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Abstract. In recent work Hartmann et al [Phys. Rev. Lett. 102, 057202
(2009)] demonstrated that the classical simulation of the dynamics of open 1D
quantum systems with matrix product algorithms can often be dramatically
improved by performing time evolution in the Heisenberg picture. For a closed
system this was exemplified by an exact matrix product operator solution of
the time-evolved creation operator of a quadratic fermi chain with a matrix
dimension of just two. In this work we show that this exact solution can be
significantly generalized to include the case of an open quadratic fermi chain
subjected to master equation evolution with Lindblad operators that are linear in
the fermionic operators. Remarkably even in this open system the time-evolution
of operators continues to be described by matrix product operators with the
same fixed dimension as that required by the solution of a coherent quadratic
fermi chain for all times. Through the use of matrix product algorithms the
dynamical behaviour of operators in this non-equilibrium open quantum system
can be computed with a cost that is linear in the system size. We present
some simple numerical examples which highlight how useful this might be for
the more detailed study of open system dynamics. Given that Heisenberg picture
simulations have been demonstrated to offer significant accuracy improvements
for other open systems that are not exactly solvable our work also provides further
insight into how and why this advantage arises.
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1. Introduction

Developing a more detailed understanding of the numerous intriguing phenomena
displayed by strongly correlated quantum systems is one of the major theoretical
challenges in physics today. To meet this challenge a formidable arsenal of non-
perturbative, renormalization and numerical techniques have been devised. The
success of these approaches has for the most part been routed in situations at
or close to equilibrium, while comparatively little is known about the physics of
strongly-correlated systems far-from-equilibrium. Yet non-equilibrium systems are
both ubiquitous and of significant practical interest in physics. A typical example is
where a finite sized strongly-correlated quantum system is driven far-from-equilibrium
by introducing couplings to several different macroscopic reservoirs, forming an open
quantum system [1]. Under these circumstances both analytical and numerical
descriptions of the behaviour of the system become highly non-trivial.

An immediate need to study open quantum systems is given by the inevitable
decoherence and dissipation present in any realistic experimental realization of a
strongly correlated quantum system. Numerous examples of such experiments now
exist ranging from arrays of Josephson junctions [2], ultra-cold atoms in optical
lattice [3, 4], ion traps [5, 6, 7] and arrays of coupled microcavities [8, 9, 10]. Beyond
this, however, open systems are becoming increasingly relevant in themselves as efforts
are made to both understand, and also potentially exploit, the beautiful and subtle
interplay of the coherent many-body dynamics and incoherent quantum processes
they possess. One example can be found in quantum information processing [11]
where the suppression of noise is typically considered a prerequisite. Despite this it is
found that certain dissipative processes can in fact assist in the preparation of highly
entangled quantum states [12, 13, 14]. More generally some of the most common
occurrences of non-equilibrium physics are in transport problems [15] relevant to
numerous systems including quantum contacts [16], molecular motors [17], molecular
junctions [18] and other low dimensional heat conducting quantum systems [19]. In
addition to revealing a wealth of non-equilibrium phenomena, including non-diffuse
heat transfer [20] and negative differential conductance [21], the presence of noise
has been found, contrary to expectations, to enhance transmission efficiency through
a dissipative quantum network [22, 23] where it has a beneficial influence thanks
to its interplay with destructive quantum interference and energy mismatches [24].
It is therefore of technological relevance to better understand quantum mechanical
effects in driven dissipative strongly-correlated systems in order to exploit them in
achieving more robust and efficient energy transfer in artificial structures [24] and
nanomaterials [21]. Finally open quantum systems present a virtually unexplored
landscape of non-equilibrium phases transitions whose properties are likely to differ
considerably from conventional equilibrium transitions [25].

In this work we shall adopt a master equation [1] description of an open quantum
system. Our attention is focussed on a specific class of open quantum systems,
described in detail in Sec. 2, which are governed by a quadratic spinless fermionic
Hamiltonian and coupled to baths described by linear‡ Lindblad operators. Only
very recently this class of open system was solved semi-analytically [26] with this
solution later providing strong evidence [27] identifying, somewhat unexpectedly,
a phase transition in the far-from-equilibrium open XY spin chain with boundary

‡ Throughout this paper we use on occasion the phrase linear as a shorthand for operators which
are 1st order in fermionic creation and annihilation operators, as in Eq. (5).
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pumping, but no losses otherwise. Despite being a specialized type of system its
relevance is elevated by the fact that only a very limited number of exactly solvable
master equation models are known, namely those involving a single particle, harmonic
oscillator or spin. Indeed the presence of a non-equilibrium transition in this solvable
model suggests that it may well come to represent a paradigm for such phenomena
analogous to the Ising model for quantum phase transitions.

In this work we present an entirely complementary exact solution of this system
for the Heisenberg picture evolution of commonly required observables by employing
a matrix product ansatz [28, 29, 30] for the operators, often called a matrix product
operator (MPO). This result is a significant extension of the exact MPO solution
presented in [31] for the purely coherent limit of the same system. By using this
approach our work provides, through the formal structure of the MPO solution,
further physical insight into why this model is exactly solvable. The utility of our
solution, however, is only truly revealed when it is combined with powerful matrix
product based numerical methods, of which density matrix renormalization group
(DMRG) [32, 33], and more recently its quantum information inspired extension to
time-evolution [34, 35, 36], are leading examples. These numerical methods enable
the exact Heisenberg picture MPO solution of the dynamical evolution of operators to
be computed under very general situations which are not easily accessible otherwise.
Given the rich properties of the model [27] this in itself may be very useful. However,
perhaps of even greater importance, it also provides a significant non-trivial example
of where Heisenberg picture MPO numerics is exact for an open system. It was
shown [31] recently that in some cases it is much more efficient and accurate to simulate
open quantum systems in the Heisenberg picture and thus the underlying numerical
method used here can be readily applied to more general interacting systems. In
contrast to the equivalent Schrödinger picture MPO numerics [37, 38] where the
study of entanglement has provided a crucial understanding of its strengths and
limitation [39, 40, 41, 42], the merits of the Heisenberg picture numerics for general
situations is far less clear. Our result provides further evidence in understanding
when rigourously exact or good approximate Heisenberg picture MPO solutions may
exist. We note also that promising results have been found very recently in combining
solutions of the Heisenberg equations of motion with matrix product representations
of states for bosonic systems [43].

