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Abstract

In the present chapter we concentrate on the exact solution methods 

for the Asymmetric TSP proposed in the literature after the writing 
of the survey of Balas and Toth [81]. In Section 2 two specific branch-
and-bound methods, based on the solution of the assignment problem 
as a relaxation, are presented and compared. In Section 3 a branch-
and-bound method based on the computation of an additive bound is 
described, while in Section 4 a branch-and-cut approach is discussed. 
Finally, in Section 5 all these methods are computationally tested on a 
large set of instances, and compared with an effective branch-and-cut 
code for the symmetric TSP. 

A formal definition of the problem is as follows. Let G =  (V,  A) be 

a given complete digraph, where is the vertex set and 

(2013)
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the arc set, and let be the cost associated with 

arc (with for each A Hamiltonian directed 

i.e., a spanning subdigraph

cycle (tour) of  G is a directed cyclevisiting each vertex of  V exactly once, 

 of G such that and is 

strongly connected, i.e., for each pair of distinct vertices 

both paths from to and from to exist in 

The Asymmetric Traveling Salesman Problem (ATSP) is to find a 

Hamiltonian directed cycle of G whose

for any arc 

cost is 

a minimum. Without loss of generality, we assume 

The following Integer Linear Programming formulation of ATSP is 

well-known: 

where Constraints 

(2) and (3) impose the in-degree and out-degree of each vertex be equal 

 if and only if arc is in the optimal tour. 

to one, respectively, while constraints (4) impose strong connectivity. 

Because of (2) and (3), conditions (4) can be equivalently re-written as 

the Subtour Elimination Constraints (SECs): 

Moreover, it is well known that one can halve the number of constraints 

(4) by replacing them with 

or with 
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where is any fixed vertex. 

Several substructures of ATSP can be pointed out, each associated 

with a subset of constraints defining a well-structured relaxation whose 

solution value gives a valid lower bound for ATSP. 

Constraints (2), (3) and (5), with objective function (1), define the 

well-known min-sum Assignment Problem (AP). Such a problem al-

ways has an integer optimal solution, and requires finding a minimum-

cost collection of vertex-disjoint subtours visiting all the vertices of G. 

If an optimal solution of AP determines only one directed cycle, then 

it satisfies all constraints (4) and hence is optimal for ATSP as well. 

Otherwise, each vertex subset  S whose vertices are visited by the same 

Relaxation AP can be subtour, determines a violated constraint (4).

solved in time (see, e.g., Lawler [547]). 

Constraints (2), (8) and (5), with objective function (1), define the 

well-known shortest Spanning Problem Such a 

problem always has an integer optimal solution, and corresponds to find-

ing a minimum-cost spanning subdigraph of G such that (i) 

the in-degree of each vertex is exactly one, and (ii) each vertex can 

be reached from the root vertex If an optimal solution of 

leaves each vertex with out-degree equal to one, then it satisfies all con-

straints (3) and hence is optimal for ATSP as well. Otherwise, each 

vertex having out-degree different from one, determines a violated con-

straint (3). Relaxation can be solved in time by finding the 

shortest spanning arborescence rooted at vertex and by adding to it a 

minimum-cost arc entering vertex Efficient algorithms for the shortest 

arborescence problem have been proposed by Edmonds [267], Fulkerson 

[338], Tarjan [788], and Camerini, Fratta and Maffioli [154, 155]; an ef-

ficient implementation of Tarjan’s algorithm can be found in Fischetti

and Toth [305]. Fischetti [294] described a modified method 

to compute an improved lower bound not depending on the root vertex 

A third substructure, corresponding to constraints (3), (9) and (5), 

with objective function (1), defines the shortest Spanning 

Problem Such a problem can easily be transformed 

into by simply transposing the input cost matrix, hence it can be 
solved in time. 

In order to obtain tighter lower bounds, two enhanced relaxations, 

and can be introduced. 

Relaxation  is obtained from by adding constraint (3) 

for the root vertex Such a problem can be transformed into

for i.e., which imposes out-degree equal to one 

(and hence solved in time) by considering a modified cost matrix 
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obtained by adding a large positive value  M to costs for all 

the optimal value of being 
Relaxation is obtained in a similar way from by 

adding constraint (2) for i.e.,

Such a problem can be solved 

 which imposes in-

degree equal to one for the root vertex 

in time by transforming it into through transposition of 

the input cost matrix. 

2. AP-Based Branch-and-Bound Methods 

In this section we review the AP-based branch-and-bound algorithms 

that have been proposed since the writing of the Balas and Toth [81] 

survey. All these algorithms are derived from the lowest-first branch and 

bound procedure TSP1 presented in Carpaneto and Toth [166] which is 

outlined below. 

At each node of the decision tree, procedure TSP1 solves a Modi-

fied Assignment Problem defined by (1), (2), (3), (5) and the 

additional variable-fixing constraints associated with the following arc 

subsets: 

APcan easily be transformed into a standard  by properly mod-

ifying the cost matrix so as to take care of the additional constraints. 

If the optimal solution to does not define a Hamiltonian di-

rected cycle and its value (yielding the lower bound associated with 

node ) is smaller than the current optimal solution value, say UB, then 

descending nodes are generated from node according to the follow-

ing branching scheme (which is a modification of the subtour elimination 

rule proposed by Bellmore and Malone [97]). 

Let be a subtour in the optimal solution having 

the minimum number of not included arcs, i.e., such that is 

a minimum, and let be the non-included arcs of 

taken in the same order as they appear along the subtour. The subsets 

of the excluded/included arcs associated with the descending node 

of the current branching node say are defined as follows 

(see also Figure 4.1 for an illustration): 

Moreover, each subset is enlarged by means of the arc 

so as to avoid subtours with just one non-included arc. 
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2.1.  The Algorithm of Carpaneto, Dell’Amico 
and Toth 

The approach of Carpaneto, Dell’Amico and Toth [164] differs from 

that presented in [166] in the following main respects: 

a) at the root node of the branch-decision tree, application of a re-

duction procedure to remove from  G some arcs that cannot belong 

to this  G

procedures specialized for sparse graphs;

 in  way the original digraph  can be an optimal tour;

transformed into a sparse one, say allowing the use of 

b) use of an efficient parametric technique for the solution of the 

MAP’s, allowing each to be solved in time; 

c) application, at each branching node of a subtour merging pro-

solution. 

