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Exact meta-analysis approach for discrete data and its
application to 2× 2 tables with rare events

Abstract

This paper proposes a general exact meta-analysis approach for synthesizing inferences

from multiple studies of discrete data. The approach combines the p-value functions (also

known as significance functions) associated with the exact tests from individual studies. It

encompasses a broad class of exact meta-analysis methods, as it permits broad choices for the

combining elements, such as tests used in individual studies, and any parameter of interest.

The approach yields statements that explicitly account for the impact of individual studies on

the overall inference, in terms of efficiency/power and the type I error rate. Those statements

also give rises to empirical methods for further enhancing the combined inference. Although the

proposed approach is for general discrete settings, for convenience, it is illustrated throughout

using the setting of meta-analysis of multiple 2 × 2 tables. In the context of rare events

data, such as observing few, zero or zero total (i.e., zero events in both arms) outcomes

in binomial trials or 2 × 2 tables, most existing meta-analysis methods rely on the large-

sample approximations which may yield invalid inference. The commonly used corrections

to zero outcomes in rare events data, aiming to improve numerical performance can also

incur undesirable consequences. The proposed approach applies readily to any rare event

setting, including even the zero total event studies without any artificial correction. While

debates continue on whether or how zero total event studies should be incorporated in meta-

analysis, the proposed approach has the advantage of automatically including those studies

and thus making use of all available data. Through numerical studies in rare events settings,

the proposed exact approach is shown to be efficient and, generally, outperform commonly

used meta-analysis methods, including Mental-Haenszel and Peto methods.

Key Words :: combining information; confidence distribution; exact inference; p-value function; zero

events.
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1 Introduction

Meta-analysis is perhaps the most used methodology to synthesize findings from independent stud-

ies. It has been used extensively in many fields, and it has a rich literature (see, for example, the

reviews by Sutton and Higgins (2008) and Finkelstein and Levin (2012), and the references therein).

However, several important issues in meta-analysis remain unaddressed and new challenges continue

to emerge as we have access to more diverse sources of data nowadays. For example, in discrete data

settings, most existing meta-analysis methods rely on the large-sample approximations which may

not necessarily produce valid inference. In case of rare event data such as observing few, zero or

zero total (i.e., zero events in both arms) outcomes in binomial trials, it is also a common practice

to apply correction of a constant to zero outcomes and/or remove zero total outcomes from the

analysis. Either approach, however, may incur undesirable consequences to the final inference.

The goal of this paper to to propose a general and exact meta-analysis approach for combining

the inferences from multiple studies from discrete settings. The approach combines the p-value

functions (also known as significance functions) associated with the exact tests from individual

studies. The simple structure of the combining formula in the proposed approach allows us to obtain

mathematical expressions to explicitly account for the impact of individual studies on the overall

combined inference in terms of efficiency/power and the type I error rate. Using those expressions,

we can also develop and implement empirical methods to further enhance the combined inference

to ensure certain desired levels of efficiency and accuracy. The accuracy here refers to the deviation

between the achieved type I error rate and the nominal one.

Although the proposed approach is developed for general settings, much of the discussion fo-

cuses on the particular setting of discrete and rare events data. Such discrete and rare data are

often seen in either small-sample survey studies or large-sample clinical trials with very low event

rates, such as safety analysis in drug development (e.g., Nissen and Wolski, 2007). In case of rare

events, a single study is inadequate for drawing a reliable conclusion, but the conclusion can often

be strengthened by using meta-analysis to synthesize conclusions from a number of similar studies.

The analysis of rare events data raises special statistical challenges, and has been intensely studied

(Sweeting, Sutton, and Lambert, 2004; Bradburn et al., 2007; Finkelstein and Levin, 2012), and

new methodological developments continue to emerge (Tian et al., 2009; Cai, Parast, and Ryan,

2010; Bhaumik et al., 2012). So far, most of the commonly used meta-analysis methods rely on the

asymptotic distribution of the combined estimator to make inference. As concrete examples, the

widely used inverse-variance weighted method combines point estimators from individual studies,

assuming that the distributions of all the estimators can be well approximated by normal distribu-

tions. For discrete data, the well-known Mantel-Haenszel and Peto methods also rely on the normal

approximation to the distribution of the combined estimator. However, it is known that the normal
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approximation is ill-suited for data sets which are discrete with small sample sizes. In particular,

in the rare events setting, such as observing 1 or even 0 outcome out of 100 Bernoulli experiments,

the normal approximation to the test statistic may yield an unacceptably low coverage probability

of confidence intervals (Bradburn et al., 2007; Tian et al., 2009). Furthermore, the commonly used

0.5 correction (known as Haldane’s bias correction) to zero events, which aims to improve the ap-

proximation, is shown with compelling evidence to have undesirable impact on inference outcomes,

such as yielding a severe bias (Sweeting et al., 2004; Bradburn et al., 2007). All these shortcomings

clearly show the need for the exact approach, rather than those using limiting distribution, to the

analysis of discrete data, especially when the events of interest are rare. Here, similar to Agresti

(2007), the term “exact” refers to using exact distributions in the inference, rather than achieving

exact test size or coverage levels.

In this paper, instead of working on point estimators, we develop a new meta-analysis approach

by combining functions, more specifically the p-value functions (also known as significance functions;

cf. Fraser, 1991) obtained from the exact tests associated with individual studies. We show that such

an approach can yield a broad class of methods for combining exact inference, and it subsumes as

special cases all the existing p-value combination methods and the confidence interval combination

method (i.e., Tian et al., 2009). Moreover, the idea of combining p-value functions applies to

inference for any parameter of interest, including the odds ratio, risk ratio or risk difference in the

analysis of 2×2 tables. This paper justifies the validity of the proposed approach, and demonstrates,

by using the setting of multiple 2 × 2 tables with a common odds ratio as a working example,

that the proposed approach applies easily and performs well even to difficult situations even when

confronting zero total event studies. To sum up, the proposed approach applies readily to any rare

event setting, including even the zero total event studies without any artificial correction. Overall,

our proposed approach compares favorably to the existing methods, including Mental-Haenszel and

Peto methods.

The rest of this paper is organized as follows. In Section 2, we present our p-value function

combination approach as a general methodology for combining exact inference from independent

studies. In Section 3, we use the combining formula to establish theoretical results to decompose

the type I error rate as well as power/efficiency in the combined inference into the individual input

from each study. This is established for both small-sample and large-sample settings. In Section 4,

we present some empirical methods for improving the overall efficiency and accuracy, by choosing

suitable weights and adjusting individual p-value functions. In Section 5, we present numerical

studies on the performance of our approach and compare it with some commonly used existing

approaches in the rare events setting. Finally, we present a discussion in Section 6 to address issues

regarding the choices of the combining elements in our approach. In particular, we provide a general
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guideline in terms of steps to implement our approach. We also elaborate on the handling of rare

events, and emphasize that our approach automatically incorporates all the available data in the

analysis without requiring corrections to zero events.

2 Methodology

2.1 Problem setup

Assume that K (K > 1) independent studies are conducted to examine the same parameter ψ, and

that a random sample is collected in each study for testing the hypotheses

H0 : ψ = ψ∗ versus H1 : ψ > ψ∗, (1)

where ψ∗ is an arbitrary but fixed value in the parameter space. The goal is to develop a general

approach to combine the K individual test results from (1) to make exact and efficient inference

for the K studies as a whole.

Our proposed approach is developed for combining testing results from multiple studies for

all discrete data settings, but, for convenience, it is illustrated in this paper through the working

example of combining multiple binary comparison studies (i.e., 2× 2 tables). Specifically, consider

K independent 2 × 2 tables formed by pairs of independent binomial random variables (Xi, Yi)

with sample sizes (ni,mi) and their associated event rates (π1i, π0i), for i = 1, . . . , K. Assume that

the task is, based on the observed numbers of events xi and yi, to make inference about the effect

measure, such as odds ratio, risk ratio, or risk difference which are defined respectively as

ORi ≡
π1i/(1− π1i)
π0i/(1− π0i)

, RRi ≡
π1i
π0i

, RDi ≡ π1i − π0i, i = 1, . . . , K.

Under a fixed effects model, it is often assumed that an effect measure has a common value across

all the studies. Making inference on this common parameter, denoted by ψ as seen in (1) and

throughout the paper, is often of importance. For example, Sweeting et al. (2004) reviewed meta-

analysis methods for the common odds ratio ORi = ψ, and Bradburn et al. (2007) compared

methods for the common risk difference RDi = ψ. The approach we develop in this paper provides

a general meta-analysis procedure for making exact inference for ψ where ψ can be OR, RR, RD,

any risk measure, or any common parameter in any discrete models.