The structure of this paper is as follows. In Sec. 2 we describe the master equation
and system we shall solve exactly and introduce a particular spin chain model that our
later numerical calculations will focus on. Our solution exploits the MPO formalism
and so Sec. 3 describes all the necessary details. We then show in Sec. 4 that the
Heisenberg picture solution of many operators for a closed coherent system possesses
an MPO form with a finite dimension, a fact which is crucial for the exact solution
to be numerically accessible. In Sec. 5 we introduce an ancilla construction which
reproduces the underlying master equation introduced in Sec. 2. A crucial component
of this construction is the tracing out of ancillae and the effect of this on an MPO is
described in Sec. 6. We then combine these observations in Sec. 7 to demonstrate that
an MPO solution with a bounded dimension, identical to that of the purely coherent
case, exists for the open system considered. The versatility of this result is highlighted
in Sec. 8 where we numerically determine the MPO solutions for several situations,
including the approach to stationarity and a sudden quench of the transverse field.
Finally in Sec. 9 we conclude and comment on future work.
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2. Model

In its most general form the physical system considered in the work is a 1D system of
spinless fermions governed by a quadratic Hamiltonian which reads

Hs =
∑

ij

[

c†iaijcj + 1
2c†ibijc

†
j + 1

2cibijcj

]

, (1)

where c†j is fermionic creation operator for site j. By demanding Hs to be Hermitian
we can choose a to be real symmetric and b to be real antisymmetric matrices. To
describe an open fermi lattice we adopt the quantum master equation approach leading
to a Heisenberg picture evolution of an operator O(t) that is governed by the Lindblad
master equation of the form [1] (using h̄ = 1 throughout)

dO(t)

dt
= H{O(t)} + L{O(t)}, (2)

where the Hamiltonian and Lindblad superoperators are time-independent and defined
as

H{O(t)} = i[Hs, O(t)], (3)

L{O(t)} =
∑

γ

(

L†
γO(t)Lγ − 1

2L†
γLγO(t) − 1

2O(t)L†
γLγ

)

, (4)

respectively. Here Lγ are Lindblad operators specifying the coupling of the system to
a set of Markovian baths. We place a restriction on the operators Lγ that they are
linear in the fermionic creation and annihilation operators with the form

Lγ =
∑

j

(

ℓγj c†j + lγj cj

)

, (5)

where ℓγj and lγj are complex coefficients. A final constraint, which shall been seen
in Sec. 5 to be essential to our result, is that O(t) must be an even ordered operator,

so PO(t)P = O(t) where P =
∏N

j=1(1 − 2c†jcj) is the parity operator. Since parity is
conserved by Eq. (2) with quadratic H and linear Lγ ’s we require only that the initial
operator O(0) is even.

Very recently this class of open systems was solved semi-analytically [26] by an
entirely different approach to that which will be described here. In [26] a sophisticated
method of constructing a Fock space of operators was employed which maps the
Liouvillian into a form which can be diagonalized by a procedure analogous to the
famous solution of the XY Hamiltonian [44]. This solution gives access to a range
of properties of the system including expectation values of observables for the non-
equilibrium stationary state and excitations, as well as the spectrum of so-called
rapidities [26]. We shall exploit this solution later in Sec. 8 for testing the approach
to stationarity in a dynamical setting.

The fermionic model outlined has considerable freedom in the non-locality of the
terms in Hs and the operators Lγ . We shall consider a concrete example within this
class of open fermi systems composed of an XY spin chain with boundary pumping,
as depicted in Fig. 1. As is well known the Jordan-Wigner transformation

c†j =

(

j−1
∏

k=1

σz
k

)

σ−
j , and cj =

(

j−1
∏

k=1

σz
k

)

σ+
j , (6)
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Figure 1. A schematic plot of the open spin chain model considered in this
work relevant for transport problems. The coherent evolution of the spin chain
is described by an XY type Hamiltonian H which maps to an effective quadratic
fermionic Hamiltonian. Boundaries of the chain are subject to couplings to
baths which are described by Lindblad operators Lγ each of which map to linear
fermionic operators.

which relates spin ladder operators σ± to fermionic creation and annihilation operators
maps the XY spin-chain Hamiltonian

Hxy =
N
∑

j=1

J

(

1 + γ

2
σx

j σx
j+1 +

1 − γ

2
σy

j σy
j+1

)

+ B
N
∑

j=1

σz
j ,

directly to a spinless fermionic Hamiltonian [44] of the type in Eq. (1). Here J is the
strength of the nearest-neighbour spin coupling, γ is the anisotropy, B is a transverse
magnetic field, and σα

j is the α = {x, y, z} Pauli spin operator on the jth spin. The
boundary pumping is described by the set of Lindblad operators

L1 =
√

ΓL
+ σ+

1 , L3 =
√

ΓR
+ σ+

N ,

L2 =
√

ΓL
− σ−

1 , L4 =
√

ΓR
− σ−

N .

where ΓL,R
+,− are positive coupling constants. This essentially models a system where

the two ends of the spin chain are coupled to separate thermal and magnetic baths.
For an uncoupled chain, where J = 0, the ratios of the local bath couplings
ΓL,R
− /ΓL,R

+ = exp(−2B/TL,R) give the temperature of the thermal state that the
baths drive the boundary spins to. This spin chain setup is not only of importance
to heat and spin transport problems [15] in 1D but also strong numerical evidence
suggests it possesses a non-equilibrium phase transition as B is varied [27]. Later in
Sec. 8 we shall present some exact numerical results for the dynamical behaviour of
this system possible only through the solution that we will now describe.

3. Matrix product operators

The framework in which we cast our exact solution of Eq. (2) is the matrix product
representation of operators. Given a system composed of N sites each with a local
d-dimensional Hilbert space spanned by the states | j〉 we define the tensor-product
basis states as | j〉 = | j1〉 | j2〉 . . . | jN 〉 where j = (j1, j2, . . . , jN ) is a vector of physical
indices. An arbitrary operator O acting on this system can then be expanded in the
operator basis | j〉 〈k | as O =

∑

j,k oj,k | j〉 〈k |. A matrix product operator (MPO) is
where the coefficients oj,k of this expansion are expressed in the following form [29, 30]

oj,k = 〈L |A[1]j1k1A[2]j2k2 . . .A[N ]jN kN |R〉 , (7)

where A[n]jnkn is a matrix, of dimension χ × χ, for each site n, selected by
two independent physical indices jn and kn for that site, while 〈L | and |R〉 are
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Figure 2. The graphical representation of an MPO for an operator O. For each
lattice site n the physical indices jn and kn, represented as the thick vertical lines
respectively, select a χ × χ matrix A[n]jnkn . The joined up thin horizontal lines
then represent the site-ordered multiplication of these matrices, and finally the
small circles at the ends depict the boundary vectors 〈L | and |R〉 closing the
chain.

χ-dimensional row and column boundary vectors, respectively. Each expansion
coefficient oj,k is therefore encoded as a particular ordered product of A matrices
associated to each site which is contracted to a scalar by the fixed boundary vectors.

