Exact Minimum Cycle Times for Finite State Machines

William K.C. Lam *
Hewlett-Packard Co. Palo Alto, CA

Abstract

In current research, the minimum cycle times of finite state ma-
chines are estimated by computing the delays of the combinational
logic in the finite state machines. Even though these methods deal
with false paths, they ignore the sequential and periodic nature of
minimum cycle times, and hence may give pessimistic results. In this
paper, we first prove conditions under which combinational delays
are correct upper bounds on minimum cycle times. Then, we present
a sequential approach to compute the minimum cycle times of finite
state machines, taking into account the effects of gate delay vari-
ations, reachable state space, initial states, unrealizable transitions,
multiple cycle false paths, and periodicity of the present state vector
seguences. We formulate and solve the problem exactly using Timed
Boolean Functions, and give an efficient algorithm to solve for upper
bounds of minimum cycle times. The exact formulation with Timed
Boolean Functions provides a framework for further improvements
on existing algorithms to compute the minimum cycle times. Weim-
plemented the algorithm and obtained the tightest bounds known on
ISCAS benchmarks. From the experiments, we found that for about
20% of the circuits (not all shownin section 8), combinational delays,
e.g. floating, viability, and transition delays, give pessimistic upper
boundsfor cycletimes by as much as 25%.

1 Introduction

Accurately computing the minimum cycle time of a finite state
machine is important becauseit not only directly affects the compu-
tation speed of the finite state machine but also aids in the synthesis
of high speed sequential machines. All current approaches to this
problem estimate the minimum cycletime of afinite state machineby
estimating or computing the exact delay of the combinational logic
implementing the next state function of the machine; hence, sequen-
tial properties pertaining to the machine and affecting its minimum
cycle time are not taken into account. Some of these properties are
reachable state space, initial states, unrealizable transitions, multiple
cyclefalse paths, and periodicity of the present state vector sequences;
without taking into account these factors, results on cycle times may
be pessimistic. Here we consider this problem sequentially instead
of combinationally. First, we formulate the problem exactly for se-
quential circuits with edge-triggered latches using Timed Boolean
Functions(TBF's); then we provide an algorithm to compute the min-
imum cycle time. In our method, we include effects of gate delay
variations, input waveforms, unreachable and initial states, multiple
cyclefalse paths, and periodicity of input sequences.

2 Previous Approaches: Combinational Delays

Figure 3 shows a block diagram of a general finite state machine.
The block labeled combinational logic computes the next state func-
tion of thefinite state machine. In all previousapproaches, the delay of
the combinational logic istaken to be an upper bound of the minimum
cycletime of the finite state machine. The delay of the combinational
logic dependson the type of delay definition used in its computation;
examples are single vector delay which includes viability delay and

* Supported by Fannieand John Hertz Foundationand SRC under contract 93-DC-008,
whose supportsare gratefully acknowledged.

Robert K. Brayton Alberto L. Sangiovanni-Vincentelli
Department of EECS, University of California, Berkeley

floating delay, and transition delay, [8, 2]. In single vector delay com-
putation, an input vector is applied to acircuit, and the node valuesin
the circuit are assumed conservatively to be arbitrary until the input
vector has propagated through. The single vector delay is the latest
time the output becomes steady under any input vector. Exact sen-
sitization conditions were shown in [2] and efficient computational
algorithms, in [4, 9, 6]. The delay by sequencesof vectors, proposed
in[6], for a circuit with gate delays variable within boundedintervals
is the latest arrival time of the last output transition, when a settled
circuit is applied with an arbitrary sequence of vectors with the last
vector at ¢ = 0. Itis shownin [6] that single vector delay is equiva-
lent to delay by sequencesof vectorsin any circuit with variable gate
delays and that both single vector delay and delay by sequences of
vectors are invariant under both bounded and unbounded gate delay
models. Transition delay of a circuit is the latest arrival time of the
last output transition when a pair of input vectors are applied to the
circuitat t = —oco and ¢ = 0, [2, 3]. Gate delays are assumed to
vary within bounded intervals. [6] uses Timed Boolean Functionsto
compute the exact transition delays of circuits.