2.2 The proposed exact meta-analysis approach

Before describing the proposed approach, we first describe the main tool we used in the approach,

namely the p-value function.
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A p-value function, is formed by computing p-values for a one-sided test with varying boundaries

of the null hypothesis (e.g., Fraser, 1991). In the context of problem setting above, we let z = (x, y)

denote the sample, and p = p(ψ∗; z) denote a p-value computed based on a given test for testing

H0 : ψ = ψ∗ versus H1 : ψ > ψ∗. The p-value p = p(ψ∗; z) depends on both the sample z and

the value of ψ∗. Given the sample z, as the value of ψ∗ varies, p(ψ∗) ≡ p(ψ∗; z) is a function on

the parameter space of ψ. This sample-dependent function p(·) is called a p-value function. Under

some mild conditions, a p-value function is typically a distribution function on the parameter

space. From the viewpoint of confidence distributions (see a review by Xie and Singh (2013) and

the references therein), this p-value function is often viewed as a “distribution estimator” of the

unknown parameter, in the sense that a sample-dependent distribution function, rather than a point

or an interval, is used to estimate the parameter. The “distribution estimator” carries much more

information than a point or an interval estimator, such as skewness of the exact distribution of

statistics. Therefore, the p-value function seems to be an ideal device for combining exact inference

from multiple studies.

To make exact inference on the common parameter ψ for the combined inference, we begin by

carrying out for each study an exact test for the hypotheses H0 : ψ = ψ∗ versus H1 : ψ > ψ∗. We

denote by pi(ψ
∗;xi, yi) the p-value obtained from the test in the i-th study and pi(·) ≡ pi(·;xi, yi)

the corresponding p-value function. Figure 1 shows a p-value function (in a black solid curve) on

testing the odds ratio from a study that observes (xi, yi) = (1, 3) with the sample sizes (ni,mi) =

(15, 60). As a result from an exact test, this p-value function preserves all the intrinsic finite-sample

properties of the test. In particular, it preserves the possible asymmetry from the distribution,

as opposed to the common approaches from normal approximations which automatically result in

symmetric normal-based p-value functions. It is also worth noting that such a p-value function

pi(·;xi, yi) is always obtainable regardless of whether the entries xi and yi are zeros or not, see some

examples of pi(·;xi, yi) with different settings of xi and yi in Figure 2 (a)-(d). This is a desirable

feature, especially in the rare events setting, since it allows our approach to combine all studies from

their corresponding p-value functions, even p-value functions from the zero total event studies with

(xi, yi) = (0, 0). This is not the case in many commonly used meta-analysis methods in practice.

The issues related to zero total event studies are discussed further in Section 6.

After obtaining the p-value functions from all K studies, namely, {pi(·;xi, yi), i = 1, · · · , K}, we

proceed to combine them using the following recipe. Let pi(·) ≡ pi(·;xi, yi) and p(c)(·) be the overall

combined p-value function, then

p(c)(ψ) ≡ F(c) [w1h(p1(ψ)) + · · ·+ wKh(pK(ψ))] . (2)

Here, h(·) is a “transformation function” which can be any monotonically increasing function, and

F(c)(·) = h−1(·/w1) ∗ · · · ∗ h−1(·/wk), where ∗ stands for convolution. Throughout this paper we
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Figure 1: Illustrations of an individual p-value function (black solid curve) and a combined p-value function

(red dashed curve). The individual p-value function is obtained using the mid-p adaptation of Fisher exact

test on odds ratio in a study that observes xi = 1 and yi = 3 with sample sizes (ni,mi) = (15, 60). The

combined p-value function is from combining two independent copies of the individual p-value function,

assuming that the two studies happen to have the same observations. The x-axes are in the logarithm

scale.

use Φ(·), the cumulative distribution function of the standard normal distribution, as the inverse

transformation function h−1(·) and thus F(c)(·) = Φ(·/w1) ∗ · · · ∗ Φ(·/wk) = Φ(·/(
∑K

i=1w
2
i )

1/2) and

wi’s are weights subject to
∑K

i=1wi = 1. More discussion on the choice of the transformation

function h(·) is in Section 6. The combining recipe (2) has also been proposed in Xie et al. (2011)

for continuous or large sample settings. Note that Stouffer’s method (Stouffer et al., 1949) can

be viewed as a special case of (2) with weights wi ≡ 1 for all i. As noted in Xie et al. (2011),

the use of non-trivial weights makes the recipe (2) more advantageous than the traditional p-value

combination approaches such as Stouffer’s method. We show in this paper that using the more

informative weights, our approach can achieve asymptotic efficiency in the overall inference as well

as enhance finite sample efficiency. The choice of weights is discussed in detail in Section 4.1.

In Figure 1 the red dashed curve is the combined p-value function p(c)(·) that combines two

independent copies of the individual p-value function (plotted in a solid curve), assuming that the

two studies happen to have the same observations. Figure 1 shows that the combined p-value

function curve retains the skewness in the individual p-value function curves. Additional examples
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Figure 2: Illustrations of individual p-value functions (upper row) and combined p-value functions

(lower row). The individual p-value functions (black solid curves) in the upper row are for the

cases: (a) xi = 2, yi = 1; (b) xi = 2, yi = 0; (c) xi = 0, yi = 2; and (d) xi = 0, yi = 0, all with the

same sample sizes ni = mi = 100. These functions are obtained using mid-p adaption of Fisher’s

exact test. The combined p-value functions (red dashed curves) shown in the lower row are from

combining the p-value function in (a) with the individual p-value function in (a), (b), (c) and (d)

respectively, using equal weights. The x-axes are in the logarithm scale.
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of the combined p-value functions are the red dashed curves in Figure 2 (a’)-(d’), where in (b’)-(d’) at

least one entries of xi and yi are zeros in one of the individual p-value functions. Note that the p-value

functions in Figure 2 are obtained using the mid-p of Fishers exact test, and that different tests may

yield different p-value functions. In any case, once the combined p-value function p(c)(·) is obtained,

it is ready for the overall inference for ψ. More specifically, p(c)(ψ), as a function on the parameter

space, can be used to derive all forms of inference outcomes. For instance, p(c)(ψ
∗) can naturally be

used as the overall p-value for testing hypothesis (1), the median of p(c)(·) (i.e., Mn ≡ p−1(c)(1/2)) as a

point estimator for ψ, and the intervals (p−1(c)(α),∞) and (p−1(c)(α/2), p−1(c)(1−α/2)) as a 100(1−α)%

one-sided and two-sided confidence intervals for ψ, respectively. Here p−1(c)(·) is the inverse function

of p(c)(·) (Its corresponding upper or lower limit versions are used in the case when p(c)(·) is not

continuous).

The remainder of this paper is devoted to justifying the validity of using the combined p-value

function p(c)(·) for the exact overall inference. In particular, it aims to achieve the following two

distinct but closely related goals.

First, we show that the idea of combining “functions” proposed in Singh et al. (2005) is valid

in case of small-sample and discrete data analysis. For continuous or large-sample data, Xie et al.

(2011) employed the same idea in which the elements for combining are required to be (or at least

asymptotically) confidence distribution functions. In the context of this paper, this is equivalent to

requiring that the statistic pi(ψ0) ≡ pi(ψ0;Xi, Yi) follow (or at least asymptotically follow) U(0,1)

distribution, i.e., Pr(pi(ψ0) ≤ s) = s, for any 0 ≤ s ≤ 1, where ψ0 is the true value of ψ. However,

such a requirement is not fulfilled in the discrete setting, especially with the case of small samples.

In fact, in the analysis of rare events data with zero events, the deviation of the distribution of pi(ψ0)

from U(0,1) distribution is often non-negligible. It measures the difference between the achieved

and the nominal type I error rates, and thus the loss of accuracy in inference. This deviation

is due to the intrinsic discrete nature of the underlying distribution, and, for certain exact tests

where p-values are derived by maximizing over the nuisance parameters, it may not even diminish

asymptotically. We show in Section 3 that the simple combining formula in (2) enables us to derive

an explicit expression (cf. Theorem 1) for assessing precisely this deviation and the loss of accuracy

in the overall inference. This loss of accuracy has been difficult to ascertain when other approaches

of combining inferences are used.

Second, we show that the idea of combining p-value functions, as a general approach for com-

bining exact inferences, allows a variety of choices of tests, weights, transformation functions (h(·)
in (2)), and thus yields a broad class of exact methods for combining inferences. For example, it

subsumes the traditional p-value combination approaches. It has also been shown that the interval

combination method proposed in Tian et al. (2009) is a special case of ours by using essentially
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a logistic function as the transformation function h(·) in the combining formula (2) (Yang et al.,

2012). In Section 4.1, we examine the effect of the choice of weights on the combined inference.

In Section 6, we discuss some guidelines for narrowing down choices for tests, weights, “transfor-

mation” functions and other elements for the combining procedure. If ever a particular choice is

required or preferred, we can assess this particular choice using the formulas in Section 3. Moreover,

if it is desired to improve the efficiency of the overall inference, we can further apply the adjustment

scheme on the individual p-value functions developed in Section 4.2 to achieve the goal.

3 Theoretical properties

In this section, we show how our combining formula (2) with its simple structure enables us to derive

theoretical properties of the combined inference for both small-sample and large-sample settings.

Specifically, we establish an explicit formula in Theorem 1 that decomposes the achieved type I

error of the combined test into those from the individual studies. This and other properties on the

power and efficiency of the combined inference in turn can be used develop empirical methods to

further improve the power/efficiency for the combined inference in the rare events setting. This

latter point will be elaborated in Section 4.

3.1 Small-sample properties

For a study that involves discrete data, the discrete nature of the underlying distribution and the

possible presence of unknown nuisance parameters generally prevent any exact test from achieving

the nominal type I error rate. As a matter of fact, in the rare events setting the achieved type

I error rate may be far below the nominal one. In other words, the p-value function pi(ψ) for an

individual study, when assuming its value at ψ = ψ0 and as a function of random sample (Xi, Yi),

may not follow exactly the U(0,1) distribution. In contrast to the combining approach in Xie et al.