Given that there are in general exponentially many coefficients oj,k a matrix
product representation in Eq. (7) yields a highly compact description of an operator
if it requires only a small dimension χ. For this reason, and others, matrix product
representations for both states and operators have been applied with considerable
success in a variety of related numerical methods. The key to their success is that
many states or operators, for 1D systems at least, can be very accurately approximated
by a matrix product representation of small dimension despite formally requiring a
much larger intractable dimension to be exact. In contrast to this the MPO solutions
we shall present require only a bounded dimension for the representation to be exact
when describing operators evolving according to the open system introduced in Sec. 2.
This means that by utilizing one of these matrix product methods, namely the time-
evolving-block-decimation (TEBD) algorithm, we can evaluate the exact solution
numerically. However, beyond this much is learnt about the nature of the solution
by examining the structure of the formal MPO solution itself. For this purpose we
utilize an entirely lower triangular form for all A-matrices, introduced in [45, 46, 47],
which permits exact low-dimensional MPO representations for many operators to be
constructed easily. The key feature of this approach is that the lower triangular form
is preserved under the standard matrix product manipulations such as direct sum
or direct product. This means that if an operator OA has a MPO representation
with matrices A of dimension χA, and an operator OB has one with matrices B with
dimension χB, then the operator OA+OB has matrices A⊕B and OAOB has matrices
A ⊗ B with a dimension of at most χA + χB and χAχB, respectively. Thus much of
the algebraic convenience of simple product operators (i.e. O = O1 ⊗ O2 ⊗ · · · ⊗ ON

over a system of N sites and is an MPO with a χ = 1) can be extended to highly
non-trivial operators with an MPO dimension greater than unity.

For our purposes we need only consider the simplest MPO with a general 2 × 2
lower-triangular form. For an operator O we assign the following matrices to each site

A =

[

p 0
q r

]

.

where p, q and r are d × d matrices representing local operators on a site. Note that
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in this compact form of A the physical indices j and k are subsumed into physical
operators p, q and r, while the row and column indices of the A matrix are the internal
χ = 2 dimensional indices of the MPO representation. To compute the full operator
described by assigning A to every site we note that the standard multiplication of two
A matrices is equivalent to the tensor product of the physical operators they contain
as

A × A =

[

p ⊗ p 0
q ⊗ p + r ⊗ q r ⊗ r

]

.

For a longer string of multiplications A × A × . . . × A this generalizes to yield
an operator in the bottom left corner which is the sum of all terms of the form
r⊗ · · ·⊗ r⊗ q⊗ p⊗ · · ·⊗ p with the location of the q operator in the string translated.
Finally for a lower-triangular MPO the full operator is extracted via the left and right
boundary states 〈L | = (0, 1) and |R〉 = (1, 0)T , which select the bottom left operator
“matrix element” from the matrix product. Using appropriate choices of a, b and c
many useful single-particle operators can be formed, for example

∑

j σz
j is formed by

each site having a matrix [45]

A =

[ 1 0
σz 1 ] .

Notice that an MPO representation is based on a tensor-product structure and
therefore implicitly assumes commutativity between local operators appearing in the A

matrices for different lattice sites. The local operators cannot therefore be fermionic
directly. For products of such operator sums, which we shall consider shortly, this
means that MPO’s always arrange the resulting local operators in lattice site ordering.

4. Exact MPO solution for a closed system

Using the lower-triangular MPO formalism we reexpress the finite-dimensional MPO
solution described in [31] for any fermionic operator governed by purely coherent
evolution with a quadratic Hs. To do this we need only consider an arbitrary local
sum of creation and annihilation operators Cℓ = xcℓ + yc†ℓ. The formal solution to the
equation of motion of this operator has the standard form

Cℓ(t) = eHt{Cℓ} = eiHstCℓe
−iHst.

It can be readily shown that the action of H on Cℓ for a quadratic Hs is

H{Cℓ} = i[Hs, Cℓ]

= ix
∑

j

{

ajℓcj + bjℓc
†
j

}

+ iy
∑

j

{

ajℓc
†
j + bjℓcj

}

,

and thus Cℓ is transformed into a sum of linear operators spread across the lattice.
The linearity of H implies that its repeated application any integer number of times
p as Hp{Cℓ} generates only a linear operator. Now since the formal solution of the
equation of motion can be expanded as

Cℓ(t) =

∞
∑

p=0

tp

p!
Hp{Cℓ}, (8)
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we establish the well known fact that the Heisenberg picture unitary time evolution of
the operator Cℓ governed by a quadratic Hamiltonian is closed. The general solution
can then be written as

Cℓ(t) =

N
∑

j=1

(

αℓj(t)cj + βℓj(t)c
†
j

)

, (9)

where αℓj(t) and βℓj(t) are time-dependent complex coefficients containing all the
non-trivial features of the evolution. To recast this solution in MPO form we apply
an inverse Jordan-Wigner transformation back to the equivalent spin representation
giving

Cℓ(t) =

N
∑

j=1

(

j−1
∏

k=1

σz
k

)

(

αℓj(t)σ
+
j + βℓj(t)σ

−
j

)

. (10)

The spin operator on the righthand side can be expressed as a simple 2 × 2 lower-
triangular MPO, independent on the number of sites N , with site-dependent matrices

A[j] =

[ 1j 0
Xℓj(t) σz

j

]

, (11)

where Xnj(t) = αℓj(t)σ
+
j + βℓj(t)σ

−
j . From our earlier discussion the bottom left

Xℓj(t) operator inserts the necessary site and time dependent superposition of spin
raising and lowering operators into the product, while the bottom right σz

j operator
creates the Jordan-Wigner operator string which establishes the appropriate anti-
commutative behaviour.

Since the evolution is unitary the solution to c†j(t) and cj(t) for all sites j
automatically provides the time evolution for any string of local sums of creation and
annihilation operators, i.e. (CpCq . . . Ck)(t) = Cp(t)Cq(t) . . . Ck(t). Two consequences
of this are that the dynamics of a quadratic Hamiltonian H conserves the order of any
initial fermionic operator and the MPO solution for the operator string is simply the
direct product of the MPO solution for each constituent C-operator given in Eq. (11).
The latter then straightforwardly determines the fixed matrix product dimension χ
required for the solution of any given operator string so χ = 2n for an nth order
operator. For example, a general quadratic operator Cp(t)Cq(t) has a 4 × 4 MPO
representation, independent of p and q given by matrices for each site j as

B[j] =









1j 0 0 0
Xqj(t) σz

j 0 0
Xpj(t) 0 σz

j 0
Xpj(t)Xqj(t) Xpj(t)σ

z
j σz

j Xqj(t) 1j









, (12)

where Xpj(t) and Xqj(t) are the site-dependent X operators associated to Cp(t) and
Cq(t). The Kronecker product of the MPO solutions gives the appropriately enlarged
boundary vectors 〈L | = (0, 0, 0, 1) and |R〉 = (1, 0, 0, 0)T which select the accumulated
operators in the bottom left corner as

Cp(t)Cq(t) =

N
∑

j=1

Xpj(t)Xqj(t) +

N
∑

i=1

∑

j>i

Xpi(t)

(

j−1
∏

k=i

σz
k

)

Xqj(t)

+

N
∑

i=1

∑

j<i





i−1
∏

k=j

σz
k



Xqj(t)Xpi(t).



