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Abstract

In current research, the minimum cycle times of finite state ma-
chines are estimated by computing the delays of the combinational
logic in the finite state machines. Even though these methods deal
with false paths, they ignore the sequential and periodic nature of
minimum cycle times, and hence may give pessimistic results. In this
paper, we first prove conditions under which combinational delays
are correct upper bounds on minimum cycle times. Then, we present
a sequential approach to compute the minimum cycle times of finite
state machines, taking into account the effects of gate delay vari-
ations, reachable state space, initial states, unrealizable transitions,
multiple cycle false paths, and periodicity of the present state vector
sequences. We formulate and solve the problem exactly using Timed
Boolean Functions, and give an efficient algorithm to solve for upper
bounds of minimum cycle times. The exact formulation with Timed
Boolean Functions provides a framework for further improvements
on existing algorithms to compute the minimum cycle times. We im-
plemented the algorithm and obtained the tightest bounds known on
ISCAS benchmarks. From the experiments, we found that for about
20% of the circuits (not all shown in section 8), combinational delays,
e.g. floating, viability, and transition delays, give pessimistic upper
bounds for cycle times by as much as 25%.

1 Introduction

Accurately computing the minimum cycle time of a finite state
machine is important because it not only directly affects the compu-
tation speed of the finite state machine but also aids in the synthesis
of high speed sequential machines. All current approaches to this
problem estimate the minimum cycle time of a finite state machine by
estimating or computing the exact delay of the combinational logic
implementing the next state function of the machine; hence, sequen-
tial properties pertaining to the machine and affecting its minimum
cycle time are not taken into account. Some of these properties are
reachable state space, initial states, unrealizable transitions, multiple
cycle false paths, and periodicity of the present state vector sequences;
without taking into account these factors, results on cycle times may
be pessimistic. Here we consider this problem sequentially instead
of combinationally. First, we formulate the problem exactly for se-
quential circuits with edge-triggered latches using Timed Boolean
Functions (TBF’s); then we provide an algorithm to compute the min-
imum cycle time. In our method, we include effects of gate delay
variations, input waveforms, unreachable and initial states, multiple
cycle false paths, and periodicity of input sequences.

2 Previous Approaches: Combinational Delays

Figure 3 shows a block diagram of a general finite state machine.
The block labeled combinational logic computes the next state func-
tion of the finite state machine. In all previous approaches, the delay of
the combinational logic is taken to be an upper bound of the minimum
cycle time of the finite state machine. The delay of the combinational
logic depends on the type of delay definition used in its computation;
examples are single vector delay which includes viability delay and
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floating delay, and transition delay, [8, 2]. In single vector delay com-
putation, an input vector is applied to a circuit, and the node values in
the circuit are assumed conservatively to be arbitrary until the input
vector has propagated through. The single vector delay is the latest
time the output becomes steady under any input vector. Exact sen-
sitization conditions were shown in [2] and efficient computational
algorithms, in [4, 9, 6]. The delay by sequences of vectors, proposed
in [6], for a circuit with gate delays variable within bounded intervals
is the latest arrival time of the last output transition, when a settled
circuit is applied with an arbitrary sequence of vectors with the last
vector at t = 0. It is shown in [6] that single vector delay is equiva-
lent to delay by sequences of vectors in any circuit with variable gate
delays and that both single vector delay and delay by sequences of
vectors are invariant under both bounded and unbounded gate delay
models. Transition delay of a circuit is the latest arrival time of the
last output transition when a pair of input vectors are applied to the
circuit at t = �1 and t = 0, [2, 3]. Gate delays are assumed to
vary within bounded intervals. [6] uses Timed Boolean Functions to
compute the exact transition delays of circuits.

In single vector delay computation, a last vector is assumed, while
in minimum cycle time, the input (present state vector) is a periodic
sequence. Nevertheless, single vector delays are believed to give
correct upper bounds for minimum cycle times, although there is no
formal proof of this in the literature. Transition delays give correct
upper bounds for the minimum cycle times only if the transition delay
is greater than half of the topological delay of the combinational logic.
This result was proven in [3] and also, independently, in [7].