In single vector delay computation, alast vector is assumed, while
in minimum cycle time, the input (present state vector) is a periodic
segquence. Nevertheless, single vector delays are believed to give
correct upper bounds for minimum cycle times, although there is no
formal proof of this in the literature. Transition delays give correct
upper boundsfor the minimum cycletimes only if thetrangtion delay
isgreater than half of thetopological delay of the combinational logic.
This result was proven in [3] and also, independently, in [7].

3 Minimum Cycle Timeisa Sequential Delay

Using delays of the combinational logic of finite state machines
as cycle time upper bounds overlooks the sequential nature of cycle
times. Some sequential properties of cycle times not considered in
combinational delay computations are as follows. The input vector
space is assumed to be the entire Boolean space. For instance, in
single vector delay, the input vector can be an arbitrary vector, and
in transition delay, the input vector pair can be any pair. However,
in afinite state machine, the input vector to its combinational logic
is its state vector, and this state vector is restricted to this machine's
reachablespace, which can be aproper subspaceof the entire Boolean
space. Similarly, if a state is not reachable from another state, then
theinput vector pair representing the two statesis never realizable. A
recent work [1] takes advantage of the reachable state space of finite
state machinesin eliminating long fal se paths over multiple cyclesand
reducing cycletimes. Even though, minimum cycle times may be not
derived from the knowledge of multiple cycle false paths. Another
factor is that a single vector or a pair of vectors (e.g. in transition
delay) are assumed to be the input to the combinational logic of a
finite state machine while the true inputs are sequences of vectors
arriving at periodic timeintervals.

It is conceivablethat the upper bounds by single vector delays and
transition delays may be improved by considering only the vectors
in the reachable state space and the realizable transitions; however,
single vector delays are inherently conservative and transition delays
arelimited by being greater than half of the longest topological delays.
The formulation in this paper gives the exact minimum cycle times:
including all sequential don’t cares, bounded gate delays, fal se paths,

reachable state space, etc.

To include these sequential factors in computing minimum cycle
times, we use Timed Boolean Functions to formulate the problem
exactly and derive algorithms thereby.

DEFINITION 1 Timed Boolean Functions

1. A binary signal space B(t) is a collection of mappings f :
R — B, where R isthe set of real numbersand B = {0, 1}.

2. ATimed Boolean Function (TBF) is any function with domain
B"(t) and range B(t). For analysis on most digital circuits,
the following subset of TBF'sis sufficient.

TBF F' : B"(t) — B(t) satisfiesthe following properties.
o ldentity. The identity function F (i.e. F(v)(t) =
v(t), v(t) € B(t))isaTBF.
¢ Closed under Boolean operations. If G : B"(t) — B(t)

and H : B™(t) — B(t) areTBF's,then, G, G - H, G+
H arealso TBF's.

¢ Closed under argument transformation. If F(¢) isa TBF,
then, for any function ¢ : R™ — R, F(¢) isalsoa TBF.

e Closed under composition. If
G=0G(...,zi(g9i1), .-, zi(gim), - -

and H = H(t) are TBF's, where G : B™'(t) — B(t),
H:B™(t) — B(t),andg;; : R" — R, then

GoH=G(... H(ga), ..., H(gim),...)

J,i=1,... ny,

isalso a TBF.

3.1 Modeing Timing Behavior with TBF

Before representing acircuit by a TBF, each component of the cir-
cuit needsto bemodeled by aTBF. Here, we only illustrate through ex-
amplesthe modeling processfor some commonly encountered gates.

1. Gateswhosedelaysarecharacterized by a single delay for each
input-output pair. The complex gate shown in Figure 1(a) has
three inputs; input =; has adelay ; to the output. Thisgateis
modeled with the TBF:

y(t) = Ta(t — m1) + w2(t — m2) + 23(t — 73).

2. Bufferswith different rising and falling delays. Let - and 7 be
the rising and falling delays, respectively. If 7. > 7, then the
buffer can be modeled as:

y(t) =a(t — 1) - x(t — 7).
andif 7. < ¢, the buffer can be modeled as:
y(t)=a(t—7) +z(t — 7).