(2011) which require pi(ψ0) ∼ U(0,1) for continuous data and large-sample inference, we justify here

that our approach of combining p-value functions, despite of their not following U(0,1), is valid for

discrete data and small-sample inference.

In what follows, we examine the combined effect of our approach with respect to both the type

I error and testing power. To present the results under a proper framework, we define a power

function for our proposed approach for any fixed ψ∗ as:

R(c)(s;ψ
∗) ≡ Pr{p(c)(ψ∗) ≤ s}, for 0 ≤ s ≤ 1, (3)

which is the cumulative distribution function of the statistic p(c)(ψ
∗) and Pr(·) is the probability

evaluated under the true model. At s = α and when ψ0 > ψ∗, R(c)(α;ψ∗) gives the power of our
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approach for test (1). Similarly, we define power functions for the individual tests as Ri(s;ψ
∗) ≡

Pr{pi(ψ∗) ≤ s} for all i.

When ψ∗ = ψ0, the power function in (3) becomes a type I error rate function, since R(c)(α;ψ0)

gives the type I error rate of our approach for the hypothesis testing in (1). The theorem below

shows that the achieved type I error rate function of our overall test R(c)(s;ψ0) can be expressed

explicitly in terms of the individual type I error rates functions Ri(s;ψ0), i = 1, . . . , K.

Theorem 1. The overall type I error rate function R(c)(s;ψ0) can be expressed as

R(c)(s;ψ0) = s+
K∑
i=1

di(s), (4)

where

di(s) = E

Di

Φ


(

1 +
∑
j 6=i

w2
j

w2
i

)1/2

Φ−1(s)−
∑
j 6=i

wj
wi

Φ−1(Bij)


 . (5)

Here, the functions Di(s) ≡ Ri(s;ψ0) − s, and the expectation E is taken with respect to the

random variables Bij which are independent and of the following distributions: for any 0 ≤ t ≤ 1,

Pr(Bij ≤ t) = t if j ≤ i, and Pr(Bij ≤ t) = Ri(t;ψ0) if j > i.

Theorem 1 immediately yields the following corollary which shows that the overall deviation of

the type I error rate {R(c)(s;ψ0)− s} can be bounded using the bounds of the individual deviations

{Ri(s;ψ0)− s}, i = 1, . . . , K. As a special case, Corollary 1 suggests that, if the test of each study

has a deflated (inflated) type I error rate, so will the overall test.

Corollary 1. Suppose there exist fixed lower and upper bounds li and ui such that

li ≤ Ri(s;ψ0)− s ≤ ui, i = 1, . . . , K,

for any 0 ≤ s ≤ 1. Then the overall type I error rate function R(c)(s;ψ0) satisfies

K∑
i=1

li ≤ R(c)(s;ψ0)− s ≤
K∑
i=1

ui, (6)

for any 0 ≤ s ≤ 1. Specifically, if Ri(s;ψ0) ≤ s for all i and 0 ≤ s ≤ 1, then R(c)(s;ψ0) ≤ s.

Similarly, if Ri(s;ψ0) ≥ s for all i and 0 ≤ s ≤ 1, then R(c)(s;ψ0) ≥ s.

The results in Theorem 1 and Corollary 1 can be used to evaluate the effect of our combination in

terms of the type I error. Specifically, Theorem 1 shows that the type I error rate of the overall test

can be traced down to the individual ones. Hence, if we can evaluate the functions Ri(s;ψ0)’s, then

R(c)(s;ψ0) can be evaluated from Theorem 1. In Appendix Part I, we propose an empirical method

for estimating π1i and π0i, which allows us to evaluate Ri(s;ψ0), and then following Theorem 1 to
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evaluation R(c)(s;ψ0). In case only the bounds for {Ri(s) − s} are available for all i, the bounds

for {R(c)(s;ψ0) − s} can be derived from Corollary 1. Furthermore, the results in Theorem 1 and

Corollary 1 also imply that we can improve the overall test by raising the type I error rates of the

individual tests, if they are deflated, to be closer to the nominal level. This adjustment helps mend

the possible inaccuracy caused by individual pi(ψ0) not following closely U(0,1) in some studies,

and it is discussed in details in Section 4.2. In summary, once the properties of the type I error

of the individual tests are known, the corresponding properties of the type I error of the combined

test can be derived accordingly.

When the alternative hypothesis in (1) holds (i.e., ψ0 > ψ∗), the power function R(c)(s;ψ
∗)

gives the power of the combined test for rejecting the null hypothesis. Next theorem shows that

a lower bound for the overall power function R(c)(s;ψ
∗) can be derived from the lower bounds

for the individual power function Ri(s;ψ
∗). In the theorem and also the later discussion, Ni ≡

Ni(ni,mi) is a function of ni and mi, which may be views as a generic sample size of the i-th

study; depending on the problem under consideration, Ni may assume ni + mi, min{ni,mi} or

1
/[
{niπ1i(1− π1i)}−1 + {miπ0i(1− π0i)}−1

]
, etc.

Theorem 2. For a fixed ψ∗ < ψ0, assume that there exist a positive constant (maybe a function of

Ni) ai > 0 such that the individual power function Ri(s;ψ
∗) has the lower bound:

Ri(s;ψ
∗) = Pr{pi(ψ∗) ≤ s} ≥ 1− (1− s)/ai, i = 1, . . . , K, (7)

Then, the overall power function R(c)(s;ψ
∗) has the following lower bound:

R(c)(s;ψ
∗) = Pr{p(c)(ψ∗) ≤ s} ≥ 1− (1− s)

/{ K∏
i=1

ai

}
. (8)

In the special case of ai ≡ 1 for all i, Theorem 2 implies that if the individual p-value pi(ψ
∗) is

stochastically less than a U(0,1) distributed random variable (i.e., Ri(s;ψ
∗) ≥ s) for all i, so will the

combined p-value p(c)(ψ
∗). Theorem 2 also implies that combining test results from independent

studies may lead to significant gain in power for the overall inference. Note that when the alternative

hypothesis in (1) holds (i.e., ψ0 > ψ∗), the power of an individual test, measured by Ri(s;ψ
∗),

typically approaches 1 as the sample sizes ni and mi increase (i.e., as Ni → ∞). Thus, let us

assume the difference {1−Ri(s;ψ
∗)} is bounded by (1− s)/ai, for some ai = O(N c

i ), c > 0. In this

case, Theorem 2 suggests that the difference {1−R(c)(s;ψ
∗)} for our combined test is bounded by

(1 − s)/{
∏K

i=1 ai}. Since
∏K

i=1 ai can be much greater than any individual ai, the lower bound in

(8) for the overall power function R(c)(s;ψ
∗) can be much higher than the lower bound in (7) for

any individual power function Ri(s;ψ
∗).

11



3.2 Large-sample properties

Although our combining method is developed mainly for exact inference in the rare events or small

sample setting, it also applies to the general meta-analysis setting where large-sample approxima-

tions may be reasonable. We provide the large-sample properties and theoretical justification for

our proposal in a large sample setting when it is applicable. More importantly, the asymptotic

results here help develop useful guidelines for choosing proper weights in the rare events setting

where exact inference is desired, see Section 4.1.

For the combined test, we first consider the limiting type I error rate, defined as

RL
(c)(s;ψ0) ≡ lim

ni,mi→∞
i=1,...,K

R(c)(s;ψ0) = lim
ni,mi→∞
i=1,...,K

Pr{p(c)(ψ0) ≤ s}.

Similar to Theorem 1, we can show that RL
(c)(s;ψ0) can be expressed explicitly in terms of the limit-

ing type I error rate functions for individual testsRL
i (s;ψ0) ≡ limni,mi→∞Ri(s;ψ0) = limni,mi→∞ Pr{pi(ψ0) ≤

s}, i = 1, . . . , K.

Theorem 3. The statement of Theorem 1 holds with the following modifications: replacing the

overall type I error function R(c)(s;ψ0) by its limiting form RL
(c)(s;ψ0) and replacing the individual

type I error functions Ri(s;ψ0) by their corresponding limiting forms RL
i (s;ψ0), i = 1, . . . , K.

As a direct consequence of Theorem 3, Corollary 2 below states that, if the individual p-value

function pi(ψ) yields no loss of inference accuracy (i.e., pi(ψ0) ∼ U(0,1)) asymptotically for all

i, then the same holds for the combined p-value function p(c)(ψ). In this case, the test or the

confidence interval derived from p(c)(ψ) achieves, respectively, the nominal type I error rate and

coverage probability asymptotically.

Corollary 2. If the individual limiting type I error rate functions RL
i (s;ψ0) ≡ s for all i, 1 ≤ i ≤ K

and 0 ≤ s ≤ 1, then the overall limiting type I error rate function RL
(c)(s;ψ0) ≡ s.

It is worth pointing out that Theorem 3 also holds for general asymptotic settings without

requiring RL
i (s;ψ0) ≡ s. This property is useful, considering the fact that the distribution of a

p-value may not follow an U(0,1) distribution under the null hypothesis, even asymptotically. This

can be the case when unknown nuisance parameters are present, as observed in (Robins, van der

Vaart, and Ventura, 2000), which is also the case often seen in the analysis of 2× 2 tables.