3 Minimum Cycle Time is a Sequential Delay

Using delays of the combinational logic of finite state machines
as cycle time upper bounds overlooks the sequential nature of cycle
times. Some sequential properties of cycle times not considered in
combinational delay computations are as follows. The input vector
space is assumed to be the entire Boolean space. For instance, in
single vector delay, the input vector can be an arbitrary vector, and
in transition delay, the input vector pair can be any pair. However,
in a finite state machine, the input vector to its combinational logic
is its state vector, and this state vector is restricted to this machine’s
reachable space, which can be a proper subspaceof the entire Boolean
space. Similarly, if a state is not reachable from another state, then
the input vector pair representing the two states is never realizable. A
recent work [1] takes advantage of the reachable state space of finite
state machines in eliminating long false paths over multiple cycles and
reducing cycle times. Even though, minimum cycle times may be not
derived from the knowledge of multiple cycle false paths. Another
factor is that a single vector or a pair of vectors (e.g. in transition
delay) are assumed to be the input to the combinational logic of a
finite state machine while the true inputs are sequences of vectors
arriving at periodic time intervals.

It is conceivable that the upper bounds by single vector delays and
transition delays may be improved by considering only the vectors
in the reachable state space and the realizable transitions; however,
single vector delays are inherently conservative and transition delays
are limited by being greater than half of the longest topological delays.
The formulation in this paper gives the exact minimum cycle times:
including all sequential don’t cares, bounded gate delays, false paths,
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reachable state space, etc.
To include these sequential factors in computing minimum cycle

times, we use Timed Boolean Functions to formulate the problem
exactly and derive algorithms thereby.

DEFINITION 1 Timed Boolean Functions

1. A binary signal space B(t) is a collection of mappings f :
R 7! B, whereR is the set of real numbers and B = f0; 1g.

2. A Timed Boolean Function (TBF) is any function with domain
B

n
(t) and range B(t). For analysis on most digital circuits,

the following subset of TBF’s is sufficient.

TBF F : Bn
(t) 7! B(t) satisfies the following properties.

� Identity. The identity function F (i.e. F (v)(t) =

v(t); v(t) 2 B(t)) is a TBF.

� Closed under Boolean operations. If G : Bn1(t) 7! B(t)

andH : Bn2 (t) 7! B(t) are TBF’s, then,G;G � H;G+

H are also TBF’s.

� Closed under argument transformation. If F (t) is a TBF,
then, for any function � : Rn 7! R, F (�) is also a TBF.

� Closed under composition. If

G = G(: : : ; xi(gi1); : : : ; xi(gim); : : :); i = 1; : : : ; n1;

and H = H(t) are TBF’s, where G : Bn1 (t) 7! B(t),
H : Bn2 (t) 7! B(t), and gij : Rn 7! R, then

G �H = G(: : : ;H(gi1); : : : ;H(gim); : : :)

is also a TBF.

3.1 Modeling Timing Behavior with TBF

Before representing a circuit by a TBF, each component of the cir-
cuit needs to be modeled by a TBF. Here,we only illustrate through ex-
amples the modeling process for some commonly encountered gates.

1. Gates whose delays are characterized by a single delay for each
input-output pair. The complex gate shown in Figure 1(a) has
three inputs; input xi has a delay �i to the output. This gate is
modeled with the TBF:

y(t) = x1(t� �1) + x2(t� �2) + x3(t� �3):

2. Buffers with different rising and falling delays. Let �r and �f be
the rising and falling delays, respectively. If �r > �f , then the
buffer can be modeled as:

y(t) = x(t� �r) � x(t� �f ):

and if �r < �f , the buffer can be modeled as:

y(t) = x(t� �r) + x(t� �f ):

3. Gates with different rising and falling delays for each input-
output pair. Rising (falling) delay is the delay when the output is
rising (falling). Each input is modeled by a buffer with different
rising and falling delays; and the "functional block" assumes
zero delay. The overall TBF for the gate is obtained through
the usual functional composition. An example of an OR gate is
shown in Figure 1(b). Input 1 has a rising delay of 1 and a falling
delay of 2, while input 2 has a rising delay of 4 and a falling
delay of 3. The buffer modeling input 1 is x1(t�1)+x1(t�2)
and input 2 is x2(t� 4) � x2(t� 3): Therefore, the OR gate is

x1(t� 1) + x1(t� 2) + x2(t� 4) � x2(t� 3):
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Figure 1: Modeling With TBF

4. Edge triggered D-flipflop with a common clock of periodP . Let
Q;D; d be the output, the data input, and the delay of the flip
flop, respectively; then the flipflop is represented by

Q(t) = D

�
P �

j
t� d

P

k�

where bxc = the greatest integer not exceeding x.

