
EXACT METHODS FOR THE ASYMMETRIC

TRAVELING SALESMAN PROBLEM

Matteo Fischetti
D.E.I, University of Padova

Via Gradenigo 6/A, 35100 Padova, Italy

fisch@dei.unipd.it

Abstract

In the present chapter we concentrate on the exact solution methods

for the Asymmetric TSP proposed in the literature after the writing
of the survey of Balas and Toth [81]. In Section 2 two specific branch-
and-bound methods, based on the solution of the assignment problem
as a relaxation, are presented and compared. In Section 3 a branch-
and-bound method based on the computation of an additive bound is
described, while in Section 4 a branch-and-cut approach is discussed.
Finally, in Section 5 all these methods are computationally tested on a
large set of instances, and compared with an effective branch-and-cut
code for the symmetric TSP.

A formal definition of the problem is as follows. Let G = (V, A) be

a given complete digraph, where is the vertex set and

(2013)

170 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

the arc set, and let be the cost associated with

arc (with for each A Hamiltonian directed

i.e., a spanning subdigraph

cycle (tour) of G is a directed cyclevisiting each vertex of V exactly once,

 of G such that and is

strongly connected, i.e., for each pair of distinct vertices

both paths from to and from to exist in

The Asymmetric Traveling Salesman Problem (ATSP) is to find a

Hamiltonian directed cycle of G whose

for any arc

cost is

a minimum. Without loss of generality, we assume

The following Integer Linear Programming formulation of ATSP is

well-known:

where Constraints

(2) and (3) impose the in-degree and out-degree of each vertex be equal

 if and only if arc is in the optimal tour.

to one, respectively, while constraints (4) impose strong connectivity.

Because of (2) and (3), conditions (4) can be equivalently re-written as

the Subtour Elimination Constraints (SECs):

Moreover, it is well known that one can halve the number of constraints

(4) by replacing them with

or with

Exact Methods for the ATSP 171

where is any fixed vertex.

Several substructures of ATSP can be pointed out, each associated

with a subset of constraints defining a well-structured relaxation whose

solution value gives a valid lower bound for ATSP.

Constraints (2), (3) and (5), with objective function (1), define the

well-known min-sum Assignment Problem (AP). Such a problem al-

ways has an integer optimal solution, and requires finding a minimum-

cost collection of vertex-disjoint subtours visiting all the vertices of G.

If an optimal solution of AP determines only one directed cycle, then

it satisfies all constraints (4) and hence is optimal for ATSP as well.

Otherwise, each vertex subset S whose vertices are visited by the same

Relaxation AP can be subtour, determines a violated constraint (4).

solved in time (see, e.g., Lawler [547]).

Constraints (2), (8) and (5), with objective function (1), define the

well-known shortest Spanning Problem Such a

problem always has an integer optimal solution, and corresponds to find-

ing a minimum-cost spanning subdigraph of G such that (i)

the in-degree of each vertex is exactly one, and (ii) each vertex can

be reached from the root vertex If an optimal solution of

leaves each vertex with out-degree equal to one, then it satisfies all con-

straints (3) and hence is optimal for ATSP as well. Otherwise, each

vertex having out-degree different from one, determines a violated con-

straint (3). Relaxation can be solved in time by finding the

shortest spanning arborescence rooted at vertex and by adding to it a

minimum-cost arc entering vertex Efficient algorithms for the shortest

arborescence problem have been proposed by Edmonds [267], Fulkerson

[338], Tarjan [788], and Camerini, Fratta and Maffioli [154, 155]; an ef-

ficient implementation of Tarjan’s algorithm can be found in Fischetti

and Toth [305]. Fischetti [294] described a modified method

to compute an improved lower bound not depending on the root vertex

A third substructure, corresponding to constraints (3), (9) and (5),

with objective function (1), defines the shortest Spanning

Problem Such a problem can easily be transformed

into by simply transposing the input cost matrix, hence it can be
solved in time.

In order to obtain tighter lower bounds, two enhanced relaxations,

and can be introduced.

Relaxation is obtained from by adding constraint (3)

for the root vertex Such a problem can be transformed into

for i.e., which imposes out-degree equal to one

(and hence solved in time) by considering a modified cost matrix

172 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

obtained by adding a large positive value M to costs for all

the optimal value of being
Relaxation is obtained in a similar way from by

adding constraint (2) for i.e.,

Such a problem can be solved

 which imposes in-

degree equal to one for the root vertex

in time by transforming it into through transposition of

the input cost matrix.

2. AP-Based Branch-and-Bound Methods

In this section we review the AP-based branch-and-bound algorithms

that have been proposed since the writing of the Balas and Toth [81]

survey. All these algorithms are derived from the lowest-first branch and

bound procedure TSP1 presented in Carpaneto and Toth [166] which is

outlined below.

At each node of the decision tree, procedure TSP1 solves a Modi-

fied Assignment Problem defined by (1), (2), (3), (5) and the

additional variable-fixing constraints associated with the following arc

subsets:

APcan easily be transformed into a standard by properly mod-

ifying the cost matrix so as to take care of the additional constraints.

If the optimal solution to does not define a Hamiltonian di-

rected cycle and its value (yielding the lower bound associated with

node) is smaller than the current optimal solution value, say UB, then

descending nodes are generated from node according to the follow-

ing branching scheme (which is a modification of the subtour elimination

rule proposed by Bellmore and Malone [97]).

Let be a subtour in the optimal solution having

the minimum number of not included arcs, i.e., such that is

a minimum, and let be the non-included arcs of

taken in the same order as they appear along the subtour. The subsets

of the excluded/included arcs associated with the descending node

of the current branching node say are defined as follows

(see also Figure 4.1 for an illustration):

Moreover, each subset is enlarged by means of the arc

so as to avoid subtours with just one non-included arc.

173 Exact Methods for the ATSP

2.1. The Algorithm of Carpaneto, Dell’Amico
and Toth

The approach of Carpaneto, Dell’Amico and Toth [164] differs from

that presented in [166] in the following main respects:

a) at the root node of the branch-decision tree, application of a re-

duction procedure to remove from G some arcs that cannot belong

to this G

procedures specialized for sparse graphs;

 in way the original digraph can be an optimal tour;

transformed into a sparse one, say allowing the use of

b) use of an efficient parametric technique for the solution of the

MAP’s, allowing each to be solved in time;

c) application, at each branching node of a subtour merging pro-

solution.

2.1.1 Reduction Procedure. At the root node of the branch-

decision tree, the AP corresponding to the original complete cost matrix,

cedure to decrease the number of subtours defined by the optimal

is solved through the primal-dual procedure CTCS presented

in Carpaneto and Toth [168]. Let and be an optimal solution of

the dual problem associated with AP, and let be the corresponding

solution value. It is well known that, for each arc the reduced

cost represents a lower bound on the increase

of the optimal AP solution value corresponding to the inclusion of arc

If an ATSP feasible solution of value UB is known, then each arc

such that can be removed from A, since its

174 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

inclusion in any ATSP solution cannot lead to a solution value smaller

where
Value UB can be obtained through any heuristic procedure for ATSP;

than UB. G

sparse one,
The original complete digraph can thus be reduced into a

in [164] the patching algorithm proposed by Karp [498] is used. An
alternative way is to compute an “artificial” upper bound by simply
setting where is a given parameter. However, if at
the end of the branch and bound algorithm no feasible solution of value
less than UB is found, then is not a valid upper bound, so

must be increased and a new run needs to be performed.

