed) is a set of cardinality m sampled uniformly at random. Then can one

recover a generic low-rank matrix M , perhaps with very large probability, from the

knowledge of the value of its entries in the set �?

1.1.3 Which Algorithm?

If the number of measurements is sufficiently large, and if the entries are sufficiently

uniformly distributed as above, one might hope that there is only one low-rank matrix
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with these entries. If this were true, one would want to recover the data matrix by

solving the optimization problem

minimize rank(X)

subject to Xij = Mij (i, j) ∈ �,
(1.3)

where X is the decision variable and rank(X) is equal to the rank of the matrix X.

The program (1.3) is a common sense approach which simply seeks the simplest

explanation fitting the observed data. If there were only one low-rank object fitting the

data, this would recover M . This is unfortunately of little practical use because this

optimization problem is not only NP-hard, but all known algorithms which provide

exact solutions require time doubly exponential in the dimension n of the matrix in

both theory and practice [13].

If a matrix has rank r , then it has exactly r nonzero singular values so that the rank

function in (1.3) is simply the number of nonvanishing singular values. In this paper,

we consider an alternative which minimizes the sum of the singular values over the

constraint set. This sum is called the nuclear norm,

‖X‖∗ =
n
∑

k=1

σk(X) (1.4)

where, here and below, σk(X) denotes the kth largest singular value of X. The heuris-

tic optimization is then given by

minimize ‖X‖∗
subject to Xij = Mij (i, j) ∈ �.

(1.5)

Whereas the rank function counts the number of nonvanishing singular values, the

nuclear norm sums their amplitude and in some sense, is to the rank functional what

the convex ℓ1 norm is to the counting ℓ0 norm in the area of sparse signal recovery.

The main point here is that the nuclear norm is a convex function and, as we will

discuss in Sect. 1.4 can be optimized efficiently via semidefinite programming.

1.1.4 A First Typical Result

Our first result shows that, perhaps unexpectedly, this heuristic optimization recovers

a generic M when the number of randomly sampled entries is large enough. We will

prove the following theorem.

Theorem 1.1 Let M be an n1 × n2 matrix of rank r sampled from the random or-

thogonal model, and put n = max(n1, n2). Suppose we observe m entries of M with

locations sampled uniformly at random. Then there are numerical constants C and c

such that if

m ≥ C n5/4r logn , (1.6)

the minimizer to the problem (1.5) is unique and equal to M with probability at least

1−cn−3 logn; that is to say, the semidefinite program (1.5) recovers all the entries of
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M with no error. In addition, if r ≤ n1/5, then the recovery is exact with probability

at least 1 − cn−3 logn provided that

m ≥ C n6/5r logn. (1.7)

Furthermore, (1.7) holds even when the two families of singular vectors are depen-

dent; all that is needed is that the marginal distribution of each family is uniform.

The theorem states that a surprisingly small number of entries are sufficient to

complete a generic low-rank matrix. For small values of the rank, e.g., when r = O(1)

or r = O(logn), one only needs to see on the order of n6/5 entries (ignoring logarith-

mic factors) which is considerably smaller than n2—the total number of entries of a

square matrix. The real feat, however, is that the recovery algorithm is tractable and

very concrete. Hence, the contribution is twofold:

• Under the hypotheses of Theorem 1.1, there is a unique low-rank matrix which is

consistent with the observed entries.

• Further, this matrix can be recovered by the convex optimization (1.5). In other

words, for most problems, the nuclear norm relaxation is formally equivalent to

the combinatorially hard rank minimization problem (1.3).

Theorem 1.1 is in fact a special instance of a far more general theorem that covers a

much larger set of matrices M . We describe this general class of matrices and precise

recovery conditions in the next section.

1.2 Main Results

As seen in our first example (1.1), it is impossible to recover a matrix which is equal

to zero in nearly all of its entries unless we see all the entries of the matrix. To recover

a low-rank matrix, this matrix cannot be in the null space of the “sampling operator”

that provides the values of a subset of the entries. Now, it is easy to see that if the

singular vectors of a matrix M are highly concentrated, then M could very well be in

the null-space of the sampling operator. For instance, consider the rank-2 symmetric

matrix M given by

M =
2
∑

k=1

σkuku
∗
k, u1 = (e1 + e2)/

√
2, u2 = (e1 − e2)/

√
2,

where the singular values are arbitrary. Then this matrix vanishes everywhere except

in the top-left 2 × 2 corner and one would basically need to see all the entries of

M to be able to recover this matrix exactly by any method whatsoever. There is an

endless list of examples of this sort. Hence, we arrive at the notion that somehow the

singular vectors need to be sufficiently spread—that is, uncorrelated with the standard

basis—in order to minimize the number of observations needed to recover a low-rank

matrix.2 This motivates the following definition.

2Both the left and right singular vectors need to be uncorrelated with the standard basis. Indeed, the matrix

e1v∗ has its first row equal to v and all the others equal to zero. Clearly, this rank-1 matrix cannot be

recovered unless we basically see all of its entries.
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Definition 1.2 Let U be a subspace of R
n of dimension r and P U be the orthogonal

projection onto U . Then the coherence of U (vis-à-vis the standard basis (ei)) is

defined to be

μ(U) ≡
n

r
max

1≤i≤n
‖P Uei‖2. (1.8)

Note that for any subspace, the smallest μ(U) can be is 1, achieved, for example,

if U is spanned by vectors whose entries all have magnitude 1/
√

n. The largest pos-

sible value for μ(U) is n/r which would correspond to any subspace that contains a

standard basis element. We shall be primarily interested in subspaces with low coher-

ence as matrices whose column and row spaces have low coherence cannot really be

in the null space of the sampling operator. For instance, we will see that the random

subspaces discussed above have nearly minimal coherence.

To state our main result, we introduce two assumptions about an n1 × n2 matrix

M whose SVD is given by M =
∑

1≤k≤r σkukv
∗
k and with column and row spaces

denoted by U and V, respectively.

A0 The coherences obey max(μ(U),μ(V )) ≤ μ0 for some positive μ0.

A1 The n1 ×n2 matrix
∑

1≤k≤rukv
∗
k has a maximum entry bounded by μ1

√
r/(n1n2)

in absolute value for some positive μ1.

The μ’s above may depend on r and n1, n2. Moreover, note that A1 always holds

with μ1 = μ0

√
r since the (i, j)th entry of the matrix

∑

1≤k≤r ukv
∗
k is given by

∑

1≤k≤r uikvjk and by the Cauchy–Schwarz inequality,

∣

∣

∣

∣

∑

1≤k≤r

uikvjk

∣

∣

∣

∣

≤
√

∑

1≤k≤r

|uik|2
√

∑

1≤k≤r

|vjk|2 ≤
μ0r√
n1n2

.

Hence, for sufficiently small ranks, μ1 is comparable to μ0. As we will see in Sect. 2,

for larger ranks, both subspaces selected from the uniform distribution and spaces

constructed as the span of singular vectors with bounded entries are not only incoher-

ent with the standard basis, but also obey A1 with high probability for values of μ1

at most logarithmic in n1 and/or n2. Below, we will assume that μ1 is greater than or

equal to 1.

We are in the position to state our main result: if a matrix has row and column

spaces that are incoherent with the standard basis, then nuclear norm minimization

can recover this matrix from a random sampling of a small number of entries.

Theorem 1.3 Let M be an n1 ×n2 matrix of rank r obeying A0 and A1 and put n =
max(n1, n2). Suppose we observe m entries of M with locations sampled uniformly

at random. Then there exist constants C, c such that if

m ≥ C max
(

μ2
1,μ

1/2
0 μ1,μ0n

1/4
)

nr(β logn) (1.9)

for some β > 2, then the minimizer to the problem (1.5) is unique and equal to M

with probability at least 1 − cn−β . For r ≤ μ−1
0 n1/5 and under A0 only, this estimate
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can be improved to

m ≥ C μ0 n6/5r(β logn) (1.10)

with the same probability of success.

Theorem 1.3 asserts that if the coherence is low, few samples are required to re-

cover M . For example, if μ0 = O(1) and the rank is not too large, then the recovery

is exact with large probability provided that

m ≥ C n6/5r logn. (1.11)

We emphasize that if one is interested in low-rank matrices, there is only one as-

sumption: A0. Below, we give two illustrative examples of matrices with incoherent

column and row spaces. This list is by no means exhaustive.

1. The first example is the random orthogonal model. For values of the rank r greater

than logn, μ(U) and μ(V ) are O(1), μ1 = O(logn) both with very large proba-

bility. Hence, the recovery is exact provided that m obeys (1.6) or (1.7). Special-

izing Theorem 1.3 to these values of the parameters gives Theorem 1.1. Hence,

Theorem 1.1 is a special case of our general recovery result.

2. The second example is more general and, in a nutshell, simply requires that the

components of the singular vectors of M are small. Assume that the uj and vj ’s

obey

max
ij

∣

∣〈ei,uj 〉
∣

∣

2 ≤ μB/n, max
ij

∣

∣〈ei,vj 〉
∣

∣

2 ≤ μB/n, (1.12)

for some value of μB = O(1). Then the maximum coherence is at most μB since

μ(U) ≤ μB and μ(V ) ≤ μB . Further, we will see in Sect. 2 that A1 holds most of

the time with μ1 = O(
√

logn). Thus, for matrices with singular vectors obeying

(1.12), the recovery is exact provided that m obeys (1.11) for values of the rank

not exceeding μ−1
B n1/5.

1.3 Extensions

Our main result (Theorem 1.3) extends to a variety of other low-rank matrix comple-

tion problems beyond the sampling of entries. Indeed, suppose we have two ortho-

normal bases f 1, . . . ,f n and g1, . . . ,gn of R
n, and that we are interested in solving

the rank minimization problem

minimize rank(X)

subject to f ∗
i Xgj = f ∗

i Mgj , (i, j) ∈ �.
(1.13)

To see that our theorem provides conditions under which (1.13) can be solved via

nuclear norm minimization, note that there exist unitary transformations F and G

such that ej = Ff j and ej = Ggj for each j = 1, . . . , n. Hence,

f ∗
i Xgj = e∗

i

(

FXG∗)ej .
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Then if the conditions of Theorem 1.3 hold for the matrix FXG∗, it is immediate that

nuclear norm minimization finds the unique optimal solution of (1.13) when we are

provided a large enough random collection of the inner products f ∗
i Mgj . In other

words, all that is needed is that the column and row spaces of M be respectively

incoherent with the basis (f i) and (gi).

From this perspective, we additionally remark that our results likely extend to the

case where one observes a small number of arbitrary linear functionals of a hidden

matrix M . Set N = n2 and let A1, . . . ,AN be an orthonormal basis for the linear

space of n × n matrices with the usual inner product 〈X,Y 〉 = trace(X∗Y ). Then we

expect our results should also apply to the rank minimization problem

minimize rank(X)

subject to 〈Ak,X〉 = 〈Ak,M〉 k ∈ �,
(1.14)

where � ⊂ {1, . . . ,N} is selected uniformly at random. In fact, (1.14) is (1.3) when

the orthobasis is the canonical basis (eie
∗
j )1≤i,j≤n. Here, those low-rank matrices

which have small inner product with all the basis elements Ak may be recoverable by

nuclear norm minimization. To avoid unnecessary confusion and notational clutter,

we leave this general low-rank recovery problem for future work.

1.4 Connections, Alternatives and Prior Art

Nuclear norm minimization is a recent heuristic introduced by Fazel in [19], and is an

extension of the trace heuristic often used by the control community; see, e.g., [4, 28].

Indeed, when the matrix variable is symmetric and positive semidefinite, the nuclear

norm of X is the sum of the (nonnegative) eigenvalues and thus equal to the trace

of X. Hence, for positive semidefinite unknowns, (1.5) would simply minimize the

trace over the constraint set:

minimize trace(X)

subject to Xij = Mij (i, j) ∈ �,

X � 0.

This is a semidefinite program. Even for the general matrix M which may not be

positive definite or even symmetric, the nuclear norm heuristic can be formulated in

terms of semidefinite programming as, for instance, the program (1.5) is equivalent

to

minimize trace(W 1) + trace(W 2)

subject to Xij = Mij (i, j) ∈ �,
[

W 1 X

X∗ W 2

]

� 0

with optimization variables X, W 1 and W 2, (see, e.g., [19, 37]). There are many

efficient algorithms and high-quality software available for solving these types of

problems.

Our work is inspired by results in the emerging field of compressive sampling or

compressed sensing, a new paradigm for acquiring information about objects of inter-

est from what appears to be a highly incomplete set of measurements [10, 12, 16]. In
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practice, this means for example that high-resolution imaging is possible with fewer

sensors, or that one can speed up signal acquisition time in biomedical applications

by orders of magnitude, simply by taking far fewer specially coded samples. Math-

ematically speaking, we wish to reconstruct a signal x ∈ R
n from a small number

measurements y = Φx, y ∈ R
m, and m is much smaller than n; i.e., we have far

fewer equations than unknowns. In general, one cannot hope to reconstruct x, but

assume now that the object we wish to recover is known to be structured in the sense

that it is sparse (or approximately sparse). This means that the unknown object de-

pends upon a smaller number of unknown parameters. Then it has been shown that ℓ1

minimization allows recovery of sparse signals from remarkably few measurements:

supposing Φ is chosen randomly from a suitable distribution, then with very high

probability, all sparse signals with about k nonzero entries can be recovered from on

the order of k logn measurements. For instance, if x is k-sparse in the Fourier do-

main, i.e., x is a superposition of k sinusoids, then it can be perfectly recovered with

high probability—by ℓ1 minimization—from the knowledge of about k logn of its

entries sampled uniformly at random [10].

From this viewpoint, the results in this paper greatly extend the theory of com-

pressed sensing by showing that other types of interesting objects or structures, be-

yond sparse signals and images, can be recovered from a limited set of measure-

ments. Moreover, the techniques for proving our main results build upon ideas from

the compressed sensing literature together with probabilistic tools such as the power-

ful techniques of Bourgain and of Rudelson for bounding norms of operators between

Banach spaces.

Our notion of incoherence generalizes the concept of the same name in compres-

sive sampling. Notably, in [9], the authors introduce the notion of the incoherence of

a unitary transformation. Letting U be an n × n unitary matrix, the coherence of U

is given by

μ(U) = nmax
j,k

|Ujk|2.

This quantity ranges in values from 1 for a unitary transformation whose entries

all have the same magnitude to n for the identity matrix. Using this notion, [9]

showed that with high probability, a k-sparse signal could be recovered via lin-

ear programming from the observation of the inner product of the signal with

m = �(μ(U)k logn) randomly selected columns of the matrix U . This result pro-

vided a generalization of the celebrated results about partial Fourier observations

described in [10], a special case where μ(U) = 1. This paper generalizes the notion

of incoherence to problems beyond the setting of sparse signal recovery.

In [29], the authors studied the nuclear norm heuristic applied to a related problem

where partial information about a matrix M is available from m equations of the form

〈

A(k),M
〉

=
∑

ij

A
(k)
ij Mij = bk, k = 1, . . . ,m, (1.15)

where for each k, {A(k)
ij } is an i.i.d. sequence of Gaussian or Bernoulli random vari-

ables and the sequences {A(k)} are also independent from each other (the sequences

{A(k)} and {bk} are available to the analyst). Building on the concept of restricted
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isometry introduced in [11] in the context of sparse signal recovery, [29] establishes

the first sufficient conditions for which the nuclear norm heuristic returns the mini-

mum rank element in the constraint set. They prove that the heuristic succeeds with

large probability whenever the number m of available measurements is greater than

a constant times 2nr logn for n × n matrices. Although this is an interesting result, a

serious impediment to this approach is that one needs to essentially measure random

projections of the unknown data matrix—a situation which unfortunately does not

commonly arise in practice. Further, the measurements in (1.15) give some informa-

tion about all the entries of M whereas in our problem, information about most of

the entries is simply not available. In particular, the results and techniques introduced

in [29] do not begin to address the matrix completion problem of interest to us in this

paper. As a consequence, our methods are completely different; for example, they

do not rely on any notions of restricted isometry. Instead, as we discuss below, we

prove the existence of a Lagrange multiplier for the optimization (1.5) that certifies

the unique optimal solution is precisely the matrix that we wish to recover.