Consider the limiting power/asymptotic efficiency of the combined test. Theorem 4 below states

that, if the exact test associated with each study is asymptotically equivalent to Wald test (see,

e.g., Fraser, 1991), then our combining approach can achieve asymptotic efficiency with suitably

chosen weights.
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Theorem 4. Suppose that the p-value function pi(ψ) obtained from the exact test associated with

the i-th study can be expressed as

pi(ψ) = Φ

[
(ψ − ψ̂i,MLE)

/{ ̂aVar(ψ̂i,MLE)

}1/2
]

+ op(1), i = 1, . . . , K, (9)

where ψ̂i,MLE is the maximum likelihood estimate (MLE) of ψ based on the i-th study, and ψ̂i,MLE

has the limiting variance aVar(ψ̂i,MLE) with the corresponding estimate ̂aVar(ψ̂i,MLE) satisfying that

the ratio ̂aVar(ψ̂i,MLE)/aVar(ψ̂i,MLE) converges to 1 in probability. Let the weights in the combining

recipe (2) satisfy

wi ∝ {aVar(ψ̂i,MLE)}−1/2, i = 1, . . . , K. (10)

Then the median of the combined distribution function p(c)(ψ), namely ψ̂c = p−1(c)(1/2), is consistent

and asymptotically normally distributed as follows:{
K∑
i=1

1

aVar(ψ̂i,MLE)

}1/2

(ψ̂c − ψ0)→ N(0, 1). (11)

The result above clearly indicates the asymptotically “optimal” choices of the weights and

transformation function for achieving Fisher efficiency, and also explains why they are used in

our combining formula (2). Specifically, using our approach with the weights in (10) and the

transformation function Φ−1(·) can yield asymptotically efficient inference, just as the one using the

maximum likelihood approach. This can be seen from the fact that the square of the normalizing

constant in (11) satisfies
K∑
i=1

1

aVar(ψ̂i,MLE)
=

1

aVar(ψ̂MLE)
,

where ψ̂MLE is the MLE obtained based on all the K studies (Lin and Zeng, 2010). Our simulation

results also confirm that such asymptotically “optimal” choices of the weights and transformation

function also lead to the most efficient inference among other sensible choices in the setting of rare

events data.

To illustrate the statements in Corollary 2 and Theorem 4, we consider an example with the

individual p-value function pi(ψ) obtained from the mid-p adaptation of Fisher exact test for the

odds ratio. It can be shown that pi(ψ0;Xi, Yi) converges to U(0,1) in distribution as ni → ∞ and

mi →∞, provided that ni/mi is bounded away from 0 and∞. Thus, by Corollary 2, the combined

p-value function p(c)(ψ) provides asymptotically accurate inference for the odds ratio, in the sense

that the achieved type I error rate converges to the nominal one. Under the same condition, the

individual p-value function pi(ψ) can be expressed in the form of (9) (see Breslow, 1981; Kou and

Ying, 1996). Thus, by Theorem 4, the combined p-value function p(c)(ψ) with the weights in (10)

leads to asymptotically efficient inference.
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4 Empirical methods for improving accuracy and efficiency

4.1 The choice of weights

One distinctive advantage of our approach is that it affords great flexibility in the choice of weights.

In this subsection, we examine the impact of different weighting schemes on the combined inference,

especially in the rare events setting, and make our recommendation.

For exact inference, the traditional p-value combination method and the confidence interval

combination method by Tian et al. (2009) (both can be viewed as special cases of our approach)

use (i) equal weight and (ii) the inverse of the sample size (i.e., 1/(ni +mi)) as the weight, respec-

tively. We consider here the third choice by using (iii) the explicit formula of {aVar(ψ̂i,MLE)}−1/2

as the weight in the combining formula (2). For example, when ψ is the common odds ratio,

aVar(ψ̂i,MLE) = ψ2
0 [{niπ1i(1− π1i)}−1 + {miπ0i(1− π0i)}−1] (see, e.g., Breslow (1981)). Thus, we

can use the following weights

wi ∝
[
{niπ1i(1− π1i)}−1 + {miπ0i(1− π0i)}−1

]−1/2
, i = 1, . . . , K, (12)

to implement our approach for the odds ratio. We recommend this weighting scheme based on the

following two reasons. First, it approximates the most efficient inference when the sample size are

sufficiently large, as shown in Theorem 4. Second, in the rare events setting, our numerical result

shows that it gains significant efficiency over the weighting schemes (i) and (ii). In fact, the order

of efficiency is typically (i)<(ii)<(iii). Such a result is not surprising, since the weighting scheme

(iii) incorporates the sample sizes and the event rates of the studies, both of which are important

factors in determining the amount of information contained in a study.

To use the weights in (iii), we first need to estimate the unknown parameters π1i and π0i from

the data. Clearly, in the rare events setting, the naive estimates of π1i and π0i using the sample

proportions are not reliable. We propose an empirical method to estimate π1i and π0i in the i-th

study by borrowing information from the other studies, which is similar to the idea of borrowing

strength in Efron (1996). As a result, for instance, if xi = yi = 0 in the i-th study, our estimation

method still yields positive estimates of π1i and π0i if the other studies observe non-zero events. The

magnitude of these non-zero estimates is determined jointly by these two sources: a) the information

borrowed from the other studies, roughly speaking, the “average level” of the event rates in the other

studies; and b) the information provided by the i-th study itself, namely the sample sizes ni and mi.

The details on our empirical estimation method are provided in Part I of the Appendix. Although

the unknown parameters in the weights for combining are estimated, we would still consider the

approach an exact method (or at least a good compromise), since all calculations involved are based

on exact formulas and distributions.
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In the rare events setting, our simulation study (results not reported in this paper) shows that

the empirical weights ŵi, (namely, using the empirical estimate of π1i and π0i in the weights (12))

yields results similar to those from the fixed weights (12) when the true values of π1i and π0i are used.

Specifically, the empirical weights ŵi substantially improve the efficiency over the fixed weights (i)

and (ii). More importantly, such a gain of efficiency is achieved while maintaining the type I error.

In fact, for the type I error rate of our combined inference, we can establish a claim similar to that

of Theorem 1, when the fixed weight wi is replaced by its empirical version ŵi = wi + Op(1/
√
Ni)

where Ni is the generic sample size as defined in Section 3.1. Write Nmin = min{N1, . . . , NK}
and let Rem

(c) (s;ψ0) be the overall type I error rate function when we use the empirical weight

ŵi, ηw =
∑K

i=1wiΦ
−1(pi(ψ0))/

√∑K
i=1w

2
i and ηŵ =

∑K
i=1 ŵiΦ

−1(pi(ψ0))/
√∑K

i=1 ŵ
2
i . We have the

following corollary.

Corollary 3. Suppose E{Φ−1(pi(ψ0))}2 < C, i = 1, . . . , K, for a constant C. For a fixed 0 < s < 1,

if Pr{|ηw − Φ−1(s)| ≤ δ} = O(δ) for any small δ > 0, then we have

Rem
(c) (s;ψ0) = s+

K∑
i=1

di(s) +O
(

1/
√
Nmin

)
.

Here, di(s) has the same expression as in Equation (5).

4.2 Adjustment on individual p-value functions

From Section 3 we see that the level of accuracy of individual inference is well reflected in the

combined inference through our proposed approach. If the individual inference has high accu-

racy (with pi(ψ0) distributed close to U(0,1)), the combined inference will also have high accuracy

(with p(c)(ψ0) distributed close to U(0,1)). In case individual inference is overly conservative (with

Ri(α, ψ0) ≡ Pr(pi(ψ0) ≤ α) far smaller than α), the combined inference will suffer the same. Given

that our approach applies regardless of whether or not pi(ψ0) follows exactly the U(0,1) distribution

and it permits a wide range of p-value functions, we can seek adjustment to make the individual

pi(ψ0) follow U(0,1) closely and thus achieve high accuracy for the combined inference. In this sec-

tion, we propose a simple adjustment to each individual exact test to reduce the difference between

the distribution of its pi(ψ0) and U(0,1). Our simulation studies in Section 5 show that combining

the adjusted p-value functions can lead to significant power improvement in the rare events setting.