3. Gates with different rising and falling delays for each input-
output pair. Rising (falling) delay isthe delay whenthe outputis
rising (falling). Eachinput is modeled by abuffer with different
rising and falling delays; and the "functional block" assumes
zero delay. The overall TBF for the gate is obtained through
the usual functional composition. An example of an OR gateis
showninFigure1(b). Input 1 hasarising delay of 1 and afalling
delay of 2, while input 2 has a rising delay of 4 and a falling
delay of 3. Thebuffer modelinginput Lisz1(t — 1) + z1(t — 2)
andinput 2 isz2(t — 4) - z2(t — 3). Therefore, the OR gate is

xl(t — 1) + xl(t — 2) + mz(t — 4) . mz(t — 3)

Tf=3
Figure 1: Modeling With TBF

4. Edgetriggered D-flipflop with a common clock of period P. Let
Q, D, d be the output, the data input, and the delay of the flip
flop, respectively; then the flipflop is represented by

o (|5

where | ¢ | = the greatest integer not exceeding x.

Note that memory elements (e.g. edge triggered D-FF) are repre-
sented without feedback; its memory effect is captured by the greatest
integer function |z|. Being able to characterize memory element
enables TBF's to represent sequential circuits with complete timing
information.

3.2 Synchronous Circuit Formulation With Timed
Boolean Function

Onceall componentsof acircuit arerepresented by TBF's, the TBF
for the circuit can be derived by identifying the timed variables cor-
responding to the ports connected to the same net. For synchronous
sequential circuit, the combinational part of the circuit is first for-
mulated with TBF's, then composed with the TBF's for the memory
elementsto obtain the TBF representation for the entire synchronous
sequential circuit. Weillustrate this with an example.

Example 1 In Figure 2, the delay for each gate is shown inside the
gate.

a7

O@

Figure 2: A Synchronous Sequential Circuit

First, weformulatethe combinational part of the circuit with TBF's.
Each gate is represented by a TBF, as follows.

g(t) = a(t) + b(1)
b(t) = f(t - 2)
a(t) = c(t)d(t)e(t)
c(t) = f(t—15)
d(t) = f(t—4)
e(t)=f(t-5)

We can also flatten above equations to a two level representation,
asfollows.

Therefore,

g(t) = f(t = 15)f(t = 4 f(t = 5) + f(1 - 2)
The TBF for the D flip flop is

where 7 is the cycle time of the synchronous sequential circuit.
Now, compose the two set of TBF’sto obtain:

o) = o[22 it 22 ot 2 et 2
1

T T T

This equation represents the complete functionality and timing
information of the synchronoussequential circuit shown in Figure 2.

Comments:

1. For combinational circuits, when each circuit componentis rep-
resented by a TBF having time argument of the form ¢ — &,
h; is a constant, then the TBF for the circuit has only the time
arguments of the form ¢ — h;.

2. TheTBF sfor synchronoussequential circuitswith cycletime r
can be derived systematically as described below. Assume that
all external inputsto the circuit are synchronized to the clock as
shownin Figure 3. The TBF'sfor the combinational logic have
the general form:

=== input synchronizer
| :/ put sy

Outputs
z1,...

=

1
1
. o |
inputs U ::
1
|

<

.
"

Combinational
Logic

[S

|
|
|
I
x
=

él[

<
=
cee

<
B

—
+

I iy |

Figure 3: Block Diagram of a Synchronous Sequential Circuit

yi(t) = fi(zi(t—hi), ..., xn(t—hin), v2(t—hry), ..., vi(t—hy ;)

@

We can treat v;’s as states of the circuit, hence,
yl(t) = fi(xl(t — hu),

where h;; is the delay from :th flip flop’s output to the jth flip
flop’sdatainput. Incorporating theflip flops' TBF's, we obtain:

’xs(t - his))’

t—hin—dy t—hie —dy,

17), - ys(]

T T

yi(t) = fi(ya(| I7),

wil®) = fin((E), (), @

where d, is the delay of the ith flip flop. yyn+1,...,ys arethe
external inputs. Therefore, k;; = h.; + dy; isthe delay around

the loop from the jth flip flop’s input to the ith flip flop’s input.