We would like to note that other recovery algorithms may be possible when the

sampling happens to be chosen in a very special fashion. For example, suppose that

M is generic and that we precisely observe every entry in the first r rows and columns

of the matrix. Write M in block form as

M =
[

M11 M12

M21 M22

]

with M11 an r × r matrix. In the special case that M11 is invertible and M has

rank r , then it is easy to verify that M22 = M21M
−1
11 M12. One can prove this iden-

tity by forming the SVD of M , for example. That is, if M is generic, and the upper

r × r block is invertible, and we observe every entry in the first r rows and columns,

we can recover M . This result immediately generalizes to the case where one ob-

serves precisely r rows and r columns and the r × r matrix at the intersection of the

observed rows and columns is invertible. However, this scheme has many practical

drawbacks that stand in the way of a generalization to a completion algorithm from a

general set of entries. First, if we miss any entry in these rows or columns, we cannot

recover M , nor can we leverage any information provided by entries of M22. Second,

if the matrix has rank less than r , and we observe r rows and columns, a combina-

torial search to find the collection that has an invertible square subblock is required.

Several authors have observed that if the set of rows and columns is selected at ran-

dom, then this rank deficiency is highly improbable. For example, [17, 18] show that

if the columns are sampled from a distribution proportional to the column Euclidean

norms of the matrix, then a low rank matrix can be reconstructed with no error. Again,

even after randomization, this method does not work when some of the entries in the

sampled columns are missing. Moreover, in the setting considered in this paper, there

is no oracle that would inform us about the norm of a row or column.

Finally, we note that in [3] the authors propose to solve a version of the matrix

completion problem where the provided entries are corrupted by noise. They compute

the SVD of the matrix which is equal to Mij when (i, j) ∈ � and zeros everywhere

else. They show that when the underlying matrix M has rank r , this procedure results

in a rank-r approximation which constructs most entries of M to error o(1) as long as
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the noise is small. Unfortunately, this procedure is not useful in the context where the

entries are not noisy: the bound provides a reconstruction error which scales as O(n)

in the Frobenius norm. This is in sharp contrast to our algorithm which reconstructs

the matrix with no error as long as � has sufficiently large cardinality.

1.5 Notations and Organization of the Paper

The paper is organized as follows. We first argue in Sect. 2 that the random orthogo-

nal model and, more generally, matrices with incoherent column and row spaces obey

the assumptions of the general Theorem 1.3. To prove Theorem 1.3, we first establish

sufficient conditions which guarantee that the true low-rank matrix M is the unique

solution to (1.5) in Sect. 3. One of these conditions is the existence of a dual vector

obeying two crucial properties. Section 4 constructs such a dual vector and provides

the overall architecture of the proof which shows that, indeed, this vector obeys the

desired properties provided that the number of measurements is sufficiently large.

Surprisingly, as explored in Sect. 5, the existence of a dual vector certifying that M

is unique is related to some problems in random graph theory including “the coupon

collector’s problem.” Following this discussion, we prove our main result via several

intermediate results which are all proven in Sect. 6. Section 7 introduces numerical

experiments showing that matrix completion based on nuclear norm minimization

works well in practice. Section 8 closes the paper with a short summary of our find-

ings, a discussion of important extensions and improvements. In particular, we will

discuss possible ways of improving the 1.2 exponent in (1.10) so that it gets closer

to 1. Finally, the Appendix provides proofs of auxiliary lemmas supporting our main

argument.

Before continuing, we provide here a brief summary of the notations used through-

out the paper. Matrices are bold capital, vectors are bold lowercase and scalars or en-

tries are not bold. For instance, X is a matrix and Xij its (i, j)th entry. Likewise x is

a vector and xi its ith component. When we have a collection of vectors uk ∈ R
n for

1 ≤ k ≤ d , we will denote by uik the ith component of the vector uk and [u1, . . . ,ud ]
will denote the n × d matrix whose kth column is uk .

A variety of norms on matrices will be discussed. The spectral norm of a matrix

is denoted by ‖X‖. The Euclidean inner product between two matrices is 〈X,Y 〉 =
trace(X∗Y ), and the corresponding Euclidean norm, called the Frobenius or Hilbert–

Schmidt norm, is denoted ‖X‖F . That is, ‖X‖F = 〈X,X〉1/2. The nuclear norm of a

matrix X is ‖X‖∗. For q ≥ 1, the Schatten q-norm of a matrix is denoted by

‖X‖Sq =

(

n
∑

i=1

σi(X)q

)1/q

. (1.16)

Note that the nuclear, Frobenius, and operator norms are respectively equal to the

Schatten 1-, 2- and ∞-norms. The maximum entry of X (in absolute value) is denoted

by ‖X‖∞ ≡ maxij |Xij |. For vectors, we will only consider the usual Euclidean ℓ2

norm, which we simply write as ‖x‖.

Further, we will also manipulate linear transformations which act on matri-

ces and will use calligraphic letters for these operators as in A(X). In particular,
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the identity operator will be denoted by I . The only norm we will consider for

these operators is their spectral norm (the top singular value) denoted by ‖A‖ =
supX:‖X‖F ≤1 ‖A(X)‖F .

Finally, we adopt the convention that C denotes a numerical constant indepen-

dent of the matrix dimensions, rank, and number of measurements, whose value may

change from line to line. Certain special constants with precise numerical values will

be ornamented with subscripts (e.g., CR). Any exceptions to this notational scheme

will be noted in the text.

2 Which Matrices Are Incoherent?

In this section, we restrict our attention to square n × n matrices, but the extension to

rectangular n1 × n2 matrices immediately follows by setting n = max(n1, n2).

2.1 Incoherent Bases Span Incoherent Subspaces

Almost all n × n matrices M with singular vectors {uk}1≤k≤r and {vk}1≤k≤r whose

components have magnitude bounded by μB as in (1.12) also satisfy the assump-

tions A0 and A1 with μ0 = μB , μ1 = CμB

√
logn for some positive constant C. As

mentioned above, A0 holds automatically, but observe that A1 would not hold with a

small value of μ1 if the matrices [u1, . . . ,ur ] and [v1, . . . ,vr ] have a row in common

where all of the entries have magnitude
√

μB/n. It is not hard to see that in this case

∥

∥

∥

∥

∑

k

ukv
∗
k

∥

∥

∥

∥

∞
= μB r/n.

Certainly, this example is constructed in a very special way, and should occur infre-

quently. We now show that it is generically unlikely.

Consider the matrix

r
∑

k=1

ǫkukv
∗
k, (2.1)

where {ǫk}1≤k≤r is an arbitrary sign sequence. For almost all choices of sign se-

quences, A1 is satisfied with μ1 = O(μB

√
logn). Indeed, if one selects the signs

uniformly at random, then for each β > 0,

P

(∥

∥

∥

∥

∥

r
∑

k=1

ǫkukvk

∥

∥

∥

∥

∥

∞
≥ μB

√

8βr logn/n

)

≤
(

2n2
)

n−β . (2.2)

This is of interest because suppose the low-rank matrix we wish to recover is of the

form

M =
r
∑

k=1

λkukv
∗
k (2.3)
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with scalars λk . Since the vectors {uk} and {vk} are orthogonal, the singular values

of M are given by |λk| and the singular vectors are given by sgn(λk)uk and vk for

k = 1, . . . , r . Hence, in this model, A1 concerns the maximum entry of the matrix

given by (2.1) with ǫk = sgn(λk). That is to say, for most sign patterns, the matrix of

interest obeys an appropriate size condition. We emphasize here that the only thing

that we assumed about the uk’s and vk’s was that they had small entries. In particular,

they could be equal to each other as would be the case for a symmetric matrix.

The claim (2.2) is a simple application of Hoeffding’s inequality. The (i, j)th entry

of (2.1) is given by

Zij =
∑

1≤k≤r

ǫkuikvjk,

and is a sum of r zero-mean independent random variables, each bounded by μB/n.

Therefore,

P
(

|Zij | ≥ λμB

√
r/n

)

≤ 2e−λ2/8.

Setting λ proportional to
√

logn and applying the union bound gives the claim.

To summarize, we say that M is sampled from the incoherent basis model if it is

of the form

M =
r
∑

k=1

ǫkσkukv
∗
k; (2.4)

{ǫk}1≤k≤r is a random sign sequence, and {uk}1≤k≤r and {vk}1≤k≤r have maximum

entries of size at most
√

μB/n.

Lemma 2.1 There exist numerical constants c and C such that for any β > 0,

matrices from the incoherent basis model obey the assumption A1 with μ1 ≤
CμB

√

(β + 2) logn with probability at least 1 − cn−β .

2.2 Random Subspaces Are Incoherent

In this section, we prove that the random orthogonal model obeys the two assump-

tions A0 and A1 (with appropriate values for the μ’s) with large probability.

Lemma 2.2 Set r̄ = max(r, logn). Then there exist constants C and c such that the

random orthogonal model obeys:3

1. maxi ‖P Uei‖2 ≤ C r̄/n

2. ‖
∑

1≤k≤r ukv
∗
k‖∞ ≤ C logn

√
r̄/n

with probability 1 − cn−3 logn. The second estimate assumes independence between

the families {uk}1≤k≤r and {vk}1≤k≤r .

3When r ≥ C′(logn)3 for some positive constant C′, a better estimate is possible, namely,

‖
∑

1≤k≤r ukv∗
k
‖∞ ≤ C

√
r logn/n.
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We note that an argument similar to the following proof would give that if C is of

the form Kβ where K is a fixed numerical constant, we can achieve a probability at

least 1 − cn−β provided that n is sufficiently large. To establish these facts, we make

use of the standard result below [22].

Lemma 2.3 Let Yd be distributed as a chi-squared random variable with d degrees

of freedom. Then for each t > 0

P
(

Yd − d ≥ t
√

2d + t2
)

≤ e−t2/2 and P
(

Yd − d ≤ −t
√

2d
)

≤ e−t2/2. (2.5)

We will use (2.5) as follows: for each ǫ ∈ (0,1), we have

P
(

Yd ≥ d (1 − ǫ)−1
)

≤ e−ǫ2d/4 and P
(

Yd ≤ d (1 − ǫ)
)

≤ e−ǫ2d/4. (2.6)

We begin with the first assertion of Lemma 2.2. Observe that it follows from

‖P Uei‖2 =
∑

1≤k≤r

u2
ik, (2.7)

that Zr ≡ ‖P Uei‖2 (for fixed i) is the squared Euclidean length of the first r com-

ponents of a unit vector uniformly distributed on the unit sphere in n dimensions.

Now, suppose that x1, x2, . . . , xn are i.i.d. N(0,1). Then the distribution of a unit

vector uniformly distributed on the sphere is that of x/‖x‖ and, therefore, the law

of Zr is that of Yr/Yn, where Yr =
∑

k≤r x2
k . Fix ǫ > 0 and consider the event

An,ǫ = {Yn/n ≥ 1 − ǫ}. For each λ > 0, it follows from (2.6) that

P
(

Zr − r/n ≥ λ
√

2r/n
)

= P
(

Yr ≥
[

r + λ
√

2r
]

Yn/n
)

≤ P
(

Yr ≥
[

r + λ
√

2r
]

Yn/n and An,ǫ

)

+ P
(

Ac
n,ǫ

)

≤ P
(

Yr ≥
[

r + λ
√

2r
]

[1 − ǫ]
)

+ e−ǫ2n/4

= P
(

Yr − r ≥ λ
√

2r
[

1 − ǫ − ǫ

√

r/2λ2
])

+ e−ǫ2n/4.

Now pick ǫ = 4(n−1 logn)1/2, λ = 8
√

2 logn and assume that n is sufficiently large

so that

ǫ
(

1 +
√

r/2λ2
)

≤ 1/2.

Then

P
(

Zr − r/n ≥ λ
√

2r/n
)

≤ P
(

Yr − r ≥ (λ/2)
√

2r
)

+ n−4.

Assume now that r ≥ 4 logn (which means that λ ≤ 4
√

2r). Then it follows from

(2.5) that

P
(

Yr − r ≥ (λ/2)
√

2r
)

≤ P
(

Yr − r ≥ (λ/4)
√

2r + (λ/4)2
)

≤ e−λ2/32 = n−4.



732 Found Comput Math (2009) 9: 717–772

Hence,

P
(

Zr − r/n ≥ 16
√

r logn/n
)

≤ 2n−4

and, therefore,

P

(

max
i

‖P Uei‖2 − r/n ≥ 16
√

r logn/n
)

≤ 2n−3 (2.8)

by the union bound. Note that (2.8) establishes the first claim of the lemma (even for

r < 4 logn since in this case Zr ≤ Z⌈4 logn⌉).

It remains to establish the second claim. Notice that by symmetry, E =
∑

1≤k≤r ukv
∗
k has the same distribution as

F =
r
∑

k=1

ǫkukv
∗
k,

where {ǫk} is an independent Rademacher sequence.4 It then follows from Hoeffd-

ing’s inequality that conditional on {uk} and {vk} we have

P
(

|Fij | > t
)

≤ 2e
−t2/2σ 2

ij , σ 2
ij =

∑

1≤k≤r

u2
ikv

2
ik.

As shown below, maxij |vij |2 ≤ (10 logn)/n with large probability, and thus

σ 2
ij ≤ 10

logn

n
‖P Uei‖2.

Set r̄ = max(r, logn). Since ‖P Uei‖2 ≤ Cr̄/n with large probability, we have

σ 2
ij ≤ C(logn) r̄/n2

with large probability. Hence, the marginal distribution of Fij obeys

P
(

|Fij | > λ
√

r̄/n
)

≤ 2e−γ λ2/ logn + P
(

σ 2
ij ≥ C(logn)r̄/n2

)

.

for some numerical constant γ . Picking λ = γ ′ logn where γ ′ is a sufficiently large

numerical constant gives

‖F‖∞ ≤ C (logn)
√

r̄/n

with large probability. Since E and F have the same distribution, the second claim

follows. More sophisticated arguments would provide small improvements but we

choose not to pursue these refinements here.

4A Rademacher sequence is a (possibly infinite) sequence of independent random variables taking the

values 1 and −1 with equal probability.
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The claim about the size of maxij |vij |2 is straightforward since our techniques

show that for each λ > 0

P
(

Z1 ≥ λ(logn)/n
)

≤ P
(

Y1 ≥ λ(1 − ǫ) logn
)

+ e−ǫ2n/4.

Moreover,

P
(

Y1 ≥ λ(1 − ǫ) logn
)

= P
(

|x1| ≥
√

λ(1 − ǫ) logn
)

≤ 2e− 1
2 λ(1−ǫ) logn.

If n is sufficiently large so that ǫ ≤ 1/5, this gives P(Z1 ≥ 10(logn)/n) ≤ 3n−4 and,

therefore,

P

(

max
ij

|vij |2 ≥ 10(logn)/n
)

≤ 12n−3 logn

since the maximum is taken over at most 4n logn pairs.