As noted in Boschloo (1970) and Crans and Shuster (2008), we may consider pursuing adjustment

on the test result when the exact test is overly conservative, namely, the actual type I error rate falls

far below the nominal rate (i.e., Ri(α, ψ0)−α� 0). Such conservatism tends to be passed onto the

combined inference (Tian et al., 2009), leading to (R(c)(α, ψ0)−α� 0). It follows from Theorem 1

and Corollary 1 that, if the difference {Ri(s, ψ0)− s} for each test is reduced, so will the difference
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{R(c)(s, ψ0) − s} for the combined test. To achieve an overall improvement, we propose a simple

adjustment on the entire p-value function from each study. The idea is to align the distribution of

pi(ψ0) as closely to U(0,1) as possible. It is well known that the probability function transformation

of a continuous random variable follows U(0,1). More precisely, FZ(Z) ∼ U(0, 1) if FZ(·) is the

cumulative distribution function of the continuous random variable Z. Although this property does

not hold exactly if Z is discrete, FZ(·) can still be used as a baseline for adjusting FZ(Z) to become

close to U(0, 1). Now consider pi(ψ0) as the Z in our discrete setup. Here Z as well as FZ(Z) both

follow discrete distributions. We propose to use a smooth function Gi(·) to approximate FZ(·), and

then impose Gi(·) on Z. For example, for the mid-p adaptation of Fisher exact test, we propose

the following adjustment function

Gi(s) =

 Fbeta

{
s; 1 + λ

miπ0i(1−π0i) , 1 + λ
miπ0i(1−π0i)

}
if s ≤ 1/2,

Fbeta

{
s; 1 + λ

niπ1i(1−π1i) , 1 + λ
niπ1i(1−π1i)

}
if s > 1/2,

(13)

Here λ is a positive tuning parameter, and Fbeta(s; β1, β2) is the cumulative distribution function

of the beta distribution with the parameters β1 and β2. If λ is zero or close to zero, there is no or

little adjustment. The impact of the adjustment (13) increases as λ increases. An example of this

adjustment is illustrated in Figure 3, with the cumulative distribution function of pi(ψ0) (in solid

step function) and its adjusted version Gi(pi(ψ0)) (in a dashed step function). There Gi(·) is the

dotted S-shaped curve, which mimics the shape of the original cumulative distribution function of

pi(ψ0). Clearly, the adjusted cumulative distribution function Gi(pi(ψ0)) shown in Figure 3 is closer

to the diagonal line than the original one.

We impose the adjustment function Gi(·) on the entire p-value function from each study and

denote it by pai (·), i.e., pai (ψ) ≡ Gi{pi(ψ)}. Such an adjustment can typically bring the type-I

error rate closer to the nominal level and, at the same time, lead to power improvement for each

individual test. Consequently, the type-I error rate of the combined test can be also closer to the

nominal level and the power of the combined test can be improved.

The validity of the proposed adjustment can be formally justified by the following three prop-

erties. First, the adjustment effect is discernable only when miπ0i(1 − π0i) and niπ1i(1 − π1i) are

small, and it diminishes when the sample sizes become sufficiently large. The latter can be easily

seen by noting that Gi(·) becomes an identity transformation when miπ0i(1−π0i) and niπ1i(1−π1i)
are sufficiently large. This first property is important because an ideal adjustment approach should

magnify the adjustment effect when the sample size is small and thus correct the conservatism of

the test when it is overly conservative, and it should also avoid over-adjustment by diminishing the

adjustment effect when the sample size is large. Second, this adjustment procedure can be consid-

ered robust in the sense that even if the adjustment on an individual test is overly aggressive in such

a case that the error bound −li ≤ Ri(s;ψ0)− s < 0 becomes −li/2 ≤ Ri(s;ψ0)− s < li/2 (namely,
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Figure 3: The cumulative distribution function Pr{pai (ψ0) ≤ s} for a single study before (λ = 0; solid step

function) and after (λ = 0.4; dashed step function) the beta adjustment. The illustration is for the case

where ψ0 = 1 and π0i = 0.01 with the sample sizes ni = mi = 100. The corresponding beta adjustment

function Gi(s) is shown in the dotted curve hugging the diagonal line.

roughly symmetric around zero) after adjustment, the resulting error bound for {R(c)(s;ψ0)−s} for

the combined inference will not exceed much above zero. The latter is due to a “smoothing” effect

of our proposed combining, which is further illustrated in Figure 4. There we plot respectively, in

a solid curve and a dashed curve, the cumulative distribution function of an aggressively adjusted

pai (ψ0) (by using a large λ with λ = 0.8 in (13) for an individual study) and the combined pa(c)(ψ0)

resulting from combining 10 independent such individual studies. It is easy to see that, even though

each individual test is overly adjusted, the proposed combining approach has such a smoothing ef-

fect that the difference {R(c)(s;ψ0) − s} does not stray far from 0. Finally, we also note that all

the theoretical results in Section 3 remain valid as long as the properties of the adjusted p-value

function pai (ψ) are known. In particular, the formula for determining the overall type I error rate

in Theorem 1 still holds, and it can enable us to: i) estimate the overall type I error rate from the

observed data, and ii) monitor the adjustment effect to avoid over-adjustment by calibrating the

tuning parameter λ. The numerical studies in Section 5 indicate that the choice of λ = 0.4 works

well in general among the cases we have considered.

5 Numerical studies

We now proceed to examine the performance of the proposed exact meta-analysis approach through

simulated and real data sets. Specifically, we apply our approach to two data sets, one involves
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Figure 4: An illustration for the smoothing effect of the proposed combining approach. The solid curve

depicts the cumulative distribution function Pr{pai (ψ0) ≤ s} after an “aggressive” adjustment (λ = 0.8) for

an individual study where ψ0 = 1 and π0i = 0.01 with the sample sizes ni = mi = 100. The dashed curve

depicts the cumulative distribution function Pr{pa(c)(ψ0) ≤ s} for the overall inference after combining 10

such individual studies with over-adjustment.

the diabetes drug Avandia and the other the promotion rates for white and black employees. The

Avandia data (see Nissen and Wolski, 2007, Table 3) are used to examine whether Avandia is

associated with myocardial infarction or cardiovascular death. The promotion data (see Gastwirth,

1984, Table 8) are used to compare the promotion rates of white and black employees in a certain

workplace. The Avandia data set consists of a large number of clinical trials of moderate to large

sizes with very low adverse event rates (K = 48, median{ni} = 222, median{mi} = 142). It consists

of many zero events, among them there are 10 zero total event studies. The promotion data set

consists of a small number of small survey studies with moderately low event rates (K = 10,

median{ni} = 25, median{mi} = 9). One particular feature of this data set is that zero event

is observed throughout one arm. To be consist with the original analyses of the two data sets

and also to facilitate a direct comparison later, we use the odds ratio as the risk measure. For this

measure, we compare our combining p-value functions method with the two most common methods,

by Mantel–Haenszel and Peto, as well as with an existing exact method by (Gart, 1970) (which is

based on conditional likelihood inference). In our approach, the individual p-value functions are

obtained based on the mid-p adaptation of Fisher exact test, which is one of the most popular

exact tests in practice. Finally, when the risk difference is used as the effect measure, we provide a

comparison study between our method and the exact method by Tian et al. (2009). Note that the

conditional likelihood inference method in Gart (1970) is not applicable for risk difference.

18



5.1 Simulation results

In the first simulation study, we generate K = 48 independent studies with the sample sizes corre-

sponding to those in the Avandia data. For the i-th study, the event rate π0i in the control arm is

generated from a uniform distribution U(0,ξ), where ξ is set to be a small number to ensure a certain

low event rate. The event rate in the other arm is determined by logit(π1i) = log(ψ) + logit(π0i)

for a fixed odds ratio ψ ranging from 1 to 10. The data (xi, yi) are generated using the binomial

model described in Section 2.1, now with a non-negligible probability of generating a sizable zero

total event studies. This simulation setting is similar to those in Bradburn et al. (2007) and Tian

et al. (2009), and can thus facilitate more direct comparisons between their findings and ours.

Figure 5(a) presents the empirical coverage probability of 95% confidence intervals when π0i ∼
U(0, 0.01). We can see that the coverage probabilities of Mantel–Haenszel method with 0.5 cor-

rection to zero events (denoted by MH-0.5), Peto method without and with 0.5 correction to zero

events (denoted respectively by Peto-0 and Peto-0.5) all decrease quickly as the true odds ratio

increases above one. Only the proposed method of combining original p-value functions or adjusted

p-value functions, Mantel–Haenszel method without correction to zero events (denoted by MH-0)

and Gart’s exact method can yield confidence intervals with adequate coverage probability. Among

these four valid methods, our method of combining adjusted p-value functions yields the highest

power for testing the hypothesis H0 : ψ = 1 versus H1 : ψ 6= 1, as shown in Figure 5(b). Our

findings on the existing methods here are in line with Finkelstein and Levin (2012).

In the second simulation study, we repeat the same simulation procedure but use the data

structure of the promotion data. The analysis results are shown in Figure 5(c)–(d) for π0i ∼
U(0,0.05). In this situation, there is a non-negligible chance that zero events are observed in one

arm for all the simulated studies, just as what is seen in the real promotion data. For such a

case, implementing Mantel–Haenszel method requires corrections to zero events. Figure 5(c) shows

that MH-0.5 method and Peto-0.5 method have a severe coverage problem with very low coverage

probability. For example, their 95% confidence intervals have coverage probabilities below 80%

and 70% when the true odds ratio ψ = 2 and 3, respectively. For Peto-0 method, the coverage

probability is adequate when ψ ≤ 4, but falls quickly as ψ increases further. These observations are

consistent with the findings in Bradburn et al. (2007), where Peto-0 method is recommended for

its best confidence interval coverage and most powerful test result when the true odds ratio is not

too large. On the other hand, Figure 5(c) shows that our proposed exact method and Gart’s exact

method maintain adequate coverage probability consistently for all the odds ratios throughout the

range of the plot. We therefore compare in Figure 5(d) their testing power, together with Peto-0

method. We see that the combining of adjusted p-value functions achieves the highest power, Peto-0

method and Gart’s exact method have comparable power, and the combining of the original p-value
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functions has power increment not as rapidly as other methods, most likely because the individual

tests here are overly conservative.