Exact matrix product solutions in the Heisenberg picture ... 9

A general feature of such solutions for strings of C operators is that each constituent
C operator contributes its own X operator to the representation and shows how highly
constrained the evolution of operators is in the space of operators, a fact which has
ultimately permitted such a compact representation.

Common spin-chain observables such as σz
j , σx

j σx
j+1, and σy

j σy
j+1 are contained in

this class of 4× 4 MPO’s. Long-range correlations like σz
pσz

q involve quartic fermionic
operators, independent of p and q and thus require χ = 16. However, the behaviour
of some operators can be very different. For local spin observables such as σx

j and σy
j

the fermionic representation obtained via an inverse Jordan-Wigner transformation
acquires a linearly growing order with the site index j due to the string of (1 − 2c†c)
operators which appear. Such an operator could then require an exponentially growing
MPO dimension χ = 2|j| to describe its exact solution. Correlations like σy

pσy
q behave

similarly with an exponentially growing dimension χ = 4|p−q| dependent on their
separation. What we shall now show in the remainder of this paper is that the χ
required for the MPO solution of even ordered fermionic operators evolving according
to the open system described in Sec. 2 is identical to that of the purely coherent
system.

5. Ancilla master equation construction

Open quantum systems typically arise when the system of interest interacts with
a large bath or reservoir, often identified as the system’s environment. Using
this approach Lindblad master equations can be rigorously derived using various
microscopic models of the system-environment interactions under the Born-Markov
approximation and in the limit of extremely large reservoirs [1]. To prove that an
exact finite dimensional MPO representation exists for the open systems introduced
in Sec. 2 we shall instead employ a derivation of a master equation similar to that of
non-selective continuous measurement [1]. While this construction itself is perhaps less
physically motivated it has the advantage for our purposes that it yields a Lindblad
master equation exactly with no additional approximations.

A non-selective continuous measurement process involves dividing time into small
intervals of length δt with each interval associated to a separate independent ancilla (or
probe) forming a time-ordered chain. At the beginning of each interval δt the system
evolves coherently and interacts with the associated ancilla which is subsequently
measured at the end of the interval. Depending on the interaction, measurement and
ancilla initial state this setup represents a general indirect continuous monitoring of
the system [48, 1]. In the case where the indirect measurement is ideal the evolution
of the system is frozen by the quantum-Zeno effect. For more general imperfect
measurements the system evolves according to a master equation with Hermitian
Lindblad operators. In order to model the linear fermionic Lindblad operators
introduced in Eq. (5) we modify this construction slightly by considering a different
class of system-ancilla coupling and trace out rather than measure the ancilla at every
time step. As we shall show below this setup, depicted in Fig. 3, produces in the
continuous limit an effective evolution of the system that is again described exactly
by a Markov master equation with the chain of ancillae representing a manifestly
delta-correlated environment in time.

The constructions begins by augmenting the system of N sites with a chain of
τ +1 ancilla sites described by the fermionic modes at with t = 0, 1, · · · , τ . Occupation
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Figure 3. (a) The ancilla construction can be visualized as a time-ordered chain
of ancilla systems associated to each interval of time δt and otherwise frozen in
the initial state | 0〉 until that particular time. At time t − δt the ancilla-system
Hamiltonian switches the interaction on with the appropriate t − δt ancilla for a
duration δt. (b) At time t the Hamiltonian switches the interaction to the next
ancilla. All earlier ancilla never interact with the system again and can be traced
out.

states of the system + ancillae are chosen to be defined by the specific mode ordering

|n,m〉 = (c†1)
n1 · · · (c†N )nN (a†

τ )mτ · · · (a†
0)

m0 | vac〉 , (13)

where n = (n1, · · · , nN) and m = (m0, · · · , mτ ) are binary vectors of occupation
numbers over the ancillae and system modes, respectively. By placing the ancillae
modes to the right this choice, in conjunction with the Jordan-Wigner transformation
defined in Eq. (6), ensures that any system operator has a spin equivalent of the
form§ Os(t) = Os(t) ⊗ 1a, where 1a is the identity over the corresponding ancillae
spins. This enables the tracing of spins to be completely equivalent to the tracing
of the corresponding fermionic mode. The ancilla mode label t is essentially a time
label denoting at which time interval the full Hamiltonian of the system will involve
that ancilla mode, as depicted in Fig. 3. In Eq. (13) we have also ordered the ancillae
amongst themselves so their time label increasing inwards from the right so tracing can
proceed iteratively from the boundary. The full Hamiltonian of the system + ancillae
is composed of two parts; the time-independent system Hamiltonian Hs involving only
system modes, and Hi(t) which is a time-dependent interaction Hamiltonian between
the system and ancillae modes. The time-dependence of Hi(t) is taken to be piece-wise
constant over intervals δt giving a full Hamiltonian

H(t) = Hs + Hi(t), (14)

= Hs +

√

κ

δt

τ
∑

t=0

Θ(tδt− t)Θ(t − tδt − δt)(a†
tS + S†at),

where S is a system operator and Θ(t) is the Heaviside function. Notice that the
interaction between the lattice and ancilla in Eq. (14) depends on δt and is singular
in the limit δt → 0. This is physically required in order for the ancilla to have a finite
influence on the lattice in the limit of a vanishingly small interaction time [48]. Also
the ancillae possess a zero self-Hamiltonian so the only dynamics acting upon them
is that generated by the terms in Hi(t). As a final definition for this construction we
take the initial time t = 0 state ρ of the system + ancillae to have all ancillae modes
unoccupied, but otherwise arbitrary.