3 Duality

Let R� : R
n1×n2 → R

|�| be the sampling operator which extracts the observed en-

tries, R�(X) = (Xij )ij∈�, so that the constraint in (1.5) becomes R�(X) = R�(M).

Standard convex optimization theory asserts that X is a solution to (1.5) if there exists

a dual vector (or Lagrange multiplier) λ ∈ R
|�| such that R∗

� λ is a subgradient of

the nuclear norm at the point X, which we denote by

R∗
� λ ∈ ∂‖X‖∗ (3.1)

(see, e.g., [5]). Recall the definition of a subgradient of a convex function f :
R

n1×n2 → R. We say that Y is a subgradient of f at X0, denoted Y ∈ ∂f (X0), if

f (X) ≥ f (X0) + 〈Y ,X − X0〉 (3.2)

for all X.

Suppose X0 ∈ R
n1×n2 has rank r with a singular value decomposition given by

X0 =
∑

1≤k≤r

σk ukv
∗
k . (3.3)

With these notations, Y is a subgradient of the nuclear norm at X0 if and only if it is

of the form

Y =
∑

1≤k≤r

ukv
∗
k + W , (3.4)

where W obeys the following two properties:

(i) The column space of W is orthogonal to U ≡ span (u1, . . . ,ur), and the row

space of W is orthogonal to V ≡ span (v1, . . . ,vr).

(ii) The spectral norm of W is less than or equal to 1.



734 Found Comput Math (2009) 9: 717–772

(see, e.g., [24, 38]). To express these properties concisely, it is convenient to introduce

the orthogonal decomposition R
n1×n2 = T ⊕T ⊥ where T is the linear space spanned

by elements of the form ukx
∗ and yv∗

k , 1 ≤ k ≤ r , where x and y are arbitrary, and

T ⊥ is its orthogonal complement. Note that dim(T ) = r(n1 + n2 − r), precisely the

number of degrees of freedom in the set of n1 × n2 matrices of rank r . T ⊥ is the

subspace of matrices spanned by the family (xy∗), where x (respectively y) is any

vector orthogonal to U (respectively V ).

The orthogonal projection PT onto T is given by

PT (X) = P UX + XP V − P UXP V , (3.5)

where P U and P V are the orthogonal projections onto U and V . Note here that while

P U and P V are matrices, PT is a linear operator mapping matrices to matrices. We

also have

PT ⊥(X) = (I − PT )(X) = (In1
− P U )X(In2

− P V )

where I d denotes the d × d identity matrix. With these notations, Y ∈ ∂‖X0‖∗ if

(i′) PT (Y ) =
∑

1≤k≤r ukv
∗
k , and

(ii′) ‖PT ⊥Y‖ ≤ 1.

Now that we have characterized the subgradient of the nuclear norm, the lemma

below gives sufficient conditions for the uniqueness of the minimizer to (1.5).

Lemma 3.1 Consider a matrix X0 =
∑r

k=1 σk ukv
∗
k of rank r which is feasible for

the problem (1.5), and suppose that the following two conditions hold:

1. There exists a dual point λ such that Y = R∗
�λ obeys

PT (Y ) =
r
∑

k=1

ukv
∗
k,

∥

∥PT ⊥(Y )
∥

∥< 1. (3.6)

2. The sampling operator R� restricted to elements in T is injective.

Then X0 is the unique minimizer.

Before proving this result, we would like to emphasize that this lemma pro-

vides a clear strategy for proving our main result, namely Theorem 1.3. Letting

M =
∑r

k=1 σk ukv
∗
k , M is the unique solution to (1.5) if the injectivity condition

holds and if one can find a dual point λ such that Y = R∗
�λ obeys (3.6).

The proof of Lemma 3.1 uses a standard fact which states that the nuclear norm

and the spectral norm are dual to one another.

Lemma 3.2 For each pair W and H , we have

〈W ,H 〉 ≤ ‖W‖‖H‖∗.

In addition, for each H , there is a W obeying ‖W‖ = 1 which achieves the equality.
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A variety of proofs are available for this lemma, and an elementary argument is

sketched in [29]. We now turn to the proof of Lemma 3.1.

Proof of Lemma 3.1 Consider any perturbation X0 + H where R�(H ) = 0. Then

for any W 0 obeying (i)–(ii),
∑r

k=1 ukv
∗
k + W 0 is a subgradient of the nuclear norm

at X0 and, therefore,

‖X0 + H‖∗ ≥ ‖X0‖∗ +

〈

r
∑

k=1

ukv
∗
k + W 0,H

〉

.

Letting W = PT ⊥(Y ), we may write
∑r

k=1 ukv
∗
k = R∗

�λ − W . Since ‖W‖ < 1 and

R�(H ) = 0, it then follows that

‖X0 + H‖∗ ≥ ‖X0‖∗ +
〈

W 0 − W ,H
〉

.

Now, by construction,

〈

W 0 − W ,H
〉

=
〈

PT ⊥
(

W 0 − W
)

,H
〉

=
〈

W 0 − W , PT ⊥(H )
〉

.

We use Lemma 3.2 and set W 0 = PT ⊥(Z) where Z is any matrix obeying ‖Z‖ ≤ 1

and 〈Z, PT ⊥(H )〉 = ‖PT ⊥(H )‖∗. Then W 0 ∈ T ⊥, ‖W 0‖ ≤ 1, and

〈

W 0 − W ,H
〉

≥
(

1 − ‖W‖
)∥

∥PT ⊥(H )
∥

∥

∗,

which by assumption is strictly positive unless PT ⊥(H ) = 0. In other words, ‖X0 +
H‖∗ > ‖X0‖∗ unless PT ⊥(H ) = 0. Assume then that PT ⊥(H ) = 0 or equivalently

that H ∈ T . Then R�(H ) = 0 implies that H = 0 by the injectivity assumption. In

conclusion, ‖X0 + H‖∗ > ‖X0‖∗ unless H = 0. �

4 Architecture of the Proof

Our strategy to prove that M =
∑

1≤k≤r σkukv
∗
k is the unique minimizer to (1.5) is to

construct a matrix Y which vanishes on �c and obeys the conditions of Lemma 3.1

(and show the injectivity of the sampling operator restricted to matrices in T along

the way). Set P� to be the orthogonal projector onto the indices in � so that the

(i, j)th component of P�(X) is equal to Xij if (i, j) ∈ � and zero otherwise. Our

candidate Y will be the solution to

minimize ‖X‖F

subject to (PT P�)(X) =
r
∑

k=1

ukv
∗
k .

(4.1)

The matrix Y vanishes on �c as otherwise it would not be an optimal solution since

P�(Y ) would obey the constraint and have a smaller Frobenius norm. Hence, Y =
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P�(Y ) and PT (Y ) =
∑r

k=1 ukv
∗
k . Since the Pythagoras formula gives

‖Y‖2
F =

∥

∥PT (Y )
∥

∥

2

F
+
∥

∥PT ⊥(Y )
∥

∥

2

F
=

∥

∥

∥

∥

∥

r
∑

k=1

ukv
∗
k

∥

∥

∥

∥

∥

2

F

+
∥

∥PT ⊥(Y )
∥

∥

2

F

= r +
∥

∥PT ⊥(Y )
∥

∥

2

F
,

minimizing the Frobenius norm of X amounts to minimizing the Frobenius norm of

PT ⊥(X) under the constraint PT (X) =
∑r

k=1 ukv
∗
k . Our motivation is twofold. First,

the solution to the least-squares problem (4.1) has a closed form that is amenable to

analysis. Second, by forcing PT ⊥(Y ) to be small in the Frobenius norm, we hope

that it will be small in the spectral norm as well, and establishing that ‖PT ⊥(Y )‖ < 1

would prove that M is the unique solution to (1.5).

To compute the solution to (4.1), we introduce the operator A�T defined by

A�T (M) = P�PT (M).

Then if A∗
�T A�T = PT P�PT has full rank when restricted to T , the minimizer to

(4.1) is given by

Y = A�T

(

A∗
�T A�T

)−1
(E), E ≡

r
∑

k=1

ukv
∗
k . (4.2)

We clarify the meaning of (4.2) to avoid any confusion. (A∗
�T A�T )−1(E) is meant

to be that element F in T obeying (A∗
�T A�T )(F ) = E.

To summarize the aims of our proof strategy,

• We must first show that A∗
�T A�T = PT P�PT is a one-to-one linear mapping

from T onto itself. In this case, A�T = P�PT —as a mapping from T to R
n1×n2 —

is injective. This is the second sufficient condition of Lemma 3.1. Moreover, our

ansatz for Y given by (4.2) is well defined.

• Having established that Y is well defined, we will show that

∥

∥PT ⊥(Y )
∥

∥< 1,

thus proving the first sufficient condition.

4.1 The Bernoulli Model

Instead of showing that the theorem holds when � is a set of size m sampled uni-

formly at random, we prove the theorem for a subset �′ sampled according to the

Bernoulli model. Here and below, {δij }1≤i≤n1,1≤j≤n2
is a sequence of independent

identically distributed 0/1 Bernoulli random variables with

P(δij = 1) = p ≡
m

n1n2
, (4.3)
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and define

�′ =
{

(i, j) : δij = 1
}

. (4.4)

Note that E |�′| = m, so that the average cardinality of �′ is that of �. Then follow-

ing the same reasoning as the argument developed in Sect. II.C of [10] shows that

the probability of “failure” under the uniform model is bounded by 2 times the prob-

ability of failure under the Bernoulli model; the failure event is the event on which

the solution to (1.5) is not exact. Hence, we can restrict our attention to the Bernoulli

model and from now on, we will assume that � is given by (4.4). This is advanta-

geous because the Bernoulli model admits a simpler analysis than uniform sampling

thanks to the independence between the δij ’s.

4.2 The Injectivity Property

We study the injectivity of A�T , which also shows that Y is well defined. To prove

this, we will show that the linear operator p−1 PT (P� − pI)PT has small operator

norm, which we recall is sup‖X‖F ≤1 p−1‖PT (P� − pI)PT (X)‖F .

Theorem 4.1 Suppose � is sampled according to the Bernoulli model (4.3)–(4.4)

and put n = max(n1, n2). Suppose that the coherences obey max(μ(U),μ(V )) ≤ μ0.

Then there is a numerical constant CR such that for all β > 1,

p−1 ‖PT P�PT − pPT ‖ ≤ CR

√

μ0 nr(β logn)

m
(4.5)

with probability at least 1 − 3n−β provided that CR

√

μ0 nr(β logn)
m

< 1.

Proof Decompose any matrix X as X =
∑

ab〈X, eae
∗
b〉eae

∗
b so that

PT (X) =
∑

ab

〈

PT (X), eae
∗
b

〉

eae
∗
b =

∑

ab

〈

X, PT

(

eae
∗
b

)〉

eae
∗
b.

Hence, P�PT (X) =
∑

ab δab 〈X, PT (eae
∗
b)〉 eae

∗
b which gives

(PT P�PT )(X) =
∑

ab

δab

〈

X, PT

(

eae
∗
b

)〉

PT

(

eae
∗
b

)

.

In other words,

PT P�PT =
∑

ab

δab PT

(

eae
∗
b

)

⊗ PT

(

eae
∗
b

)

,

where x ⊗ y, in which x and y belong to some Hilbert space H , is the outer product

defined as (x ⊗ y)(z) = x〈y,z〉H . It follows from the definition (3.5) of PT that

PT

(

eae
∗
b

)

= (P Uea)e
∗
b + ea(P V eb)

∗ − (P Uea)(P V eb)
∗. (4.6)
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This gives

∥

∥PT

(

eae
∗
b

)∥

∥

2

F
=
〈

PT

(

eae
∗
b

)

, eae
∗
b

〉

= ‖P Uea‖2 + ‖P V eb‖2 − ‖P Uea‖2 ‖P V eb‖2

(4.7)

and since ‖P Uea‖2 ≤ μ(U)r/n1 and ‖P V eb‖2 ≤ μ(V )r/n2,

∥

∥PT

(

eae
∗
b

)∥

∥

2

F
≤ 2μ0r/min(n1, n2). (4.8)

Now, the fact that the operator PT P�PT does not deviate from its expected value

E(PT P�PT ) = PT (E P�)PT = PT (pI)PT = pPT

in the spectral norm is related to Rudelson’s selection theorem [31]. The first part of

the theorem below may be found in [9], for example, see also [32] for a very similar

statement.

Theorem 4.2 [9] Let {δab} be independent 0/1 Bernoulli variables with P(δab =1)=
p = m

n1n2
and put n = max(n1, n2). Suppose that ‖PT (eae

∗
b)‖

2
F ≤ 2μ0r/n. Set

Z ≡ p−1

∥

∥

∥

∥

∑

ab

(δab − p) PT

(

eae
∗
b

)

⊗ PT

(

eae
∗
b

)

∥

∥

∥

∥

= p−1‖PT P�PT − pPT ‖.

1. There exists a constant C′
R such that

EZ ≤ C′
R

√

μ0 nr logn

m
(4.9)

provided that the right-hand side is smaller than 1.

2. Suppose EZ ≤ 1. Then for each λ > 0, we have

P

(

|Z − EZ| > λ

√

μ0 nr logn

m

)

≤ 3 exp

(

−γ ′
0 min

{

λ2 logn,λ

√

m logn

μ0 nr

})

(4.10)

for some positive constant γ ′
0.

As mentioned above, the first part, namely (4.9) is an application of an established

result which states that if {yi} is a family of vectors in R
d and {δi} is a 0/1 Bernoulli

sequence with P(δi = 1) = p, then

p−1

∥

∥

∥

∥

∑

i

(δi − p)yi ⊗ yi

∥

∥

∥

∥

≤ C

√

logd

p
max

i
‖yi‖
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for some C > 0 provided that the right-hand side is less than 1. The proof may be

found in the cited literature, e.g., in [9]. Hence, the first part follows from apply-

ing this result to matrices of the form PT (eae
∗
b) and using the available bound on

‖PT (eae
∗
b)‖F . The second part follows from Talagrand’s concentration inequality

and may be found in the Appendix.

Set λ =
√

β/γ ′
0 and assume that m > (β/γ ′

0)μ0 nr logn. Then the left-hand side

of (4.10) is bounded by 3n−β , and thus we established that

Z ≤ C′
R

√

μ0 nr logn

m
+

1
√

γ ′
0

√

μ0 nr β logn

m

with probability at least 1 − 3n−β . Setting CR = C′
R + 1/

√

γ ′
0 finishes the proof. �

Take m large enough so that CR

√

μ0 (nr/m) logn ≤ 1/2. Then it follows from

(4.5) that

p

2

∥

∥PT (X)
∥

∥

F
≤
∥

∥(PT P�PT )(X)
∥

∥

F
≤

3p

2

∥

∥PT (X)
∥

∥

F
(4.11)

for all X with large probability. In particular, the operator A∗
�T A�T = PT P�PT

mapping T onto itself is well conditioned, and hence invertible. An immediate con-

sequence is the following corollary.