2.1.2 Parametric MAP Solution. The effectiveness of the
overall ATSP algorithm greatly depends on the efficiency of the MAP

algorithm used. At each node of the decision tree, instead of solving

from scratch, a parametric technique is used which finds only one
shortest augmenting path. Indeed, when generating a descending node

from its father node only one arc, say is excluded from the
solution of So, to obtain the optimal solution of from

that of it is only necessary to satisfy constraint (2) for and

constraint (3) for i.e., one only needs to find a single shortest
augmenting path from vertex to vertex in the bipartite graph cor-

responding to with respect to the current reduced cost matrix

Note that the addition of the new included arcs contained in

optimal solution of

does not affect the parametrization, as these arcs already belong to the

As graph is sparse, the shortest aug-
menting path is found through a procedure derived from the labelling
algorithm proposed by Johnson [459] for the computation of shortest
paths in sparse graphs, which uses a heap queue. Hence, the resulting
time complexity for solving each is

The computation of the shortest augmenting path at each node is
stopped as soon as its current reduced cost becomes greater or equal
to the gap between the current upper bound value UB and the optimal
value of

2.1.3 Subtour Merging. Consider a node of the decision

tree for which several optimal MAP solutions exist. Computational
experience shows that the optimal solution which generally leads to the
smallest number of nodes in the subtree descending from is that having

the minimum number of subtours. A heuristic procedure which tries to

175 Exact Methods for the ATSP

decrease the number of subtours is obtained by iteratively applying the

following rule.

Given two subtours and if there exists

an arc pair and such that arcs and

 then an equivalent

optimal solution to

have zero reduced costs (i.e.,

can be obtained by connecting subtours

and to form a single subtour

If, at the end of the procedure, a Hamiltonian directed

cycle is found, then an optimal solution to the ATSP associated with

node has been found and no descending nodes need to be generated.
The above subtour-merging procedure is alwaysapplied at the root

node of the decision tree. As to the other nodes, it is applied only if the

total number of zero reduced cost arcs at the root node is greater than
a given threshold (e.g., Indeed, the procedure is typically

effective only if the subdigraph corresponding to the zero reduced-cost

arcs contains a sufficiently large number of arcs. (Computational exper-
iments have shown that an adaptive strategy, which counts the number

of zero reduced-cost arcs at each node and then decides on the opportu-

nity to apply the procedure, often gives worseresults than the threshold
method above.)

2.2. The Algorithms of Miller and Pekny

Effective procedures for the solution of the ATSP have been proposed

by Miller and Pekny in the early nineties [596, 597, 665, 664]. These

methods are also based on the general approach presented in Carpaneto

and Toth [166], the main differences and similarities between them being
discussed below.

In [596], Miller and Pekny presented a preliminary algorithm which is

a parallelization of the approach of Carpaneto and Toth, improved with
the application of the patching heuristic [498] at the root node.

The algorithm presented in [664] represents a substantial improve-

ment of the original parallel procedure. The MAP’s at the nodes are

solved through an parametric procedure which computes a single

augmenting path using a . Moreover, the patching algorithm is

applied at the root node, and to the other nodes with decreasing fre-

quency as search progresses. In addition, the branch-and-bound phase
is preceded by a sparsification of the cost matrix obtained by removing
all the entries with cost greater than a given threshold Asufficient

176 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

condition is given to check whether the optimal solution obtained with

respect to the sparse matrix is optimal for the original matrix as well.

The algorithm presented in [665] is a modification of that presented in

[664], obtained with the application, at each node, of an exact procedure

to find a Hamiltonian directed cycle on the subdigraph defined by the

arcs with zero reduced cost. The most sophisticated version of the Miller

and Pekny codes appears to be that presented in [597], which includes

all the improvements previously proposed by the authors.

The similarities among the approach of Carpaneto, Dell’Amico and

Toth [164] and the algorithms of Miller and Pekny are the following:

(a) the branching rule is that proposed in [166]; (b) the MAP’s at the

various branching nodes are solved through an procedure; and (c)

the patching algorithm is applied at the root node. The two approaches

differ in the following aspects: (a) for the sparsification phase, [164]

proposes a criterion based on the comparison between the reduced costs

given by the initial AP and the gap between lower and upper bound; (b)

an efficient technique to store and retrieve the subproblems is proposed

in [164] so that the exploration of the branch-decision tree is accelerated;

and (c) a fast heuristic algorithm to find a Hamiltonian directed cycle

on the subdigraph defined by the arcs with zero reduced cost is applied

in [164].

Comparing the computational results obtained by Miller and Pekny

with those presented in [164], it appears that the latter code is slower

than the algorithm presented in [597] for small cost ranges (and random

instances), but it seems to be faster for large cost ranges. On the whole,

the two methods exhibit a comparable performance.

3. An Additive Branch-and-Bound Method

This section describes the solution approach proposed by Fischetti

and Toth [304], who embedded a more sophisticated bounding proce-

dure within the standard branch-and-bound method of Carpaneto and

Toth [166]. Observe that AP, and relaxations (as

defined in Section 1) are complementary to each other. Indeed, AP

imposes the degree constraints for all vertices, while connectivity con-

straints are completely neglected. Relaxation instead, imposes

reachability from vertex to all the other vertices, while out-degree con-

straints are neglected for all vertices different from Finally,

imposes reachability from all the vertices to vertex while in-degree

constraints are neglected for all vertices different from A possible

way of combining the three relaxations is to apply the so-called additive

approach introduced by Fischetti and Toth [303].

Exact Methods for the ATSP 177

3.1. An Additive Bounding Procedure

An additive bounding procedure for ATSP can be outlined as follows.

Let be bounding procedures available for ATSP.

Suppose that, for and for any cost matrix procedure

when applied to the ATSP instance having cost matrix re-

turns its lower bound as well as a so-called residual cost matrix

such that:

i)

ATSP solution

for each

ii) for each feasible

The additive approach generates a sequence of ATSP instances, each

obtained by considering the residual cost matrix corresponding to the

previous instance and by applying a different bounding procedure. A

Pascal-like outline of the approach follows.

ALGORITHM ADDITIVE:

1. input: cost matrix

2. output: lower bound and the residual-cost matrix

begin

3. initialize

4. for to do

begin

5. apply thus obtaining value

and the residual cost matrix

6.

end

end.

An inductive argument shows that the values computed at step 6

give a non decreasing sequence of valid lower bounds for ATSP. More-

over, the final residual-cost matrix can be used for reduction pur-

poses.

Related approaches, using reduced costs for improving lower bounds

for ATSP, are those of Christofides [188] and Balas and Christofides
[70]. For a comparison of the additive approach with the restricted
Lagrangian approach of Balas and Christofides, the reader is referred to

[304].
Note that, because of condition ii) above, each bounding procedure

of the sequence introduces an incremental gap

178 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

where denotes the optimal solution value of the ATSP in-

stance associated with cost matrix It follows that the overall gap

between and the final lower bound cannot be

less than

Procedures can clearly be applied in a different

sequence, thus producing different lower bound values and residual costs.

As a heuristic rule, it is worthwhile to apply procedures according

to increasing (estimated) percentage incremental gaps, so as to avoid

of the sequence, when the current value

the introduction of high percentage incremental gaps at the beginning

 is still large.

A key step of the above algorithm is the computation of the residual

costs. Since all the bounding procedures considered in [304] are based

on linear programming relaxations, valid residual cost matrices can be

obtained by computing the reduced cost matrices associated with the

corresponding LP-dual optimal solutions.

Reduced costs associated with the AP relaxation can easily be ob-

tained without extra computational effort. As to the reduced costs for

those associated with the arcs not entering the root vertex

are the reduced costs of the shortest spanning arborescence problem

(which can be computed in time through a procedure given in

[305]), while those associated with the arcs entering are obtained by

subtracting their minimum from the input costs. Reduced costs for

problems and can be obtained in a similar

way.

Here is an overall additive bounding algorithm, subdivided into four

stages.