§ For notational clarity we do not distinguish symbolically between a fermionic operator and its
Jordan-Wigner transformed spin equivalent. It should be clear from the context which is implied.
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Let us focus on a particular time t = Tδt. Between the time t and t + δt the
Hamiltonian H(t) is time independent and only involves the system modes and the
ancilla mode aT . For this reason we shall, without loss of generality, restrict our
considerations to these modes only‖. To make the connection to MPOs transparent
we perform a Jordan-Wigner transformation and work with a spin representation. The
initial density matrix at time t = 0 becomes a spin state in which the lattice and all
ancilla spins are uncorrelated ρ = ρs ⊗ | ↑〉 〈↑ |T with ρs being an arbitrary spin state
of the system. At time t the initial operator O(t) for the system + ancilla spin is
composed of system modes only and so it transforms to O(t) = Os(t) ⊗ 1T , where
Os(t) is the system operator resulting from earlier evolution. Similarly the relevant
interaction terms in H(t) transform to the spin operators

Hi(t) =

√

κ

δt

{

σ−
T PS + S†Pσ+

T

}

,

whereP =
∏N

j=1 σz
j is the spin equivalent of the parity operator for the system. During

the time interval δt the formal solution for the evolution is

O(t + δt) = ei{H+Hi(t)}δtO(t)e−i{H+Hi(t)}δt, (15)

which will in general leave an operator defined over both the lattice and ancilla spins.
Since 〈O(t+δt)〉 = tras[ρO(t+δt)] the effective time-evolved lattice operator is defined
by tracing out ancilla spin T resulting in partial expectation value Os(t + δt) =
〈↑ |O(t + δt)| ↑〉T . The expectation value 〈O(t + δt)〉 can then be expressed solely
in terms of system operators as 〈O(t + δt)〉 = trs[ρsOs(t + δt)]. Expanding Eq. (15)
to 2nd order gives

O(t + δt) = O(t) + iδt[Hs + Hi(t), O(t)]

+
(iδt)2

2!
[Hs + Hi(t), [Hs + Hi(t), O(t)]] + · · · ,

which can be simplified considerably after the partial expectation value is taken
due to the special choice of interaction Hi(t) and ancilla initial state | ↑〉T . In
particular 〈↑ |Hi(t)| ↑〉T = 0 signifying that the ancilla has no direct back action on the
system [48, 1]. The surviving 2nd order term involving Hi(t) is [Hi(t), [Hi(t), O(t)]] =
Hi(t)

2O(t) − 2Hi(t)O(t)Hi(t) + O(t)Hi(t)
2 which then also simplifies since

〈

↑
∣

∣Hi(t)
2
∣

∣ ↑
〉

=
κ

δt
S†S,

〈↑ |Hi(t)O(t)Hi(t)| ↑〉 =
κ

δt
S†POs(t)PS,

Using the resulting evolution

Os(t + δt) = Os(t) + iδt[Hs, Os(t)] −
δt2

2
[Hs, [Hs, Os(t)]] (16)

+
κδt

2

(

2S†POs(t)PS − S†SOs(t) − Os(t)S
†S
)

+ · · · ,

‖ Ancillae modes T + 1, · · · , τ which are yet to interact are spectators in the proceeding calculation
since neither O(t) nor H(t) contain any of these modes. The ancillae modes 0, · · · , T − 1 which have
previously interacted may be contained in O(t). The proceeding calculation is the same regardless of
whether these modes are traced out before or after the considered time interval δt. Thus for brevity
we assume that they have been traced out before in the same fashion as we shall trace out ancilla
mode T below.
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an equation of motion is formed by taking the continuous limit as

∂

∂t
Os(t) = lim

δt→0

Os(t + δt) − Os(t)

δt
,

= i[Hs, Os(t)] +
κ

2

(

2L†Os(t)L − L†LOs(t) − Os(t)L
†L
)

.

An implicit inverse Jordan-Wigner transformation back to spinless fermions can be
assumed whereupon we see that the construction has yielded a standard Lindblad
master equation [49, 50] with Lindblad operators L = PS. The construction can
be straightforwardly extended to account for multiple Lindblad operators Lγ by
introducing more ancillae and additional interactions of the form in Eq. (14) at each
time interval. It also admits the option of having explicitly time-dependent Lindblad
operators Lγ(t).

The presence of the P operator relating the coupling S to the resulting Lindblad
operator L has important consequences. Following our requirements outlined in Sec. 2
our aim is for this construction to model linear L operators. For even parity operators
O(0) the P operator plays no role making the coupling S equivalent to the Lindblad
operator and therefore linear also. For the same choice of linear coupling S odd parity
operators O(0) instead evolve according to a different Lindblad superoperator L̄ of
the form

L̄{O(t)} = −
(

S†O(t)S + 1
2S†SO(t) + 1

2O(t)S†S
)

, (17)

with a sign flip of the first term signifying that the Lindblad operators L are now
higher order. Alternatively, for odd parity operators to evolve with linear Lindblad
operators L the interaction S must instead include the parity and be higher order.

6. Tracing out ancilla within an MPO

A crucial step in the master equation construction is the repeated tracing out of an
initially uncorrelated ancilla. We now detail the consequences this step has on the
resulting MPO representation of the system operator Os(t) given an MPO of the full
operator O(t). Specifically, let us take O(t) as being represented by MPO matrices
A[j] for each site j of dimension χ, and, without loss of generality, take the ancilla to
be the last site j = N + 1.

Given an initial density matrix ρs ⊗ ρa Fig. 4 shows that the MPO representing
the system operator Os(t), satisfying trsa[O(t)ρs ⊗ ρa] = trs[Os(t)ρs], can be found
by contracting in isolation the single site ancilla density matrix ρa with the matrices
A[N+1] of O(t). The contribution of the ancilla to the remaining MPO is then reduced
to a matrix T =

∑

jk A[N+1]jk(ρa)jk whose effect is simply to transform the right
boundary vector as T |R〉 = |R′〉. The MPO for Os(t), defined only over system sites
j = 1, · · · , N , then retains the same set of matrices A[j] for those sites, but possesses
the new right boundary vector |R′〉. Thus, so as long as the initial density matrix
between the system and ancilla is uncorrelated, the dimension of the MPO for Os(t) is
identical to that of O(t). This conclusion can be readily seen to hold for any number
of initially uncorrelated ancilla located at the right edge of the total system.

For clarity let’s consider what type of operators arise from using an arbitrary left
boundary vector with lower-triangular MPO’s. Using the earlier formal solution B[j]

for a generic quadratic operator Cp(t)Cq(t) given in Eq. (12), the introduction of an
arbitrary right boundary vector |R′〉 = (α, β, γ, δ)T , while keeping 〈L | = (0, 0, 0, 1),
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Figure 4. Given that the full ancilla-system operator O(t) is described by an
MPO the computation of the expectation value 〈O(t)〉 is found by contracting it
with the system + ancilla density matrix and performing a trace which contracts
away in pairs the remaining physical legs (vertical lines). Since the system and
ancilla are uncorrelated the trace over the ancilla can be performed in isolation
reducing its MPO matrices A[N+1] to a single matrix T. The reduced system
operator Os(t) retains the same MPO matrices A[j] spanning its sites j = 1, . . . , N
but possess a new right boundary vector |R′〉 resulting from transforming |R〉 with
the matrix T.

gives a weighted sum of the bottom row of operator “matrix elements”. More precisely
it yields an operator