Corollary 4.3 Assume that CR

√

μ0nr(logn)/m ≤ 1/2. With the same probability

as in Theorem 4.1, we have

∥

∥P�PT (X)
∥

∥

F
≤
√

3p/2
∥

∥PT (X)
∥

∥

F
. (4.12)

Proof We have ‖P�PT (X)‖2
F = 〈X, (P�PT )∗(P�PT )X〉 = 〈X, (PT P�PT )X〉,

and thus

∥

∥P�PT (X)
∥

∥

2

F
=
〈

PT (X), (PT P�PT )(X)
〉

≤
∥

∥PT (X)
∥

∥

F

∥

∥(PT P�PT )(X)
∥

∥

F
,

where the inequality is due to Cauchy–Schwarz. The conclusion (4.12) follows

from (4.11). �

4.3 The Size Property

In this section, we explain how we will show that ‖PT ⊥(Y )‖ < 1. This result will

follow from five lemmas that we will prove in Sect. 6. Introduce

H ≡ PT − p−1 PT P�PT ,

which obeys ‖H(X)‖F ≤ CR

√

μ0(nr/m)β logn‖PT (X)‖F with large probability

because of Theorem 4.1. For any matrix X ∈ T , (PT P�PT )−1(X) can be expressed

in terms of the power series

(PT P�PT )−1(X) = p−1
(

X + H(X) + H2(X) + · · ·
)
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for H is a contraction when m is sufficiently large. Since Y = P�PT (PT P�PT )−1 ×
(
∑

1≤k≤r ukv
∗
k), PT ⊥(Y ) may be decomposed as

PT ⊥(Y ) = p−1(PT ⊥ P�PT )
(

E + H(E) + H2(E) + · · ·
)

, E =
∑

1≤k≤r

ukv
∗
k .

(4.13)

To bound the norm of the left-hand side, it is of course sufficient to bound the norm

of the summands in the right-hand side. Taking the following five lemmas together

establishes Theorem 1.3.

Lemma 4.4 Fix β ≥ 2 and λ ≥ 1. There is a numerical constant C0 such that if

m ≥ λμ2
1 nrβ logn, then

p−1
∥

∥(PT ⊥ P�PT )E
∥

∥≤ C0 λ−1/2 (4.14)

with probability at least 1 − n−β .

Lemma 4.5 Fix β ≥ 2 and λ ≥ 1. There are numerical constants C1 and c1 such that

if m ≥ λμ1 max(
√

μ0,μ1) nrβ logn, then

p−1
∥

∥(PT ⊥ P�PT )H(E)
∥

∥≤ C1 λ−1 (4.15)

with probability at least 1 − c1n
−β .

Lemma 4.6 Fix β ≥ 2 and λ ≥ 1. There are numerical constants C2 and c2 such that

if m ≥ λμ
4/3
0 nr4/3β logn, then

p−1
∥

∥(PT ⊥ P�PT )H2(E)
∥

∥≤ C2 λ−3/2 (4.16)

with probability at least 1 − c2n
−β .

Lemma 4.7 Fix β ≥ 2 and λ ≥ 1. There are numerical constants C3 and c3 such that

if m ≥ λμ2
0 nr2β logn, then

p−1
∥

∥(PT ⊥ P�PT )H3(E)
∥

∥≤ C3 λ−1/2 (4.17)

with probability at least 1 − c3n
−β .

Lemma 4.8 Under the assumptions of Theorem 4.1, there is a numerical constant

Ck0
such that if m ≥ (2CR)2μ0nrβ logn, then

p−1

∥

∥

∥

∥

(PT ⊥ P�PT )
∑

k≥k0

Hk(E)

∥

∥

∥

∥

≤ Ck0

(

n2r

m

)1/2(
μ0nrβ logn

m

)k0/2

(4.18)

with probability at least 1 − 3n−β .
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Let us now show how we may combine these lemmas to prove our main results.

Under all of the assumptions of Theorem 1.3, consider the four Lemmas 4.4, 4.5, 4.6,

and 4.8, the latter applied with k0 = 3. Together they imply that there are numeri-

cal constants c and C such that ‖PT ⊥(Y )‖ < 1 with probability at least 1 − cn−β

provided that the number of samples obeys

m ≥ C max
(

μ2
1,μ

1/2
0 μ1,μ

4/3
0 r1/3,μ0n

1/4
)

nrβ logn (4.19)

for some constant C. The four expressions in the maximum come from Lemmas 4.4,

4.5, 4.6, and 4.8 in this order. Now, the bound (4.19) is only interesting in the range

when μ0n
1/4r is smaller than a constant times n as otherwise the right-hand side

is greater than n2 (this would say that one would see all the entries in which case

our claim is trivial). When μ0r ≤ n3/4, (μ0r)
4/3 ≤ μ0n

5/4r, and thus the recovery is

exact provided that m obeys (1.9).

For the case concerning small values of the rank, we consider all five lemmas

and apply Lemma 4.8, the latter applied with k0 = 4. Together they imply that

‖PT ⊥(Y )‖ < 1 with probability at least 1 − cn−β provided that the number of sam-

ples obeys

m ≥ C max
(

μ2
0r,μ0n

1/5
)

nrβ logn (4.20)

for some constant C. The two expressions in the maximum come from Lemmas 4.7

and 4.8 in this order. The reason for this simplified formulation is that the terms μ2
1,

μ
1/2
0 μ1 and μ

4/3
0 r1/3 which come from Lemmas 4.4, 4.5, and 4.6 are bounded above

by μ2
0r since μ1 ≤ μ0

√
r . When μ0r ≤ n1/5, the recovery is exact provided that m

obeys (1.10).

5 Connections with Random Graph Theory

5.1 The Injectivity Property and the Coupon Collector’s Problem

We argued in the Introduction that to have any hope of recovering an unknown matrix

of rank 1 by any method whatsoever, one needs at least one observation per row and

one observation per column. Sample m entries uniformly at random. Viewing the

row indices as bins, assign the kth sampled entry to the bin corresponding to its

row index. Then to have any hope of recovering our matrix, all the bins need to be

occupied. Quantifying how many samples are required to fill all of the bins is the

famous coupon collector’s problem.

Coupon collection is also connected to the injectivity of the sampling operator P�

restricted to elements in T . Suppose we sample the entries of a rank 1 matrix equal

to xy∗ with left and right singular vectors u = x/‖x‖ and v = y/‖y‖, respectively,

and have not seen anything in the ith row. Then we claim that P� (restricted to T )

has a nontrivial null space, and thus PT P�PT is not invertible. Indeed, consider the

matrix eiv
∗. This matrix is in T and

P�

(

eiv
∗)= 0
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since eiv
∗ vanishes outside of the ith row. The same applies to the columns as well.

If we have not seen anything in column j , then the rank-1 matrix ue∗
j ∈ T and

P�(ue∗
j ) = 0. In conclusion, the invertibility of PT P�PT implies a complete col-

lection.

When the entries are sampled uniformly at random, it is well known that one

needs on the order of n logn samples to sample all the rows. What is interesting is

that Theorem 4.1 implies that PT P�PT is invertible—a stronger property—when

the number of samples is also on the order of n logn. A particular implication of this

discussion is that the logarithmic factors in Theorem 4.1 are unavoidable.

5.2 The Injectivity Property and the Connectivity Problem

To recover a matrix of rank 1, one needs much more than at least one observation

per row and column. Let R be the set of row indices, 1 ≤ i ≤ n, and C be the set of

column indices, 1 ≤ j ≤ n, and consider the bipartite graph connecting vertices i ∈ R

to vertices j ∈ C if and only if (i, j) ∈ �, i.e., the (i, j)th entry is observed. We claim

that if this graph is not fully connected, then one cannot hope to recover a matrix of

rank 1.

To see this, we let I be the set of row indices and J be the set of column indices in

any connected component. We will assume that I and J are nonempty as otherwise,

one is in the previously discussed situation where some rows or columns are not

sampled. Consider a rank 1 matrix equal to xy∗ as before with singular vectors u =
x/‖x‖ and v = y/‖y‖. Then all the information about the values of the xi ’s with

i ∈ I and of the yj ’s with j ∈ J are given by the sampled entries connecting I to

J since all the other observed entries connect vertices in I c to those in J c. Now

even if one observes all the entries xiyj with i ∈ I and j ∈ J , then at least the signs

of xi , i ∈ I , and of yj , j ∈ J , would remain undetermined. Indeed, if the values

(xi)i∈I , (yj )j∈J are consistent with the observed entries, so are the values (−xi)i∈I ,

(−yj )j∈J . However, since the same analysis holds for the sets I c and J c , there are at

least two matrices consistent with the observed entries and exact matrix completion

is impossible.

The connectivity of the graph is also related to the injectivity of the sampling

operator P� restricted to elements in T . If the graph is not fully connected, then we

claim that P� (restricted to T ) has a nontrivial null space, and thus PT P�PT is not

invertible. Indeed, consider the matrix

M = av∗ + ub∗,

where ai = −ui if i ∈ I and ai = ui otherwise, and bj = vj if j ∈ J and bj = −vj

otherwise. Then this matrix is in T and obeys

Mij = 0

if (i, j) ∈ I × J or (i, j) ∈ I c × J c . Note that on the complement, i.e., (i, j) ∈ I × J c

or (i, j) ∈ I c ×J , one has Mij = 2uivj and one can show that M �= 0 unless uv∗ = 0.

Since � is included in the union of I × J and I c × J c , we have that P�(M) = 0. In

conclusion, the invertibility of PT P�PT implies a fully connected graph.
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When the entries are sampled uniformly at random, it is well known that one needs

on the order of n logn samples to obtain a fully connected graph with large probabil-

ity (see, e.g., [6]). Remarkably, Theorem 4.1 implies that PT P�PT is invertible—a

stronger property—when the number of samples is also on the order of n logn.

6 Proofs of the Critical Lemmas

In this section, we prove the five lemmas of Sect. 4.3. Before we begin, however, we

develop a simple estimate which we will use throughout. For each pair (a, b) and

(a′, b′), it follows from the expression of PT (eae
∗
b) (4.6) that

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉

= 〈ea,P Uea′〉1{b=b′} + 〈eb,P V eb′〉1{a=a′}

− 〈ea,P Uea′〉〈eb,P V eb′〉. (6.1)

Fix μ0 obeying μ(U) ≤ μ0 and μ(V ) ≤ μ0 and note that

∣

∣〈ea,P Uea′〉
∣

∣=
∣

∣〈P Uea,P Uea′〉
∣

∣≤ ‖P Uea‖‖P Uea′‖ ≤ μ0r/n1

and similarly for 〈eb,P V eb′〉. Suppose that b = b′ and a �= a′, then

∣

∣

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉∣

∣=
∣

∣〈ea,P Uea′〉
∣

∣

(

1 − ‖P V eb‖2
)

≤ μ0r/n1.

We have a similar bound when a = a′ and b �= b′ whereas when a �= a′ and b �= b′,
∣

∣

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉∣

∣≤ (μ0r)
2/(n1n2).

In short, it follows from this analysis (and from (4.8) for the case where (a, b) =
(a′, b′)) that

max
ab,a′b′

∣

∣

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉∣

∣≤ 2μ0r/min(n1, n2). (6.2)

A consequence of (4.8) is the estimate:

∑

a′b′

∣

∣

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉∣

∣

2 =
∑

a′b′

∣

∣

〈

PT

(

eae
∗
b

)

, ea′e∗
b′
〉∣

∣

2

=
∥

∥PT

(

eae
∗
b

)∥

∥

2

F
≤ 2μ0r/min(n1, n2), (6.3)

which we will apply several times. A related estimate is this:

max
a

∑

b

|Eab|2 ≤ μ0r/min(n1, n2), (6.4)

and the same is true by exchanging the role of a and b. To see this, write

∑

b

|Eab|2 =
∥

∥e∗
aE
∥

∥

2 =
∥

∥

∥

∥

∑

j≤r

vj 〈uj , ea〉
∥

∥

∥

∥

2

=
∑

j≤r

∣

∣〈uj , ea〉
∣

∣

2 = ‖P Uea‖2,

and the conclusion follows from the coherence property.
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We will prove the lemmas in the case where n1 = n2 = n for simplicity, i.e., in

the case of square matrices of dimension n. The general case is treated in exactly the

same way. In fact, the argument only makes use of the bounds (6.2), (6.3), and (6.4),

and the general case is obtained by replacing n with min(n1, n2).

Each of the following subsections computes the operator norm of some random

variable. In each section, we denote S as the quantity whose norm we wish to analyze.

We will also frequently use the notation H for some auxiliary matrix variable whose

norm we will need to bound. Hence, we will reuse the same notation many times

rather than introducing a dozen new names—just as in computer programming where

one uses the same variable name in distinct routines.

6.1 Proof of Lemma 4.4

In this section, we develop a bound on

p−1
∥

∥PT ⊥ P�PT (E)
∥

∥= p−1
∥

∥PT ⊥(P� − pI)PT (E)
∥

∥

≤ p−1
∥

∥(P� − pI)(E)
∥

∥,

where the equality follows from PT ⊥ PT = 0, and the inequality from PT (E) = E

together with ‖PT ⊥(X)‖ ≤ ‖X‖ which is valid for any matrix X. Set

S ≡ p−1(P� − pI)(E) = p−1
∑

ab

(δab − p)Eabeae
∗
b. (6.5)

We think of S as a random variable since it depends on the random δab’s, and note

that ES = 0.

The proof of Lemma 4.4 operates by developing an estimate on the size of

(E‖S‖q)1/q for some q ≥ 1 and by applying Markov inequality to bound the tail of

the random variable ‖S‖. To do this, we shall use a symmetrization argument and the

noncommutative Khintchine inequality. Since the function f (S) = ‖S‖q is convex,

Jensen’s inequality gives that

E‖S‖q ≤ E
∥

∥S − S′∥
∥

q
,

where S′ = p−1
∑

ab(δ
′
ab −p)Eabeae

∗
b is an independent copy of S. Since (δab −δ′

ab)

is symmetric, S − S′ has the same distribution as

p−1
∑

ab

ǫab

(

δab − δ′
ab

)

Eabeae
∗
b ≡ Sǫ − S′

ǫ,

where {ǫab} is an independent Rademacher sequence and Sǫ = p−1
∑

ab ǫabδabEab ×
eae

∗
b . Further, the triangle inequality gives

(

E
∥

∥Sǫ − S′
ǫ

∥

∥

q)1/q ≤
(

E‖Sǫ‖q
)1/q +

(

E
∥

∥S′
ǫ

∥

∥

q)1/q = 2
(

E‖Sǫ‖q
)1/q

since Sǫ and S′
ǫ have the same distribution and, therefore,

(

E‖S‖q
)1/q ≤ 2p−1

(

Eδ Eǫ

∥

∥

∥

∥

∑

ab

ǫabδab Eabeae
∗
b

∥

∥

∥

∥

q)1/q

.
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We are now in position to apply the noncommutative Khintchine inequality which

bounds the Schatten norm of a Rademacher series. Recall from Sect. 1.5 that for

q ≥ 1, the Schatten q-norm of a matrix is the quantity (1.16). The following theo-

rem was originally proven by Lust–Picquard [26], and was later sharpened by Buch-

holz [7].

Lemma 6.1 (Noncommutative Khintchine inequality) Let (Xi)1≤i≤r be a finite se-

quence of matrices of the same dimension and let {ǫi} be a Rademacher sequence.

For each q ≥ 2,

[

Eǫ

∥

∥

∥

∥

∑

i

ǫiXi

∥

∥

∥

∥

q

Sq

]1/q

≤ CK
√

q max

[∥

∥

∥

∥

(

∑

i

X∗
i Xi

)1/2∥
∥

∥

∥

Sq

,

∥

∥

∥

∥

(

∑

i

XiX
∗
i

)1/2∥
∥

∥

∥

Sq

]

,

where CK = 2−1/4
√

π/e.