The proposed approach enables us to evaluate R(c)(α;ψ0) and thus the actual coverage proba-

bility of the level 100(1− α)% confidence interval (p−1(c)(α/2), p−1(c)(1− α/2))

Pr
{
ψ0 ∈ (p−1(c)(α/2), p−1(c)(1− α/2))

}
= R(c)(1− α/2;ψ0)

− −R(c)(α/2;ψ0).

To evaluate the accuracy of such estimation for our method, we compare the estimated with the

actual coverage probability for the 95% confidence intervals, all in the setting of our first simulation

study. The results are shown in Table 1. Part I of Table 1 shows that, for combining the original

p-value functions, the absolute difference between the estimated and actual coverage probability is

never greater than 0.5% for the listed odds ratios, ranging from 1 to 10. Part II of Table 1 shows

that, for combining the adjusted p-value functions, the difference is slightly higher, but still no

greater than 1.5%. Both cases show that our approaches, with or without adjustments, achieve

high accuracy.

We also examine the impact of zero total event studies on the proposed combining method. To

achieve this, we repeat the same simulation procedure as presented before but artificially remove

all zero total event studies from our analysis. We compare in Table 2 such analysis with the full

analysis of all the available data. Table 2 shows that, overall, the full analysis results in slightly

higher coverage probability, and correspondingly slightly lower testing power. This observation

indicates that zero total event studies yield a slightly more conservative inference result, if the

mid-p adaptation of Fisher exact test is used in the proposed combining method. It is worth noting

that this observed phenomenon is test specific and does not necessarily hold for other exact tests.

Finally, if the risk difference RD is the risk measure of interest, our proposed method and the

exact method by Tian et al. (2009) can be readily implemented, but not Gart (1970). We report

in Table 3 the simulation result obtained from the two methods with π0i being generated from

U(0,0.01%) under the setting of the first simulation study. Comparing to the method by Tian

et al. (2009), the results in Table 3 show that our method yields slightly better though comparable

results when the original p-value functions are combined, and it leads to substantial improvement

in efficiency when the adjusted p-value functions are combined.

5.2 Real data analysis results

Nissen and Wolski (2007) used Peto method (Peto-0 in Table 4) to analyze the Avandia data. For

the endpoint of myocardial infarction, they obtained a 95% confidence interval of (1.031, 1.979)

and a p-value of 0.032 for testing that the odds ratio is 1, and thus concluded that Avandia is

significantly associated with myocardial infarction. Table 4 shows that Mantel–Haenszel method
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Figure 5: Empirical coverage probability of 95% confidence intervals and empirical power of testing

H0 : ψ = 1 versus H1 : ψ 6= 1, for the odds ratios between 1 and 10. The empirical results are calculated

based on 10000 data sets simulated from the structures of the Avandia data (a)-(b), and from the promotion

data (c)-(d). The baseline event rate π0i, i = 1, . . . ,K, are generated from U(0, 0.01) and U(0, 0.05)

for illustrations (a)-(b) and (c)-(d), respectively. The methods illustrated are: the proposed method

of combining p-value functions (◦) and combining the adjusted p-value functions with tuning parameter

λ = 0.4 (4); Mantel–Haenszel method without (+) and with (×) 0.5 corrections for every cell of the 2× 2

table with zero event; Peto method without (�) and with (5) 0.5 corrections for every cell of the 2 × 2

table with zero event; and Gart’s exact method (�).
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Table 1: Estimated coverage probability of a 95% confidence interval

Part I. Combining the original p-value functions

True odds ratio 1 2 3 4 5 6 7 8 9 10

Actual coverage (%) 97.5 97.0 96.7 96.6 96.7 96.6 96.5 96.0 96.6 96.5

Estimated coverage (%) 97.8 97.1 96.8 96.7 96.6 96.6 96.5 96.5 96.5 96.4

Absolute difference (%) 0.3 0.1 0.1 0.1 0.1 0.0 0.0 0.5 0.1 0.1

Part II. Combining the adjusted p-value functions

True odds ratio 1 2 3 4 5 6 7 8 9 10

Actual coverage (%) 94.8 94.5 94.4 94.1 94.1 94.0 94.5 94.3 94.1 94.4

Estimated coverage (%) 96.0 95.7 95.6 95.5 95.4 95.4 95.4 95.3 95.3 95.3

Absolute difference (%) 1.2 1.2 1.2 1.4 1.3 1.4 0.9 1.0 1.2 0.9

(MH-0 in Table 4) yields similar significant result. However, after applying 0.5 corrections to zero

events, the two methods, Peto-0.5 and MH-0.5, yield p-values of 0.158 and 0.163, respectively.

Neither of the results is significant even at α = 0.1 significance level. This observation implies

that, for Peto and Mantel–Haenszel methods, the use of corrections to zero events may result in

contradictory conclusions. Our finding here is consistent with that in Sweeting et al. (2004) which

reports that the imputation to zero events can result in very different conclusions, depending on the

numbers imputed. Table 4 shows that the results from different exact analysis are more consistent

with each other. For example, Gart’s exact method yields a 95% confidence interval of (1.016,

2.005) and a p-value of 0.040. Combining the original p-value functions, our method yields a 95%

confidence interval of (0.972, 2.001) and a p-value of 0.071. We calculate the estimate of coverage

probability, which is 97.3% indicating that the result here may be conservative. Combining the

adjusted p-value functions, our method yields a 95% confidence interval of (1.037, 2.004) and a

p-value of 0.029, and the estimated coverage probability is 96.1%. When all the zero total event

studies are removed, combining the original and the adjusted p-value functions yield 95% confidence

intervals of (0.978,1.994) and (1.040,1.996), respectively. Both intervals are slightly narrower than

those obtained by analyzing the entire data. Similar results and discussion can be made for the

other endpoint of cardiovascular death studied in Table 4.

The promotion data has a special feature that no promotion is observed in the arm of black

employees across all the studies (i.e., observing all zeros in one arm). For this case, MH-0 method

is clearly not applicable, and MH-0.5, Peto-0 and Peto-0.5 in Table 4 all yield confidence intervals
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Table 2: Simulation result with and without zero total event studies

Part I. The Avandia data structure

True odds ratio 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Combining the original p-value functions

CP (%) 97.5 97.7 97.6 97.4 97.2 97.3 97.3 97.0 97.3 97.3

CP-w/o (%) 97.2 97.1 97.0 97.3 96.9 96.7 97.2 97.2 96.9 96.6

Power (%) 2.5 4.6 11.9 25.0 43.1 61.1 77.0 88.3 94.4 97.6

Power-w/o (%) 2.8 4.9 11.9 26.8 45.2 62.9 79.4 88.4 94.7 97.4

Combining the adjusted p-value functions

CP (%) 94.8 95.1 94.8 94.8 94.7 94.7 94.9 94.6 94.7 94.5

CP-w/o (%) 94.8 94.3 94.3 94.7 94.4 94.1 94.6 94.5 94.6 94.1

Power (%) 5.3 10.0 21.7 39.0 58.2 75.1 86.9 94.1 97.6 99.0

Power-w/o (%) 5.6 10.1 21.3 40.4 59.0 75.2 87.6 93.9 97.7 98.9

Part II. The promotion data structure

True odds ratio 1 2 3 4 5 6 7 8 9 10

Combining the original p-value functions

CP (%) 99.8 99.5 99.4 99.2 99.4 99.2 99.0 99.3 98.9 98.9

CP-w/o (%) 99.3 98.5 99.0 98.9 99.1 99.4 99.2 98.8 98.7 98.8

Power (%) 0.2 0.3 5.8 25.4 51.0 71.6 84.6 93.2 96.4 98.5

Power-w/o (%) 0.6 1.3 9.4 27.3 50.9 76.0 88.5 92.8 97.0 98.4

Combining the adjusted p-value functions

CP (%) 95.7 96.6 97.3 97.4 97.3 97.6 97.5 97.9 97.4 97.4

CP-w/o (%) 94.0 95.6 96.4 96.6 97.4 98.1 97.4 97.3 97.1 97.7

Power (%) 4.3 19.9 46.1 69.0 85.2 93.5 96.6 98.9 99.5 99.8

Power-w/o (%) 5.9 23.9 46.7 72.9 86.7 95.2 98.3 98.8 99.9 99.7

Remark: CP=Coverage Probability; Power=Power for rejecting the hypothesis H0 : ψ = 1 versus;

w/o=without zero total event studies.
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Table 3: Empirical coverage probability and average length of 95% confidence intervals when risk

difference is used as the effect measure

Tian et al. Proposed exact Proposed exact (adj)

Risk difference(%) CP(%) Avg. length CP(%) Avg. length CP(%) Avg. length

0 100 1.47 100 1.45 100 0.98

0.01 100 1.59 100 1.54 100 1.07

0.05 100 1.88 100 1.81 99.6 1.34

Remark: CP = Coverage Probability; Avg. length= Average length ×1000.