ALGORITHM ADD–ATSP:

1. input: cost matrix

2. output: lower bound and the residual-cost matrix

begin

Stage 1:

3. solve problem AP on the original cost matrix and

let be the corresponding reduced cost matrix;

Stage 2:

4. solve problem 1- SAP on cost matrix and update

to become the corresponding reduced cost matrix;

5. solve problem 1-SAAP on cost matrix and update

to become the corresponding reduced cost matrix;

179 Exact Methods for the ATSP

Stage 3:

6. for to do

begin

7. solve problem on cost matrix and

update to become the corresponding reduced

cost matrix;

end;

Stage 4:

8. for to do

begin

9. solve problem on cost matrix and

update to become the corresponding reduced

cost matrix;

end

end.

Let denote the spanning subdigraph of G defined by the

arcs whose current reduced cost is zero.

At Stage 1, the bounding procedure based on the AP relaxation is

applied. After this stage, each vertex in has at least one entering and

leaving arc; however, is not guaranteed to be strongly connected.

At Stage 2, one forces the strong connectivity of by applying the

bounding procedures based on 1-SAP and 1-SAAP. Indeed, after step

4 each vertex can be reached from vertex 1 in whereas after step 5

each vertex can reach vertex 1.

The current spanning subdigraph may at this point contain a

tour, in which case lower bound cannot be further increased through

an additive approach. If such a tour has been detected, it corresponds
to a heuristic solution to ATSP, whose optimality can be checked by

comparing its original cost with lower bound More often, however,

spanning subdigraph is non-Hamiltonian.

Let the forward and backward star of a node in a given digraph

be defined as and
respectively. We say that a vertex is a forward articulation

point of if none of the vertices of its forward star can reach all other

vertices in without passing through vertex Analogously, a

vertex is said to be a backward articulation point of if none of

the vertices of its backward star can be reached from all the other vertices
in without passing through vertex Clearly, the existence of

180 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

a forward or backward articulation point is a sufficient condition for

to be non-Hamiltonian.

A related concept is that of (undirected) articulation point: a vertex

is an articulation point of if the underlying undirected subdigraph

of induced by vertex subset has more than one connected

component. Notice that concept of forward (or backward) articulation

is stronger than that of (undirected) articulation. Indeed, if vertex is

an (undirected) articulation point of then it is also a forward and a

backward articulation point of while the opposite does not always

hold.

The existence of a forward (resp. backward) articulation point of

can be exploited to increase the current lower bound by solving

relaxation (resp. Indeed, in this case no zero cost

(resp. in which has out-degree (resp.

in-degree) equal to one, exists with respect to the current reduced costs

Accordingly, for each vertex one applies bounding procedures

based on relaxations (at Stage 3) and (at Stage 4),

so as to increase the current lower bound in case the root vertex

is a forward or backward articulation point, respectively. After each

execution of steps 7 and 9, the current vertex is guaranteed not to

be a forward or backward articulation point of the current graph

respectively.

The overall time complexity of algorithm ADD–ATSP is the most

time-consuming steps being step 3 and steps 7 and 9

which are executed times.

The tightness of the final lower bound greatly depends on the re-

duced costs obtained after each lower bound computation. In particular,

consider the LP-dual of AP, defined by:

and let For each

vertex

be the dual optimal solution found at step 3.

let be the cost of the shortest path from vertex 1

to vertex computed with respect to the current reduced costs

It is known (see, e.g., [505]) that an alternative dual optimal

solution is given by for each .

(Indeed, one has while, for each ,

follows from the definition of as

costs of shortest paths.) Now, let be the reduced costs

associated with this alternative dual optimal solution. One can easily

181 Exact Methods for the ATSP

verify that the cost of any simple path from vertex to vertex

(computed with respect to), is equal to where is

the cost of the same path computed with respect to Therefore, can

be viewed as a biased reduced-cost matrix obtained from by reducing

the cost of the paths emanating from vertex 1, while increasing the cost

of the paths towards vertex 1.

A new additive bounding algorithm, B–ADD–ATSP (B for biased), can

now be obtained from ADD–ATSP by adding the following step right after

step 3:

3’. compute (on the current reduced cost matrix) the

cost of the shortest path from vertex 1 to all

vertices

for each

;

do

Note that, after step 3’, spanning subdigraph contains a 1-arbore-

scence, hence step 4 can be omitted in B–ADD–ATSP.

At first glance, algorithm B–ADD–ATSP appears to be weaker than

ADD–ATSP, since a step producing a possible increase on the current lower

bound (step 4) has been replaced by a step which gives no improvement

(step 3’). However, the cost biasing introduced at step 3’ may allow

the subsequent step 5 to increase its contribution to the current lower

bound. Computational experience has shown that B–ADD–ATSP typically

outperforms ADD–ATSP, hencealgorithm B–ADD–ATSP is chosen in [304].

As to the experimental computing time of algorithm B–ADD–ATSP, it

can greatly be reduced by the implementation given in [304].

4. A Branch-and-Cut Approach

We next outline the polyhedral method of Fischetti and Toth [306].

Branch-and-cut methods for ATSP with sideconstraints have been pro-

posedrecently by Ascheuer [43], Ascheuer, Jünger and Reinelt [46], and

Ascheuer, Fischetti and Grötschel [44, 45], among others. The Fischetti-

Toth method is based on model (1)–(6), and exploits additional classes

of facet-inducing inequalities for the ATSP polytope P that proved to

be of crucial importance for the solution of some real-world instances.

For each class, we will address the associated separation problem (in its
optimization version), defined as follows: Given a point satisfying

the degree equations, and a family of ATSP inequalities, find a most

violated member of , i.e., an inequality belonging to and

maximizing the degree of violation . The reader is referred to

Chapter 3 of the present book for a polyhedral analysis of the ATSP

182 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

polytope, and to Chapter 2 for the design of branch-and-cut methods

for the symmetric TSP.

whenever or

To simplify notation, for any and we write

for moreover, we write or

, respectively.

4.1. Separation of Symmetric Inequalities

An ATSP inequality is called symmetric when

for all . Symmetric inequalities can be thought of as derived

from valid inequalities for the Symmetric Traveling Salesman Problem

(STSP), defined as the problem of finding a minimum-cost Hamiltonian

cycle in a given undirected graph . Indeed, let if

edge belongs to the optimal STSP solution; otherwise.

Every inequality for STSP can be transformed into a

valid ATSP inequality by simply replacing by for all edges
This produces the symmetric inequality , where

for all . Conversely, every symmetric

ATSP inequality corresponds to the valid STSP inequality

The above correspondence implies that every separation algorithm for

STSP can be used, as a “black box”, for ATSP as well. To this end,

given the ATSP (fractional) point one first defines the undirected

counterpart of by means of the transformation

for all edges

and then applies the

 STSPdetected most violated inequality is transformed into its ATSP

STSP separation algorithm to . On return, the

counterpart, both inequalities having the same degree of violation.

Several exact/heuristic separation algorithms for STSP have been

proposed in recent years, all of which can be used for ATSP; see Chapter

2 of the present book for further details. In [306] only two such separation

tools are used, namely:

i) the Padberg-Rinaldi [646] exact algorithm for SECs; and

ii) the simplest heuristic scheme for comb (actually, 2-matching) con-

straints in which the components of the graph induced by the edges

with fractional are considered as potential handles of the

comb.

183 Exact Methods for the ATSP

4.2. Separation of and Inequalities

The following inequalities have been proposed by Grötschel and

Padberg [405]:

where is any sequence of distinct vertices,

inequalities are facet-inducing for the ATSP polytope [295], and

are obtained by lifting the cycle inequality associ-

ated with the subtour . Notice that
the vertex indices along C are different from those used in the origi-
nal Grötschel-Padberg definition [405], so as to allow for a simplified
description of the forthcoming separation procedure.