Therefore,
—ka —kis
pi(07) = fi(ya(or + | =2 [7), o a(nr + [7).
Normalizing to 7, the nth value of ;(t) is:
—k; —kis
vi(n) = filya(n + [—==1), oy yeln + [—=1))-

4 Définition of Minimum Cycle Time

We want to definethe minimum cycletime of afinite state machine
in terms of the machine's1/O behaviors, instead of its combinational
delay. If D isthe minimum cycletime of afinite state machine, then
we require that the finite state machine operate correctly at any clock
period greater than or equal to D .. Thus,

DEFINITION2 1. If y(n, r) isa TBF for the outputs of a syn-
chronous sequential circuit, where 7 is a cycle time, the mini-
mum cycletime of the circuit is the minimum D, such that

y(n,r) = y(n,DS) V1 > DS, Vn

2. Let L be the maximum value of the time constant in y(n, 7).
Obviously,

y(n,7)=y(n,L)Vr > L, Vn
Wecall y(n, L) the steady state TBF of the machine.

Example2 Assumethat the gates’ delaysin Figure 2 arefixed con-
stants as indicated and that the output is f, the output of the latch.
We want to compute the circuit's minimum cycletime.

First, we derivethe circuit's TBF. The TBF for thelatch with delay
Ois f(t) = g(ﬁj 7). The TBF for the circuit is obtained by
composing TBF'sfor each component,

o) = ol | =22 a2 a2 |2 .

T T

To find the minimum clock period, we need to look at ¢(¢) at nr.
Substituting ¢ = n7 and normalizeto =, we get:

o) = gt | =2)gtnt | 2 gt | 2 a2

which will be denoted by g(=, 7). To find the minimum clock period,
we decreaser from oo until g(n, 7) # g(n, co). Fromthe equation,
we only need to examinethe valuesof + at which the argument of some
term(s) in g(n, 7) changesvalue, eg. n + | =22 |. Thefirstfew r's
need to be examined are4,2.5,2,2,... At = 4, g(n,4) = g(n —
L)g(n—1)g(n—2)+g(n—1) = g(n—1), whichisequal to g(n, co).
AtT =25,9(n,25) =g(n — Lg(n —2)g(n —2) + g(n — 1) =
g(n,00). AtT = 2,¢(n,2) = g(n—1)g(n—2)g(n—3)+g(n—1) #
g(n, 0o). Therefore, the minimum clock periodis 2.5.

It isinteresting to calculatethe single vector delay and the 2-vector
delay of the combinational logic in the circuit and comparethemwith
the minimum cycle time. The single vector delay is 4, and the 2-
vector delay is 2. The 2-vector delay gives an overly optimistic and
incorrect(!) upper bound of the minimum cycle time, while the single
vector delay gives a pessimistic, but correct upper bound. In single
vector delay computation, noded and e areassumedto take arbitrary
values, hencethe single vector delay of 4. In fact, dueto the periodic
natureof signal at f, thevaluesat noded and e can not be arbitrary;
therefore, the single vector delay gives a pessimistic upper bound.
For the 2-vector delay, sincethe length of the longest path is 5, there
are more than 2 data propagating along that path when the circuit

operates at a clock period less than 2.5. Because only two vectors
areassumed in 2-vector delay, it is an incorrect upper bound.

It is interesting to note that the state space is complete; thereis
only one bit, i.e. two states 0 and 1, and the combinational logic is
an inverter, which visits the entire state space. Thus, incorporating
reachable state spacein computing the combinational delayswill not
improve the upper bounds.

5 Combinational Delays and Cycle Times

From example 2, we see that the 2-vector delay gives an incor-
rect upper bound of cycle time while the single vector delay gives a
conservative upper bound. Here we want to examine the relationship
between combinational delaysand minimum cycletimes. A theorem
in [6] saysthat single vector delay is the same as delay by sequences
of vectors for most practical circuits. Hence, we will study only the
following two types of combinational delays: delay by sequences of
vectors and 2-vector delay.

Will the single vector delays, or the delays by sequences of vec-
tors, of the combinational logic in finite state machines always give
conservative upper bounds for the minimum cycle times? Some of
the concerns are asfollows. In delay by sequencesof vectors, a last
input vector is assumed, while in the setting of finite state machines
theinputsare periodic, having no last vector. Then, will thisviolation
of thelast vector assumption causeaproblem? Further, from example
2, the single vector delay, or the delay by sequences of vectors, is 4
and the longest topological delay is 5; thus, even after the output of
the combinational logic has become stable after 4 units of time, there
are signals still propagating along the long false path of length 5. If
the finite state machine is clocked at a period of 4, will the signals
from the next clock period propagate along short paths to interact
with the present signal still propagating along the long false path and
the cause the long false path to become true? Thisis the short path
problem. The following theorem provides a condition under which
singlevector delays, or delaysby sequencesof vectorsare valid upper
bounds of the minimum cycle times. For simplicity, the following
discussion assumesthat all latches have zero delay.