2.1.1 Reduction Procedure. At the root node of the branch-

decision tree, the AP corresponding to the original complete cost matrix, 

cedure to decrease the number of subtours defined by the optimal 

is solved through the primal-dual procedure CTCS presented 

in Carpaneto and Toth [168]. Let and be an optimal solution of 

the dual problem associated with AP, and let be the corresponding 

solution value. It is well known that, for each arc the reduced 

cost represents a lower bound on the increase 

of the optimal AP solution value corresponding to the inclusion of arc 

If an ATSP feasible solution of value UB is known, then each arc 

such that can be removed from A, since its 
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inclusion in any ATSP solution cannot lead to a solution value smaller 

where 
Value UB can be obtained through any heuristic procedure for ATSP; 

than UB. G

sparse one, 
The original complete digraph  can thus be reduced into a 

in [164] the patching algorithm proposed by Karp [498] is used. An 
alternative way is to compute an “artificial” upper bound by simply 
setting where is a given parameter. However, if at 
the end of the branch and bound algorithm no feasible solution of value 
less than UB is found, then is not a valid upper bound, so 

must be increased and a new run needs to be performed. 

2.1.2 Parametric MAP Solution. The effectiveness of the 
overall ATSP algorithm greatly depends on the efficiency of the MAP 

algorithm used. At each node of the decision tree, instead of solving 

from scratch, a parametric technique is used which finds only one 
shortest augmenting path. Indeed, when generating a descending node 

from its father node only one arc, say is excluded from the 
solution of So, to obtain the optimal solution of from 

that of it is only necessary to satisfy constraint (2) for and 

constraint (3) for i.e., one only needs to find a single shortest 
augmenting path from vertex to vertex in the bipartite graph cor-

responding to with respect to the current reduced cost matrix 

Note that the addition of the new included arcs contained in 

optimal solution of

does not affect the parametrization, as these arcs already belong to the 

As graph is sparse, the shortest aug-
menting path is found through a procedure derived from the labelling 
algorithm proposed by Johnson [459] for the computation of shortest 
paths in sparse graphs, which uses a heap queue. Hence, the resulting 
time complexity for solving each is 

The computation of the shortest augmenting path at each node is 
stopped as soon as its current reduced cost becomes greater or equal 
to the gap between the current upper bound value UB and the optimal 
value of 

2.1.3 Subtour Merging. Consider a node of the decision 

tree for which several optimal MAP solutions exist. Computational 
experience shows that the optimal solution which generally leads to the 
smallest number of nodes in the subtree descending from is that having 

the minimum number of subtours. A heuristic procedure which tries to 
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decrease the number of subtours is obtained by iteratively applying the 

following rule. 

Given two subtours and if there exists 

an arc pair and such that arcs and 

 then an equivalent 

optimal solution to 

have zero reduced costs (i.e.,

can be obtained by connecting subtours 

and to form a single subtour 

If, at the end of the procedure, a Hamiltonian directed 

cycle is found, then an optimal solution to the ATSP associated with 

node has been found and no descending nodes need to be generated. 
The above subtour-merging procedure is alwaysapplied at the root 

node of the decision tree. As to the other nodes, it is applied only if the 

total number of zero reduced cost arcs at the root node is greater than 
a given threshold (e.g., Indeed, the procedure is typically 

effective only if the subdigraph corresponding to the zero reduced-cost 

arcs contains a sufficiently large number of arcs. (Computational exper-
iments have shown that an adaptive strategy, which counts the number 

of zero reduced-cost arcs at each node and then decides on the opportu-

nity to apply the procedure, often gives worseresults than the threshold 
method above.) 

2.2. The Algorithms of Miller and Pekny 

Effective procedures for the solution of the ATSP have been proposed 

by Miller and Pekny in the early nineties [596, 597, 665, 664]. These 

methods are also based on the general approach presented in Carpaneto 

and Toth [166], the main differences and similarities between them being 
discussed below. 

In [596], Miller and Pekny presented a preliminary algorithm which is 

a parallelization of the approach of Carpaneto and Toth, improved with 
the application of the patching heuristic [498] at the root node. 

The algorithm presented in [664] represents a substantial improve-

ment of the original parallel procedure. The MAP’s at the nodes are 

solved through an parametric procedure which computes a single 

augmenting path using a . Moreover, the patching algorithm is 

applied at the root node, and to the other nodes with decreasing fre-

quency as search progresses. In addition, the branch-and-bound phase 
is preceded by a sparsification of the cost matrix obtained by removing 
all the entries with cost greater than a given threshold Asufficient 
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condition is given to check whether the optimal solution obtained with 

respect to the sparse matrix is optimal for the original matrix as well. 

The algorithm presented in [665] is a modification of that presented in 

[664], obtained with the application, at each node, of an exact procedure 

to find a Hamiltonian directed cycle on the subdigraph defined by the 

arcs with zero reduced cost. The most sophisticated version of the Miller 

and Pekny codes appears to be that presented in [597], which includes 

all the improvements previously proposed by the authors. 

The similarities among the approach of Carpaneto, Dell’Amico and 

Toth [164] and the algorithms of Miller and Pekny are the following: 

(a) the branching rule is that proposed in [166]; (b) the MAP’s at the 

various branching nodes are solved through an procedure; and (c) 

the patching algorithm is applied at the root node. The two approaches 

differ in the following aspects: (a) for the sparsification phase, [164] 

proposes a criterion based on the comparison between the reduced costs 

given by the initial AP and the gap between lower and upper bound; (b) 

an efficient technique to store and retrieve the subproblems is proposed 

in [164] so that the exploration of the branch-decision tree is accelerated; 

and (c) a fast heuristic algorithm to find a Hamiltonian directed cycle 

on the subdigraph defined by the arcs with zero reduced cost is applied 

in [164]. 

Comparing the computational results obtained by Miller and Pekny 

with those presented in [164], it appears that the latter code is slower 

than the algorithm presented in [597] for small cost ranges (and random 

instances), but it seems to be faster for large cost ranges. On the whole, 

the two methods exhibit a comparable performance. 

3. An Additive Branch-and-Bound Method 

This section describes the solution approach proposed by Fischetti 

and Toth [304], who embedded a more sophisticated bounding proce-

dure within the standard branch-and-bound method of Carpaneto and 

Toth [166]. Observe that AP, and relaxations (as 

defined in Section 1) are complementary to each other. Indeed, AP 

imposes the degree constraints for all vertices, while connectivity con-

straints are completely neglected. Relaxation instead, imposes 

reachability from vertex to all the other vertices, while out-degree con-

straints are neglected for all vertices different from Finally, 

imposes reachability from all the vertices to vertex  while in-degree 

constraints are neglected for all vertices different from A possible 

way of combining the three relaxations is to apply the so-called additive 

approach introduced by Fischetti and Toth [303]. 
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3.1. An Additive Bounding Procedure 

An additive bounding procedure for ATSP can be outlined as follows. 

Let be bounding procedures available for ATSP. 

Suppose that, for and for any cost matrix procedure 

when applied to the ATSP instance having cost matrix re-

turns its lower bound as well as a so-called residual cost matrix 

such that: 

i) 

ATSP solution 

for each 

ii) for each feasible 

The additive approach generates a sequence of ATSP instances, each 

obtained by considering the residual cost matrix corresponding to the 

previous instance and by applying a different bounding procedure. A 

Pascal-like outline of the approach follows. 