Note that memory elements (e.g. edge triggered D-FF) are repre-
sented without feedback; its memory effect is captured by the greatest
integer function bxc. Being able to characterize memory element
enables TBF’s to represent sequential circuits with complete timing
information.

3.2 Synchronous Circuit Formulation With Timed
Boolean Function

Once all componentsof a circuit are represented by TBF’s, the TBF
for the circuit can be derived by identifying the timed variables cor-
responding to the ports connected to the same net. For synchronous
sequential circuit, the combinational part of the circuit is first for-
mulated with TBF’s, then composed with the TBF’s for the memory
elements to obtain the TBF representation for the entire synchronous
sequential circuit. We illustrate this with an example.

Example 1 In Figure 2, the delay for each gate is shown inside the
gate.
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Figure 2: A Synchronous Sequential Circuit

First, we formulate the combinational part of the circuit with TBF’s.
Each gate is represented by a TBF, as follows.

g(t) = a(t) + b(t)

b(t) = f̄(t� 2)
a(t) = c(t)d(t)e(t)

c(t) = f(t� 1:5)
d(t) = f̄(t� 4)
e(t) = f(t� 5)

We can also flatten above equations to a two level representation,
as follows.

a(t) = f(t� 1:5)f̄(t� 4)f(t� 5)
b(t) = f̄(t� 2)



Therefore,

g(t) = f(t� 1:5)f̄(t� 4)f(t� 5) + f̄(t� 2)

The TBF for the D flip flop is

f(t) = g(

j
t

�

k
�)

where � is the cycle time of the synchronous sequential circuit.
Now, compose the two set of TBF’s to obtain:

g(t) = g(

j
t� 1:5
�

k
�)ḡ(

j
t� 4
�

k
�)g(

j
t� 5
�

k
�) + ḡ(

j
t� 2
�

k
�)

(1)
This equation represents the complete functionality and timing

information of the synchronous sequential circuit shown in Figure 2.

Comments:

1. For combinational circuits, when each circuit component is rep-
resented by a TBF having time argument of the form t � hi,
hi is a constant, then the TBF for the circuit has only the time
arguments of the form t� hi.

2. The TBF’s for synchronoussequential circuits with cycle time �
can be derived systematically as described below. Assume that
all external inputs to the circuit are synchronized to the clock as
shown in Figure 3. The TBF’s for the combinational logic have
the general form:
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Figure 3: Block Diagram of a Synchronous Sequential Circuit

yi(t) = fi(x1(t�hi1); :::; xn(t�hin); v1(t�hri1 ); :::; vl(t�hril))
(2)

We can treat vi’s as states of the circuit, hence,

yi(t) = fi(x1(t� hil); :::; xs(t� his));

where hij is the delay from ith flip flop’s output to the jth flip
flop’s data input. Incorporating the flip flops’ TBF’s, we obtain:

yi(t) = fi(y1(b
t� hi1 � df1

�
c�); :::; ys(b

t� his � dfs

�
c�);

yi(t) = fi(y1(b
t� ki1

�
c�); :::; ys(b

t� kis

�
c�); (3)

where dfi is the delay of the ith flip flop. yn+1; :::; ys are the
external inputs. Therefore, kij = hij + dfj is the delay around

the loop from the jth flip flop’s input to the ith flip flop’s input.
Therefore,

yi(n�) = fi(y1(n� + b
�ki1
�

c�); :::; ys(n� + b
�kis
�

c�)):

Normalizing to � , the nth value of yi(t) is:

yi(n) = fi(y1(n+ b
�ki1

�
c); :::; ys(n+ b

�kis

�
c)):