G(t) = δ 1+ γPCp(t) + βPCq(t) + α Cp(t)Cq(t), (18)

which now contains, modulo a parity operator P, linear and zeroth order operators
that are derived from the operators appearing in the quadratic operator string with
the admixture determined by the components of |R′〉. In general an arbitrary right
boundary vector |R′〉 for an nth order string Cp(t)Cq(t) . . . Ck(t) generates a sum of
all operators of order less than or equal to n derived from the constituents of this
string. When the parent string operator is an even parity operator then lower order
odd parity terms, such as the linear terms in Eq. (18), acquire an additional factor
of P. The opposite occurs when tracing a parent string operator which has an odd
parity.
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The appearance of P operators coincides with terms which do not share the parity
of the parent string Cp(t)Cq(t) . . . Ck(t) and thus they violate parity conservation.
These terms, however, are never generated by the ancilla construction introduced,
since tracing out the ancilla spin in the specific initial state ρa = | ↑〉 〈↑ | does not
generate an arbitrary boundary vector |R′〉. Instead the allowed structure for |R′〉
can be readily discerned by again considering the operator O(t) = Cp(t)Cq(t) starting
with the standard |R〉. Tracing out the ancilla spin j = N + 1 results in the partial
expectation value of the matrix B[N+1] from Eq. (12) with the state | ↑〉 and yields a
matrix T as

T =









1 0 0 0
0 1 0 0
0 0 1 0
ζ 0 0 1









,

where the complex number ζ = 〈↑ |Xp(t)Xq(t)| ↑〉 is not necessarily zero. Absorbing
this matrix into the boundary gives |R′〉 = (1, 0, 0, ζ)T signifying that only zeroth
and quadratic terms can appear. Depending on the nature of the system-ancilla
interaction tracing out a single ancilla spin for a general nth order operator string can
in principle generate a boundary vector |R′〉 corresponding to a sum of operators of
order n, n−2, n−4, . . . ,mod(n, 2). This is then consistent with the resulting incoherent
evolution preserving the parity of the initial fermionic operators.

This shows that a given lower-triangular MPO’s already possess the capacity
to describe a very specific class of mixed order operators simply by varying one of
the boundary vectors. As described in Sec. 4 the coherent evolution according to a
quadratic Hamiltonian H of any one C operator in a string is described by a specific
time-dependent X operator in its MPO representation. This is true regardless of the
boundary vector, and so the same coherent quadratic evolution for this type of mixed
order operator is automatically captured by this MPO solution.

7. Exact open system MPO solution

7.1. Building an MPO solution

The results of the preceding sections can be readily combined to demonstrate that the
bounded dimension of MPOs seen for coherent quadratic Heisenberg picture evolution
also applies to even parity operators evolving according to the specific open system
introduced in Sec. 2. As mentioned in Sec. 5 for even parity operators the requirement
for linear Lindblad operators is met by using a linear coupling operator S between the
system and ancilla. This, along with a quadratic system Hamiltonian Hs, makes the
full time-dependent system + ancillae Hamiltonian H(t) quadratic. If all the ancillae
modes are retained, as depicted in Fig. 5(a), then the subsequent evolution would
be entirely coherent and would represent a purification of the open dynamics of the
system alone.

Since we have a coherent quadratic evolution, following the discussion in Sec. 4,
an exact MPO solution of fixed dimension therefore exists for the full operator O(t).
To extract the reduced operator Os(t) for the system for any time 0 ≤ t ≤ τδt the
entire ancillae chain is traced out, of which only those labelled up to t have any
relevance. Given that the ancillae and system are uncorrelated initially the tracing
out of the ancillae has no effect on the resulting MPO dimension for Os(t). The
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Figure 5. A completely coherent representation of the incoherent evolution of
the open system introduced involves keeping track of the full time-ordered chain
of ancilla. If at some time 0 ≤ t ≤ τδt the reduced system operator is required
then the entire ancillae chain is traced out leaving behind a time-ordered product
of transformation matrices T. The effect of this is to leave the matrices A[j]

describing the system sites unchanged from the form they acquired due to the
coherent evolution with the ancilla up to time t and instead introduces a time-
dependent right boundary vector |R(t)〉.

tracing out of the ancilla sites yields a product of time-ordered T matrices¶ as shown
in Fig. 5(b). The incoherent effects induced by the ancilla are entirely captured by a
time-dependent boundary vector |R(t)〉 = Tt · · ·TδtT0 |R〉. This therefore establishes
that for any even-ordered initial system operator Os(0) there is an equality of the
required MPO dimension for its coherent evolution with a quadratic Hamiltonian and
its incoherent evolution with this special type of open system. Since mixed order
operators arising from tracing out any single ancilla can also be coherently evolved,
with no change in their MPO dimension, this conclusion is independent of when the
tracing is performed. In particular ancilla may be traced out immediately after they
interact, as done explicitly in Sec. 5, and thus the bounded MPO dimension applies
to the continuum limit as well. We demonstrate this with some numerical examples
in Sec. 8.

7.2. Properties of the MPO solution

Here we make some additional comments on the MPO solution found. Firstly, the
existence of an exact solution for this open system is not simply a consequence of
the closure of the equations of motion for the lowest order as it is for quadratic
coherent evolution in Sec. 4. The lack of unitarity of the evolution means that
(CpCq . . . Ck)(t) 6= Cp(t)Cq(t) . . . Ck(t) in general so knowledge of the evolution of
lower order operators does not furnish us with knowledge of the evolution of higher
order products. Secondly, as shown in Sec. 6 the formal structure of the MPO solution
with a time-varying boundary vector with |R(t)〉 6= (1, 0, · · · , 0)T implies that the
evolution of an initial nth order operator will involve a special type of mixed order

¶ For ancilla related to later times which have yet to interact the transformation matrix T = 1.
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operator composed of equal or lower order operators only. This behaviour for the
operator order, revealed by the formal MPO solution, is entirely consistent with what
is seen for other related open systems [1].

A classic example of this is provided by a modified version of the damped
harmonic oscillator. Here the coherent part of the master equation in Eq. (3) has
H = ωb†b where ω is the oscillator frequency and b is its corresponding bosonic
annihilation operator. We then take the Lindblad superoperator L in Eq. (4) as
being described by a single linear Lindblad operator L = αb + βb† analogous to
the fermionic model introduced in Sec. 2. Since any initial operator of the system
can be expanded as O(t) =

∑

nm onm(t)(b†)n(b)m with n, m ≥ 0 and coefficients
omn(t), we need only consider the effect of the righthand side of Eq. (2) on a
general term within this expansion. The action of the coherent part is simply
H{(b†)n(b)m} = iω(n − m)(b†)n(b)m, while the Lindblad contribution gives

L{(b†)n(b)m} = 1
2 (|β|2 − |α|2)(n + m)(b†)n(b)m

+ |β|2nm(b†)n−1(b)m−1

− 1
2α∗βm(m − 1)(b†)n(b)m−2

− 1
2αβ∗n(n − 1)(b†)n−2(b)m.