ALGORITHM ADDITIVE: 

1. input: cost matrix 

2. output: lower bound and the residual-cost matrix 

begin 

3. initialize 

4. for to do 

begin 

5. apply  thus obtaining value 

and the residual cost matrix 

6. 

end 

end. 

An inductive argument shows that the values computed at step 6 

give a non decreasing sequence of valid lower bounds for ATSP. More-

over, the final residual-cost matrix can be used for reduction pur-

poses. 

Related approaches, using reduced costs for improving lower bounds 

for ATSP, are those of Christofides [188] and Balas and Christofides 
[70]. For a comparison of the additive approach with the restricted 
Lagrangian approach of Balas and Christofides, the reader is referred to 

[304]. 
Note that, because of condition ii) above, each bounding procedure 

of the sequence introduces an incremental gap 
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where denotes the optimal solution value of the ATSP in-

stance associated with cost matrix It follows that the overall gap 

between and the final lower bound cannot be 

less than 

Procedures can clearly be applied in a different 

sequence, thus producing different lower bound values and residual costs. 

As a heuristic rule, it is worthwhile to apply procedures according 

to increasing (estimated) percentage incremental gaps, so as to avoid 

of the sequence, when the current value

the introduction of high percentage incremental gaps at the beginning

 is still large. 

A key step of the above algorithm is the computation of the residual 

costs. Since all the bounding procedures considered in [304] are based 

on linear programming relaxations, valid residual cost matrices can be 

obtained by computing the reduced cost matrices associated with the 

corresponding LP-dual optimal solutions. 

Reduced costs associated with the AP relaxation can easily be ob-

tained without extra computational effort. As to the reduced costs for 

those associated with the arcs not entering the root vertex 

are the reduced costs of the shortest spanning arborescence problem 

(which can be computed in time through a procedure given in 

[305]), while those associated with the arcs entering are obtained by 

subtracting their minimum from the input costs. Reduced costs for 

problems and can be obtained in a similar 

way. 

Here is an overall additive bounding algorithm, subdivided into four 

stages. 

ALGORITHM ADD–ATSP: 

1. input: cost matrix 

2. output: lower bound  and the residual-cost matrix 

begin 

Stage 1: 

3. solve problem AP on the original cost matrix  and 

let be the corresponding reduced cost matrix; 

Stage 2: 

4. solve problem 1- SAP on cost matrix and update 

to become the corresponding reduced cost matrix; 

5. solve problem 1-SAAP on cost matrix and update 

to become the corresponding reduced cost matrix; 
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Stage 3: 

6. for to do 

begin 

7. solve problem on cost matrix and 

update  to become the corresponding reduced 

cost matrix; 

end; 

Stage 4: 

8. for to do 

begin 

9. solve problem on cost matrix and 

update to become the corresponding reduced 

cost matrix; 

end 

end. 

Let denote the spanning subdigraph of G defined by the 

arcs whose current reduced cost is zero. 

At Stage 1, the bounding procedure based on the AP relaxation is 

applied. After this stage, each vertex in has at least one entering and 

leaving arc; however, is not guaranteed to be strongly connected. 

At Stage 2, one forces the strong connectivity of by applying the 

bounding procedures based on 1-SAP and 1-SAAP. Indeed, after step 

4 each vertex can be reached from vertex 1 in whereas after step 5 

each vertex can reach vertex 1. 

The current spanning subdigraph may at this point contain a 

tour, in which case lower bound cannot be further increased through 

an additive approach. If such a tour has been detected, it corresponds 
to a heuristic solution to ATSP, whose optimality can be checked by 

comparing its original cost with lower bound More often, however, 

spanning subdigraph is non-Hamiltonian. 

Let the forward and backward star of a node  in a given digraph 

be defined as and 
respectively. We say that a vertex  is a forward articulation 

point of if none of the vertices of its forward star can reach all other 

vertices in without passing through vertex Analogously, a 

vertex is said to be a backward articulation point of if none of 

the vertices of its backward star can be reached from all the other vertices 
in without passing through vertex Clearly, the existence of 
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a forward or backward articulation point is a sufficient condition for 

to be non-Hamiltonian. 

A related concept is that of (undirected) articulation point: a vertex 

is an articulation point of if the underlying undirected subdigraph 

of induced by vertex subset has more than one connected 

component. Notice that concept of forward (or backward) articulation 

is stronger than that of (undirected) articulation. Indeed, if vertex is 

an (undirected) articulation point of then it is also a forward and a 

backward articulation point of while the opposite does not always 

hold. 

The existence of a forward (resp. backward) articulation point of 

can be exploited to increase the current lower bound by solving 

relaxation (resp. Indeed, in this case no zero cost 

(resp. in which has out-degree (resp. 

in-degree) equal to one, exists with respect to the current reduced costs 

Accordingly, for each vertex one applies bounding procedures 

based on relaxations (at Stage 3) and (at Stage 4), 

so as to increase the current lower bound in case the root vertex 

is a forward or backward articulation point, respectively. After each 

execution of steps 7 and 9, the current vertex is guaranteed not to 

be a forward or backward articulation point of the current graph 

respectively. 

The overall time complexity of algorithm ADD–ATSP is  the most 

time-consuming steps being step 3 and steps 7 and 9 

which are executed times. 

The tightness of the final lower bound greatly depends on the re-

duced costs obtained after each lower bound computation. In particular, 

consider the LP-dual of AP, defined by: 

and let For each 

vertex 

be the dual optimal solution found at step 3.

let be the cost of the shortest path from vertex 1 

to vertex computed with respect to the current reduced costs 

It is known (see, e.g., [505]) that an alternative dual optimal 

solution is given by for each . 

(Indeed, one has while, for each , 

follows from the definition of as 

costs of shortest paths.) Now, let be the reduced costs 

associated with this alternative dual optimal solution. One can easily 
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verify that the cost of any simple path from vertex to vertex 

(computed with respect to ), is equal to where is 

the cost of the same path computed with respect to Therefore, can 

be viewed as a biased reduced-cost matrix obtained from by reducing 

the cost of the paths emanating from vertex 1, while increasing the cost 

of the paths towards vertex 1. 

A new additive bounding algorithm, B–ADD–ATSP  (B for biased), can 

now be obtained from ADD–ATSP by adding the following step right after 

step 3: 

3’. compute (on the current reduced cost matrix  ) the 

cost  of the shortest path from vertex 1 to all 

vertices 

for each 

; 

do 

Note that, after step 3’, spanning subdigraph contains a 1-arbore-

scence, hence step 4 can be omitted in B–ADD–ATSP. 

At first glance, algorithm B–ADD–ATSP appears to be weaker than 

ADD–ATSP, since a step producing a possible increase on the current lower 

bound (step 4) has been replaced by a step which gives no improvement 

(step 3’). However, the cost biasing introduced at step 3’ may allow 

the subsequent step 5 to increase its contribution to the current lower 

bound. Computational experience has shown that B–ADD–ATSP typically 

outperforms ADD–ATSP, hencealgorithm B–ADD–ATSP is chosen in [304]. 