As a slight extension of the original definition, we allow for

in the sequel, in which cases (10) degenerates into the valid constraints
and respectively.

aThe separation problem for the class of inequalities calls for

vertex sequence , for which the degree of

violation

is as large as possible. This is itself a combinatorial optimization problem
that can be solved by the following simple implicit enumeration scheme.

We start with an empty node sequence. Then, iteratively, we extend

lation of the corresponding
the current sequence in any possible way and evaluate the degree of vio-

inequality. The process can be visualized
by means of a branch-decision tree. The root node (level 0) of the tree
represents the empty sequence. Each node at level
corresponds to a sequence of the type when each
such node generates descending nodes, one for each possible ex-
tended sequence . Exhaustive enumeration of all nodes

of the tree is clearly impractical, even for small values of On the
other hand, a very large number of these nodes can be pruned (along
with the associated subtrees) by means of the following simple upper

184 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

bound computation. Let be the sequence associated with

the current branching node, say and let denote the maximum

degree of violation so far found during the enumeration. Consider any

potential descendent node of associated with a sequence of the type

. Then, directly from definition (11) one has

where we have defined

Observe that cannot exceed the degree of violation of the

SEC associated with hence one has

whenever all SECs are satisfied by

According to (12), the only descending nodes of that need to be

generated are those associated with a sequence such

that

Notice that both quantities and can paramet-

rically be computed along the branching tree as:

and

where for all singleton sequences

Restriction (13) is very effective in practice, and dramatically reduces

the number of nodes typically generated in the enumeration. Never-

theless, in some cases one may be interested in further reducing the

computing time spent in the procedure. To this end, before running the

above-described exact enumeration, one can try a “truncated” version

of it in which each node at level generates at most one descending

node, namely the one associated with the sequence if

any, where and is as large as possible.

The performance of the overall branch-and-cut algorithm is generally

improved if one generates, at each round of separation, a number of vio-

lated cuts (rather than the most violated one) for each family. In [306],

185 Exact Methods for the ATSP

the most violated inequality associated with a node sequence start-

ing with is generated for each . This is obtained by searching

the decision tree in a depth-first manner, and resetting to zero the value

of the incumbent best sequence whenever one backtracks to a node

at level 1.

We conclude this section by addressing the following inequalities:

where is any sequence of distinct nodes,

inequalities are valid [405] and facet-inducing [295] for P; they can

be obtained by lifting the cycle inequality associated

with the directed cycle

inequalities can be thought of as derived from inequalities by

swapping the coefficient of the two arcs and for all

This is a perfectly general operation, called transposition in [405],

that works as follows.

For every

,

let be defined by: for all

. Clearly, inequality is valid (or facet-inducing) for

the ATSP polytope P if and only if its transposed version,

is. This follows from the obvious fact that , where if

and only if . Moreover, every separation procedure for

can also be used, as a black box, to deal with . To this end

one gives the transposed point (instead of) on input to the

procedure, and then transposes the returned inequality.

The above considerations show that both the heuristic and exact sep-

aration algorithms designed for inequalities can be used for

inequalities as well.

4.3. Separation of Odd CAT Inequalities

The following class of inequalities has been proposed by Balas [62].

Two distinct arcs and are called incompatible if or

or and compatible otherwise. A Closed Alternating Trail

(CAT, for short) is a sequence of distinct arcs such

that, for arc is incompatible with arcs and
and compatible with all other arcs in T (with and).

Let and denote the set of the arcs of G leaving and entering

any vertex , respectively. Given a CAT T, a node is called a

source if whereas it is called a sink if

Notice that a node can play both source and sink roles. Let be the

set of the arcs such that is a source and is a sink node.

186 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

For any CAT of odd length the following odd CAT inequality

is valid and facet-defining (except in two pathological cases arising for

for the ATSP polytope [62].

We next describe a heuristic separation algorithm for the family of

odd CAT inequalities. This algorithm is based on the known fact that

odd CAT inequalities correspond to odd cycles on an auxiliary “incom-

patibility” graph [62]. Also, the separation algorithm can be viewed

as a specialized version of a scheme proposed by Caprara and Fischetti

[159] for the separation of a subclass of Chvátal-Gomory cuts for general

integer programming problems.

Given the point , we set-up an edge-weighted undirected graph

having a node for each arc with and an

edge for each pair of incompatible arcs, whose weight is

defined as We assume that satisfies all degree

equations as well as all trivial SECs of the form ; this implies

for all

Let contain the edges in

.

incident with a given node . A

cycle is an edge subset of

and such that is even for all

odd if is odd; (ii) simple if for all

chordless if the subdigraph of

Cycle

inducing a connected subdigraph of

is called (i)

induced by the nodes covered by

and (iii)

has

no other edges than those in

By construction, every simple and chordless odd cycle in corre-

if and only if is covered by

In addition, the total weight of

Tsponds to an odd CAT , where

is

hence gives a lower bound on the degree of violation of the

corresponding CAT inequality, computed as

The heuristic separation algorithm used in [306] computes, for each

a minimum-weight odd cycle that uses edge . If happens

in addition, the lower bound

 T. If,to be simple and chordless, then it corresponds to an odd CAT, say

exceeds a given threshold

187 Exact Methods for the ATSP

–1/2, then the corresponding inequality is hopefully violated; hence one

evaluates its actual degree of violation,

.

, and stores the inequality

if

is removed from after the computation of each .

In order to avoid detecting twice the same inequality, edge

In order to increase the chances of finding odd cycles that are simple

and chordless, all edge weights can be made strictly positive by adding

to them a small positive value .

are broken in favor of inclusion-minimal sets

 tiesThis guarantees that

 . Notice, however, that

a generic minimum-weight odd cycle does not need to be neither

may decompose into 2 simple cycles, say

, where

For example,

is of even cardinality and goes through edge

simple nor chordless even in this case, due to the fact that one imposes

, and

is of odd cardinality and overlaps in a node.

The key point of the algorithm is the computation in of a minimum-

weight odd cycle going through a given edge. Assuming that the edge

weights are all nonnegative, this problem is known to be polynomially

solvable as it can be transformed into a shortest path problem; see Ger-

undirected graph

ards and Schrijver [357]. To this end one constructs an auxiliary bipartite

obtained from as follows. For

each in there are two nodes in , say and .

of there are two edges in , namely edge

For each edge

and

edge , both having weight . By construction, every minimum-

weight odd cycle of going through edge corresponds in

to a shortest path from to , plus the edge . Hence, the

computation of all ’s can be performed efficiently by computing, for

each , the shortest path from to all other nodes in

4.4. Clique Lifting and Shrinking

Clique lifting can be described as follows, see Balas and Fischetti [73]

details. ATSP polytope associatedfor Let denote the with a

given complete digraph Given a valid inequality

for we define

and construct an enlarged complete digraph G = (V, A) obtained from

by replacing each node by a clique containing at least one

node (hence, . In other words is

a proper partition of V , in which the set corresponds to the

node in

For all , let . We define a new clique lifted inequality

for , say , where and

188 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

.

, then

for each It is shown in [73] that the new

defines a facet of is guaranteed to be
facet-inducing for

inequality is always valid for ; in addition, if the starting inequality

Clique lifting is a powerful theoretical tool for extending known classes
of inequalities. Also, it has important applications in the design of sepa-
ration algorithms in that it allows one to simplify the separation problem

through the following shrinking procedure [646].
Let be a vertex subset saturated by , in

the sense that , and suppose S is shrunk into a single

node, say , and is updated accordingly. Let denote the

shrunken digraph, where , and let be the shrunken

counterpart of . Every valid inequality for

,

 that is

violated by corresponds in G to a violated inequality, say

obtained through clique lifting by replacing back with the original set

S. As observed by Padberg and Rinaldi [647], however, this shrinking

operation can affect the possibility of detecting violated cuts on as

it may produce a point belonging to even when

For instance, let and if ,

(2,3), (3,1), (3,4), (4,2), (4,3)}; otherwise. One readily checks

that violates, e.g., the , as inequality

. On the other hand, shrinking the saturated set

produces a digraph with vertex set and a point

with for all . But then is the convex combination

of the characteristic vectors of the two tours and , hence

cannot be cut off by any linear inequality as it belongs to
The above example shows that shrinking has to be applied with some

care. There are however simple conditions on the choice of S that guar-
antee , provided as in the cases of interest for
separation.