Thus whenever |β| > 0 the action of (H + L) is to leave the order of a constituent
term (b†)n(b)m unchanged as (n + m) or reduced by two. The formal solution
O(t) = exp(H + L)t{O(0)} for an initial operator O(0) of order n (odd or even)
will in general include contributions only from orders n, n − 2, n − 4, . . . ,mod(n, 2).
An identical type of analysis can be performed for an open bosonic lattice defined by
annihilation operators bj for each site j and again governed by a quadratic Hamiltonian

H =
∑

ij

[

b†i āijbj + 1
2b†i b̄ijb

†
j + 1

2bib̄ijbj

]

, (19)

where ā and b̄ are real symmetric matrices, along with linear Lindblad operators

Lγ =
∑

j

(

ℓγj b†j + lγj bj

)

. (20)

This readily confirms that the lack of growth of an operators order seen for a single
oscillator also applies to the fully bosonic version of the model introduced in Sec. 2.

Applying a similar analysis on the fermionic lattice model itself reveals that for
the specific Lindblad superoperator L defined in Eq. (4) only initially even ordered
operators display this closure property. In contrast odd ordered operators can be
shown to acquire a proliferating order under the repeated application of L. When such
growth in the order occurs the link between operator order and MPO dimension seen
for the coherent solution in Sec. 4 suggest that the dimension will not be bounded+.
Notice that our ancilla construction applied to odd parity operators does not model
L, but rather L̄. Incoherent evolution according to L̄ reverses the situation with odd
parity operators now displaying no growth in their order. Thus the ancilla construction
presented in Sec. 5 models an incoherent evolution where all operators O(t) have a
bounded order, which in turn permits the bounded dimension MPO solution. It is
only for even parity operators, however, that this evolution corresponds to the precise
open system defined in Sec. 2.

+ Numerical evidence following calculations like those to be presented in Sec. 8 confirms this.
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Figure 6. (a) The Schmidt coefficients λν for the splitting between sites 25
and 26 are plotted on a log-log scale for the MPO’s of the operators σz

25, σz
1σz

50
and σx

24σy
27 after a time Jt = 50 of evolution. The analytical limit for the MPO

dimension for each operator is χ = 4, 16, 64, respectively and these are depicted
by the corresponding dashed vertical lines. (b) The evolution of the central z-
magnetization 〈σz

25〉 (solid) and boundary z-correlation 〈σz
1σz

50〉 (dashed) up to a
time Jt = 50 starting from a spin-polarized initial state. All these calculations are
performed on an XY chain of length N = 50 with γ = 0.75, B/J = 1, ΓL

−
/J = 0.5,

ΓL
+/J = 0.3, ΓR

−
/J = 0.5 and ΓR

+/J = 0.7.

Finally, the MPO solution offers a more efficient representation than the closure
of the operator order can provide on its own. In particular once the exact χ is used
for the MPO its description only grows linearly with the number of sites N . This is
also an improved scaling compared to alterative approaches to this open fermi system
exploiting fermionic Gaussian states [52]. They display a N2 scaling and moreover are
restricted to considering initial states which are of Gaussian form. The Heisenberg
picture MPO approach used here can compute properties for any initial state which
can itself be well approximated by a matrix product state.

8. Numerical examples

Having shown that there exists a formal MPO solution with a specific fixed dimension
χ for a given system operator we now show that this solution can be determined
numerically via Heisenberg picture evolution with the TEBD algorithm [34, 35, 31].
While the formal solution presented has no restrictions regarding the locality of the
terms in Hs and the Lindblad operators Lγ , efficient integration of the equation of
motion via the TEBD algorithm requires that terms are nearest neighbour. Moreover
since linear Lindblad operators involving fermionic creation and annihilation operators
away from the boundaries acquire a many-spin Jordan-Wigner σz string the numerical
solution is restricted to noise terms on or one site in from the boundary. This means
that specific open XY spin chain model introduced in Sec. 2 can be solved with this
numerical method.

The numerical solution determined by TEBD unmistakably demonstrates the
existence of the bounded MPO dimension proven above for this open system, just
as it does for the coherent limit [53]. When normalized according to the Frobenius
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norm, where
∑

j,k oj,k = 1, the MPO solution produced by TEBD∗ is in canonical
form [34, 51]

oj,k =
〈

Λ[1]
∣

∣

∣Γ
[1]j1k1Λ[2]Γ[2]j2k2 . . .Λ[N ]Γ[N ]jN kN

∣

∣

∣Λ[N+1]
〉

, (21)

where the Schmidt decomposition [11] of the operator for any contiguous bipartition
is explicitly contained in the representation [37]. Here Γ[n]jnkn are sets of matrices,
different to the lower triangular matrices A[n]jnkn used earlier but performing the
same function. The new important addition to this representation are the diagonal
matrices Λ[n] for the bulk (i.e. n = 2, . . . , N − 1) with diagonal elements equal to the
Schmidt coefficients λν of a bipartition after site n. The appropriately sized boundary
vectors are now

〈

Λ[1]
∣

∣ = (1, 0, . . . , 0) and
∣

∣Λ[N+1]
〉

= (1, 0, . . . , 0)T , representing the
single unit Schmidt coefficient before site 1 and after site N . Once in this canonical
form Schmidt coefficients allow the effective MPO dimension of the operators to be
identified by counting the number of significant Schmidt coefficients ǫ ≤ λν ≤ 1, where
ǫ is a some small threshold.

For an XY chain of length N = 50 (see Fig. 6 for the parameters used) we have
calculated the evolution of the operators σz

25, σz
1σz

50 and σx
24σ

y
27. In Fig. 6(a) the

central Schmidt coefficients for the chosen operators after a time Jt = 50 of evolution
are shown. A clear cut-off in the λν ’s is seen where their value drops in excess of 11
orders of magnitude. This cut-off is robust to time-evolution and the insignificant λν ’s
are numerical noise that may be safely truncated away. The effective MPO dimension
given by this cut-off coincides with the dimension expected from the formal solution.
We may therefore rigidly enforce the exact MPO dimension required and given the lack
of truncation the only error in the time integration comes from the customary Trotter
expansion used in TEBD. In Fig. 6(b) the resulting time-evolution of the central z-
magnetization σz

25 and boundary-boundary z correlation σz
1σz

50 is shown for an initial
spin-polarized state | ↓↓ · · · ↓〉. The transient evolution displays plateaus caused by
the time it takes for the influence of the boundary pumping to propagate across the
chain. This is better illustrated in Fig. 7 where the evolution of the z-magnetization
profile of the entire chain is plotted up to a time Jt = 500. Being plotted with a
logarithmic timescale it is apparent that the majority of the z-magnetization in the
bulk is eroded rapidly by the dynamics from its initial value. However, in Fig. 8(a) a
more detailed comparison of the z-magnetization profile at a time Jt = 500 and the
stationary profile [26] reveals that for N = 50 spins this time is only sufficient to drive
the boundary z-magnetization to their stationary values and that the bulk is still far
from stationary. Tests reveal that a significantly longer evolution time is needed to
achieve convergence of the bulk z-magnetizations.