As to the experimental computing time of algorithm B–ADD–ATSP, it 

can greatly be reduced by the implementation given in [304]. 

4. A Branch-and-Cut Approach 

We next outline the polyhedral method of Fischetti and Toth [306]. 

Branch-and-cut methods for ATSP with sideconstraints have been pro-

posedrecently by Ascheuer [43], Ascheuer, Jünger and Reinelt [46], and 

Ascheuer, Fischetti and Grötschel [44, 45], among others. The Fischetti-

Toth method is based on model (1)–(6), and exploits additional classes 

of facet-inducing inequalities for the ATSP polytope  P that proved to 

be of crucial importance for the solution of some real-world instances. 

For each class, we will address the associated separation problem (in its 
optimization version), defined as follows: Given a point  satisfying 

the degree equations, and a family of ATSP inequalities, find a most 

violated member of , i.e., an inequality belonging to and 

maximizing the degree of violation . The reader is referred to 

Chapter 3 of the present book for a polyhedral analysis of the ATSP 
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polytope, and to Chapter 2 for the design of branch-and-cut methods 

for the symmetric TSP. 

whenever or 

To simplify notation, for any and we write 

for moreover, we write or 

, respectively. 

4.1. Separation of Symmetric Inequalities 

An ATSP inequality is called symmetric when 

for all . Symmetric inequalities can be thought of as derived 

from valid inequalities for the Symmetric Traveling Salesman Problem 

(STSP), defined as the problem of finding a minimum-cost Hamiltonian 

cycle in a given undirected graph . Indeed, let if 

edge belongs to the optimal STSP solution; otherwise. 

Every inequality for STSP can be transformed into a 

valid ATSP inequality by simply replacing by for all edges 
This produces the symmetric inequality , where 

for all . Conversely, every symmetric 

ATSP inequality corresponds to the valid STSP inequality 

The above correspondence implies that every separation algorithm for 

STSP can be used, as a “black box”, for ATSP as well. To this end, 

given the ATSP (fractional) point one first defines the undirected 

counterpart of by means of the transformation 

for all edges 

and then applies the

 STSPdetected most violated  inequality is transformed into its ATSP 

STSP separation algorithm to . On return, the 

counterpart, both inequalities having the same degree of violation. 

Several exact/heuristic separation algorithms for STSP have been 

proposed in recent years, all of which can be used for ATSP; see Chapter 

2 of the present book for further details. In [306] only two such separation 

tools are used, namely: 

i) the Padberg-Rinaldi [646] exact algorithm for SECs; and 

ii) the simplest heuristic scheme for comb (actually, 2-matching) con-

straints in which the components of the graph induced by the edges 

with fractional are considered as potential handles of the 

comb. 
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4.2. Separation of and Inequalities 

The following inequalities have been proposed by Grötschel and 

Padberg [405]: 

where is any sequence of distinct vertices, 

inequalities are facet-inducing for the ATSP polytope [295], and 

are obtained by lifting the cycle inequality associ-

ated with the subtour . Notice that 
the vertex indices along  C are different from those used in the origi-
nal Grötschel-Padberg definition [405], so as to allow for a simplified 
description of the forthcoming separation procedure. 

As a slight extension of the original definition, we allow for 

in the sequel, in which cases (10) degenerates into the valid constraints 
and respectively. 

aThe separation problem for the class of inequalities calls for 

vertex sequence , for which the degree of 

violation 

is as large as possible. This is itself a combinatorial optimization problem 
that can be solved by the following simple implicit enumeration scheme. 

We start with an empty node sequence. Then, iteratively, we extend 

lation of the corresponding
the current sequence in any possible way and evaluate the degree of vio-

inequality. The process can be visualized 
by means of a branch-decision tree. The root node (level 0) of the tree 
represents the empty sequence. Each node at level 
corresponds to a sequence of the type when each 
such node generates descending nodes, one for each possible ex-
tended sequence . Exhaustive enumeration of all nodes 

of the tree is clearly impractical, even for small values of On the 
other hand, a very large number of these nodes can be pruned (along 
with the associated subtrees) by means of the following simple upper 



184 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

bound computation. Let be the sequence associated with 

the current branching node, say and let denote the maximum 

degree of violation so far found during the enumeration. Consider any 

potential descendent node of associated with a sequence of the type 

. Then, directly from definition (11) one has 

where we have defined 

Observe that cannot exceed the degree of violation of the 

SEC associated with hence one has 

whenever all SECs are satisfied by 

According to (12), the only descending nodes of that need to be 

generated are those associated with a sequence such 

that 

Notice that both quantities and can paramet-

rically be computed along the branching tree as: 

and 

where for all singleton sequences 

Restriction (13) is very effective in practice, and dramatically reduces 

the number of nodes typically generated in the enumeration. Never-

theless, in some cases one may be interested in further reducing the 

computing time spent in the procedure. To this end, before running the 

above-described exact enumeration, one can try a “truncated” version 

of it in which each node at level generates at most one descending 

node, namely the one associated with the sequence if 

any, where and is as large as possible. 

The performance of the overall branch-and-cut algorithm is generally 

improved if one generates, at each round of separation, a number of vio-

lated cuts (rather than the most violated one) for each family. In [306], 
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the most violated inequality associated with a node sequence start-

ing with is generated for each . This is obtained by searching 

the decision tree in a depth-first manner, and resetting to zero the value 

of the incumbent best sequence whenever one backtracks to a node 

at level 1. 

We conclude this section by addressing the following inequalities: 

where is any sequence of distinct nodes, 

inequalities are valid [405] and facet-inducing [295] for  P; they can 

be obtained by lifting the cycle inequality associated 

with the directed cycle 

inequalities can be thought of as derived from inequalities by 

swapping the coefficient of the two arcs and for all 

This is a perfectly general operation, called transposition in [405], 

that works as follows. 

For every 

, 

let be defined by: for all 

. Clearly, inequality is valid (or facet-inducing) for 

the ATSP polytope  P if and only if its transposed version, 

is. This follows from the obvious fact that , where if 

and only if . Moreover, every separation procedure for 

can also be used, as a black box, to deal with . To this end 

one gives the transposed point (instead of ) on input to the 

procedure, and then transposes the returned inequality. 

The above considerations show that both the heuristic and exact sep-

aration algorithms designed for inequalities can be used for 

inequalities as well. 

4.3. Separation of Odd CAT Inequalities 

The following class of inequalities has been proposed by Balas [62]. 

Two distinct arcs and are called incompatible if or 

or and compatible otherwise. A Closed Alternating Trail 

(CAT, for short) is a sequence of distinct arcs such 

that, for arc is incompatible with arcs and 
and compatible with all other arcs in  T (with and ). 