The simplest such condition concerns the shrinking of 1-arcs (i.e.,

arcs with , and requires for a certain node

pair with . To see the validity of the condition, assume by

contradiction that . This implies , where

are characteristic vectors of tours in and are

nonnegative multipliers with . For each we

define as the characteristic vector of the tour of G obtained from

by replacing node with the arc . Then, by construction,

, which contradicts the assumption

It is known that 1-edges cannot be shrunk for STSP, instead. In this

respect ATSP behaves more nicely than STSP, in that the informa-

189 Exact Methods for the ATSP

tion associated with the orientation of the arcs allows for more powerful

shrinkings. Here is a polyhedral interpretation of this behavior.
In the separation problem, we are given a point which satisfies

the valid inequality with equality, and we want to separate it

from the ATSP polytope, P. The above discussion shows that this is

possible if and only if can be separated from

hence F can replace P insofar the separation of is concerned. This

property is perfectly general, and applies to any nonempty face F of

any polytope P. Indeed, let be the face

of P induced by any valid inequality for P, and assume that

. If cannot be separated from F, then
it cannot be separated from P too. Conversely, suppose there exists a

, hence

F

. M

inequality P

 amount

valid inequality for which is violated by by the amount

 Then for a sufficiently large value the “lifted”

is valid for , but violated by by
the

The different behavior between the asymmetric and symmetric TSP
polytopes then has its roots in the basic property that fixing

for some ATSP arc yields again an ATSP instance – obtained by

contracting into a single vertex – whereas the same construction

does not work when fixing for some STSP undirected edge .

In polyhedral terms, this means that the face F of the ATSP polytope

induced by is in 1-1 correspondence with the ATSP polytope on

nodes. Hence, in the asymmetric case, the face F can be interpreted

again as an ATSP polytope on a shrunken graph, whereas for STSP a
similar interpretation is not possible.

In [306] 1-arc shrinking is applied iteratively, so as to replace each

path of 1-arcs by a single node. As a result of this pre-processing on

. all the nonzero variables are fractional. Notice that a similar result

cannot be obtained for the symmetric TSP, where each 1-edge chain can
be replaced by a single 1-edge, but not by a single node.

More sophisticated shrinking procedures have not been used in [306].

The above discussion suggests however other cases in which a saturated

set S can be shrunk. For instance, suppose there exist 3 distinct nodes

and i.e.,
and

the saturated set can be shrunk. Indeed, the given point
ATSP inequality

and such that
for some . We claim, that in this case

satisfies the valid

with equality, hence from the above discussion one can replace P with
. F

or
-

its face Now, every extreme point of
corresponds to a tour using either the path the path

. This property induces a 1 1 correspondence between the

190 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

extreme points of F and those of the ATSP polytope in which and

have been shrunk into a single node.

4.5. Pricing with Degeneracy

Pricing is an important ingredient of branch-and-cut codes, in that it

allows one to effectively handle LP problems involving a huge number

of columns. Let

be the LP problem to be solved. M is an matrix whose columns

are indexed by the arcs The first rows of M correspond

to the degree equations (2)-(3) (with the redundant constraint

whereas the remaining rows, if any, correspond to some of

the cuts generated through separation. Notation stands for “=” for

the first rows of M, and for the remaining rows. Let

denote the entry of M indexed by row and column

In order to keep the size of the LP as small as possible, the following

core set of pricing scheme is commonly used. We determine a (small)

arcs, say and decide to temporarily fix for all

We then solve the restricted LP problem

where and are obtained from and M, respectively, by

removing all entries indexed by

Assume problem (17) is feasible, and let and be the optimal

primal and dual basic solutions found, respectively. Clearly, We

are interested in easily-checkable conditions that guarantee thus

proving that (with for all is an optimal basic

solution to (16), and hence that its value is a valid lower bound on

To this end we compute the LP reduced costs associated with

namely

and check whether for all If this is indeed the case,

then and we are done. Otherwise, the current core set is enlarged

by adding (some of) the arcs with negative reduced cost, and the whole

This iterative solution of (17), followed by the procedure is iterated.

possible updating of is generally referred to as the pricing loop.

According to common computational experience, the first iterations

of the pricing loop tend to add a very large number of new columns to

191 Exact Methods for the ATSP

the LP even when due to the typically high primal degeneracy of

(17).
As an illustration of this behavior, consider the situation arising when

the first LP is solved at the root node of the branching tree. In this case

(16) contains the degree equations only, hence its optimal solution,

initialize the core set

 APcan be computed efficiently through any code. Suppose we now

to contain the

solution. In order to have an LP basis, we add

AParcs chosen in the optimal

additional arcs to

chosen so as to determine an nonsingular matrix

By construction, problem (17) has a unique feasible solution – namely,

the characteristic vector of the optimal AP solution found – hence we

know that holds in this case. However, depending on the possibly

“wrong” choice of the last arcs in the core set, the solution can

be dual infeasible for (16), i.e., a usually very large number of reduced

costs are negative. Iterating the pricing procedure produces a similar

behavior, and a long sequence of pricings is typically required before all

arcs price-out correctly.

The above example shows that checking the reduced-cost signs can

lead to an overweak sufficient condition for proving The standard

way to cope with this weakness consists in a more careful initialization of

the core set, e.g., by taking the 15 smallest-cost arcs leaving each node.

We next describe a different technique, called AP pricing in [306],

in which the pricing condition is strengthened by exploiting the fact

that any feasible solution to (16) cannot select the arcs with negative

reduced cost in an arbitrary way, as the degree equations —among other

constraints— have to be fulfilled. The technique is related to the so-

called Lagrangian pricing introduced independently by Löbel [566] as a

powerful method for solving large-scale vehicle scheduling problems.

Let us consider the dual solution to (17) as a vector of Lagrangian

multipliers, and the LP reduced costs as the corresponding Lagran-

gian costs. In this view, standard pricing consists of solving the following

trivial relaxation of (16):

where
i.e.,

 by LP duality. Therefore one has
from which in case for all The

strengthening then consists in replacing condition in (18) by

In this way we compute an improved lower bound on namely

192 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

where is computed efficiently by solving the AP

on the Lagrangian costs As before, hence
implies When

after having added to the core set

instead, one has to iterate the procedure,

the arcs in that are selected

in the optimal AP solution found.
The new approach has two main advantages, namely: (1) an improved

check for proving and (2) a better rule to select the arcs to be

added to the core arc set. Moreover, always gives a lower bound on

(and hence on which can in some cases succeed in fathoming

the current branching node even when Finally, the nonnega-

tive AP reduced cost vector available after solving can

be used for fixing for all such that is at least

as large as the value of the best known ATSP solution.
The new pricing scheme can be adapted to other problems having an

easily-solvable relaxation. For example, in Fischetti and Vigo [307] the
approach is applied to the resource constrained arborescence problem,
the relaxation used for pricing being in this case the min-sum arbores-

cence problem. Unlike AP, the latter problem involves exponentially

many constraints, hence the pricing scheme can in some cases also de-

tect violated cuts that are not present in the current LP, chosen from
among those implicitly used during the solution of the relaxation. In
other words, variable-pricing also produces, as a by-product, a heuristic

“pricing” of someexponential classes of cuts, i.e., a separation tool.