THEOREM 1 Let edge-triggered latches have setup and hold times
7 and r,, D", the maximum delay by sequencesof vectorsof the
combinational logic of a finite state machine, and 2™'", the length
of the shortest path in the combinational logic. Then D™** + 7. isa
correct, by may be conservative, upper bound for the minimum cycle
timeif L™" > 4.

Notethat if L™ < 7, singlevector delay and delay by sequence
of vector of a finite state machine alone will not guarantee correct
operation of of the finite state machine.

Example 2 showshow 2-vector delayscan giveincorrect cycletime
upper bounds. A condition under which 2-vector delays always give
correct upper boundsis provided in [4] and [7], which is restated as
follows.

THEOREM 2 If the 2-vector delay of the combinational logic of a
finite state machineis greater than or equal to half of the topological
delay of the combinational logic, then the minimum cycle time of the
machineislessthan or equal to the 2-vector delay.

In example 2, the 2-vector delay of 2 is less than half of the
topological delay 5, therefore it is not guaranteed by Theorem 2
to give a correct cycle time upper bound. In this case, it gives an
incorrect one.

6 Computing Minimum Cycle Times

Using TBF's, the exact minimum cycle time of a finite state ma-
chineisthe solution of the following mixed Boolean linear program:

D, = max r
y(n,) # y(n, L)
&M < ody < a7

We call this program a mixed Boolean linear program because it
involves deciding equality of two Boolean functions, i.e. y(n,) #
y(n, L) and computing the linear programming problemsinduced by
the linear inequalities.

In general, afinite state machineis characterized by an output TBF
and astate TBF, i.e.

(o4 [2], (e + HJ‘J),...)
Ll [2], e+ {‘fiJ),...)

wherez(n + | =2 |) andu(n + | =2t |) arethe state and input TBF
variables. Usually, k;’s can vary within an interval, due to delay
uncertainties in manufacturing. In this section, we assume &;’s are
constants. Variable k;'s are considered in section 7.

To find the minimum cycle time , 7 is decreased from L; and
at each r, y(n, r) is compared with the steady state TBF y(n, L).
The minimum cycle time is the minimum = such that for some n
y(n,7) # y(n, L). For aparticular 7, we want to find a condition
C for which we can check easily that C' is satisfied if and only
if y(n,7) = y(n, L),¥ n . Deciding this equality is equivalent to
decidewhether two finite state machinesare equivalent and this can be
doneby reducing both machinesto minimal machinesand comparing
them. An algorithm for reducing finite state machines to minimal
machines can be found in [5]. However this explicit method takes
too much memory space for most practical circuits. Therefore, we
present arelatively simple sufficient condition which assumeall state
variables are observable.

DEFINITION 3 A state sufficient condition C, is:
1 z(n,7)==(n,L),Vn.
2. y(n,7)=y(n,L),Yn.

By including z(n,7) = z(n, L),V n , condition C, becomes a
sufficient condition only; so the minimum cycle time computed by
checking whether C, is satisfied is not the exact minimum cycletime
for afinite state machine such that y(n,) = y(n, L),V n, but for
somen x(n,7) # «(n, L), 1.e. z(n,7)and z(n, L) are equivalent
with respect to outputs. Yet, checking z(n,7) = #(n, L),V n is
very simple and once z(n, 7) = «(n, L),V n isassured y(n, 7) =
y(n, L),V n iseasily checked.

6.1 Checking State Sufficient Condition ',

For agiven 7, the TBF's can be written as:

y(n)=f(...,e(n —my),...,u(n —my),...)
g(n)=g(...,c(n—m;),...,u(n —mj),...)

We rewrite the steady state TBF's as:

gz(n):f(...,@(n—1),...,u(n—1),...)
E(n)=yg(...,2(n—=1),...,u(n—1),...)