Let and denote the set of the arcs of G leaving and entering 

any vertex , respectively. Given a CAT T, a node is called a 

source if whereas it is called a sink if 

Notice that a node can play both source and sink roles. Let  be the 

set of the arcs such that is a source and is a sink node. 
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For any CAT of odd length the following odd CAT inequality 

is valid and facet-defining (except in two pathological cases arising for 

for the ATSP polytope [62]. 

We next describe a heuristic separation algorithm for the family of 

odd CAT inequalities. This algorithm is based on the known fact that 

odd CAT inequalities correspond to odd cycles on an auxiliary “incom-

patibility” graph [62]. Also, the separation algorithm can be viewed 

as a specialized version of a scheme proposed by Caprara and Fischetti 

[159] for the separation of a subclass of Chvátal-Gomory cuts for general 

integer programming problems. 

Given the point , we set-up an edge-weighted undirected graph 

having a node for each arc with and an 

edge for each pair of incompatible arcs, whose weight is 

defined as We assume that satisfies all degree 

equations as well as all trivial SECs of the form ; this implies 

for all 

Let contain the edges in 

. 

incident with a given node . A 

cycle is an edge subset of 

and such that is even for all 

odd if is odd; (ii) simple if for all 

chordless if the subdigraph of 

Cycle 

inducing a connected subdigraph of 

is called (i) 

induced by the nodes covered by

and (iii)

has 

no other edges than those in 

By construction, every simple and chordless odd cycle in corre-

if and only if is covered by 

In addition, the total weight of 

Tsponds to an odd CAT , where 

is 

hence gives a lower bound on the degree of violation of the 

corresponding CAT inequality, computed as 

The heuristic separation algorithm used in [306] computes, for each

a minimum-weight odd cycle that uses edge . If happens 

in addition, the lower bound

 T. If,to be simple and chordless, then it corresponds to an odd CAT, say

exceeds a given threshold 
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–1/2, then the corresponding inequality is hopefully violated; hence one 

evaluates its actual degree of violation, 

. 

, and stores the inequality 

if 

is removed from after the computation of each  . 

In order to avoid detecting twice the same inequality, edge 

In order to increase the chances of finding odd cycles that are simple 

and chordless, all edge weights can be made strictly positive by adding 

to them a small positive value . 

are broken in favor of inclusion-minimal sets

 tiesThis guarantees that

 . Notice, however, that 

a generic minimum-weight odd cycle does not need to be neither 

may decompose into 2 simple cycles, say 

, where

For example,

is of even cardinality and goes through edge 

simple nor chordless even in this case, due to the fact that one imposes 

, and 

is of odd cardinality and overlaps in a node. 

The key point of the algorithm is the computation in of a minimum-

weight odd cycle going through a given edge. Assuming that the edge 

weights are all nonnegative, this problem is known to be polynomially 

solvable as it can be transformed into a shortest path problem; see Ger-

undirected graph

ards and Schrijver [357]. To this end one constructs an auxiliary bipartite 

obtained from as follows. For 

each in there are two nodes in , say and . 

of there are two edges in , namely edge

For each edge

and 

edge , both having weight . By construction, every minimum-

weight odd cycle of going through edge corresponds in 

to a shortest path from to , plus the edge . Hence, the 

computation of all ’s can be performed efficiently by computing, for 

each , the shortest path from to all other nodes in 

4.4. Clique Lifting and Shrinking 

Clique lifting can be described as follows, see Balas and Fischetti [73] 

details. ATSP polytope associatedfor Let denote the with a 

given complete digraph Given a valid inequality 

for we define 

and construct an enlarged complete digraph G = (V, A) obtained from 

by replacing each node by a clique containing at least one 

node (hence, . In other words is 

a proper partition of V , in which the set corresponds to the 

node in 

For all , let . We define a new clique lifted inequality 

for , say , where and 
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. 

, then 

for each It is shown in [73] that the new 

defines a facet of is guaranteed to be 
facet-inducing for 

inequality is always valid for ; in addition, if the starting inequality 

Clique lifting is a powerful theoretical tool for extending known classes 
of inequalities. Also, it has important applications in the design of sepa-
ration algorithms in that it allows one to simplify the separation problem 

through the following shrinking procedure [646]. 
Let be a vertex subset saturated by , in 

the sense that , and suppose  S is shrunk into a single 

node, say , and is updated accordingly. Let denote the 

shrunken digraph, where , and let be the shrunken 

counterpart of . Every valid inequality for

,

 that is 

violated by corresponds in  G to a violated inequality, say 

obtained through clique lifting by replacing back with the original set 

S. As observed by Padberg and Rinaldi [647], however, this shrinking 

operation can affect the possibility of detecting violated cuts on as 

it may produce a point belonging to  even when 

For instance, let  and if , 

(2,3), (3,1), (3,4), (4,2), (4,3)}; otherwise. One readily checks 

that violates, e.g., the  , as inequality 

. On the other hand, shrinking the saturated set 

produces a digraph with vertex set and a point 

with for all . But then is the convex combination 

of the characteristic vectors of the two tours and , hence 

cannot be cut off by any linear inequality as it belongs to 
The above example shows that shrinking has to be applied with some 

care. There are however simple conditions on the choice of S that guar-
antee , provided as in the cases of interest for 
separation. 

The simplest such condition concerns the shrinking of 1-arcs (i.e., 

arcs with , and requires for a certain node 

pair with . To see the validity of the condition, assume by 

contradiction that . This implies , where 

are characteristic vectors of tours in and are 

nonnegative multipliers with . For each we 

define as the characteristic vector of the tour of  G obtained from 

by replacing node with the arc . Then, by construction, 

, which contradicts the assumption 

It is known that 1-edges cannot be shrunk for STSP, instead. In this 

respect ATSP behaves more nicely than STSP, in that the informa-
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tion associated with the orientation of the arcs allows for more powerful 

shrinkings. Here is a polyhedral interpretation of this behavior. 
In the separation problem, we are given a point which satisfies 

the valid inequality with equality, and we want to separate it 

from the ATSP polytope, P. The above discussion shows that this is 

possible if and only if can be separated from 

hence  F can replace  P insofar the separation of is concerned. This 

property is perfectly general, and applies to any nonempty face  F of 

any polytope P. Indeed, let be the face 

of  P induced by any valid inequality for P, and assume that 

. If cannot be separated from F, then 
it cannot be separated from  P too. Conversely, suppose there exists a 

, hence 

F

. M

inequality P

 amount 

valid inequality for  which is violated by by the amount 

 Then for a sufficiently large value  the “lifted” 

is valid for , but violated by by 
the

The different behavior between the asymmetric and symmetric TSP 
polytopes then has its roots in the basic property that fixing 

for some ATSP arc yields again an ATSP instance – obtained by 

contracting into a single vertex – whereas the same construction 

does not work when fixing        for some STSP undirected edge . 