For reference, if X is an n × n matrix and q ≥ logn, we have

‖X‖ ≤ ‖X‖Sq ≤ e‖X‖,

so that the Schatten q-norm is within a multiplicative constant from the operator

norm. Observe now that with q ′ ≥ q

(

Eδ Eǫ ‖Sǫ‖q
)1/q ≤

(

Eδ Eǫ ‖Sǫ‖q

Sq′

)1/q ≤
(

Eδ Eǫ ‖Sǫ‖q ′

Sq′

)1/q ′
.

We apply the noncommutative Khintchine inequality with q ′ ≥ logn, and, after a

little algebra, obtain

(

Eδ Eǫ ‖Sǫ‖q ′

Sq′

)1/q ′

≤ CK

e
√

q ′

p

(

Eδ max

[∥

∥

∥

∥

∑

ab

δabE
2
abeae

∗
a

∥

∥

∥

∥

q ′/2

,

∥

∥

∥

∥

∑

ab

δabE
2
abebe

∗
b

∥

∥

∥

∥

q ′/2])1/q ′

.

The two terms in the right-hand side are essentially the same and if we can bound

any one of them, the same technique will apply to the other. We consider the first and

since
∑

ab δabE
2
abeae

∗
a is a diagonal matrix,

∥

∥

∥

∥

∑

ab

δabE
2
abeae

∗
a

∥

∥

∥

∥

= max
a

∑

b

δabE
2
ab.

The following lemma bounds the qth moment of this quantity.
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Lemma 6.2 Suppose that q is an integer obeying 1 ≤ q ≤ np and assume np ≥
2 logn. Then

Eδ

(

max
a

∑

b

δabE
2
ab

)q

≤ 2
(

2np ‖E‖2
∞
)q

. (6.6)

The proof of this lemma is in the Appendix. The same estimate applies to

E(maxb

∑

a δabE
2
ab)

q , and thus for each q ≥ 1

Eδ max

[∥

∥

∥

∥

∑

ab

δabE
2
abeae

∗
a

∥

∥

∥

∥

q

,

∥

∥

∥

∥

∑

ab

δabE
2
abebe

∗
b

∥

∥

∥

∥

q]

≤ 4
(

2np ‖E‖2
∞
)q

.

(In the rectangular case, the same estimate holds with n = max(n1, n2).)

Take q = β logn for some β ≥ 1, and set q ′ = q . Then since ‖E‖∞ ≤ μ1

√
r/n,

we established that

(

E‖S‖q
)1/q ≤ C

1

p

√

β logn
√

np ‖E‖∞ = C μ1

√

nr β logn

m
≡ K0.

Then by Markov’s inequality, for each t > 0,

P
(

‖S‖ > tK0

)

≤ t−q ,

and for t = e, we conclude that

P

(

‖S‖ > Ceμ1

√

nr β logn

m

)

≤ n−β

with the proviso that m ≥ max(β,2) n logn so that Lemma 6.2 holds.

We have not made any assumption in this section about the matrix E (except that

we have a bound on the maximum entry) and, therefore, have proved the theorem

below, which shall be used many times in the sequel.

Theorem 6.3 Let X be a fixed n × n matrix. There is a constant C0 such that for

each β > 2

p−1
∥

∥(P� − pI)(X)
∥

∥≤ C0

(

βn logn

p

)1/2

‖X‖∞ (6.7)

with probability at least 1 − n−β provided that np ≥ β logn.

Note that this is the same C0 described in Lemma 4.4.

6.2 Proof of Lemma 4.5

We now need to bound the spectral norm of PT ⊥ P�PT H(E) and will use some of

the ideas developed in the previous section. Just as before,

p−1
∥

∥PT ⊥ P�PT H(E)
∥

∥≤ p−1
∥

∥(P� − pI) H(E)
∥

∥,
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and put

S ≡ p−1(P� − pI) H(E) = p−2
∑

ab,a′b′

ξabξa′b′ Ea′b′
〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉

eae
∗
b,

where here and below, ξab ≡ δab − p. Decompose S as

S = p−2
∑

(a,b)=(a′,b′)

+p−2
∑

(a,b) �= (a′,b′)

≡ S0 + S1. (6.8)

We bound the spectral norm of the diagonal and off-diagonal contributions separately.

We begin with S0 and decompose (ξab)
2 as

ξ2
ab = (δab − p)2 = (1 − 2p)(δab − p) + p(1 − p) = (1 − 2p)ξab + p(1 − p),

which allows us to express S0 as

S0 =
1 − 2p

p

∑

ab

ξab Habeae
∗
b + (1 − p)

∑

ab

Habeae
∗
b,

Hab ≡ p−1 Eab

〈

PT

(

eae
∗
b

)

, eae
∗
b

〉

. (6.9)

Theorem 6.3 bounds the spectral norm of the first term of the right-hand side, and we

have

p−1

∥

∥

∥

∥

∑

ab

ξab Habeae
∗
b

∥

∥

∥

∥

≤ C0

√

n3β logn

m
‖H‖∞

with probability at least 1 − n−β . Now, since ‖E‖∞ ≤ μ1

√
r/n and |〈PT (eae

∗
b),

eae
∗
b〉| ≤ 2μ0r/n by (6.2), ‖H‖∞ ≤ μ0μ1(2r/np)

√
r/n, and

p−1

∥

∥

∥

∥

∑

ab

ξab Habeae
∗
b

∥

∥

∥

∥

≤ Cμ0μ1
nr

m

√

nrβ logn

m

with the same probability. The second term of the right-hand side in (6.9) is deter-

ministic and we develop an argument that we will reuse several times. We record a

useful lemma.

Lemma 6.4 Let X be a fixed matrix and set Z ≡
∑

ab Xab〈PT (eae
∗
b), eae

∗
b〉eae

∗
b .

Then

‖Z‖ ≤
2μ0r

n
‖X‖.

Proof Let �U and �V be the diagonal matrices with entries ‖P U ea‖2 and ‖P V eb‖2,

respectively,

�U = diag
(

‖P Uea‖2
)

, �V = diag
(

‖P V eb‖2
)

. (6.10)
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To bound the spectral norm of Z, observe that it follows from (4.7) that

Z = �UX + X�V − �UX�V = �UX(I − �V ) + X�V . (6.11)

Hence, since ‖�U‖ and ‖�V ‖ are bounded by min(μ0r/n,1) and ‖I − �V ‖ ≤ 1,

we have

‖Z‖ ≤ ‖�U‖‖X‖‖I − �V ‖ + ‖X‖‖�V ‖ ≤ (2μ0r/n)‖X‖. �

Clearly, this lemma and ‖E‖ = 1 give that H defined in (6.9) obeys ‖H‖ ≤
2μ0r/np. In summary,

‖S0‖ ≤ C
nr

m

(

μ0μ1

√

βnr logn

m
+ μ0

)

for some C > 0 with the same probability as in Lemma 4.4.

It remains to bound the off-diagonal term. To this end, we use a useful decoupling

lemma.

Lemma 6.5 [15] Let {ηi}1≤i≤n be a sequence of independent random variables, and

{xij }i �=j be elements taken from a Banach space. Then

P

(∥

∥

∥

∥

∑

i �=j

ηiηjxij

∥

∥

∥

∥

≥ t

)

≤ CD P

(∥

∥

∥

∥

∑

i �=j

ηiη
′
jxij

∥

∥

∥

∥

> t/CD

)

, (6.12)

where {η′
i} is an independent copy of {ηi}.

This lemma asserts that it is sufficient to estimate P(‖S′
1‖ ≥ t) where S′

1 is given

by

S′
1 ≡ p−2

∑

ab �=a′b′

ξabξ
′
a′b′ Ea′b′

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉

eae
∗
b (6.13)

in which {ξ ′
ab} is an independent copy of {ξab}. We write S′

1 as

S′
1 = p−1

∑

ab

ξab Habeae
∗
b,

Hab ≡ p−1
∑

a′b′:(a′,b′)�=(a,b)

ξ ′
a′b′ Ea′b′

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉

. (6.14)

To bound the tail of ‖S′
1‖, observe that

P
(∥

∥S′
1

∥

∥≥ t
)

≤ P
(∥

∥S′
1

∥

∥≥ t | ‖H‖∞ ≤ K
)

+ P
(

‖H‖∞ > K
)

.

By independence, the first term of the right-hand side is bounded by Theorem 6.3.

On the event {‖H‖∞ ≤ K}, we have
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p−1

∥

∥

∥

∥

∑

ab

ξab Habeae
∗
b

∥

∥

∥

∥

≤ C

√

n3β logn

m
K.

with probability at least 1 − n−β . To bound ‖H‖∞, we use Bernstein’s inequality.

Lemma 6.6 Let X be a fixed matrix and define Q(X) as the matrix whose (a, b)th

entry is

[

Q(X)
]

ab
= p−1

∑

a′b′:(a′,b′)�=(a,b)

(δa′b′ − p)Xa′b′
〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉

,

where {δab} is an independent Bernoulli sequence obeying P(δab = 1) = p. Then

P

(

∥

∥Q(X)
∥

∥

∞ > λ

√

μ0r

np
‖X‖∞

)

≤ 2n2 exp

(

−
λ2

2 + 2
3

√

μ0r
np

λ

)

. (6.15)

With λ =
√

3β logn, the right-hand side is bounded by 2n2−β provided that np ≥
4β
3

μ0r logn. In particular, for λ =
√

6β logn with β > 2, the bound is less than 2n−β

provided that np ≥ 8β
3

μ0r logn.

Proof The inequality (6.15) is an application of Bernstein’s inequality, which states

that for a sum of uniformly bounded independent zero-mean random variables obey-

ing |Yk| ≤ c,

P

(∣

∣

∣

∣

∣

n
∑

k=1

Yk

∣

∣

∣

∣

∣

> t

)

≤ 2e−t2/(2σ 2+2ct/3), (6.16)

where σ 2 is the sum of the variances, σ 2 ≡
∑n

k=1 Var(Yk). We have

Var
([

Q(X)
]

ab

)

=
1 − p

p

∑

a′b′:(a′,b′)�=(a,b)

|Xa′b′ |2
∣

∣

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉∣

∣

2

≤
1 − p

p
‖X‖2

∞
∑

a′b′:(a′,b′)�=(a,b)

∣

∣

〈

PT

(

eae
∗
b

)

, ea′e∗
b′
〉∣

∣

2

≤
1 − p

p
‖X‖2

∞ 2μ0r/n

by (6.3). Also,

p−1
∣

∣(δa′b′ − p)Xa′b′
〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉∣

∣≤ p−1 ‖X‖∞ 2μ0r/n

and hence, for each t > 0, (6.16) gives

P
(∣

∣

[

Q(X)
]

ab

∣

∣> t
)

≤ 2 exp

(

−
t2

2
μ0r
np

‖X‖2
∞ + 2

3
μ0r
np

‖X‖∞t

)

. (6.17)
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Putting t = λ
√

μ0r/np‖X‖∞ for some λ > 0 and applying the union bound

gives (6.15). �

Since ‖E‖∞ ≤ μ1

√
r/n, it follows that H = Q(E) introduced in (6.14) obeys

‖H‖∞ ≤ C
μ1

√
r

n

√

μ0nrβ logn

m

with probability at least 1 − 2n−β for each β > 2 and, therefore,

∥

∥S′
1

∥

∥≤ C
√

μ0μ1
nrβ logn

m

with probability at least 1 − 3n−β . In conclusion, we have

p−1
∥

∥(P� −pI) H(E)
∥

∥≤ C
nr

m

(

√
μ0μ1

(

√

μ0nrβ logn

m
+β logn

)

+μ0

)

(6.18)

with probability at least 1 − (1 + 3CD)n−β . A simple algebraic manipulation con-

cludes the proof of Lemma 4.5. Note that we have not made any assumption about

the matrix E and, therefore, established the following lemma.

Lemma 6.7 Let X be a fixed n × n matrix. There is a constant C′
0 such that

p−2

∥

∥

∥

∥

∑

(a,b) �=(a′,b′)

ξabξa′b′Xab

〈

PT

(

ea′e∗
b′
)

, eae
∗
b

〉

eae
∗
b

∥

∥

∥

∥

≤ C′
0

√
μ0r β logn

p
‖X‖∞

(6.19)

with probability at least 1 − O(n−β) for all β > 2 provided that np ≥ 3μ0rβ logn.

6.3 Proof of Lemma 4.6

To prove Lemma 4.6, we need to bound the spectral norm of p−1 (P� − pI) H2(E),

a matrix given by

p−3
∑

a1b1,a2b2,a3b3

ξa1b1
ξa2b2

ξa3b3
Ea3b3

〈

PT

(

ea3
e∗
b3

)

, ea2
e∗
b2

〉〈

PT

(

ea2
e∗
b2

)

, ea1
e∗
b1

〉

ea1
e∗
b1

,

where ξab = δab − p as before. It is convenient to introduce notations to compress

this expression. Set ω = (a, b) (and ωi = (ai, bi) for i = 1,2,3), Fω = eae
∗
b , and

Pω′ω = 〈PT (ea′e∗
b′), eae

∗
b〉 so that

p−1 (P� − pI) H2(E) = p−3
∑

ω1,ω2,ω3

ξω1
ξω2

ξω3
Eω3

Pω3ω2
Pω2ω1

Fω1
.



Found Comput Math (2009) 9: 717–772 751

Partition the sum depending on whether some of the ωi ’s are the same or not

1

p
(P� − pI)H2(E) =

1

p3

[

∑

ω1=ω2=ω3

+
∑

ω1 �=ω2=ω3

+
∑

ω1=ω3 �=ω2

+
∑

ω1=ω2 �=ω3

+
∑

ω1 �=ω2 �=ω3

]

. (6.20)

The meaning should be clear; for instance, the sum
∑

ω1 �=ω2=ω3
is the sum over the

ω’s such that ω2 = ω3 and ω1 �= ω2. Similarly,
∑

ω1 �=ω2 �=ω3
is the sum over the ω’s

such that they are all distinct. The idea is now to use a decoupling argument to bound

each sum in the right-hand side of (6.20) (except for the first which does not need to

be decoupled) and show that all terms are appropriately small in the spectral norm.

We begin with the first term which is equal to

1

p3

∑

ω

(ξω)3 EωP 2
ωωFω =

1 − 3p + 3p2

p3

∑

ω

ξω EωP 2
ωωFω

+
1 − 3p + 2p2

p2

∑

ω

EωP 2
ωωFω, (6.21)

where we have used the identity

(ξω)3 =
(

1 − 3p + 3p2
)

ξω + p
(

1 − 3p + 2p2
)

.

Set Hω = Eω(p−1Pωω)2. For the first term in the right-hand side of (6.21), we need to

control ‖
∑

ω ξω HωFω‖. This is easily bounded by Theorem 6.3. Indeed, it follows

from

|Hω| ≤
(

2μ0r

np

)2

‖E‖∞

that for each β > 0,

p−1

∥

∥

∥

∥

∑

ω

ξω Hω Fω

∥

∥

∥

∥

≤ C

(

μ0nr

m

)2

μ1

√

nrβ logn

m
= C μ2

0μ1

√

β logn

(

nr

m

)5/2

with probably at least 1 − n−β . For the second term in the right-hand side of (6.21),

we apply Lemma 6.4 which gives
∥

∥

∥

∥

∑

ω

EωP 2
ωωFω

∥

∥

∥

∥

≤ (2μ0r/n)2

so that ‖H‖ ≤ (2μ0r/np)2. In conclusion, the first term in (6.20) has a spectral norm

which is bounded by

C

(

nr

m

)2(

μ2
0μ1

(

nrβ logn

m

)1/2

+ μ2
0

)

with probability at least 1 − n−β .
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We now turn our attention to the second term which can be written as

p−3
∑

ω1 �=ω2

ξω1
(ξω2

)2 Eω2
Pω2ω2

Pω2ω1
Fω1

=
1 − 2p

p3

∑

ω1 �=ω2

ξω1
ξω2

Eω2
Pω2ω2

Pω2ω1
Fω1

+
1 − p

p2

∑

ω1 �=ω2

ξω1
Eω2

Pω2ω2
Pω2ω1

Fω1
.