4 Definition of Minimum Cycle Time

We want to define the minimum cycle time of a finite state machine
in terms of the machine’s I/O behaviors, instead of its combinational
delay. If Ds is the minimum cycle time of a finite state machine, then
we require that the finite state machine operate correctly at any clock
period greater than or equal to Ds. Thus,

DEFINITION 2 1. If y(n; �) is a TBF for the outputs of a syn-
chronous sequential circuit, where � is a cycle time, the mini-
mum cycle time of the circuit is the minimum Ds such that

y(n; �) = y(n;Ds) 8� > Ds; 8n

2. Let L be the maximum value of the time constant in y(n; �).
Obviously,

y(n; �) = y(n;L) 8� > L; 8n

We call y(n;L) the steady state TBF of the machine.

Example 2 Assume that the gates’ delays in Figure 2 are fixed con-
stants as indicated and that the output is f , the output of the latch.
We want to compute the circuit’s minimum cycle time.

First, we derive the circuit’s TBF. The TBF for the latch with delay
0 is: f(t) = g(

�
t

�

�
�). The TBF for the circuit is obtained by

composing TBF’s for each component,

g(t) = g(

j
t� 1:5
�

k
�)ḡ(

j
t� 4
�

k
�)g(

j
t� 5
�

k
�)+ḡ(

j
t� 2
�

k
�):

To find the minimum clock period, we need to look at g(t) at n� .
Substituting t = n� and normalize to � , we get:

g(n) = g(n+

j
�1:5
�

k
)ḡ(n+

j
�4
�

k
)g(n+

j
�5
�

k
)+ ḡ(n+

j
�2
�

k
)

which will be denoted by g(n; �). To find the minimum clock period,
we decrease � from 1 until g(n; �) 6= g(n;1). From the equation,
we only need to examine the values of � at which the argumentof some
term(s) in g(n; �) changes value, e.g. n+

�
�1:5
�

�
. The first few � ’s

need to be examined are 4; 2:5;2; 5
3 ; : : : At � = 4, g(n; 4) = g(n �

1)ḡ(n�1)g(n�2)+ḡ(n�1) = ḡ(n�1), which is equal to g(n;1).
At � = 2:5, g(n; 2:5) = g(n � 1)ḡ(n � 2)g(n� 2) + ḡ(n� 1) =
g(n;1). At � = 2, g(n; 2) = g(n�1)ḡ(n�2)g(n�3)+ḡ(n�1) 6=
g(n;1). Therefore, the minimum clock period is 2:5.

It is interesting to calculate the single vector delay and the 2-vector
delay of the combinational logic in the circuit and compare them with
the minimum cycle time. The single vector delay is 4, and the 2-
vector delay is 2. The 2-vector delay gives an overly optimistic and
incorrect(!) upper bound of the minimum cycle time, while the single
vector delay gives a pessimistic, but correct upper bound. In single
vector delay computation, node d and e are assumed to take arbitrary
values, hence the single vector delay of 4. In fact, due to the periodic
nature of signal at f , the values at node d and e can not be arbitrary;
therefore, the single vector delay gives a pessimistic upper bound.
For the 2-vector delay, since the length of the longest path is 5, there
are more than 2 data propagating along that path when the circuit



operates at a clock period less than 2:5. Because only two vectors
are assumed in 2-vector delay, it is an incorrect upper bound.

It is interesting to note that the state space is complete; there is
only one bit, i.e. two states 0 and 1, and the combinational logic is
an inverter, which visits the entire state space. Thus, incorporating
reachable state space in computing the combinational delays will not
improve the upper bounds.

5 Combinational Delays and Cycle Times

From example 2, we see that the 2-vector delay gives an incor-
rect upper bound of cycle time while the single vector delay gives a
conservative upper bound. Here we want to examine the relationship
between combinational delays and minimum cycle times. A theorem
in [6] says that single vector delay is the same as delay by sequences
of vectors for most practical circuits. Hence, we will study only the
following two types of combinational delays: delay by sequences of
vectors and 2-vector delay.