In polyhedral terms, this means that the face  F of the ATSP polytope 

induced by is in 1-1 correspondence with the ATSP polytope on 

nodes. Hence, in the asymmetric case, the face F can be interpreted 

again as an ATSP polytope on a shrunken graph, whereas for STSP  a 
similar interpretation is not possible. 

In [306] 1-arc shrinking is applied iteratively, so as to replace each 

path of 1-arcs by a single node. As a result of this pre-processing on 

. all the nonzero variables are fractional. Notice that a similar result 

cannot be obtained for the symmetric TSP, where each 1-edge chain can 
be replaced by a single 1-edge, but not by a single node. 

More sophisticated shrinking procedures have not been used in [306]. 

The above discussion suggests however other cases in which a saturated 

set S can be shrunk. For instance, suppose there exist 3 distinct nodes 

and i.e., 
and 

the saturated set  can be shrunk. Indeed, the given point 
ATSP inequality 

and such that 
for some . We claim, that in this case 

satisfies the valid

with equality, hence from the above discussion one can replace  P with 
. F 

or 
-

its face Now, every extreme point of
corresponds to a tour using either the path the path 

. This property induces a 1 1 correspondence between the 
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extreme points of  F and those of the ATSP polytope in which and 

have been shrunk into a single node. 

4.5. Pricing with Degeneracy 

Pricing is an important ingredient of branch-and-cut codes, in that it 

allows one to effectively handle LP problems involving a huge number 

of columns. Let 

be the LP problem to be solved. M is an matrix whose columns 

are indexed by the arcs The first       rows of  M correspond 

to the degree equations (2)-(3) (with the redundant constraint 

whereas the remaining rows, if any, correspond to some of 

the cuts generated through separation. Notation stands for “=” for 

the first  rows of M, and for the remaining rows. Let 

denote the entry of  M indexed by row and column 

In order to keep the size of the LP as small as possible, the following 

core set of pricing scheme is commonly used. We determine a (small)

arcs, say and decide to temporarily fix        for all 

We then solve the restricted LP problem 

where and are obtained from and M, respectively, by 

removing all entries indexed by 

Assume problem (17) is feasible, and let and be the optimal 

primal and dual basic solutions found, respectively. Clearly, We 

are interested in easily-checkable conditions that guarantee thus 

proving that (with for all is an optimal basic 

solution to (16), and hence that its value is a valid lower bound on 

To this end we compute the LP reduced costs associated with 

namely 

and check whether for all If this is indeed the case, 

then and we are done. Otherwise, the current core set is enlarged 

by adding (some of) the arcs with negative reduced cost, and the whole 

This iterative solution of (17), followed by the procedure is iterated.

possible updating of is generally referred to as the pricing loop. 

According to common computational experience, the first iterations 

of the pricing loop tend to add a very large number of new columns to 
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the LP even when due to the typically high primal degeneracy of 

(17). 
As an illustration of this behavior, consider the situation arising when 

the first LP is solved at the root node of the branching tree. In this case 

(16) contains the degree equations only, hence its optimal solution, 

initialize the core set

 APcan be computed efficiently through any  code. Suppose we now

to contain the 

solution. In order to have an LP basis, we add 

AParcs chosen in the optimal

additional arcs to 

chosen so as to determine an nonsingular matrix 

By construction, problem (17) has a unique feasible solution – namely, 

the characteristic vector of the optimal AP solution found – hence we 

know that holds in this case. However, depending on the possibly 

“wrong” choice of the last arcs in the core set, the solution can 

be dual infeasible for (16), i.e., a usually very large number of reduced 

costs are negative. Iterating the pricing procedure produces a similar 

behavior, and a long sequence of pricings is typically required before all 

arcs price-out correctly. 

The above example shows that checking the reduced-cost signs can 

lead to an overweak sufficient condition for proving The standard 

way to cope with this weakness consists in a more careful initialization of 

the core set, e.g., by taking the 15 smallest-cost arcs leaving each node. 

We next describe a different technique, called AP pricing in [306], 

in which the pricing condition is strengthened by exploiting the fact 

that any feasible solution to (16) cannot select the arcs with negative 

reduced cost in an arbitrary way, as the degree equations —among other 

constraints— have to be fulfilled. The technique is related to the so-

called Lagrangian pricing introduced independently by Löbel [566] as a 

powerful method for solving large-scale vehicle scheduling problems. 

Let us consider the dual solution to (17) as a vector of Lagrangian 

multipliers, and the LP reduced costs as the corresponding Lagran-

gian costs. In this view, standard pricing consists of solving the following 

trivial relaxation of (16): 

where
i.e.,

 by LP duality. Therefore one has 
from which in case  for all The 

strengthening then consists in replacing condition in (18) by 

In this way we compute an improved lower bound on namely 
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where is computed efficiently by solving the AP 

on the Lagrangian costs As before, hence 
implies When 

after having added to the core set 

instead, one has to iterate the procedure,

the arcs in that are selected 

in the optimal AP solution found. 
The new approach has two main advantages, namely: (1) an improved 

check for proving and (2) a better rule to select the arcs to be 

added to the core arc set. Moreover, always gives a lower bound on 

(and hence on which can in some cases succeed in fathoming 

the current branching node even when Finally, the nonnega-

tive AP reduced cost vector available after solving can 

be used for fixing for all such that is at least 

as large as the value of the best known ATSP solution. 
The new pricing scheme can be adapted to other problems having an 

easily-solvable relaxation. For example, in Fischetti and Vigo [307] the 
approach is applied to the resource constrained arborescence problem, 
the relaxation used for pricing being in this case the min-sum arbores-

cence problem. Unlike AP, the latter problem involves exponentially 

many constraints, hence the pricing scheme can in some cases also de-

tect violated cuts that are not present in the current LP, chosen from 
among those implicitly used during the solution of the relaxation. In 
other words, variable-pricing also produces, as a by-product, a heuristic 

“pricing” of someexponential classes of cuts, i.e., a separation tool. 

AP pricing requires the computation of all reduced costs e.g., 

through the following “row-by-row” scheme. We initialize for 

all and then consider, in sequence, the rows of  M with 

For each such row we determine the set 

simple combinatorial structure of most cuts, the (implicit) construction
and update for Because of the 

of can typically be carried out in time, hence the overall time 
spent for computing all reduced costs is for the initialization, plus 

for the actual reduced-cost computation (notice that this 

latter term is linear in the number of nonzero entries in  M). 

A drawback of the AP pricing is the extra computing time spent for 

the AP solution, which can however be reduced considerably through the 

following strategy [306]. After each LP solution we compute the reduced 
costs and determine the cardinality of 

If  we exit the pricing loop. If we use standard 

pricing, i.e., we update and repeat. If instead, we 

resort to AP pricing, and solve the AP problem on the reduced costs. 