Let m be the maximum of the m;’s. Consider checking z(n) =
£(n),¥ n. We start by comparing BDD’s of z(r) and &(n) for
1<n<m Forl<n<m,somez(n— m;)'shavevaluesequal
to the initial values; thus, we need to check for each such n. Thisis
the basis step in a mathematical induction. If all the BDD pairs are
equal, we proceed with the intermediate step in the induction. If the
equality is true, we replace «(n — m;) in z(n) by £(n — m;), and
makeall arguments of z’sin both z(n) and (n) equal by iteratively
substituting #(n) = g(...,&(n —1),...,u(n — 1),...) until all
arguments are equal to n — m. Now both z(n) and (n) have the
same ¢ TBF variables, and we construct their BDD’s. Their BDD’s
areequal if andonly if ¢(n) = £(n),V n.

Oncez(n) = &(n)isassured, checkingy(n) = §(n) isdoneinthe
sameway. We start by checkingy(n) = g(n) for1 < n < m. Then,
replacez(n — m;) iny(n) by £(n — m;), and maketheir arguments
equal by iteratively substituting #(n) = ¢(...,Z(n —1),...,u(n —
1),...). ThenBDD’sof y(n) and §(n) are compared

In summary,

Decision Algorithm (6.1) on Condition C,,

Given aTBF at aparticular ~

y(n) = f(... x(n—ml) oou(n—my),.)
z(n)=g(...,c(n —mq),...,u(n —mj),...)
and a steady state TBF
gz(n):f(A(n—l) cou(n=1),..)
g(n)=yg(...,2(n=1),...,u(n = 1),...)

Let m bethe maximum of m;’s.
1. Decidingz(n,7) =z(n,L),Vn.

(8 CompareBDD’s of #(n) and z(n), for 1 < n < m. If
all BDD pairs are equal, continue. Otherwise, z(n) #
Z(n), Vn.

(b) Replacex(n — m;) inz(n) by £(n — my).

(c) Make al arguments of z’'s in both z(n) and &
equal by iteratively substituting £(n) = g(...,Z(n
1),...,u(n—=1),...).

(d) If the BDD’s for z(n) and #(n) are equal, z(n) =
&(n),V n.

2. Decidingy(n,7) = y(n, L),V n .

()

(8 CompareBDD’s of y(n) and g(n), for1 < n < m. If
all BDD pairs are equal, continue. Otherwise, y(n) #
g(n), Vn.

(b) Replacez(n — m;) iny(n) by £(n — m;).

(c) Make all arguments of &'s in both y(n) and g(n)
equal by iteratively substituting £(n) = g(...,Z(n —
1),...,u(n—=1),...).

(d) If the BDD's for y(n) and §(n) are equal, y(n) =
g(n),V n.

THEOREM 3 (Correctness) If thedecisionalgorithm (6.1) is affir-
mative then the state sufficient condition C', is satisfied.

Therefore, for a particular =, if the decision algorithm (6.1) is
affirmative, this~isavalid clock period; otherwise, we conservatively
assumethis 7 isinvalid.

7 Variable Gate Delaysand Interval Algebra

If k;’s are constants, we find the minimum cycletime by sweeping
T starting from 7 = L. Atr = L, al terms | =%¢ |'s are —1, and
the TBF sarethe steady state TBF's. Now we decrease r until some
term(s) | =2t | changes value. Then, we decide whether this 7 is
valid by resorting to the decision algorithm on C,.. An upper bound
to the minimum cycle time is the minimum = such that the decision
algorithm fails. Effectively, we divide the r-axis into intervals with
points | J, {— n = 1,...}. Within each such interval, | =%:| isa
constant. Thus searchlng the entire r-axis reduces to searchlng ata
set of points, each of which isin one of those partitioning the r-axis
into intervals of constant | == |’s.

In redlity, k;’s vary within intervals due to delay variations in
manufacturing. Analysiswith variable &;’s is similar except it deals
with intervals instead of numbers. First, we define some algebraic
operations on intervals.

DEFINITION4 1. Denote | =%t | where k; € [k[™™, k7"**] by

—I
{ T’”J where Iy, = [k7", k%] isaninterval.