To demonstrate a time-dependent dynamical scenario♯ we consider the simplest
case of an abrupt quench of the transverse field. Specifically we evolve the initial
spin-polarized state with B/J = 10 for a time Jt = 500, analogous to the previous
example. Then at the time Jt = 500 the transverse field is switched instantaneously
to B/J = 1 and the evolution is continued. In Fig. 8(b) the evolution of the central
z-magnetization 〈σz

25〉 is shown as a function of time around the quench point. For
times Jt < 500 we see that there is a slow change in 〈σz

25〉 and it is still quite far

∗ The numerical MPO solution will not be lower-triangular. Instead it will be a gauge equivalent
canonical solution which maintains an orthonormal matrix product structure essential for stability
and convergence of the numerical algorithm.
♯ The application of the TEBD method can be readily adapted to deal with time-dependence in the
Heisenberg picture.
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Figure 7. The z-magnetization profile for the entire chain over time plotted
against τ = log10(1 + Jt) up to a time of Jt = 500. For visual convenience the
stationary t → ∞ magnetization profile determined from the exact solution given
in [26] is plotted at τ = 3. See also Fig. 8(a) for a comparison of the stationary
profile with that attained after a time Jt = 500. The Hamiltonian parameters
used are identical to those stated in Fig. 6.

from its stationary value of 〈σz
25〉s = −0.0161. In the same region of time Fig. 8(b)

shows (dashed line) the evolution of 〈σz
25〉 from the previous example where B/J = 1

throughout which is slightly closer to its stationary value of 〈σz
25〉s = −0.0391 but

displays a similar rate of convergence. For time Jt > 500, after the quench, there is
initially a rapid change in 〈σz

25〉 which after a time of approximately 15/J then settles
down with small oscillates around a new value which again differs from the stationary
value of the new transverse field. Instead this newly acquired z-magnetization is very
close to the non-stationary value obtained via constant evolution with B/J = 1. This
shows that even after a comparatively long evolution time the system has retained a
significant memory of its initial spin polarized state.

9. Conclusions

We have presented a detailed study of the MPO description of a specific class of open
quantum systems governed by a master equation with a quadratic spinless fermionic
Hamiltonian and linear fermionic Lindblad operators. By mapping this master
equation to an entirely coherent quadratic evolution involving additional ancillae we
have shown that the MPO representation for the evolution of operators with even
parity possesses a finite and fixed dimension. This has revealed the quadratic nature
of the evolution underlying this class of master equations and our ancilla construction
gives decisive insight into why it is exactly solvable. The formal structure of the
MPO representation also indicates how a given initial operator can evolve into a
specific type of mixed order operator, consistent with behaviour seen in other simpler
open systems. Exploiting the fixed MPO dimension the TEBD algorithm allows the
dynamical evolution of operators in this non-equilibrium open quantum system to be
computed with a cost that is linear in the system size. The dynamical behaviour
accessible via the MPO solution presented therefore complements the existing exact
solution for this models stationary states and spectral properties [26]. We have
exemplified this by computing some examples involving the approach to stationarity
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Figure 8. (a) A comparison of the stationary (⋄) z-magnetization profile 〈σz
j
〉

with that attained from a spin-polarized initial state (◦) after evolving for a time
Jt = 500. The central z-magnetization 〈σz

25〉 is highlighted with a dashed line.
(b) For a sudden quench of the traverse field from B/J = 10 to B/J = 1 at a time
Jt = 500 the time evolution of the central z-magnetization 〈σz

25〉 is plotted. The
dashed line shows the evolution of 〈σz

25〉 up to a time Jt = 500, already displayed
in (a) and in Fig. 7, for a constant transverse field B/J = 1. Aside from those
stated all other Hamiltonian parameters are identical to those in Fig. 6.

and the response of the z-magnetization to a sudden quench in the transverse field.
An interesting calculation, beyond the scope of the current work, is to perform a

dynamical quenching through the non-equilibrium quantum phase transition. Such a
dynamical calculation appear to be very demanding with the Schrödinger picture [27].
The non-equilibrium transition manifests itself as a discontinuous change in the
〈σz

i σz
j 〉 − 〈σz

i 〉〈σ
z
j 〉 correlations, but not in other local observables such as energy and

magnetization. From the MPO perspective of this work the behaviour of this transition
appears to be very reminiscent of the matrix-product type equilibrium quantum phase
transitions [54]. Computing a dynamical crossing of this non-equilibrium transition
could help determine the realistic adiabacity requirements for its observation.

Beyond this our work has provided an important and non-trivial class of open
systems with an exact Heisenberg picture MPO representation. This may yet aid
in determining other models where such solutions exist. For instance it remains to
be seen whether Heisenberg picture simulability is readily related to the integrability
of the underlying model [53]. For example a finite sized XXZ chain can be made
integrable with appropriate boundary fields, however it is not clear that an efficient
representation exists for commonly required local observables like σz . This raises the
question as to whether finite-sized MPO representations of certain types of operators
are possible for systems possessing a Bethe-ansatz solution. This is an interesting
open problem and would reveal if the MPO formalism can aid in evaluating otherwise
very complicated quantities from these solutions. For the presently studied XY
model the non-interacting nature of the effective fermi system for both the open and
closed system appears to be a crucial property permitting simulability, which is more
constraining than integrability alone.

Finally the MPO solution introduced may allow a better understanding of the
trade-off between efficiencies possible by changing pictures. Future work [55] will look
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at how quickly the accuracy of Heisenberg picture simulations breakdown when they
are applied to models which are only weakly perturbed from the exact solution pre-
sented here. In the context of spin chains the most obvious extensions outside the
exact solution would be additional σz

j σz
j+1 interaction terms and/or dephasing noise.
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[30] Östlund S and Rommer S 1995 Phys. Rev. Lett. 75, 3537

http://arxiv.org/abs/0901.4454


Exact matrix product solutions in the Heisenberg picture ... 22

[31] Hartmann M J, Prior J, Clark S R and Plenio M B 2009 Phys. Rev. Lett. 102, 057202
[32] White S R 1992 Phys. Rev. Lett. 69 2863; 1993 Phys. Rev. B 48 10345
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