AP pricing requires the computation of all reduced costs e.g.,

through the following “row-by-row” scheme. We initialize for

all and then consider, in sequence, the rows of M with

For each such row we determine the set

simple combinatorial structure of most cuts, the (implicit) construction
and update for Because of the

of can typically be carried out in time, hence the overall time
spent for computing all reduced costs is for the initialization, plus

for the actual reduced-cost computation (notice that this

latter term is linear in the number of nonzero entries in M).

A drawback of the AP pricing is the extra computing time spent for

the AP solution, which can however be reduced considerably through the

following strategy [306]. After each LP solution we compute the reduced
costs and determine the cardinality of

If we exit the pricing loop. If we use standard

pricing, i.e., we update and repeat. If instead, we

resort to AP pricing, and solve the AP problem on the reduced costs.

We also determine (through a technique described, e.g., in [306]) the

arc set containing the arcs defining an optimal LP basis for

193 Exact Methods for the ATSP

this AP problem, and compute the corresponding nonnegative reduced

costs for all We then remove from all the arcs already

in and enlarge by iteratively adding arcs in

with until no such arc exists, or In this way

(16). We finally update

contains a significant number of arcsthat are likely to be selected in

(even in case and repeat

(if or exit (if the pricing loop.

4.6. The Overall Algorithm

The algorithm is a lowest-first branch-and-cut procedure. At each

node of the branching tree, the LP relaxation is initialized by taking all

the constraints present in the last LP solved at the father node (for the

root node, only the degree equations are taken). As to variables, one
retrieves from a scratch file the optimal basis associated with the last

LP solved at the father node, and initializes the core variable set. by
taking all the arcs belonging to this basis (for the root node, contains

the variables in the optimal AP basis found by solving AP on the
original costs In addition, contains all the arcs of the best known

ATSP solution. Starting with the above advanced basis, one iteratively

solves the current LP, applies the AP pricing (and variable fixing) pro-

cedure described in Section 4.5, and repeats if needed. Observe that the

pricing/fixing procedure is applied after each LP solution.

On exit of the pricing loop (case the cuts whose associated

slack exceeds 0.01 are removed from the current LP (unless the number

of these cuts is less than 10), and the LP basis is updated accordingly.

Moreover, separation algorithms are applied to find, if any, facet-defining

ATSP inequalities that cut off the current LP optimal solution, say

As a heuristic rule, the violated cuts with degree of violation less than

0.1 (0.01 for SECs) are skipped, and the separation phase is interrupted

as soon as 20 +

One first checks for violation the cuts generated during the processing

violated cuts are found.

of the current or previous nodes, all of which are stored in a global data-
structure called the constraint pool. If some of these cuts are indeed
violated by the separation phase ends. Otherwise, the Padberg-
Rinaldi [646] MINCUT algorithm for SEC separation is applied, and the
separation phase is interrupted if violated SECs are found. When this is
not the case, one shrinks the 1-arc paths of (as described in Section

4.4), and applies the separation algorithms for comb (Section 4.1),
and (Section 4.2), and odd CAT (Section 4.3) inequalities. In order
to avoid finding equivalent inequalities, inequalities (which are the
same as inequalities), are never separated, and odd CAT separation

194 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

is skipped when a violated comb is found (as the class of comb and odd

CAT inequalities overlap). When violated cuts are found, one adds them

to the current LP, and repeats.

When separation fails and is integer, the current best ATSP so-

lution is updated, and a backtracking step occurs. If is fractional,

instead, the current LP basis is saved in a file, and one branches on

the variable with that maximizes the score

min . As a heuristic rule, a large priority is given to the

variables with (if any), so as to produce a significant

change in both descending nodes.

As a heuristic tailing-off rule, one also branches when the current

is fractional and the lower bound did not increase in the last 5 (10 for

the root node) LP/pricing/separation iterations.

A simple heuristic algorithm is used to hopefully update the current

best optimal ATSP solution. The algorithm is based on the information

associated with the current LP, and consists of a complete enumeration

of the Hamiltonian directed cycles in the support graph of defined

as To this end Martello’s [585] implicit

enumeration algorithm HC is used, with at most backtracking

steps allowed. As is typically very sparse, this upper bound on

the number of backtrackings is seldom attained, and HC almost always

succeeds in completing the enumeration within a short computing time.

is guaranteed to be strongly connected.

The heuristic is applied whenever SEC separation fails, since in this case

5. Computational Experiments

The algorithms described in the previous sections have been compu-

tationally tested on a large set of ATSP instances namely:

42 instances by Cirasella, Johnson, McGeoch and Zhang [200]; the

instances in this set are randomly generated to simulate real-world

applications arising in many different fields;

5 scheduling instances provided by Balas [67];

2 additional real-world instances (ftv180 and uk66);

10 random instances whose integer costs are uniformly generated

in range [1, 1000];

all the 27 ATSP instances collected in TSPLIB [709].

For a detailed description of the first 42 instances the reader is referred

to [200], while details for the ones in the TSPLIB can be found in the

195 Exact Methods for the ATSP

associated web page [709]. The 5 instances provided by Balas come from

Widget, a generator of realistic instances from the chemical industry

developed by Donald Miller. Instance ftv180 represents pharmaceutical

product delivery within Bologna down-town and is obtained from the

TSPLIB instance ftv170 by considering 10 additional vertices in the

graph representing down-town Bologna. Finally, instance uk66 is a real-

world problem arising in routing applications and has been provided us

by Kousgaard [518].
All instances have integer nonnegative costs, and are available, on

request, from the authors. For each instance we report in Table 4.1 the

name (Name), the size , the optimal (or best known) solution value
(OptVal), and the source of the instance (source).

Three specific ATSP codes have been tested: (1) the AP-based

branch-and-bound CDT code [163], as described in Section 2.1; (2) FT–add

code, corresponding to the additive approach [304] described in Section

3; and (3) FT–b&c code, corresponding to the branch-and-cut algorithm

[306] described in Section 4.

In addition, the branch-and-cut code Concorde by Applegate, Bixby,

Chvátal and Cook [29] has been considered, as described in Chapter

2. This code is specific for the symmetric TSP, so symmetric instances

have to be constructed through one of the following two transformations:

the 3-node transformation proposed by Karp [495]. A complete

undirected graph with vertices is obtained from the original

complete directed one by adding two copies, and of

each vertex and by (i) setting to 0 the cost of the edges
and for each (ii) setting to the

cost of edge and (iii) setting to the costs

of all the remaining edges;

the 2-node transformation proposed by Jonker and Volgenant [471]

(see also Jünger, Reinelt and Rinaldi [474]). A complete undirected

graph with vertices is obtained from the original complete di-

rected one by adding a copy, of each vertex and by
(i) setting to 0 the cost of the edge for each (ii)

setting to the cost of edge where M is
a sufficiently large positive value, and (iii) setting to the costs
of all the remaining edges. The transformation value has to
be subtracted from the STSP optimal cost.

All tests have been executed on a Digital Alpha 533 MHz with 512 MB of

RAM memory under the Unix Operating System, with Cplex 6.5.3 as LP
solver. In all tables, we report the percentage gaps corresponding to the

196 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

197 Exact Methods for the ATSP

lower bound at the root node (Root), the final lower bound (fLB), and

the final upper bound (fUB), all computed with respect to the optimal
(or best known) solution value. Moreover, the number of nodes of the

search tree (Nodes), and the computing time in seconds (Time) are given.

5.1. Code Tuning

In this section we analyze variants of the above mentioned codes with

the aim of determining, for each code, the best average behavior.