Put S1 for the first term; bounding ‖S1‖ is a simple application of Lemma 6.7 with

Xω = p−1EωPωω , which gives

‖S1‖ ≤ C μ
3/2
0 μ1 (β logn)

(

nr

m

)2

since ‖E‖∞ ≤ μ1

√
r/n. For the second term, we need to bound the spectral norm of

S2 where

S2 ≡ p−1
∑

ω1

ξω1
Hω1

Fω1
, Hω1

= p−1
∑

ω2:ω2 �=ω1

Eω2
Pω2ω2

Pω2ω1
.

Note that H is deterministic. The lemma below provides an estimate about ‖H‖∞.

Lemma 6.8 The matrix H obeys

‖H‖∞ ≤
μ0r

np

(

3‖E‖∞ + 2
μ0r

n

)

. (6.22)

Proof We begin by rewriting H as

pHω =
∑

ω′

Eω′Pω′ω′Pω′ω − EωP 2
ωω.

Clearly, |EωP 2
ωω| ≤ (μ0r/n)2‖E‖∞ so that it suffices to bound the first term, which

is the ωth entry of the matrix

∑

ω,ω′

Eω′Pω′ω′Pω′ωFω = PT (�UE + E�V − �UE�V ).

Now, it is immediate to see that �UE ∈ T and likewise for E�V . Hence,

∥

∥PT (�UE + E�V − �UE�V )
∥

∥

∞ ≤ ‖�UE‖∞ + ‖E�V ‖∞ +
∥

∥PT (�UE�V )
∥

∥

∞

≤ 2‖E‖∞μ0r/n +
∥

∥PT (�UE�V )
∥

∥

∞.

We finally use the crude estimate

∥

∥PT (�UE�V )
∥

∥

∞ ≤
∥

∥PT (�UE�V )
∥

∥≤ 2‖�UE�V ‖ ≤ 2(μ0r/n)2

to complete the proof of the lemma. �
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As a consequence of this lemma, Theorem 6.3 gives

‖S2‖ ≤ C
√

β logn

(

nr

m

)3/2
(

μ0μ1 + μ2
0

√
r
)

with probability at least 1−n−β . In conclusion, the second term in (6.20) has spectral

norm bounded by

C
√

β logn

(

nr

m

)3/2(

μ0μ1

√

μ0nrβ logn

m
+ μ0μ1 + μ2

0

√
r

)

with probability at least 1 − O(n−β).

We now examine the third term which can be written as

p−3
∑

ω1 �=ω2

(ξω1
)2ξω2

Eω1
Pω1ω2

Pω2ω1
Fω1

=
1 − 2p

p3

∑

ω1 �=ω2

ξω1
ξω2

Eω1
P 2

ω2ω1
Fω1

+
1 − p

p2

∑

ω1 �=ω2

ξω2
Eω1

P 2
ω2ω1

Fω1
.

We use the decoupling argument once more so that for the first term of the right-hand

side, it suffices to estimate the tail of the norm of

S1 ≡ p−1
∑

ω1

ξ (1)
ω1

Eω1
Hω1

Fω1
, Hω1

≡ p−2
∑

ω2:ω2 �=ω1

ξ (2)
ω2

P 2
ω2ω1

,

where {ξ (1)
ω } and {ξ (2)

ω } are independent copies of {ξω}. It follows from Bernstein’s

inequality and the estimates

|Pω2ω1
| ≤ 2μ0r/n

and

∑

ω2:ω2 �=ω1

|Pω2ω1
|4 ≤ max

ω2:ω2 �=ω1

|Pω2ω1
|2

∑

ω2:ω2 �=ω1

|Pω2ω1
|2 ≤

(

2μ0r

n

)2
2μ0r

n

that for each λ > 0,5

P

(

|Hω1
| > λ

(

2μ0r

np

)3/2)

≤ 2 exp

(

−
λ2

2 + 2
3
λ(

2μ0r
np

)1/2

)

.

It is now not hard to see that this inequality implies that

P

(

‖H‖∞ >
√

8β logn

(

2μ0nr

m

)3/2)

≤ 2n−2β+2

5We would like to remark that one can often get better estimates; when ω1 �= ω2, the bound |Pω2ω1
| ≤

2μ0r/n may be rather crude. Indeed, one can derive better estimates for the random orthogonal model, for

example.
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provided that m ≥ 16
9

μ0nr β logn. As a consequence, for each β > 2, Theorem 6.3

gives

‖S1‖ ≤ C μ
3/2
0 μ1 β logn

(

nr

m

)2

with probability at least 1 − 3n−β . The other term is equal to (1 − p) times
∑

ω1
Eω1

Hω1
Fω1

, and

∥

∥

∥

∥

∑

ω1

Eω1
Hω1

Fω1

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑

ω1

Eω1
Hω1

Fω1

∥

∥

∥

∥

F

≤ ‖H‖∞‖E‖F ≤ C
√

β logn

(

μ0nr

m

)3/2 √
r.

In conclusion, the third term in (6.20) has spectral norm bounded by

C μ0

√

β logn

(

nr

m

)3/2(

μ1

√

μ0nrβ logn

m
+

√
μ0r

)

with probability at least 1 − O(n−β).

We proceed to the fourth term which can be written as

p−3
∑

ω1 �=ω3

(ξω1
)2ξω3

Eω3
Pω3ω1

Pω1ω1
Fω1

=
1 − 2p

p3

∑

ω1 �=ω3

ξω1
ξω3

Eω3
Pω3ω1

Pω1ω1
Fω1

+
1 − p

p2

∑

ω1 �=ω3

ξω3
Eω3

Pω3ω1
Pω1ω1

Fω1
.

Let S1 be the first term and set Hω1
= p−2

∑

ω1 �=ω3
ξω1

ξω3
Eω3

Pω3ω1
Fω1

. Then

Lemma 6.4 gives

‖S1‖ ≤
2μ0r

np
‖H‖ ≤ C μ

3/2
0 μ1 (β logn)

(

nr

m

)2

where the last inequality is given by Lemma 6.7. For the other term—call it S2—set

Hω1
= p−1

∑

ω3:ω3 �=ω1
ξω3

Eω3
Pω3ω1

. Then Lemma 6.4 gives

‖S2‖ ≤
2μ0r

np
‖H‖.

Notice that Hω1
= p−1

∑

ω3
ξω3

Eω3
Pω3ω1

− p−1ξω1
Eω1

Pω1ω1
so that with Gω1

=
Eω1

Pω1ω1

H = p−1
[

PT (P� − pI)(E) − (P� − pI)(G)
]

.

Now, for any matrix X, ‖PT (X)‖ = ‖X − PT ⊥(X)‖ ≤ 2‖X‖ and, therefore,

‖H‖ ≤ 2p−1
∥

∥(P� − pI)(E)
∥

∥+ p−1
∥

∥(P� − pI)(G)
∥

∥.
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As a consequence and since ‖G‖∞ ≤ ‖E‖∞, Theorem 6.3 gives for each β > 2,

‖H‖ ≤ Cμ1

√

nrβ logn

m

with probability at least 1 −n−β . In conclusion, the fourth term in (6.20) has spectral

norm bounded by

C μ0μ1

√

β logn

(

nr

m

)3/2(
√

μ0nrβ logn

m
+ 1

)

with probability at least 1 − O(n−β).

We finally examine the last term

p−3
∑

ω1 �=ω2 �=ω3

ξω1
ξω2

ξω3
Eω3

Pω3ω2
Pω2ω1

Fω1
.

Now, just as one has a decoupling inequality for pairs of variables, we have a decou-

pling inequality for triples as well, and we thus simply need to bound the tail of

S1 ≡ p−3
∑

ω1 �=ω2 �=ω3

ξ (1)
ω1

ξ (2)
ω2

ξ (3)
ω3

Eω3
Pω3ω2

Pω2ω1
Fω1

in which the sequences {ξ (1)
ω }, {ξ (2)

ω } and {ξ (3)
ω } are independent copies of {ξω}. We

refer to [15] for details. We now argue as in Sect. 6.2 and write S1 as

S1 = p−1
∑

ω1

ξ (1)
ω1

Hω1
Fω1

,

where

Hω1
≡ p−1

∑

ω2:ω2 �=ω1

ξ (2)
ω2

Gω2
Pω2ω1

, Gω2
≡ p−1

∑

ω3:ω3 �=ω1,ω3 �=ω2

ξ (3)
ω3

Eω3
Pω3ω2

.

(6.23)

By Lemma 6.6, we have for each β > 2

‖G‖∞ ≤ C

√

μ0nrβ logn

m
‖E‖∞

with large probability and the same argument then gives

‖H‖∞ ≤ C

√

μ0nrβ logn

m
‖G‖∞ ≤ C

μ0nrβ logn

m
‖E‖∞

with probability at least 1 − 4n−β . As a consequence, Theorem 6.3 gives

‖S‖ ≤ C μ0μ1

(

nrβ logn

m

)3/2
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with probability at least 1 − O(n−β).

To summarize the calculations of this section and using the fact that μ0 ≥ 1 and

μ1 ≤ μ0

√
r , we have established that if m ≥ μ0 nr(β logn),

p−1
∥

∥(P� − pI) H2(E)
∥

∥ ≤ C

(

nr

m

)2(

μ2
0μ1

√

nrβ logn

m
+ μ2

0

)

+ C
√

β logn

(

nr

m

)3/2

μ2
0

√
r + C

(

nrβ logn

m

)3/2

μ0μ1

with probability at least 1 − O(n−β). One can check that if m = λμ
4/3
0 nr4/3β logn

for a fixed β ≥ 2 and λ ≥ 1, then there is a constant C such that

∥

∥p−1 (P� − pI) H2(E)
∥

∥≤ Cλ−3/2

with probability at least 1 − O(n−β). This is the content of Lemma 4.6.

6.4 Proof of Lemma 4.7

Clearly, one could continue on the same path and estimate the spectral norm of

p−1(P� − pI) H3(E) by the same technique as in the previous sections. That is

to say, we would write

p−1(P� − pI) H3(E) = p−4
∑

ω1,ω2,ω3,ω4

[

4
∏

i=1

ξωi

]

Eω4

[

3
∏

i=1

Pωi+1ωi

]

Fω1

with the same notations as before, and partition the sum depending on whether some

of the ωi ’s are the same or not. Then we would use the decoupling argument to bound

each term in the sum. Although this is a clear possibility, one would need to consider

18 cases and the calculations would become a little laborious. In this section, we

propose to bound the term p−1(P� − pI) H3(E) with a different argument which

has two main advantages: first, it is much shorter and second, it uses much of what

we have already established. The downside is that it is not as sharp.

The starting point is to note that

p−1(P� − pI) H3(E) = p−1
(

� ◦ H3(E)
)

,

where � is the matrix with i.i.d. entries equal to ξab = δab − p and ◦ denotes the

Hadamard product (componentwise multiplication). To bound the spectral norm of

this Hadamard product, we apply an inequality due to Ando, Horn, and Johnson [2].

An elementary proof can be found in Sect. 5.6 of [20].

Lemma 6.9 [20] Let A and B be two n1 × n2 matrices. Then

‖A ◦ B‖ ≤ ‖A‖ν(B), (6.24)

where ν is the function

ν(B) = inf
{

c(X)c(Y ) : XY ∗ = B
}

,
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and c(X) is the maximum Euclidean norm of the rows

c(X)2 = max
1≤i≤n

∑

j

X2
ij .

To apply (6.24), we first notice that one can estimate the norm of � via The-

orem 6.3. Indeed, let Z = 11∗ be the matrix with all entries equal to one. Then

p−1� = p−1(P� − pI)(Z), and thus

p−1‖�‖ ≤ C

(

n3β logn

m

)1/2

(6.25)

with probability at least 1 − n−β . One could obtain a similar result by appealing to

the recent literature on random matrix theory and on concentration of measure. Po-

tentially, this could allow to derive an upper bound without the logarithmic term, but

we will not consider these refinements here. (It is interesting to note in passing, how-

ever, that the two page proof of Theorem 6.3 gives a large deviation result about the

largest singular value of a matrix with i.i.d. entries which is sharp up to a multiplica-

tive factor proportional to at most
√

logn.)

Second, we bound the second factor in (6.24) via the following estimate.

Lemma 6.10 There are numerical constants C and c so that for each β > 2, H3(E)

obeys

ν
(

H3(E)
)

≤ Cμ0r/n (6.26)

with probability at least 1 − O(n−β) provided that m ≥ cμ
4/3
0 nr5/3(β logn).

The two inequalities (6.25) and (6.26) give

p−1
∥

∥� ◦ H3(E)
∥

∥≤ C

√

μ2
0 nr2 β logn

m
,

with large probability. Hence, when m is substantially larger than a constant times

μ2
0nr2(β logn), we have that the spectral norm of p−1(P� − pI) H3(E) is much

less than 1. This is the content of Lemma 4.7.

The remainder of this section proves Lemma 6.10. Set S ≡ H3(E) for short. Be-

cause S is in T , S = PT (S) = P US + SP V − P USP V . Writing P U =
∑r

j=1 uju
∗
j

and similarly for P V gives

S =
r
∑

j=1

uj

(

u∗
jS
)

+
r
∑

j=1

(

(I − P U )Svj

)

v∗
j .

For each 1 ≤ j ≤ r , let αj ≡ Svj and β∗
j ≡ u∗

jS. Then the decomposition

S =
r
∑

j=1

ujβ
∗
j +

r
∑

j=1

(P U⊥αj )v
∗
j ,
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where P U⊥ = I − P U , provides a factorization of the form

S = XY ∗,

{

X = [u1, . . . ,ur ,P U⊥α1, . . . ,P U⊥αr ],
Y = [β1, . . . ,βr ,v1, . . . ,vr ].

It follows from our assumption that

c2
(

[u1, . . . ,ur ]
)

= max
1≤i≤n

∑

1≤j≤r

u2
ij = max

1≤i≤n
‖P Uei‖2 ≤ μ0r/n,

and similarly for [v1, . . . ,vr ]. Hence, to prove Lemma 6.10, it suffices to prove

that the maximum row norm obeys c([β1, . . . ,βr ]) ≤ C
√

μ0r/n for some constant

C > 0, and similarly for the matrix [P U⊥α1, . . . ,P U⊥αr ].

Lemma 6.11 There is a numerical constant C such that for each β > 2,

c
(

[α1, . . . ,αr ]
)

≤ C
√

μ0r/n (6.27)

with probability at least 1 − O(n−β) provided that m obeys the condition of

Lemma 6.10.

A similar estimate for [β1, . . . ,βr ] is obtained in the same way by exchanging the

roles of u and v. Moreover, a minor modification of the argument gives

c
(

[P U⊥α1, . . . ,P U⊥αr ]
)

≤ C
√

μ0r/n (6.28)

as well, and we will omit the details. In short, the estimate (6.27) implies Lemma 6.10.