We also determine (through a technique described, e.g., in [306]) the 

arc set containing the arcs defining an optimal LP basis for 
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this AP problem, and compute the corresponding nonnegative reduced 

costs for all We then remove from  all the arcs already 

in and enlarge by iteratively adding arcs in 

with until no such arc exists, or In this way 

(16). We finally update

contains a significant number of arcsthat are likely to be selected in

(even in case and repeat 

(if or exit (if the pricing loop. 

4.6. The Overall Algorithm 

The algorithm is a lowest-first branch-and-cut procedure. At each 

node of the branching tree, the LP relaxation is initialized by taking all 

the constraints present in the last LP solved at the father node (for the 

root node, only the degree equations are taken). As to variables, one 
retrieves from a scratch file the optimal basis associated with the last 

LP solved at the father node, and initializes the core variable set. by 
taking all the arcs belonging to this basis (for the root node, contains 

the variables in the optimal AP basis found by solving AP on the 
original costs In addition, contains all the arcs of the best known 

ATSP solution. Starting with the above advanced basis, one iteratively 

solves the current LP, applies the AP pricing (and variable fixing) pro-

cedure described in Section 4.5, and repeats if needed. Observe that the 

pricing/fixing procedure is applied after each LP solution. 

On exit of the pricing loop (case the cuts whose associated 

slack exceeds 0.01 are removed from the current LP (unless the number 

of these cuts is less than 10), and the LP basis is updated accordingly. 

Moreover, separation algorithms are applied to find, if any, facet-defining 

ATSP inequalities that cut off the current LP optimal solution, say 

As a heuristic rule, the violated cuts with degree of violation less than 

0.1 (0.01 for SECs) are skipped, and the separation phase is interrupted 

as soon as 20 + 

One first checks for violation the cuts generated during the processing

violated cuts are found. 

of the current or previous nodes, all of which are stored in a global data-
structure called the constraint pool. If some of these cuts are indeed 
violated by the separation phase ends. Otherwise, the Padberg-
Rinaldi [646] MINCUT algorithm for SEC separation is applied, and the 
separation phase is interrupted if violated SECs are found. When this is 
not the case, one shrinks the 1-arc paths of (as described in Section 

4.4), and applies the separation algorithms for comb (Section 4.1), 
and  (Section 4.2), and odd CAT (Section 4.3) inequalities. In order 
to avoid finding equivalent inequalities, inequalities (which are the 
same as inequalities), are never separated, and odd CAT separation 
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is skipped when a violated comb is found (as the class of comb and odd 

CAT inequalities overlap). When violated cuts are found, one adds them 

to the current LP, and repeats. 

When separation fails and is integer, the current best ATSP so-

lution is updated, and a backtracking step occurs. If is fractional, 

instead, the current LP basis is saved in a file, and one branches on 

the variable with that maximizes the score 

min . As a heuristic rule, a large priority is given to the 

variables with  (if any), so as to produce a significant 

change in both descending nodes. 

As a heuristic tailing-off rule, one also branches when the current 

is fractional and the lower bound did not increase in the last 5 (10 for 

the root node) LP/pricing/separation iterations. 

A simple heuristic algorithm is used to hopefully update the current 

best optimal ATSP solution. The algorithm is based on the information 

associated with the current LP, and consists of a complete enumeration 

of the Hamiltonian directed cycles in the support graph of defined 

as To this end Martello’s [585] implicit 

enumeration algorithm HC is used, with at most backtracking 

steps allowed. As is typically very sparse, this upper bound on 

the number of backtrackings is seldom attained, and HC almost always 

succeeds in completing the enumeration within a short computing time. 

is guaranteed to be strongly connected. 

The heuristic is applied whenever SEC separation fails, since in this case 

5. Computational Experiments 

The algorithms described in the previous sections have been compu-

tationally tested on a large set of ATSP instances namely: 

42 instances by Cirasella, Johnson, McGeoch and Zhang [200]; the 

instances in this set are randomly generated to simulate real-world 

applications arising in many different fields; 

5 scheduling instances provided by Balas [67]; 

2 additional real-world instances (ftv180 and uk66); 

10 random instances whose integer costs are uniformly generated 

in range [1, 1000]; 

all the 27 ATSP instances collected in TSPLIB [709]. 

For a detailed description of the first 42 instances the reader is referred 

to [200], while details for the ones in the TSPLIB can be found in the 
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associated web page [709]. The 5 instances provided by Balas come from 

Widget, a generator of realistic instances from the chemical industry 

developed by Donald Miller. Instance ftv180 represents pharmaceutical 

product delivery within Bologna down-town and is obtained from the 

TSPLIB instance ftv170 by considering 10 additional vertices in the 

graph representing down-town Bologna. Finally, instance uk66 is a real-

world problem arising in routing applications and has been provided us 

by Kousgaard [518]. 
All instances have integer nonnegative costs, and are available, on 

request, from the authors. For each instance we report in Table 4.1 the 

name (Name), the size , the optimal (or best known) solution value 
(OptVal), and the source of the instance (source). 

Three specific ATSP codes have been tested: (1) the AP-based 

branch-and-bound CDT code [163], as described in Section 2.1; (2) FT–add 

code, corresponding to the additive approach [304] described in Section 

3; and (3) FT–b&c code, corresponding to the branch-and-cut algorithm 

[306] described in Section 4. 

In addition, the branch-and-cut code Concorde by Applegate, Bixby, 

Chvátal and Cook [29] has been considered, as described in Chapter 

2. This code is specific for the symmetric TSP, so symmetric instances 

have to be constructed through one of the following two transformations: 

the 3-node transformation proposed by Karp [495]. A complete 

undirected graph with vertices is obtained from the original 

complete directed one by adding two copies, and of 

each vertex and by (i) setting to 0 the cost of the edges 
and for each (ii) setting to the 

cost of edge and (iii) setting to the costs 

of all the remaining edges; 

the 2-node transformation proposed by Jonker and Volgenant [471] 

(see also Jünger, Reinelt and Rinaldi [474]). A complete undirected 

graph with vertices is obtained from the original complete di-

rected one by adding a copy, of each vertex and by 
(i) setting to 0 the cost of the edge for each (ii) 

setting to the cost of edge where  M is 
a sufficiently large positive value, and (iii) setting to the costs 
of all the remaining edges. The transformation value has to 
be subtracted from the STSP optimal cost. 

All tests have been executed on a Digital Alpha 533 MHz with 512 MB of 

RAM memory under the Unix Operating System, with Cplex 6.5.3 as LP 
solver. In all tables, we report the percentage gaps corresponding to the 
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lower bound at the root node (Root), the final lower bound (fLB), and 

the final upper bound (fUB), all computed with respect to the optimal 
(or best known) solution value. Moreover, the number of nodes of the 

search tree (Nodes), and the computing time in seconds (Time) are given. 