Table 4: Analysis result of the Avandia data and the promotion data

Avandia data Promotion data

Myocardial infarction Cardiovascular death

95% CI P 95% CI P 95% CI P

Peto-0 (1.031, 1.979) 0.032 (0.980, 2.744) 0.060 (1.522, 12.86) 0.006

Peto-0.5 (0.921, 1.659) 0.158 (0.761, 1.690) 0.538 (0.776, 4.270) 0.168

MH-0 (1.029, 1.978) 0.033 (0.984, 2.930) 0.057 - -

MH-0.5 (0.919, 1.647) 0.163 (0.760, 1.689) 0.541 (0.738, 5.396) 0.174

Gart’s exact (1.016, 2.005) 0.040 (0.949, 2.981) 0.078 (2.298, ∞) 0.004

Proposed exact (0.972, 2.001) 0.071 (0.765, 2.965) 0.252 (0.842, ∞) 0.080

Proposed exact(adj) (1.037, 2.004) 0.029 (0.956, 2.981) 0.073 (1.054, ∞) 0.042

Remark: CI = Confidence interval; P = p-value for hypothesis testing H0 : ψ = 1 versus H1 : ψ 6= 1.

with finite upper bounds. This is because Mantel–Haenszel and Peto methods obtain Wald-type

intervals by computing point estimates plus/minus a constant times estimated standard errors. It

is important to note that, however, the promotion data set, with no events in one whole arm, does

not provide any evidence for rejecting the hypothesis H0 : ψ = ψ∗ and favoring H1 : ψ < ψ∗, for any

value of ψ∗. Thus, any finite upper bound placed on the odds ratio may be misleading. In contrast,

Table 4 shows that all the exact methods, Gart’s and ours, do not have such a problem. They yield

infinity as the upper end of the confidence interval, due to the use of the exact distributions of test

statistics. Finally, we remark that, although Gart’s method performs comparably to ours here, it

is tailored specifically for the inference of odds ratios with no clear extensions beyond this setting.
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6 Discussion

In this paper, we have proposed a general exact meta-analysis approach for discrete data settings by

combining p-value functions associated with the exact tests from individual studies. This approach

encompasses a broad class of exact meta-analysis methods, as it permits a wide range of choices

for the combining elements, such as tests, weights, transformation functions, and adjustments. The

combining formula used in the approach has a simple structure that allows us to explicitly derive

the theoretical statements about the combined inference. Guided by those statements, we have been

able to devise empirical methods to further improve the inference efficiency of our approach. We

have demonstrated, through numerical studies in the rare events setting, that our exact approach

is efficient and, generally, outperforms existing commonly used meta-analysis methods. Although

Gart’s method performs comparably to ours for the inference of odds ratios, it does not apply

outside the realm of odds ratios while ours applies readily in general settings and parameters.

Throughout the paper, we have emphasized the great generality of our approach, especially in

terms of its flexibility to accommodate different choices of weights, tests, transformation functions,

and even adjustments to the original p-value functions. However, the emphasis on generality should

not be misconstrued as an advocacy for “arbitrary choice”. Instead it calls for the understanding

of the impact of any particular choice towards the pre-set desired properties if there are any. For

example, we made recommendations on different choices in Section 4 based on considerations of

efficiency, accuracy, or other practical concerns. Some remarks on the choices of combining elements

are also given below.

The idea of combining functions in meta-analysis was proposed in Xie et al. (2011) for continuous

settings and in the context of combining confidence distribution functions. The combining formula

(2) was introduced and investigated in this context. In this paper, we extend and justify the use

of this approach to combining p-value functions in discrete settings. With p-value functions as the

specific elements for combining, we are able to establish several more explicit formulas, which make

our combined inference results also explicitly tractable. In addition, unlike the approach in the

continuous case, our approach still applies even if the p-value functions under the true parameter

value deviates from the desired distribution U(0,1), as discussed in Sections 3.1 and 3.2.

To a certain extent, our approach may be viewed as a generalization of the classical approach

of combining p-values (see, e.g., Fisher, 1932; Stouffer et al., 1949). However, unlike the classical

approach which is to combine the observed p-values, our approach is to combine the entire p-value

functions. Moreover, the classical approach uses only equal weights in the combination, which is

known to be inefficient in terms of preserving Fisher information (e.g., Xie et al., 2011). In contrast,

our approach can afford flexible weights in the combination. In fact, we show in Section 4.1 that

with suitably chosen weights our approach can achieve substantial gain of efficiency in analyzing

25



rare events data, and in the case where a large sample theory applies, our combined estimator is

asymptotically efficient.

Our approach allows p(ψ0) (ψ0 is the true value of ψ) to be non-uniformly distributed, even

asymptotically, which is inevitably in discrete data analysis. Clearly, such non-uniform distribution

results in loss of inference accuracy in the sense that the type I error rate strays from the nominal

level. We have proposed in Section 4.2 some proper empirical adjustments to p-value functions,

and shown through numerical studies that combining adjusted p-value functions can significantly

improve the testing power in the rare events setting. Thus, we recommend combining adjusted

p-value functions when the sample size is small, where the the test is overly conservative and the

power of the original p-value may be curtailed. On the other hand, if the sample size is not small, it

may be unnecessary to implement additional adjustments, since the proposed adjustment function

G(·) is almost an identity function. Naturally, the approach of combining original p-value functions

should be preferred if the investigation requires strict control of the type I error and cannot tolerate

any over-adjustment. Indeed there is then no theoretical guarantee that the overall type I error is

always below the nominal value after applying the proposed adjustment.

The combining formula (2) can accommodate any transformation function h(·) as long as it

is monotonically increasing. The associated theoretical results for different choices of h may vary

in form but can be established following similar procedures in this paper. We choose to use the

inverse function of the standard normal distribution function Φ−1(·) as the default transformation

function in (2), because this choice approximates the most efficient inference in the large-sample

setting (cf. Theorem 4) and yields good numerical performance in the small-sample setting as

well. Different transformation functions may be employed to obtain certain desired properties. For

example, to achieve Bahadur efficiency for combining inferences in the continuous data setting,

Singh et al. (2005) recommended using the double exponential distribution function (F (x) = {1 +

sgn(x)(1−e−x)}/2) as the transformation function. However, such a choice may be inferior to using

the normal distribution in terms of Fisher efficiency (as observed in Xie et al. (2011)). We have

conducted a numerical comparison study for these two transformation functions for the rare events

setting considered in this paper. Our findings (not reported here) agree with those in Xie et al.

(2011). Note that our approach is intrinsically designed to achieve proper probability coverages for

confidence intervals, and the choice of transformation functions obviously would affect the length

of the resulting confidence interval which is of importance in most meta-analysis settings.

Although we have used the mid-p adaptation of Fisher exact test throughout the paper to

illustrate our approach, we stress that our approach applies to any valid exact test, and, better

still, it even allows individual studies to use different tests. There exist many exact tests for testing

the association in a 2 × 2 table. The mid-p adaptation of Fisher exact test, Fisher-Boschloo test
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(Boschloo, 1970) and Suissa and Shuster test (Suissa and Shuster, 1985) have been recommended

in the review paper Lydersen, Fagerland, and Laake (2009). There are also exact tests for the

odds ratio and risk ratio proposed by Agresti and Min (2002) and Reiczigel, Abonyi-Tóth, and

Singer (2008) respectively. Among the existing ones, the mid-p Fisher exact test is perhaps the

most commonly used one. Although it does not guarantee its type I error rate to be no higher than

the nominal level, it is considered as “a good compromise” by many (cf. Agresti and Min, 2002).

But, if the investigation requires a strict control of the type-I error rate, other tests such as the

point-probability method discussed in (Fleiss et al., 2003; Section 2.7.1) may be more appropriate.

In fact, Fleiss et al. (2003) remarked that the point-probability method tends to produce results less

conservative than the equal-tailed method. In the context of Avandia data, the point-probability

method yields a 95% confidence interval of (1.024, 2.002) and a p-value of 0.037 for the endpoint

of myocardial infarction, and appears to approximate the mid-p correction in efficiency without

violating the type I error constraint.

Despite the broad range of choices of the combining elements, our approach can be summed up

with a simple guideline:

I) Assume that there are required or preferred tests for individual studies –

Step 1. Use the recommended weights in (12), following the reasoning in Section 4.1.

Step 2. The inverse function of the standard normal distribution function can be considered the

default transformation function in the combining formula (2), following the justifications given in

this paper. If specific properties are desired for the combined inference, they may be achieved by

using certain transformation functions. For example, one may consider using the double exponential

distribution function as the transformation function if Bahadur efficiency for combined inference is

desired.

Step 3. Apply the formulas in Section 3.1 to monitor the observed type I error rate (or accuracy) of

the combined test. If it deviates too much from the nominal one and an improvement is desired, one

can apply the adjustment formula (13) in the procedure described in Section 4.2 to adjust p-value

functions. The accuracy can be adjusted by calibrating the tuning parameter λ in (13).

II) Assume that there are no preferred tests for individual studies –

One can look into a few commonly recommended tests for individual studies. For each particular

set of tests one can follow the steps in I) to assess their combined inference and choose the best

performing one(s).

Finally, we make a few remarks on meta-analysis of rare events data in discrete settings.