Proof of Lemma 6.11 To prove (6.27), we use the notations of the previous section

and write

αj = p−3
∑

a1b1,a2b2,a3b3

ξa1b1
ξa2b2

ξa3b3
Ea3b3

〈

PT ea3
e∗
b3

, ea2
e∗
b2

〉〈

PT ea2
e∗
b2

, ea1
e∗
b1

〉

× PT

(

ea1
e∗
b1

)

vj

= p−3
∑

ω1,ω2,ω3

ξω1
ξω2

ξω3
Eω3

Pω3ω2
Pω2ω1

PT (Fω1
)vj

= p−3
∑

ω1,ω2,ω3

ξω1
ξω2

ξω3
Eω3

Pω3ω2
Pω2ω1

(Fω1
vj )

since for any matrix X, PT (X)vj = Xvj for each 1 ≤ j ≤ r . We then follow the

same steps as in Sect. 6.3 and partition the sum depending on whether some of the

ωi ’s are the same or not

αj = p−3

[

∑

ω1=ω2=ω3

+
∑

ω1 �=ω2=ω3

+
∑

ω1=ω3 �=ω2

+
∑

ω1=ω2 �=ω3

+
∑

ω1 �=ω2 �=ω3

]

. (6.29)
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The idea is this: to establish (6.27), it is sufficient to show that if γ j is any of the five

terms above, it obeys
√

∑

1≤j≤r

|γij |2 ≤ C
√

μ0r/n (6.30)

(γij is the ith component of γ j as usual) with large probability. The strategy for

getting such estimates is to use decoupling whenever applicable.

Just as Theorem 6.3 proved useful to bound the norm of p−1(P� − pI)H2(E)

in Sect. 6.3, the lemma below will help bounding the magnitudes of the components

of αj .

Lemma 6.12 Define S ≡ p−1
∑

ij

∑

ω ξωHω〈ei,Fωvj 〉eie
∗
j . Then for each λ > 0

P
(

‖S‖∞ ≥
√

μ0/n
)

≤ 2n2 exp

(

−
1

2n
μ0p

‖H‖2
∞ + 2

3p

√
r‖H‖∞

)

. (6.31)

Proof The proof is an application of Bernstein’s inequality (6.16). Note that

〈ei,Fωvj 〉 = 1{a=i}vbj , and hence

Var(Sij ) ≤ p−1‖H‖2
∞
∑

ω

∣

∣〈ei,Fωvj 〉
∣

∣

2 = p−1‖H‖2
∞

since
∑

ω |〈ei,Fωvj 〉|2 = 1, and |p−1Hω〈ei,Fωvj 〉| ≤ p−1 ‖H‖∞
√

μ0r/n since

|〈ei,Fωvj 〉| ≤ |vbj | and

|vbj | ≤ ‖P V eb‖ ≤
√

μ0r/n. �

Each term in (6.29) is given by the corresponding term in (6.20) after formally

substituting Fω with Fωvj . We begin with the first term whose ith component is

equal to

γij ≡ p−3
(

1 − 3p + 3p2
)

∑

ω

ξω EωP 2
ωω〈ei,Fωvj 〉

+ p−2
(

1 − 3p + 2p2
)

∑

ω

EωP 2
ωω〈ei,Fωvj 〉. (6.32)

Ignoring the constant factor (1 − 3p + 3p2) which is bounded by 1, we write the first

of these two terms as

(S0)ij ≡ p−1
∑

ω

ξω Hω〈ei,Fωvj 〉, Hω = Eω

(

p−1Pωω

)2
.

Since ‖H‖∞ ≤ (μ0nr/m)2 μ1

√
r/n, it follows from Lemma (6.12) that

P
(

‖S0‖∞ ≥
√

μ0/n
)

≤ 2n2 e−1/D, D ≤ C

(

μ3
0μ

2
1

(

nr

m

)5

+ μ2
0μ1

(

nr

m

)3)
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for some numerical C > 0. Since μ1 ≤ μ0

√
r , we have that when m ≥ λμ0 nr6/5 ×

(β logn) for some numerical constant λ > 0, ‖S0‖∞ ≥
√

μ0/n with probability at

most 2n2e−(β logn)3
; this probability is inversely proportional to a superpolynomial

in n. For the second term, the matrix with entries EωP 2
ωω is given by

�2
UE + E�2

V + 2�UE�V + �2
UE�2

V − 2�2
UE�V − 2�UE�2

V

and thus

∑

ω

EωP 2
ωω〈ei,Fωvj 〉 =

〈

ei,
(

�2
UE + E�2

V + 2�UE�V + �2
UE�2

V

− 2�2
UE�V − 2�UE�2

V

)

vj

〉

.

This is a sum of six terms and we will show how to bound the first three; the last three

are dealt in exactly the same way and obey better estimates. For the first, we have

〈

ei,�
2
UEvj

〉

=
〈

�2
Uei,Evj

〉

= ‖P Uei‖4〈ei,uj 〉.

Hence,

p−2

√

∑

1≤j≤r

∣

∣

〈

ei,�
2
UEvj

〉∣

∣

2 = p−2‖P Uei‖4

√

∑

1≤j≤r

∣

∣〈ei,uj 〉
∣

∣

2

= p−2‖P Uei‖5 ≤
(

μ0r

np

)2√
μ0r

n
.

In other words, when m ≥ μ0nr , the right hand-side is bounded by
√

μ0r/n as de-

sired. For the second term, we have

〈

ei,E�2
V vj

〉

=
∑

b

‖P V eb‖4vbj 〈ei,Eeb〉 =
∑

b

‖P V eb‖4vbjEib.

Hence, it follows from the Cauchy–Schwarz inequality and (6.4) that

p−2
∣

∣

〈

ei,E�2
V vj

〉∣

∣≤
(

μ0r

np

)2√
μ0r

n
.

In other words, when m ≥ μ0nr5/4,

p−2

√

∑

1≤j≤r

∣

∣

〈

ei,E�2
V vj

〉∣

∣

2 ≤
√

μ0r

n
(6.33)

as desired. For the third term, we have

〈ei,�UE�V vj 〉 = ‖P Uei‖2
∑

b

‖P V eb‖2vbjEib.
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The Cauchy–Schwarz inequality gives

2p−2
∣

∣〈ei,�UE�V vj 〉
∣

∣≤ 2

(

μ0r

np

)2√
μ0r

n

just as before. In other words, when m ≥ μ0nr5/4, 2p−2
√

∑

1≤j≤r |〈ei,�UE�V vj 〉|2

is bounded by 2
√

μ0r/n. The other terms obey (6.33) as well when m ≥ μ0nr5/4.

In conclusion, the first term (6.32) in (6.29) obeys (6.30) with probability at least

1 − O(n−β) provided that m ≥ μ0nr5/4(β logn).

We now turn our attention to the second term which can be written as

γij ≡ p−3(1 − 2p)
∑

ω1 �=ω2

ξω1
ξω2

Eω2
Pω2ω2

Pω2ω1
〈ei,Fω1

vj 〉

+ p−2(1 − p)
∑

ω1 �=ω2

ξω1
Eω2

Pω2ω2
Pω2ω1

〈ei,Fω1
vj 〉.

We decouple the first term so that it suffices to bound

(S0)ij ≡ p−1
∑

ω1

ξ (1)
ω1

Hω1
〈ei,Fω1

vj 〉, Hω1
≡ p−2

∑

ω2:ω2 �=ω1

ξ (2)
ω2

Eω2
Pω2ω2

Pω2ω1
,

where the sequences {ξ (1)
ω } and {ξ (2)

ω } are independent. The method from Sect. 6.2

shows that

‖H‖∞ ≤ C

√

μ0nrβ logn

m
sup
ω

∣

∣Eω

(

p−1Pωω

)∣

∣≤ C
√

β logn

(

μ0nr

m

)3/2

‖E‖∞

with probability at least 1 − 2n−β for each β > 2. Therefore, Lemma 6.12 gives

P
(

‖S0‖∞ ≥
√

μ0/n
)

≤ 2n2e−1/D, (6.34)

where D obeys

D ≤ C

(

μ2
0μ

2
1(β logn)

(

nr

m

)4

+ μ
3/2
0 μ1

√

β logn

(

nr

m

)5/2)

(6.35)

for some positive constant C. Hence, when m ≥ λμ0 nr5/4(β logn) for some suffi-

ciently large numerical constant λ > 0, we have that ‖S0‖∞ ≥
√

μ0/n with proba-

bility at most 2n2e−(β logn)2
. This is inversely proportional to a superpolynomial in n.

We write the second term as

(S1)ij ≡ p−1
∑

ω1 �=ω2

ξω1
Hω1

〈ei,Fω1
vj 〉, Hω1

= p−1
∑

ω2:ω2 �=ω1

Eω2
Pω2ω2

Pω2ω1
.

We know from Sect. 6.3 that H obeys ‖H‖∞ ≤ C μ2
0 r2/m since μ1 ≤ μ0

√
r so that

Lemma 6.12 gives

P
(

‖S1‖∞ ≥
√

μ0/n
)

≤ 2n2e−1/D, D ≤ C

(

μ3
0

n3r4

m3
+ μ2

0

n2r5/2

m2

)
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for some C > 0. Hence, when m ≥ λμ0 nr4/3(β logn) for some numerical constant

λ > 0, we have that ‖S1‖∞ ≥
√

μ0/n with probability at most 2n2e−(β logn)2
. This

is inversely proportional to a superpolynomial in n. In conclusion and taking into

account the decoupling constants in (6.12), the second term in (6.29) obeys (6.30)

with probability at least 1 − O(n−β) provided that m is sufficiently large as above.

We now examine the third term which can be written as

p−3(1 − 2p)
∑

ω1 �=ω2

ξω1
ξω2

Eω1
P 2

ω2ω1
〈ei,Fω1

vj 〉

+ p−2(1 − p)
∑

ω1 �=ω2

ξω2
Eω1

P 2
ω2ω1

〈ei,Fω1
vj 〉.

For the first term of the right-hand side, it suffices to estimate the tail of

(S0)ij ≡ p−1
∑

ω1

ξ (1)
ω1

Eω1
Hω1

〈ei,Fω1
vj 〉, Hω1

≡ p−2
∑

ω2:ω2 �=ω1

ξ (2)
ω2

P 2
ω2ω1

,

where {ξ (1)
ω } and {ξ (2)

ω } are independent. We know from Sect. 6.3 that ‖H‖∞ obeys

‖H‖∞ ≤ C
√

β logn (μ0nr/m)3/2 with probability at least 1 − 2n−β for each β > 2.

Thus, Lemma (6.12) shows that S0 obeys (6.34)–(6.35) just as before. The other

term is equal to (1−p) times
∑

ω1
Eω1

Hω1
〈ei,Fω1

vj 〉, and by the Cauchy–Schwarz

inequality and (6.4)

∣

∣

∣

∣

∑

ω1

Eω1
Hω1

〈ei,Fω1
vj 〉

∣

∣

∣

∣

≤ ‖H‖∞
∥

∥e∗
i E
∥

∥

(

∑

b

v2
bj

)1/2

≤ C

√

μ0

n

√

β logn

(

μ0nr4/3

m

)3/2

on the event where ‖H‖∞ ≤ C
√

β logn (μ0nr/m)3/2. Hence, when m ≥ λμ0 nr4/3 ×
(β logn) for some numerical constant λ > 0, we have that |

∑

ω1
Eω1

Hω1
〈ei,Fω1

vj 〉|
≤

√
μ0/n on this event. In conclusion, the third term in (6.29) obeys (6.30) with

probability at least 1 − O(n−β) provided that m is sufficiently large as above.

We proceed to the fourth term which can be written as

p−3(1 − 2p)
∑

ω1 �=ω3

ξω1
ξω3

Eω3
Pω3ω1

Pω1ω1
〈ei,Fω1

vj 〉

+ p−2(1 − p)
∑

ω1 �=ω3

ξω3
Eω3

Pω3ω1
Pω1ω1

〈ei,Fω1
vj 〉.

We use the decoupling trick for the first term and bound the tail of

(S0)ij ≡ p−1
∑

ω1

ξ (1)
ω1

Hω1

(

p−1Pω1ω1

)

〈ei,Fω1
vj 〉,

Hω1
≡ p−1

∑

ω3:ω3 �=ω1

ξ (3)
ω3

Eω3
Pω3ω1

,



Found Comput Math (2009) 9: 717–772 763

where {ξ (1)
ω } and {ξ (3)

ω } are independent. We know from Sect. 6.2 that

‖H‖∞ ≤ C

√

μ0nrβ logn

m
‖E‖∞

with probability at least 1 − 2n−β for each β > 2. Therefore, Lemma 6.12 shows

that S0 obeys (6.34)–(6.35) just as before. The other term is equal to (1 − p) times
∑

ω1
Hω1

(p−1Pω1ω1
) 〈ei,Fω1

vj 〉, and the Cauchy–Schwarz inequality gives

∣

∣

∣

∣

∑

ω1

Hω1

(

p−1Pω1ω1

)

〈ei,Fω1
vj 〉

∣

∣

∣

∣

≤
√

n‖H‖∞
μ0nr

m
≤ C

μ1

√
rβ logn
√

n

(

μ0nr

m

)3/2

on the event ‖H‖∞ ≤ C
√

μ0nr(β logn)/m‖E‖∞. Because μ1 ≤ μ0

√
r , we

have that whenever m ≥ λμ
4/3
0 nr5/3 (β logn) for some numerical constant λ > 0,

p−1|
∑

ω1
Hω1

Pω1ω1
〈ei,Fω1

vj 〉| ≤
√

μ0/n just as before. In conclusion, the fourth

term in (6.29) obeys (6.30) with probability at least 1 − O(n−β) provided that m is

sufficiently large as above.

We finally examine the last term

p−3
∑

ω1 �=ω2 �=ω3

ξω1
ξω2

ξω3
Eω3

Pω3ω2
Pω2ω1

〈ei,Fω1
vj 〉.

Just as before, we need to bound the tail of

(S0)ij ≡ p−1
∑

ω1,ω2,ω3

ξ (1)
ω1

Hω1
〈ei,Fω1

vj 〉,

where H is given by (6.23). We know from Sect. 6.3 that H obeys

‖H‖∞ ≤ C (β logn)
μ0nr

m
μ1

√
r

n

with probability at least 1 − 4n−β for each β > 2. Therefore, Lemma 6.12 gives

P

(

‖S0‖∞ ≥
1

5

√

μ0/n

)

≤ 2n2e−1/D,

D ≤ C

(

μ0μ
2
1(β logn)2

(

nr

m

)3

+ μ0μ1(β logn)

(

nr

m

)2)

for some C > 0. Hence, when m ≥ λμ0 nr4/3(β logn) for some numerical constant

λ > 0, we have that ‖S0‖∞ ≥ 1
5

√
μ0/n with probability at most 2n2e−(β logn). In

conclusion, the fifth term in (6.29) obeys (6.30) with probability at least 1 − O(n−β)

provided that m is sufficiently large as above.

To summarize the calculations of this section, if m = λμ
4/3
0 nr5/3 (β logn) where

β ≥ 2 is fixed and λ is some sufficiently large numerical constant, then

∑

1≤j≤r

|αij |2 ≤ μ0r/n

with probability at least 1 − O(n−β). This concludes the proof. �
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6.5 Proof of Lemma 4.8

It remains to study the spectral norm of p−1(PT ⊥ P�PT )
∑

k≥k0
Hk(E) for some

positive integer k0, which we bound by the Frobenius norm

p−1

∥

∥

∥

∥

(PT ⊥ P�PT )
∑

k≥k0

Hk(E)

∥

∥

∥

∥

≤ p−1

∥

∥

∥

∥

(P�PT )
∑

k≥k0

Hk(E)

∥

∥

∥

∥

F

≤
√

3/2p

∥

∥

∥

∥

∑

k≥k0

Hk(E)

∥

∥

∥

∥

F

,

where the inequality follows from Corollary 4.3. To bound the Frobenius norm of the

series, write

∥

∥

∥

∥

∑

k≥k0

Hk(E)

∥

∥

∥

∥

F

≤ ‖H‖k0‖E‖F + ‖H‖k0+1‖E‖F + · · ·

≤
‖H‖k0

1 − ‖H‖
‖E‖F .