CDT Code. No specific modifications of this code have been imple-

mented.

FT–add Code. The original implementation emphasized the lower boun-

ding procedures. As in the CDT code, improved performances of the

overall algorithm have been obtained by using the patching heuristic of

Karp [498] (applied at each node), and the subtour merging operation

described in Section 2.1.3. This leads to a reduction of both the num-

ber of branching nodes and the overall computing time; in particular,

instances balas84 and ftv160 could not be solved by the original code

within the time limit of 1,000 CPU seconds.

FT–b&c Code. A new branching criterion, called Fractionality Persis-

tency (FP) has been tested. Roughly speaking, the FP criterion gives

priority for branching to the variables that have been persistently frac-

tional in the last LP optimal solutions determined at the current branch-

ing node. This general strategy has been proposed and computationally

analyzed in [298]. Table 4.2 compares the original and modified codes

on a relevant subset of instances when imposing a time limit of 10,000

CPU seconds. According to these results, the FP criterion tends to avoid

pathological situations due to branching (two more instances solved to

optimality), and leads to a more robust code.

Concorde Code. The code has been used with default parameters by

setting the random seed parameter (“–s 123”) so as to be able to re-

produce each run. Both ATSP-to-STSP transformations have been

tested by imposing a time limit of 10,000 CPU seconds. For the 2-node
transformation, parameter M has been set to 1,000,000 (but for the in-
stances with and for instance rtilt316.10, for which we

used M = 100, 000 so as to avoid numerical problems). The comparison

of the results obtained by Concorde by using the two transformations is

given in Table 4.3 (first two sections), where the same (hard) instances of
Table 4.2 are considered. According to these results, no dominance ex-

198 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

ists between the two transformations with respect to neither the quality

of the lower bound at the root node nor the computing time. However,

by considering the average behavior, the 2-node transformation seems

to be preferable.

Although a fine tuning of the Concorde parameters is out of the scope

of this section, Table 4.3 also analyzes the code sensitivity to the “chunk

size” parameter (last three sections), which controls the implementation

of the local cuts paradigm [29] used for separation (see Chapter 2 for

details). In particular, setting this size to 0 (“–C 0”) disables the gener-

ation of the “local” cuts and lets Concorde behave as a pure STSP code,

whereas options “–C 16” (the default) and “–C 24” allow for the gen-

eration of additional cuts based on the “instance-specific” enumeration

of partial solutions over vertex subsets of size up to 16 and 24, respec-

199 Exact Methods for the ATSP

200 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

tively. In this way, we aimed at analyzing the capability of the “local”

cuts method to automatically generate cuts playing an important role for

the ATSP instance to be solved. The results of Table 4.3 show that the

“local” cuts (“–C 16” and “–C 24”) play a very important role, allowing

one to solve to optimality difficult instances (e.g., instances balas120,

balas160, and balas200 are solvedwith chunk equal to 16, and remain

unsolved without “local” cuts). Not surprisingly, the main exception

concerns the uniformly-random instances (ran1000) for which even the

AP bound is already very tight. Among the chunk sizes, even after the

2-node transformation, the best choiceappears to be the default (“–C

16”) which gives the best compromise between the separation overhead

and the lower bound improvement. We have also tested chunk sizes 8

and 32, without obtaining better results. (The 3-node transformation

exhibits a similar behavior.)

5.2. Code Comparison

A comparison of the four algorithms, namely, CDT, FT–add (modified

version), FT–b&c (“+ FP” version) and Concorde (“(2–node) –C 16”

version), is given in Tables 4.4, 4.5, 4.6 and 4.7 on the complete set of 86

instances. As to time limit, we imposed 1,000 CPU seconds for CDT and

FT–add, and 10,000 CPU seconds for FT–b&c and Concorde. The smaller

time limit given to the first two algorithms is chosen so as to keep the

required search-tree space reasonable, but it does not affect the compar-

ison with the other algorithms: according to preliminary computational

experiments on some hard instances, either the branch-and-bound ap-

proaches solve an instance within 1,000 CPU seconds, or the final gap is

too large to hope in a convergence within 10,000 seconds.

As to the lower bound at the root node, the tables show that the

additive approach obtains significantly better results than the AP lower

bound, but is dominated by both cutting plane approaches. In its pure

STSP version (“–C 0”), the Concorde codeobtains a root-node lower

bound which is dominated by the FT–b&c one, thus showing the effec-

tiveness of addressing the ATSP in its original (directed) version. Of

course, one can expect to improve the performance of FT–b&c by ex-

ploiting additional classes of ATSP-specific cuts such as the lifted cycle

inequalities described in Chapter 3. As to Concorde, we observe that the

use of the “local” cuts leads to a considerable improvement of the root-

node lower bound. Not surprisingly, this improvement appears more

substantial than in the case of pure STSP instances: in our view, this is

again an indication of the importance of exploiting the structure of the

original asymmetric problem, which results into a very special structure

201 Exact Methods for the ATSP

202 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

203 Exact Methods for the ATSP

204 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

205 Exact Methods for the ATSP

of its STSP counterpart which is not captured adequately by the usual

classes of STSP cuts (comb, clique tree inequalities, etc.).
As to the overall computing time, for the randomly generated in-

stances (ran) the mosteffective code is CDT, which also performs very
well on shop and rbg instances. Code FT–add has, on average,better
performance than CDT (solving to optimality, within 1,000 CPU seconds,
8 more instances), never being, however, the best of the four codes on

any instance.

Codes FT–b&c and Concorde turn out to be, in general, the most effec-

tive approaches, the first code being almost always faster than the second

one, though it often requires more branching nodes. We believe this is

mainly due to the faster (ATSP-specific) separation and pricing tools

used in FT–b&c. Strangely enough, however, FT–b&c does not solve to

optimality instance crane316.10 which is, instead, solved by Concorde

even in its pure STSP version “–C 0”: see Table 4.3. This pathological

behavior of FT–b&c seems to derive from an unlucky sequence of wrong
choices of the branching variable in the first levels of the branching tree.

Not surprisingly, the Concorde implementation proved very robust

for hard instances of large size, as it has been designed and engineered

to address very large STSP instances. On the other hand, FT–b&c was

implemented by its authors to solve medium-size ATSP instances with
up to 200 vertices, and exploits neither sophisticated primal heuristics
nor optimized interfaces with the LP solver. In our view, the fact that

its performance is comparable or better than that of Concorde “–C 16”
(and considerably better than that of the pure STSP Concorde “–C

0”) is mainly due to the effectiveness of the ATSP-specific separation
procedures used. This suggests that enriching the Concorde arsenal of

STSP separation tools by means of ATSP-specific separation proce-

dures would be the road to go for the solution of hard ATSP instances.

Acknowledgments

Work supported by Ministero dell’Istruzione, dell’Università e della

Ricerca (M.I.U.R) and by Consiglio Nazionale delle Ricerche (C.N.R.),
Italy. The computational experiments have been executed at the Labo-
ratory of Operations Research of the University of Bologna (Lab.O.R.).

REFERENCES

[1] J. Campbell, “Speaker recognition: a tutorial,” Proc. IEEE, vol. 85, pp.
1437–1462, Sept. 1997.

[2] D. A. Reynolds, T. Quatieri, and R. Dunn, “Speaker verification using
adapted Gaussian mixture models,” Digital Signal Processing, vol. 10,
no. 1–3, pp. 19–41, 2000.

[3] D. A. Reynolds, “Comparison of background normalization methods for
text-independent speaker verification,” in Proc. Eurospeech, 1997.

[4] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker iden-
tification using Gaussian mixture speaker models,” IEEE Trans. Speech

Audio Processing, vol. 3, no. 1, pp. 72–83, 1995.
[5] J. L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for mul-

tivariate Gaussian mixture observations of Markov chains,” IEEE Trans.