[T = | << {_krmJ}

3. Define ®(.)(r) to be the Cartesian product of | =%t | at r, i.e.

(I, In)(r) = H TTL‘J

7

4. 0 =(o4,...,
an 7 such that

on) € DIk, ..., Ir,)(r) isfeasible, if thereis

|2 =0 ke B "), i € 1)

T

Equivalently, the following system of inequalities is satigfiable.

—k; —ks

o =TS o+l

k:’”" S kz S kma.r
1=1,.

Analogous to dividing the r-axis into intervals such that
is constant within an interval, we divide the r-axis into the coarsest

intervals such that {%LJ remains the same within a such inter-

val. To search, we sweep 7 starting from = = L. In aninterval, if

{ D J has more than one element, each element is a possible value

of [J Thus, for an interval to be arange of valid r, the decision
algorlthm (6.1) on C'» must be affirmative for all possible combina-
tionsof ®(1y,, ...)(7), unlessthe combinationsthat fail the decision
algorithm are infeasible. When there are feasible combinations that
fail the decision algorithm, an upper bound on the minimum cycle
time is the maximum of the linear programmings induced by these
combinations. Symbolically, let Q bethe set of combinationsthat fail
the decision algorithm. Then, an upper bound for the minimum cycle
time, D., can be found in the following linear program.

D. = max (o)

ceQ
(o) = max
A
TSk <k
1=1,...,n
Equivalently, _
D, =max(o)
ceQ
(o) = max t
7(—o; - D+e< ki < 7(=0%)
kT < ks < krer
1=1,...,n

where ¢ is an arbitrarily small positive number. But k; is the sum of
delays of the gates on the path associated with &, i.e. k: =)" d,
where d; isthe sth gate’sdelay. Thus, the linear programming is:

D_S = max (o)

ceQ
(o) max
(- al—l)+a< Zd <T(oi)

i:l,...,n

Dividing the r-axis into the coarsest intervals such that | =£ |
remains the same within any interval can be done by dividing the

axis with the points { {%J =1, U] i =
1,...}. A method to speed up the search for minimum cycle time is
to record the combinations of ®(.)(r), and skip the ones that have
been considered.

8 Experimental Results

We implemented the above algorithm and ran all ISCAS bench-
marks on a DECstation 5000. In these benchmarks, we assumed that
the gate delaysvaried from 90% to 100% of their respective maxima.
For circuits s526, s526n, s820, s832, s953, s15850, and s38584, their
combinational delays,e.g. singlevector and transition (2-vector), give
pessimistic upper bounds of their minimum cycle times by as much
as 25%, while for the rest, the upper bounds on minimum cycletimes
are equal to their single vector delays and transition delays. These
circuits, e.g. s526 and etc, consist of about 20% of the benchmark
suite. Thefact that many benchmarks have equal bounds on the min-
imum cycle time and single vector delays and transition delays might
have three implications. First, the ISCAS benchmarkswe ran simply
do not contain good samples of designsin this respect; second, most
current designsdo not make use of the sequential aspectsof minimum
cycle times; or third, single vector delays are tight upper bounds for
minimum cycle times.

The following table gives selected benchmarks; those not given
have equal topological delays, single vector delays, transition delays,
and the bounds on minimum cycle time . In the following table, the
second column shows the topological delays of the combinational
circuits of the finite state machines, while the third and the fourth
columns show the single vector delays[3, 9], and the respective CPU
times in seconds. The fifth and the sixth columns show the exact
transition delays and their respective CPU times[6]. The seventh and
the last columns give the upper bounds on the minimum cycle times,
and the corresponding CPU times.

Note that the single vector delays and the transition delays are
exactly the samefor al the circuits, including those whose minimum
cycle times are shorter than their single vector delays. This implies
that the tighter boundson minimum cycletimesresult from sequential
aspects, which can not be discovered by combinational delays like
single vector and transition delays.

In the last circuit s38584, the minimum cycle time is less than
a fourth of the topological delay; so multiple cycles of inputs exist
on the long paths if the circuit operates at the minimum cycle time,
and the periodic nature of inputs plays a role in this circuit, further
contributing to the pessimism of combinational delays. In addition, a
correct upper bound given by 2-vector delay computation can only be
astight as a half of the topological delay, i.e. 189.2, larger than the
actual minimum cycle time by more than 200%.