Theorem 4.1 gives an upper bound on ‖H‖ since ‖H‖ ≤ CR

√
μ0nrβ logn/m < 1/2

on an event with probability at least 1 − 3n−β . Since ‖E‖F =
√

r , we conclude that

p−1

∥

∥

∥

∥

(P�PT )
∑

k≥k0

Hk(E)

∥

∥

∥

∥

F

≤ C
1

√
p

(

μ0nrβ logn

m

)k0/2 √
r

= C

(

n2r

m

)1/2(
μ0nrβ logn

m

)k0/2

with large probability. This is the content of Lemma 4.8.

7 Numerical Experiments

To demonstrate the practical applicability of the nuclear norm heuristic for recover-

ing low-rank matrices from their entries, we conducted a series of numerical experi-

ments for a variety of the matrix sizes n, ranks r , and numbers of entries m. For each

(n,m, r) triple, we repeated the following procedure 50 times. We generated M , an

n×n matrix of rank r , by sampling two n×r factors ML and MR with i.i.d. Gaussian

entries and setting M = MLM∗
R . We sampled a subset � of m entries uniformly at

random. Then the nuclear norm minimization

minimize ‖X‖∗
subject to Xij = Mij , (i, j) ∈ �
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Fig. 1 Recovery of full matrices from their entries. For each (n,m, r) triple, we repeated the following

procedure 50 times. A matrix M of rank r and a subset of m entries were selected at random. Then we

solved the nuclear norm minimization for X subject to Xij = Mij on the selected entries. We declared M

to be recovered if ‖Xopt − M‖F /‖M‖F < 10−3. The results are shown for (a) n = 40 and (b) n = 50.

The color of each cell reflects the empirical recovery rate (scaled between 0 and 1). White denotes perfect

recovery in all experiments, and black denotes failure for all experiments

was solved using the SDP solver SDPT3 [36]. We declared M to be recovered if the

solution returned by the SDP, Xopt, satisfied ‖Xopt − M‖F /‖M‖F < 10−3. Figure 1

shows the results of these experiments for n = 40 and 50. The x-axis corresponds

to the fraction of the entries of the matrix that are revealed to the SDP solver. The

y-axis corresponds to the ratio between the dimension of the set of rank r matrices,

dr = r(2n − r), and the number of measurements m. Note that both of these axes

range from zero to one as a value greater than one on the x-axis corresponds to an

overdetermined linear system where the semidefinite program always succeeds, and

a value of greater than one on the y-axis corresponds to a situation where there is

always an infinite number of matrices with rank r with the given entries. The color

of each cell in the figures reflects the empirical recovery rate of the 50 runs (scaled

between 0 and 1). White denotes perfect recovery in all experiments, and black de-

notes failure for all experiments. Interestingly, the experiments reveal very similar

plots for different n, suggesting that our asymptotic conditions for recovery may be

rather conservative.

For a second experiment, we generated random positive semidefinite matrices and

tried to recover them from their entries using the nuclear norm heuristic. As above,

we repeated the same procedure 50 times for each (n,m, r) triple. We generated M ,

an n×n positive semidefinite matrix of rank r , by sampling an n× r factor MF with

i.i.d. Gaussian entries and setting M = MF M∗
F . We sampled a subset � of m entries

uniformly at random. Then we solved the nuclear norm minimization problem

minimize trace(X)

subject to Xij = Mij , (i, j) ∈ �,

X � 0.

As above, we declared M to be recovered if ‖Xopt − M‖F /‖M‖F < 10−3. Figure 2

shows the results of these experiments for n = 40 and 50. The x-axis again corre-
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Fig. 2 Recovery of positive semidefinite matrices from their entries. For each (n,m, r) triple, we repeated

the following procedure 50 times. A positive semidefinite matrix M of rank r and a set of m entries

were selected at random. Then we solved the nuclear norm minimization subject to Xij = Mij on the

selected entries with the constraint that X � 0. The color scheme for each cell denotes empirical recovery

probability and is the same as in Fig. 1. The results are shown for (a) n = 40 and (b) n = 50

sponds to the fraction of the entries of the matrix that are revealed to the SDP solver,

but in this case, the number of measurements is divided by Dn = n(n + 1)/2, the

number of unique entries in a positive-semidefinite matrix and the dimension of the

rank r matrices is dr = nr − r(r − 1)/2. The color of each cell is chosen in the same

fashion as in the experiment with full matrices. Interestingly, the recovery region is

much larger for positive semidefinite matrices, and future work is needed to inves-

tigate if the theoretical scaling is also more favorable in this scenario of low-rank

matrix completion.

Finally, in Fig. 3, we plot the performance of the nuclear norm heuristic when

recovering low-rank matrices from Gaussian projections of these matrices. In these

cases, M was generated in the same fashion as above, but in place of sampling en-

tries, we generated m random Gaussian projections of the data (see the discussion in

Sect. 1.4). Then we solved the optimization

minimize ‖X‖∗
subject to A(X) = A(M),

with the additional constraint that X � 0 in the positive semidefinite case. Here, A(X)

denotes a linear map of the form (1.15) where the entries are sampled i.i.d. from a

zero-mean unit variance Gaussian distribution. In these experiments, the recovery

regime is far larger than in the case of that of sampling entries, but this is not par-

ticularly surprising as each Gaussian observation measures a contribution from every

entry in the matrix M . These Gaussian models were studied extensively in [29].
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Fig. 3 Recovery of matrices from Gaussian observations. For each (n,m, r) triple, we repeated the fol-

lowing procedure 10 times. In (a), a matrix of rank r was generated as in Fig. 1. In (b) a positive semidef-

inite matrix of rank r was generated as in Fig. 2. In both plots, we select a matrix A from the Gaussian

ensemble with m rows and n2 (in (a)) or Dn = n(n + 1)/2 (in (b)) columns. Then we solve the nuclear

norm minimization subject to A(X) = A(M). The color scheme for each cell denotes empirical recovery

probability and is the same as in Figs. 1 and 2

8 Discussion

8.1 Improvements

In this paper, we have shown that under suitable conditions, one can reconstruct an

n × n matrix of rank r from a small number of its sampled entries provided that this

number is on the order of n1.2r logn, at least for moderate values of the rank. One

would like to know whether better results hold in the sense that exact matrix recovery

would be guaranteed with a reduced number of measurements. In particular, recall

that an n × n matrix of rank r depends on (2n − r)r degrees of freedom; is it true

then that it is possible to recover most low-rank matrices from on the order of nr—

up to logarithmic multiplicative factors—randomly selected entries? Can the sample

size be merely proportional to the true complexity of the low-rank object we wish to

recover?

In this direction, we would like to emphasize that there is nothing in our ap-

proach that apparently prevents us from getting stronger results. Indeed, we devel-

oped a bound on the spectral norm of each of the first four terms (PT ⊥ P�PT )Hk(E)

in the series (4.13) (corresponding to values of k equal to 0,1,2,3) and used a

general argument to bound the remainder of the series. Presumably, one could

bound higher order terms by the same techniques. Getting an appropriate bound on

‖(PT ⊥ P�PT )H4(E)‖ would lower the exponent of n from 6/5 to 7/6. The appropri-

ate bound on ‖(PT ⊥ P�PT )H5(E)‖ would further lower the exponent to 8/7, and so

on. To obtain an optimal result, one would need to reach k of size about logn. In do-

ing so, however, one would have to pay special attention to the size of the decoupling

constants (the constant CD for two variables in Lemma 6.5) which depend on k—the

number of decoupled variables. These constants grow with k and upper bounds are

known [14, 15].



768 Found Comput Math (2009) 9: 717–772

8.2 Further Directions

It would be of interest to extend our results to the case where the unknown matrix is

approximately low-rank. Suppose we write the SVD of a matrix M as

M =
∑

1≤k≤n

σkukv
∗
k,

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and assume for simplicity that none of the σk’s vanish.

In general, it is impossible to complete such a matrix exactly from a partial subset of

its entries. However, one might hope to be able to recover a good approximation if, for

example, most of the singular values are small or negligible. For instance, consider

the truncated SVD of the matrix M ,

Mr =
∑

1≤k≤r

σkukv
∗
k,

where the sum extends over the r largest singular values and let M⋆ be the solution

to (1.5). Then one would not expect to have M⋆ = M but it would be of great interest

to determine whether the size of M⋆ −M is comparable to that of M −Mr provided

that the number of sampled entries is sufficiently large. For example, one would like

to know whether it is reasonable to expect that ‖M⋆ − M‖∗ is on the same order as

‖M − Mr‖∗ (one could ask for a similar comparison with a different norm). If the

answer is positive, then this would say that approximately low-rank matrices can be

accurately recovered from a small set of sampled entries.

Another important direction is to determine whether the reconstruction is robust

to noise as in some applications, one would presumably observe

Yij = Mij + zij , (i, j) ∈ �,

where z is a deterministic or stochastic perturbation. In this setup, one would perhaps

want to minimize the nuclear norm subject to ‖P�(X − Y )‖F ≤ ǫ where ǫ is an

upper bound on the noise level instead of enforcing the equality constraint P�(X) =
P�(Y ). Can one expect that this algorithm or a variation thereof provides accurate

answers? That is, can one expect that the error between the recovered and the true

data matrix be proportional to the noise level?

This scenario was considered in [3] where it was shown that most of the entries

can be reconstructed to o(1) error by computing the singular value decomposition

of the matrix which is equal to Mij when (i, j) ∈ � and zeros everywhere else. This

bound translates into O(n) error in the Frobenius norm. An adaptation of the analysis

to the nuclear norm minimization problem (1.5) rather than the SVD based algorithm

could lead to a better error estimate.

Finally, we note that the nuclear norm minimization problem (1.5) considered in

this paper is a highly structured semidefinite program. Standard interior point meth-

ods will be impractical for problems where the unknown matrix has hundreds of rows

or columns. However, customized solvers designed to exploit the special structure of

the nuclear norm and the sparsity of the constraints show a great deal of promise for
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solving incredibly large instances of the matrix completion problems. Since the date

of the original submission of this paper, preliminary research focusing on linearized

Bregman schemes [8] have already demonstrated the solution of instances of the nu-

clear norm minimization problem where the unknown matrix has tens of thousands

of columns; see also the fixed point continuation methods in [27]. Further investi-

gation into such fast algorithms would make the theoretical guarantees developed in

this work practical for very large data analysis problems.
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Appendix

A.1 Proof of Theorem 4.2

The proof of (4.10) follows that in [9] but we shall use slightly more precise estimates.

Let Y1, . . . , Yn be a sequence of independent random variables taking values in a

Banach space and let Y⋆ be the supremum defined as

Y⋆ = sup
f ∈F

n
∑

i=1

f (Yi), (A.1)

where F is a countable family of real-valued functions such that if f ∈ F , then

−f ∈ F . Talagrand [35] proved a concentration inequality about Y⋆; see also [23,

Corollary 7.8].

Theorem A.1 Assume that |f | ≤ B and Ef (Yi) = 0 for every f in F and i =
1, . . . , n. Then for all t ≥ 0,

P
(

|Y⋆ − EY⋆| > t
)

≤ 3 exp

(

−
t

KB
log

(

1 +
Bt

σ 2 + B EY⋆

))

, (A.2)

where σ 2 = supf ∈F

∑n
i=1 Ef 2(Yi), and K is a numerical constant.

We note that very precise values of the numerical constant K are known and are

small; see [21].

We will apply this theorem to the random variable Z defined in the statement of

Theorem 4.2. Put Yab = p−1(δab − p) PT (eae
∗
b) ⊗ PT (eae

∗
b) and Y =

∑

ab Yab . By

definition,
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Z = sup
〈

X1, Y (X2)
〉

= sup
∑

ab

〈

X1, Yab(X2)
〉

= sup p−1
∑

ab

(δab − p)
〈

X1, PT (eae
∗
b)
〉 〈

PT

(

eae
∗
b

)

,X2

〉

,

where the supremum is over a countable collection of matrices X1 and X2 obeying

‖X1‖F ≤ 1 and ‖X2‖F ≤ 1. Note that it follows from (4.8)

∣

∣

〈

X1, Yab(X2)
〉∣

∣= p−1 |δab − p|
∣

∣

〈

X1, PT

(

eae
∗
b

)〉∣

∣

∣

∣

〈

PT

(

eae
∗
b

)

,X2

〉∣

∣

≤ p−1
∥

∥PT

(

eae
∗
b

)∥

∥

2

F
≤ 2μ0r/

(

min(n1, n2)p
)

= 2μ0 nr/m

(recall that n = max(n1, n2)). Hence, we can apply Theorem A.1 with B =
2μ0(nr/m). Also,

E
∣

∣

〈

X1, Yab(X2)
〉∣

∣

2 = p−1(1 − p)
∣

∣

〈

X1, PT

(

eae
∗
b

)〉∣

∣

2 ∣
∣

〈

X2, PT

(

eae
∗
b

)〉∣

∣

2

≤ p−1
∥

∥PT

(

eae
∗
b

)∥

∥

2

F

∣

∣

〈

PT (X2), eae
∗
b

〉∣

∣

2

so that

∑

ab

E
∣

∣

〈

X1, Yab(X2)
〉∣

∣

2 ≤ (2μ0 nr/m)
∑

ab

∣

∣

〈

PT (X2), eae
∗
b

〉∣

∣

2

= (2μ0 nr/m)
∥

∥PT (X2)
∥

∥

2

F
≤ 2μ0nr/m.

Since EZ ≤ 1, Theorem A.1 gives

P
(

|Z − EZ| > t
)

≤ 3 exp

(

−
t

KB
log(1 + t/2)

)

≤ 3 exp

(

−
t log 2

KB
min(1, t/2)

)

,

where we have used the fact that log(1 + u) ≥ (log 2) min(1, u) for u ≥ 0. Plugging

t = λ

√

μ0 nr logn
m

and B = 2μ0 nr/m establishes the claim.

A.2 Proof of Lemma 6.2

We shall make use of the following lemma which is an application of well-known

deviation bounds about binomial variables.

Lemma A.2 Let {δi}1≤i≤n be a sequence of i.i.d. Bernoulli variables with

P(δi = 1) = p and Y =
∑n

i=1 δi . Then for each λ > 0,

P(Y > λ EY) ≤ exp

(

−
λ2

2 + 2λ/3
EY

)

. (A.3)

The random variable
∑

b δabE
2
ab is bounded by ‖E‖2

∞
∑

b δab and it thus suffices

to estimate the qth moment of Y∗ = maxYa where Ya =
∑

b δab . The inequality (A.3)
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implies that

P(Y∗ > λnp) ≤ n exp

(

−
λ2

2 + 2λ/3
np

)

,

and for λ ≥ 2, this gives P(Y∗ > λnp) ≤ ne−λnp/2. Hence

EY
q
∗ =

∫ ∞

0

P(Y∗ > t)qtq−1 dt ≤ (2np)q +
∫ ∞

2np

ne−t/2 qtq−1 dt.

By integrating by parts, one can check that when q ≤ np, we have

∫ ∞

2np

ne−t/2 qtq−1 dt ≤ nq (2np)q e−np.

Under the assumptions of the lemma, we have nq e−np ≤ 1 and, therefore,

EY
q
∗ ≤ 2 (2np)q .

The conclusion follows.
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