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1. Boundary-driven XXZ Lindblad chain

Non-equilibrium behaviour of open quantum system:

• Experimentally accessible (quasi one-dimensional spin chain materials,
         artificially assembled nanomagnets)

• Theoretically challenging:

- Interplay of magnon excitations, magnetization currents with
         twisted boundary fields ( non-equilibrium stationary state)

- Fundamental problems

   No density matrix exp(-βH)

   Non-linear response far from equilibrium

Interplay of bulk transport with boundary pumping



 Lindblad equation for open quantum systems

Lindblad (1976): General time evolution equation of a quantum subsystem

E.g.     Environment 1 (L)                               Environment 2 (R)

                                         Subsystem

Total System: Hamiltonian Htot = HL + H + HR

Subsystem: Quantum Hamiltonian H, reduced density matrix ρ(t)

Quantity of interest: Stationary density matrix ρ∗ = lim t →∞ ρ(t) ≠ exp(-βH)



Lindblad equation

                        unitary part (subsystem),  left dissipator,  right dissipator

To preserve unitarity and normalization (Tr ρ(t) = 1):

Boundary pumping: ρ∗ ≠ exp(-βH)

 Task: a) Choose H and DL(ρ) ≠DR(ρ) appropriately for physical scenario
           b) Find ρ∗
           c) Compute observables



 Lindblad equation for XXZ Heisenberg quantum chain

Anisotropic (XXZ) Heisenberg spin-1/2 quantum chain:

Exchange constant: J=1/2

Bulk interaction: Δ = (q + q-1)/2,     ε0 = 1

Boundary fields:                                (left)                                (right)

Choose  σz
u = sin θL σy  + cos θL σz  and  σz

v = - sin θR σx  + cos θR σz

y-z plane x-z plane



Boundary pumping:

Consider Lindblad terms corresponding to complete polarization in the plane
of the quantum boundary fields 

Stationary solution (without bulk dynamics): ρL,R = (1 ± σz
u,v)/2)

(y-z plane)

(x-z plane)

Bulk dynamics ==> Current, 
magnetization profile ?



•  Determine ρ from stationary Lindblad equation

•  Write ρ = SS† / Tr(SS†), S ∈ C2N

•  Matrix product ansatz

with 2x2 matrix

where 〈φ| and |ψ〉 are vectors in some space and Ai are matrices

Ai, 〈φ| and |ψ〉 have to determined such that stationary LE is satisfied!

Two steps: (1) bulk part for Ai, (2) boundary part for 〈φ| and |ψ〉 

2. Matrix product ansatz for the stationary density matrix



Solution of LE (bulk part)

Step 1: Introduce local divergence condition (different from Prosen 2011)

- remember H = ∑k=1
N-1  hk,k+1 + g1

L + gN
R

  with 4x4 matrix h = [σx ⊗ σx + σy ⊗ σy + Δ (σz ⊗ σz - 1)]/2

  and 2x2 boundary matrices gL = fL σz
u , gR = fR σz

v

- introduce 2x2 matrix

  with non-commutative auxiliary matrices Ei

- require          [h, Ω ⊗ Ω] = Ξ ⊗ Ω −  Ω ⊗ Ξ      (local divergence condition)



==> 16 quadratic equations for the 8 matrices Ai, Ei 

4 Commutation relations: 0 = [Ei, Ai]

8 relations with q-commutators, e.g.,     Δ A1 A+ - A+ A1 = E1 A+ - A1 E+

4 relations with commutators, e.g.        [A+ , A- ] = E2 A1 - A2 E1



  Solution of all 16 equations in terms of only three matrices A±, Q with relations

                       [A+ , A- ] = - (q-q-1) (b b Q - c c Q-1)

                              QA± = q±1 A± Q

                             Q Q-1 = Q-1 Q = 1

     by setting (b, b,c,c arbitrary)

     A1 = b Q + c Q-1 , A2 = b Q + c Q-1  (diagonal part of Ω)

     E± = 0

     E1 = (q-q-1)/2 (b Q - c Q-1), E2 = -(q-q-1)/2 (b Q - c Q-1)   (diagonal part of Ξ)

  Relations define Ω and Ξ in terms of A±, Q

     -  Proof by straightforward computation

     -   Ξ + κΩ is also a solution



Relation to quantum algebra Uq[SU(2)]

Use parametrization

and define A± = iαS± , Q = λ qSz

==> Defining relations for Uq[SU(2)]

  Matrix product ansatz with Uq[SU(2)] generators!

  Symmetry of bulk Hamiltonian (without boundary fields)



Representation theory

Define [x]q = (qx - q-x)/ (q - q-1)

- Finite-dimensional irreps not of interest

-Infinite-dimensional representation (with complex parameter p)

==> Explicit form of Ω!