[Circuit_[Top.D [Floa | _CPU [Trans [CPU | MCT [CPU |

A4 228 | 228 0.36 228 02 228 | 031
5261 225 | 225 0.26 225 0.15 184 | 105
S26n] 234 | 234 0.26 234 0.14 188 | 803
Eail 77 | 425 197 75 144 75 | 153
713 445 | 434 149 434 | 1073 | 434 | 12.23
=20 296 | 296 048 196 0.8 279 15
=37 291 | 291 051 291 03 288 | 149
53 297 | 297 0.4 29.7 0.26 7282 | 242
SI196 37 358 0.94 358 054 358 | 087
1238 479 a1 309 a1 169 a1 227
147 1198 | 1198 | 326 1198 | 191 | 1198 | 5113
1494 362 | 362 0.73 36.2 0.44 362 | 069
5378 424 a2 1171 a2 764 2 50.62
234 584 | 567 | 21565 | 567 | 21188 | —f =

SI5B505] | 1288 | 1274 | 104702 | 1274 | 81479 | 127.2% =
3593 4363 | 4363 | 2926 | 4363 | 1921 | 4363 | 4993
38417 | 1288 | 1288 | 20534 | 1288 | 13208 | —F =
38584 | 3784 | = = = B2.0F =

1: memory out; the last value is reported.

i: single vector and transition delays give pessimistic upper bounds.
§: topological delays > single vector, transition delays.

9 Conclusions and Future Directions

In current research, the minimum cycle times of finite state ma-
chines are estimated by computing the delays of the combinational
logicinthefinite state machines. Many of these use sophisticated new
methods for dealing with false paths. However, these methodsignore
the sequential and periodic nature of minimum cycle times, and hence
may give pessimistic results. First we proved conditions under which
combinational delays are correct upper bounds on minimum cycle
times. Then we presented a sequential approach to computing the
minimum cycle times of finite state machines, taking into account the
effects of gate delay variations, reachable state space, initial states,
unrealizabletransitions, multiple cycle false paths, and periodicity of
the present state vector sequences. From the ISCA S benchmarks, we
showed that in almost 20% of all ISCAS circuits, their combinational
delays, e.g. floating (viability), and transition delays, give pessimistic
upper bounds for cycle times by as much as 25%. The problem of
computing the exact minimum cycletimes of finite state machineswas
formulated and solved using Timed Boolean Functions; then, we gave
an efficient algorithm to solve for upper bounds on minimum cycle
times. The exact formulation with Timed Boolean Functionsprovides
not only aframework for further improvements on existing algorithms
on computing the minimum cycletimes, but also opensthe possibility
of bringing these analysis techniquesinto the synthesis of high speed
sequential circuits. Extensionsto circuits with level-sensitive latches
are another direction for the future.

References

[1] P. Ashar, S. Dey, and S. Malik. Exploiting multi-cycle pathsin
the performance optimization of sequential circuits. IEEE/ACM
International Conferenceon Computer Aided Design, '92, Nov.,
1992.

[2] H.C.ChenandD. H. Du. Path sensitization in critical path prob-
lem. 1990 ACM Workshop on Timing Issuesin the Specification
and Synthesis of Digital Systems, 1990.

[3] S.Devadas,K.Keutzer,and S. Malik. Certified timing verification
and transition delay of alogic circuit. Proc. of the 29th Design
Automation Conference, June, 1992.

[4] S. Devadas, K. Keutzer, and S. Malik. Delay computation in
combinational logic circuits: Theory and algorithms. IEEE/ACM
International Conferenceon Computer-Aided Design, Nov. 1991.

[5] J.E. Hopcroft and J.D. Ullman. Introduction to Automata, Lan-
guages and Computation. Addison-Wesley, 1979.

[6] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Circuit
delay models and their exact computation using timed boolean
functions. |IEEE/ACM Design Automation Conference’93, 1993.

[7] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Mini-
mum cycletime of synchronouscircuit with bounded delays. UC
Berkeley ERL memorandum: UCB/ERL M92/56, May 1992.

[8] P. McGeer and R. Brayton. Provably correct critical paths. The
Proceedings of the Decennial Caltech VLS Conference, 1989.

[9] P. McGeer, A. Sddanha, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. Timing analysis and delay-fault test
generation using path recursive functions. |EEE International
Conference on Computer-Aided Design, pages 180-183, Nov.
1991.