Remark A. The widely used 0.5 correction to zero events should be avoided, because such a

correction can lead to severe bias in the inference, as seen in this paper as well as (Bradburn et al.,

2007; Finkelstein and Levin, 2012). Other corrections to zero events may be acceptable, but it is
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imperative that a pursuit of any type of correction be calibrated by an accompanying sensitivity

analysis, as asserted by (Sweeting et al., 2004). Our proposed approach has the advantage of

requiring no corrections at all.

Remark B. Asymptotic methods that rely on large-sample approximations should be used with

the understanding that the associated inference may be invalid, as shown in this paper, Bradburn

et al. (2007), Tian et al. (2009) and others.

Remark C. So far, we have observed that the so-called zero total event study (i.e., observing zero

events in both arms) has no impact on the inference outcome with Mantel–Haenszel, Peto and

Gart exact methods, but it makes the overall inference slightly more conservative (with widened

confidence intervals) in our proposed approach when the mid-p adaptation of Fisher exact test is

used. It appears that a definitive conclusion or consensus is yet to be reached on the effect of a

zero total event study on meta-analysis, and that further research on this subject is clearly needed.

Meanwhile, our proposed approach has the advantage of automatically including zero total events

studies in the analysis without having to first evaluate their possible impact. Some discussion on

zero total event studies and the related debates concerning the litigation aspects of Avandia cases

can be found in Finkelstein and Levin (2012).

Appendix

Part I. The empirical method for estimating π1i and π0i

We make the working assumption that π0i is a realization from a beta distribution beta(β1, β2),

noting that the beta distribution family is broad enough for capturing or approximating distributions

of different shapes. The estimates of the parameters (β1, β2, ψ) are then obtained using the maximum

likelihood method as follows:

(β̂1, β̂2, ψ̂) = arg max
(β1,β2,ψ)

K∑
i=1

log

∫ 1

0

fψ(xi, yi | π0i)fβ1,β2(π0i)dπ0i, (14)

where fβ1,β2(π0i) = πβ1−10i (1 − π0i)β2−1/
∫ 1

0
πβ1−10i (1 − π0i)β2−1dπ0i, fψ(xi, yi | π0i) = c(xi, yi)π

xi
1i (1 −

π1i)
ni−xi πyi0i(1 − π0i)

mi−yi , and π1i = (ψπ0i)/(1 − π0i + ψπ0i) in the situation of a common odds

ratio. We obtain the empirical conditional density of π0i, namely fβ̂1,β̂2,ψ̂(π0i | xi, yi) ∝ fψ̂(xi, yi |
π0i)fβ̂1,β̂2(π0i), by substituting the parameters (β1, β2, ψ) with their estimates (β̂1, β̂2, ψ̂). We then

use the mean of this distribution, denoted by π̂0i, to estimate π0i and the estimate of π1i is π̂1i =

(ψ̂π̂0i)/(1 − π̂0i + ψ̂π̂0i). This estimation method can apply to the situations of other common

parameters, such as the risk ratio and others, with straightforward modification.

The working beta distribution assumption is simply a catalyst for borrowing information from

the other studies. For example, in our simulation studies presented in Section 5.1, we generate the
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event rate π0i from the uniform distributions U(0, ξ). Clearly, such uniform distributions do not

belong to the beta distribution family. Nevertheless, our simulation results show that the empirical

estimation method still performs well.

Part II. Proofs

Proof of Theorem 1. Define random variables Bij (i = 1, . . . , K; j = 1, . . . , K) as seen in Theorem 1.

By sequentially conditioning on pi(ψ0) (i = 1, . . . , K), we can establish that

Pr

{
p(c)(ψ0) ≤ s

}
= E

{
Pr

(
Φ

[( K∑
i=1

w2
i

)−1/2 K∑
i=1

wiΦ
−1{pi(ψ0)}

]
≤ s

∣∣∣∣ p2(ψ0), . . . , pk(ψ0)

)}

= E

Pr

p1(ψ0) ≤ Φ


(

1 +
∑
j 6=1

w2
j

w2
1

)1/2

Φ−1(s)−
∑
j 6=1

wj
w1

Φ−1(pj(ψ0))


∣∣∣∣∣∣ p2(ψ0), . . . , pk(ψ0)


= E

Pr

U1 ≤ Φ


(

1 +
∑
j 6=1

w2
j

w2
1

)1/2

Φ−1(s)−
∑
j 6=1

wj
w1

Φ−1(pj(ψ0))


∣∣∣∣∣∣ p2(ψ0), . . . , pk(ψ0)


+ E

D1

Φ


(

1 +
∑
j 6=1

w2
j

w2
1

)1/2

Φ−1(s)−
∑
j 6=1

wj
w1

Φ−1(B1j)




= Pr

Φ


(

K∑
i=1

w2
i

)−1/2 K∑
i=1

wiΦ
−1(B1i)

 ≤ s

+ d1(s)

= Pr

Φ


(

K∑
i=1

w2
i

)−1/2 K∑
i=1

wiΦ
−1(BKi)

 ≤ s

+
K∑
i=1

di(s)

= s+
K∑
i=1

di(s)

This completes the proof.

Proof of Theorem 2. For simplicity, we prove the result when K = 2.

Pr{p(c)(ψ∗) ≤ s} = E

[
Pr

{
p1(ψ

∗) ≤ Φ

(√
w2

1 + w2
2

w1

Φ−1(s)− w2

w1

Φ−1(p2(ψ
∗))

) ∣∣∣∣∣ p2(ψ∗)
}]

≥ 1−

[
1− E

{
Φ

(√
w2

1 + w2
2

w1

Φ−1(s)− w2

w1

Φ−1(p2(ψ
∗))

)}]/
f1(
√
N1).

Let U1 be a random variable following the U(0,1) distribution, independent of p2(ψ
∗). We can show
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that

E

{
Φ

(√
w2

1 + w2
2

w1

Φ−1(s)− w2

w1

Φ−1(p2(ψ
∗))

)}

= E

[
Pr

{
U1 ≤ Φ

(√
w2

1 + w2
2

w1

Φ−1(s)− w2

w1

Φ−1(p2(ψ
∗))

) ∣∣∣∣∣ p2(ψ∗)
}]

= Pr

{
U1 ≤ Φ

(√
w2

1 + w2
2

w1

Φ−1(s)− w2

w1

Φ−1(p2(ψ
∗))

)}

= E

[
Pr

{
p2(ψ

∗) ≤ Φ

(√
w2

1 + w2
2

w2

Φ−1(s)− w1

w2

Φ−1(U1)

) ∣∣∣∣∣ U1

}]

≥ 1−

[
1− E

{
Φ

(√
w2

1 + w2
2

w2

Φ−1(s)− w1

w2

Φ−1(U1)

)}]/
f2(
√
N2)

= 1− 1− s
f2(
√
N2)

.

Therefore,

Pr{p(c)(ψ∗) ≤ s} ≥ 1−
{

1−
(

1− 1− s
f2(
√
N2)

)}/
f1(
√
N1) = 1− 1− s

f1(
√
N1)f2(

√
N2)

.

This completes the proof.

Proof of Theorem 3. The proof is similar to the proof of Theorem 1 and thus is omitted.

Proof of Theorem 4. It is easy to show that

p(c)(ψ) = Φ

 1{∑K
i=1w

2
i

}1/2

K∑
i=1

wiΦ
−1{pi(ψ)}

 = Φ




K∑
i=1

1

̂aVar(ψ̂i,MLE)


1/2

(ψ − ψ̂c)

+ o(1),

where

ψ̂c =


K∑
i=1

ψ̂i,MLE

̂aVar(ψ̂i,MLE)


/

K∑
i=1

1

̂aVar(ψ̂i,MLE)

 .

The result of Theorem 4 then follows.

Proof of Corollary 3. Denote by γ = ηŵ − ηw, we have

Pr{p(c)(ψ0) ≤ s} = Pr{ηw + γ ≤ Φ−1(s)}

= Pr{ηw ≤ Φ−1(s)− γ | γ > 0}Pr{γ > 0}+ Pr{ηw ≤ Φ−1(s)− γ | γ ≤ 0}Pr{γ ≤ 0}

=
[
Pr{ηw ≤ Φ−1(s) | γ > 0} − Pr{Φ−1(s)− γ < ηw ≤ Φ−1(s) | γ > 0}

]
Pr{γ > 0}+[

Pr{ηw ≤ Φ−1(s) | γ ≤ 0}+ Pr{Φ−1(s) < ηw ≤ Φ−1(s)− γ | γ ≤ 0}
]

Pr{γ ≤ 0}

= Pr{ηw ≤ Φ−1(s)}+ A = s+
K∑
i=1

di(s) + A
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where A = Pr{0 < ηw − Φ−1(s) ≤ −γ | γ ≤ 0}Pr{γ ≤ 0} − Pr{−γ < ηw − Φ−1(s) ≤ 0 | γ >

0}Pr{γ > 0}. In the following, we show A→ 0 and study its convergence rate.

Since E{Φ−1(pi(ψ0))}2 < C and by Chebyshev’s inequality, we have Φ−1(pi(ψ0)) = Op(1), for

i = 1, . . . , K. It follows that γ = Op(1/
√
Nmin). So, for the fixed 0 < s < 1,

|A| ≤ Pr
{
|ηw − Φ−1(s)| ≤ |γ|

}
= Op

(
1/
√
Nmin

)
.

Thus, the statement in Corollary 3 holds.
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