Solution of LE (boundary part)

Step 2: Condition on boundary vectors

- remember H = ∑k=1
N-1  hk,k+1 + g1

L + gN
R

  with 4x4 matrix h = [σx ⊗ σx + σy ⊗ σy + Δ (σz ⊗ σz - 1)]/2

  and 2x2 boundary matrices gL = fL σz
u , gR = fR σz

v

- define 2x2 matrix Φ = [g,Ω] and introduce ϒk := Ω⊗(k-1) ⊗ ϒ ⊗ Ω⊗(N-k)

==> local divergence condition implies

           [H, Ω⊗N ] = Φ1
L + Ξ1 + ΦN

R - ΞN

(reduction of infinitesimal unitary part of evolution to boundary terms)



Also Lindblad operator has only boundary parts:

==> split stationary LE into two boundary equations

Define A0 = (A1+A2)/2, Az = (A1-A2)/2, Make decomposition

- left boundary: S = 〈φ| [A0 + Azσz + A+σ+ + A-σ-] ⊗ Ω⊗(N-1) |ψ〉

- right boundary: S = 〈φ| Ω⊗(N-1) ⊗ [A0 + Azσz + A+σ+ + A-σ-] |ψ〉

(likewise S†)

==> Two separate sets of equations for action of Ai on boundary vectors

==> Complete construction of ρ with some constraints on parameters



3. Isotropic Lindblad-Heisenberg chain
•  Isotropic Heisenberg chain: Δ=1 (q=1)

•  SU(2) symmetric (only bulk Hamiltonian, not boundary fields, not
    Lindblad terms)

•  For convenience: α = λ =1, µ = ν = i

•  [x]1 = x, limits q → 1 in representation well-defined

or in vector notation



Solution of boundary equations:

  Key idea: Introduce coherent states

  SU(2) commutation relations:

==> Action of Sz, S- reduced to action of S+!     (right boundary: Sz, S+ to S+)



  Left Lindblad operator can be obtained from complete polarization along
     z-axis by unitary transformation U = exp(iθLσx/2)

==> new basis

with

 new left boundary equations require:

 Solution:                           φ = tan(θL/2),



Proof: Coherent state relations and solution for φ lead to

where     ˜S = 〈φ| Ω⊗(N-1) |ψ〉,    W = i 〈φ| [S+ + S-] Ω⊗(N-1) |ψ〉

live on space for N-1 sites

                     ==>

Left Lindblad:

                                                                                                               equal with
                                                                                                               condition
Left Hamiltonian:                                                                                    on p



Treatment of right boundary similar:

  Lindblad operator can be obtained from complete polarization along
     (-z)-axis by unitary transformation U = exp(iθRσy/2)

 new right boundary equations require:

 Solution:             ψ = - tan(θR/2),     fL = - fR

==> Complete explicit construction of ρ for isotropic case

Remark: For anisotropic case and no quantum boundary fields
relation between representation parameter p and Lindblad coupling
strength Γ reads

                                    2Γ = i (qp + q-p) / [p]q



Currents and magnetization profiles:

Local conservation law for local magnetization:

                        d/dt  σn
α = jn-1

α - jnα          for α = x,y,z

with currents jnα  = 2 ∑β,γ  εαβγ  σn
β σn+1

γ =

==> Stationary case: < jnα > = jα  ∀ n

  Untwisted model θL = θR = 0 [Prosen 2011]:

•    < σn
x > = < σn

y > = 0 ∀n   (flat magnetization profiles for x and y component

•    jx = jy = 0

Proof: z-Parity symmetry Uz = (σz)⊗N of density matrix: UzρUz = ρ

==> < σn
b > = Tr (σn

b ρ) = Tr (σn
b UzρUz) = Tr (Uzσn

bUz ρ) = - < σn
b > for b=x,y

and similar for jx, jy



  Twisted case:      < σn
α > ≠ 0,    jα ≠ 0 ∀ α

All components have non-zero expectation!

•   < σn
z > = - < σN+1-n

z > ∀ n

•    jx = - jy

Proof: Key idea: Consider instead of parity another symmetry U of ρ

Specifically, for θR = - θL = π/2

U = UxVR

with Space reflection R: n → N +1 - n,

x-y Rotation of spins  V = diag(1,i)⊗N



4. Conclusions

 Matrix product construction of stationary density matrix for boundary driven 
    XXZ-Lindblad-chain using local-divergence condition

 Quadratic matrix algebra

 Relation with bulk symmetry, but not boundary terms

 Non-trivial magnetization profiles and non-vanishing magnetization current 
    for all spin components even in isotropic case with general boundary twist

Open problems:

-  Extension to other quantum systems with nearest-neighbour interaction

-  Relationship with bulk symmetry and (possibly) full integrability

-  Dynamical matrix product ansatz