5.1. Code Tuning 

In this section we analyze variants of the above mentioned codes with 

the aim of determining, for each code, the best average behavior. 

CDT Code. No specific modifications of this code have been imple-

mented. 

FT–add Code.  The original implementation emphasized the lower boun-

ding procedures. As in the CDT code, improved performances of the 

overall algorithm have been obtained by using the patching heuristic of 

Karp [498] (applied at each node), and the subtour merging operation 

described in Section 2.1.3. This leads to a reduction of both the num-

ber of branching nodes and the overall computing time; in particular, 

instances balas84 and ftv160 could not be solved by the original code 

within the time limit of 1,000 CPU seconds. 

FT–b&c Code. A new branching criterion, called Fractionality Persis-

tency (FP) has been tested. Roughly speaking, the FP criterion gives 

priority for branching to the variables that have been persistently frac-

tional in the last LP optimal solutions determined at the current branch-

ing node. This general strategy has been proposed and computationally 

analyzed in [298]. Table 4.2 compares the original and modified codes 

on a relevant subset of instances when imposing a time limit of 10,000 

CPU seconds. According to these results, the FP criterion tends to avoid 

pathological situations due to branching (two more instances solved to 

optimality), and leads to a more robust code. 

Concorde Code. The code has been used with default parameters by 

setting the random seed parameter (“–s 123”) so as to be able to re-

produce each run. Both ATSP-to-STSP transformations have been 

tested by imposing a time limit of 10,000 CPU seconds. For the 2-node 
transformation, parameter  M has been set to 1,000,000 (but for the in-
stances with and for instance rtilt316.10, for which we 

used M = 100, 000 so as to avoid numerical problems). The comparison 

of the results obtained by Concorde by using the two transformations is 

given in Table 4.3 (first two sections), where the same (hard) instances of 
Table 4.2 are considered. According to these results, no dominance ex-
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ists between the two transformations with respect to neither the quality 

of the lower bound at the root node nor the computing time. However, 

by considering the average behavior, the 2-node transformation seems 

to be preferable. 

Although a fine tuning of the Concorde parameters is out of the scope 

of this section, Table 4.3 also analyzes the code sensitivity to the “chunk 

size” parameter (last three sections), which controls the implementation 

of the local cuts paradigm [29] used for separation (see Chapter 2 for 

details). In particular, setting this size to 0 (“–C 0”) disables the gener-

ation of the “local” cuts and lets Concorde behave as a pure STSP code, 

whereas options “–C 16” (the default) and “–C 24” allow for the gen-

eration of additional cuts based on the “instance-specific” enumeration 

of partial solutions over vertex subsets of size up to 16 and 24, respec-
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tively. In this way, we aimed at analyzing the capability of the “local” 

cuts method to automatically generate cuts playing an important role for 

the ATSP instance to be solved. The results of Table 4.3 show that the 

“local” cuts (“–C 16” and “–C 24”) play a very important role, allowing 

one to solve to optimality difficult instances (e.g., instances balas120, 

balas160, and balas200 are solvedwith chunk equal to 16, and remain 

unsolved without “local” cuts). Not surprisingly, the main exception 

concerns the uniformly-random instances (ran1000) for which even the 

AP bound is already very tight. Among the chunk sizes, even after the 

2-node transformation, the best choiceappears to be the default (“–C 

16”) which gives the best compromise between the separation overhead 

and the lower bound improvement. We have also tested chunk sizes 8 

and 32, without obtaining better results. (The 3-node transformation 

exhibits a similar behavior.) 

5.2. Code Comparison 

A comparison of the four algorithms, namely, CDT, FT–add (modified 

version), FT–b&c (“+ FP” version) and Concorde (“(2–node) –C 16” 

version), is given in Tables 4.4, 4.5, 4.6 and 4.7 on the complete set of 86 

instances. As to time limit, we imposed 1,000 CPU seconds for CDT and 

FT–add, and 10,000 CPU seconds for FT–b&c and Concorde. The smaller 

time limit given to the first two algorithms is chosen so as to keep the 

required search-tree space reasonable, but it does not affect the compar-

ison with the other algorithms: according to preliminary computational 

experiments on some hard instances, either the branch-and-bound ap-

proaches solve an instance within 1,000 CPU seconds, or the final gap is 

too large to hope in a convergence within 10,000 seconds. 

As to the lower bound at the root node, the tables show that the 

additive approach obtains significantly better results than the AP lower 

bound, but is dominated by both cutting plane approaches. In its pure 

STSP version (“–C 0”), the Concorde codeobtains a root-node lower 

bound which is dominated by the FT–b&c one, thus showing the effec-

tiveness of addressing the ATSP in its original (directed) version. Of 

course, one can expect to improve the performance of FT–b&c by ex-

ploiting additional classes of ATSP-specific cuts such as the lifted cycle 

inequalities described in Chapter 3. As to Concorde, we observe that the 

use of the “local” cuts leads to a considerable improvement of the root-

node lower bound. Not surprisingly, this improvement appears more 

substantial than in the case of pure STSP instances: in our view, this is 

again an indication of the importance of exploiting the structure of the 

original asymmetric problem, which results into a very special structure 
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of its STSP counterpart which is not captured adequately by the usual 

classes of STSP cuts (comb, clique tree inequalities, etc.). 
As to the overall computing time, for the randomly generated in-

stances (ran) the mosteffective code is CDT, which also performs very 
well on shop and rbg instances. Code FT–add has, on average,better 
performance than CDT (solving to optimality, within 1,000 CPU seconds, 
8 more instances), never being, however, the best of the four codes on 

any instance. 

Codes FT–b&c and Concorde turn out to be, in general, the most effec-

tive approaches, the first code being almost always faster than the second 

one, though it often requires more branching nodes. We believe this is 

mainly due to the faster (ATSP-specific) separation and pricing tools 

used in FT–b&c. Strangely enough, however, FT–b&c does not solve to 

optimality instance crane316.10 which is, instead, solved by Concorde 

even in its pure STSP version “–C 0”: see Table 4.3. This pathological 

behavior of FT–b&c seems to derive from an unlucky sequence of wrong 
choices of the branching variable in the first levels of the branching tree. 

Not surprisingly, the Concorde implementation proved very robust 

for hard instances of large size, as it has been designed and engineered 

to address very large STSP instances. On the other hand, FT–b&c was 

implemented by its authors to solve medium-size ATSP instances with 
up to 200 vertices, and exploits neither sophisticated primal heuristics 
nor optimized interfaces with the LP solver. In our view, the fact that 

its performance is comparable or better than that of Concorde “–C 16” 
(and considerably better than that of the pure STSP Concorde “–C 

0”) is mainly due to the effectiveness of the ATSP-specific separation 
procedures used. This suggests that enriching the Concorde arsenal of 

STSP separation tools by means of ATSP-specific separation proce-

dures would be the road to go for the solution of hard ATSP instances. 
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