Will the single vector delays, or the delays by sequences of vec-
tors, of the combinational logic in finite state machines always give
conservative upper bounds for the minimum cycle times? Some of
the concerns are as follows. In delay by sequences of vectors, a last
input vector is assumed, while in the setting of finite state machines
the inputs are periodic, having no last vector. Then, will this violation
of the last vector assumption cause a problem? Further, from example
2, the single vector delay, or the delay by sequences of vectors, is 4
and the longest topological delay is 5; thus, even after the output of
the combinational logic has become stable after 4 units of time, there
are signals still propagating along the long false path of length 5. If
the finite state machine is clocked at a period of 4, will the signals
from the next clock period propagate along short paths to interact
with the present signal still propagating along the long false path and
the cause the long false path to become true? This is the short path
problem. The following theorem provides a condition under which
single vector delays, or delays by sequencesof vectors are valid upper
bounds of the minimum cycle times. For simplicity, the following
discussion assumes that all latches have zero delay.

THEOREM 1 Let edge-triggered latches have setup and hold times
�s and �h , Dmax, the maximum delay by sequences of vectors of the
combinational logic of a finite state machine, and Lmin , the length
of the shortest path in the combinational logic. ThenDmax+ �s is a
correct, by may be conservative, upper bound for the minimum cycle
time if Lmin � �h.

Note that ifLmin
< �h, single vector delay and delay by sequence

of vector of a finite state machine alone will not guarantee correct
operation of of the finite state machine.

Example 2 shows how 2-vector delays can give incorrect cycle time
upper bounds. A condition under which 2-vector delays always give
correct upper bounds is provided in [4] and [7], which is restated as
follows.

THEOREM 2 If the 2-vector delay of the combinational logic of a
finite state machine is greater than or equal to half of the topological
delay of the combinational logic, then the minimum cycle time of the
machine is less than or equal to the 2-vector delay.

In example 2, the 2-vector delay of 2 is less than half of the
topological delay 5, therefore it is not guaranteed by Theorem 2
to give a correct cycle time upper bound. In this case, it gives an
incorrect one.

6 Computing Minimum Cycle Times

Using TBF’s, the exact minimum cycle time of a finite state ma-
chine is the solution of the following mixed Boolean linear program:

Ds = max �
y(n; �) 6= y(n; L)

d
min
i � di � d

max
i

We call this program a mixed Boolean linear program because it
involves deciding equality of two Boolean functions, i.e. y(n; �) 6=
y(n;L) and computing the linear programming problems induced by
the linear inequalities.

In general, a finite state machine is characterized by an output TBF
and a state TBF, i.e.

y(n; �) = f(: : : ; x(n+
�
�ki
�

�
); : : : ; u(n+

j
�kj

�

k
); : : :)

x(n;�) = g(: : : ; x(n+
�
�ki
�

�
); : : : ; u(n+

j
�kj

�

k
); : : :)

where x(n+
�
�ki
�

�
) and u(n+

�
�ki
�

�
) are the state and input TBF

variables. Usually, ki’s can vary within an interval, due to delay
uncertainties in manufacturing. In this section, we assume ki’s are
constants. Variable ki’s are considered in section 7.

To find the minimum cycle time , � is decreased from L; and
at each � , y(n; �) is compared with the steady state TBF y(n;L).
The minimum cycle time is the minimum � such that for some n
y(n; �) 6= y(n;L). For a particular � , we want to find a condition
C for which we can check easily that C is satisfied if and only
if y(n; �) = y(n; L);8 n . Deciding this equality is equivalent to
decide whether two finite state machines are equivalent and this can be
done by reducing both machines to minimal machines and comparing
them. An algorithm for reducing finite state machines to minimal
machines can be found in [5]. However this explicit method takes
too much memory space for most practical circuits. Therefore, we
present a relatively simple sufficient condition which assume all state
variables are observable.

DEFINITION 3 A state sufficient condition Cx is:

1. x(n; �) = x(n;L);8 n .

2. y(n; �) = y(n;L);8 n .