Speech Audio Processing, vol. 2, pp. 291–298, Apr. 1994.
[6] E. Bocchieri, “Vector quantization for the efficient computation of

continuous density likelihoods,” in Proc. Int. Conf. Acoustics, Speech,

Signal Processing, 1993, pp. 692–695.
[7] K. M. Knill, M. J. F. Gales, and S. J. Young, “Use of Gaussian selec-

tion in large vocabulary continuous speech recognition using HMMs,”
in Proc. Int. Conf. Spoken Language Processing, 1996.

[8] D. B. Paul, “An investigation of Gaussian shortlists,” in Proc. Automatic

Speech Recognition and Understanding Workshop, 1999.
[9] T. Watanabe, K. Shinoda, K. Takagi, and K.-I. Iso, “High speed speech

recognition using tree-structured probability density function,” in Proc.

Int. Conf. Acoustics, Speech, Signal Processing, 1995.
[10] J. Simonin, L. Delphin-Poulat, and G. Damnati, “Gaussian density tree

structure in a multi-Gaussian HMM-based speech recognition system,”

in Proc. Int. Conf. Spoken Language Processing, 1998.

[11] T. J. Hanzen and A. K. Halberstadt, “Using aggregation to improve the
performance of mixture Gaussian acoustic models,” in Proc. Int. Conf.

Acoustics, Speech, Signal Processing, 1998.
[12] M. Padmanabhan, L. R. ahl, and D. Nahamoo, “Partitioning the feature

space of a classifier with linear hyperplanes,” IEEE Trans. Speech Audio

Processing, vol. 7, no. 3, pp. 282–288, 1999.
[13] R. Auckenthaler and J. Mason, “Gaussian selection applied to text-in-

dependent speaker verification,” in Proc. A Speaker Odyssey—Speaker

Recognition Workshop, 2001.
[14] J. McLaughlin, D. Reynolds, and T. Gleason, “A study of computation

speed-ups of the GMM-UBM speaker recognition system,” in Proc. Eu-

rospeech, 1999.
[15] S. van Vuuren and H. Hermansky, “On the importance of components

of the modulation spectrum of speaker verification,” in Proc. Int. Conf.

Spoken Language Processing, 1998.
[16] B. L. Pellom and J. H. L. Hansen, “An efficient scoring algorithm for

Gaussian mixture model based speaker identification,” IEEE Signal Pro-

cessing Lett., vol. 5, no. 11, pp. 281–284, 1998.
[17] J. Oglesby and J. S. Mason, “Optimization of neural models for speaker

identification,” in Proc. Int. Conf. Acoustics, Speech, Signal Processing,
1990, pp. 261–264.

[18] Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Global optimiza-
tion of a neural network—hidden Markov model hybrid,” IEEE Trans.

Neural Networks, vol. 3, no. 2, pp. 252–259, 1992.
[19] H. Bourlard and C. J. Wellekins, “Links between Markov models and

multilayer perceptrons,” IEEE Trans. Pattern Anal. Machine Intell., vol.
12, pp. 1167–1178, Dec. 1990.

[20] J. Navrátil, U. V. Chaudhari, and G. N. Ramaswamy, “Speaker veri-
fication using target and background dependent linear transforms and
multi-system fusion,” in Proc. Eurospeech, 2001.

[21] L. P. Heck, Y. Konig, M. K. Sonmez, and M. Weintraub, “Robustness
to telephone handset distortion in speaker recognition by discriminative
feature design,” Speech Commun., vol. 31, pp. 181–192, 2000.

[22] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from in-
complete data via the EM algorithm,” J. R. Statist. Soc., vol. 39, pp.
1–38, 1977.

[23] K. Shinoda and C. H. Lee, “A structural Bayes approach to speaker
adaptation,” IEEE Trans. Speech Audio Processing, vol. 9, no. 3, pp.
276–287, 2001.

[24] K. Fukunaga, Introduction to Statistical Pattern Recognition. New
York: Academic, 1990.

[25] J. C. Junqua, Robust Speech Recogntion in Embedded Systems and PC

[26] U. V. Chaudhari, J. Navrátil, S. H. Maes, and R. A. Gopinath, “Transfor-
mation enhanced multi-grained modeling for text-independent speaker
recognition,” in Proc. Int. Conf. Spoken Language Processing, 2000.

[27] Q. Lin, E.-E. Jan, C. W. Che, D.-S. Yuk, and J. Flanagan, “Selective use
of the speech spectrum and a VQGMM method for speaker identifica-
tion,” in Proc. Int. Conf. Spoken Language Processing, 1996.

[28] S. Raudys, Statistical and Neural Classifiers: An Integrated Approach

to Design. New York: Springer, 2001.
[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” in Parallel Distributed Pro-

cessing. Cambridge, MA: MIT Press, 1986, pp. 318–364.
[30] [Online] Available: http://www.nist.gov/speech/tests/spk/index.htm.
[31] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker veri-

fication,” in Proc. A Speaker Odyssey—Speaker Recognition Workshop,
2001.

[32] B. Xiang, U. V. Chaudhari, J. Navrátil, N. Ramaswamy, and R. A.
Gopinath, “Short-time Gaussianization for robust speaker verification,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing, 2002.

[33] G. R. Doddington, M. A. Przybocki, A. F. Martin, and D. A. Reynolds,
“The NIST speaker recognition evaluation—overview, methodology,
systems, results, perspective,” Speech Communication, vol. 31, pp.
225–254, 2000.

Bing Xiang (M’03) was born in 1973 in China. He
received the B.S. degree in radio and electronics and
M.E. degree in signal and information processing
from Peking University in 1995 and 1998, respec-
tively. In January, 2003, he received the Ph.D. degree
in electrical engineering from Cornell University,
Ithaca, NY.

From 1995 to 1998, he worked on speaker recog-
nition and auditory modeling in National Laboratory
on Machine Perception, Peking University. Then he
entered Cornell University and worked on speaker

recognition and speech recognition in DISCOVER Lab as a Research Assis-
tant. He also worked in the Human Language Technology Department of IBM
Thomas J. Watson Research Center as a summer intern in both 2000 and 2001.
He was a selected remote member of the SuperSID Group in the 2002 Johns
Hopkins CLSP summer workshop in which he worked on speaker verification
with high-lelvel information. In January, 2003, he joined the Speech and Lan-
guage Processing Department of BBN Technologies where he is presently a
Senior Staff Consultant-Technology. His research interests include large vocab-
ulary speech recognition, speaker recognition, speech synthesis, keyword spot-
ting, neural networks and statistical pattern recognition.

Toby Berger (S’60–M’66–SM’74–F’78) was born in
New York, NY, on September 4, 1940. He received
the B.E. degree in electrical engineering from Yale
University, New Haven, CT in 1962, and the M.S.
and Ph.D. degrees in applied mathematics from Har-
vard University, Cambridge, MA in 1964 and 1966,
respectively.

From 1962 to 1968 he was a Senior Scientist at
Raytheon Company, Wayland, MA, specializing
in communication theory, information theory, and
coherent signal processing. In 1968 he joined the

faculty of Cornell University, Ithaca, NY where he is presently the Irwin and
Joan Jacobs Professor of Engineering. His research interests include informa-
tion theory, random fields, communication networks, wireless communications,
video compression, voice and signature compression and verification, neuroin-
formation theory, quantum information theory, and coherent signal processing.
He is the author/co-author of Rate Distortion Theory: A Mathematical Basis
for Data Compression, Digital Compression for Multimedia: Principles and
Standards, and Information Measures for Discrete Random Fields.

Dr. Berger has served as editor-in-chief of the IEEE TRANSACTIONS ON

INFORMATION THEORY and as president of the IEEE Information Theory