By including x(n; �) = x(n;L); 8 n , condition Cx becomes a
sufficient condition only; so the minimum cycle time computed by
checking whetherCx is satisfied is not the exact minimum cycle time
for a finite state machine such that y(n; �) = y(n; L);8 n , but for
some n x(n; �) 6= x(n;L), i.e. x(n; �) and x(n;L) are equivalent
with respect to outputs. Yet, checking x(n; �) = x(n;L);8 n is
very simple and once x(n; �) = x(n;L);8 n is assured y(n; �) =
y(n;L);8 n is easily checked.

6.1 Checking State Sufficient Condition Cx

For a given � , the TBF’s can be written as:

y(n) = f(: : : ; x(n�mi); : : : ; u(n�mj); : : :)

x(n) = g(: : : ; x(n�mi); : : : ; u(n�mj); : : :)

We rewrite the steady state TBF’s as:

ŷ(n) = f(: : : ; x̂(n� 1); : : : ; u(n� 1); : : :)
x̂(n) = g(: : : ; x̂(n� 1); : : : ; u(n� 1); : : :)

Let m be the maximum of the mi’s. Consider checking x(n) =
x̂(n);8 n. We start by comparing BDD’s of x(n) and x̂(n) for
1 � n � m. For 1 � n � m, some x(n�mi)’s have values equal
to the initial values; thus, we need to check for each such n. This is
the basis step in a mathematical induction. If all the BDD pairs are
equal, we proceed with the intermediate step in the induction. If the
equality is true, we replace x(n �mi) in x(n) by x̂(n �mi), and
make all arguments of x’s in both x(n) and x̂(n) equal by iteratively
substituting x̂(n) = g(: : : ; x̂(n � 1); : : : ; u(n � 1); : : :) until all
arguments are equal to n �m. Now both x(n) and x̂(n) have the
same x̂ TBF variables, and we construct their BDD’s. Their BDD’s
are equal if and only if x(n) = x̂(n);8 n.



Oncex(n) = x̂(n) is assured, checking y(n) = ŷ(n) is done in the
same way. We start by checkingy(n) = ŷ(n) for 1 � n � m. Then,
replace x(n�mi) in y(n) by x̂(n�mi), and make their arguments
equal by iteratively substituting x̂(n) = g(: : : ; x̂(n� 1); : : : ; u(n�
1); : : :). Then BDD’s of y(n) and ŷ(n) are compared.

In summary,

Decision Algorithm (6.1) on Condition Cx

Given a TBF at a particular �

y(n) = f(: : : ; x(n�mi); : : : ; u(n�mj); : : :)
x(n) = g(: : : ; x(n�mi); : : : ; u(n�mj); : : :)

and a steady state TBF

ŷ(n) = f(: : : ; x̂(n� 1); : : : ; u(n� 1); : : :)
x̂(n) = g(: : : ; x̂(n� 1); : : : ; u(n� 1); : : :)

Let m be the maximum of mi’s.

1. Deciding x(n; �) = x(n;L);8 n .

(a) Compare BDD’s of x(n) and x̂(n), for 1 � n � m. If
all BDD pairs are equal, continue. Otherwise, x(n) 6=
x̂(n); 8n.

(b) Replace x(n�mi) in x(n) by x̂(n�mi).

(c) Make all arguments of x̂’s in both x(n) and x̂(n)
equal by iteratively substituting x̂(n) = g(: : : ; x̂(n �
1); : : : ; u(n� 1); : : :).

(d) If the BDD’s for x(n) and x̂(n) are equal, x(n) =
x̂(n);8 n.

2. Deciding y(n; �) = y(n;L);8 n .

(a) Compare BDD’s of y(n) and ŷ(n), for 1 � n � m. If
all BDD pairs are equal, continue. Otherwise, y(n) 6=
ŷ(n); 8n.

(b) Replace x(n�mi) in y(n) by x̂(n�mi).

(c) Make all arguments of x̂’s in both y(n) and ŷ(n)
equal by iteratively substituting x̂(n) = g(: : : ; x̂(n �
1); : : : ; u(n� 1); : : :).

(d) If the BDD’s for y(n) and ŷ(n) are equal, y(n) =
ŷ(n);8 n.

THEOREM 3 (Correctness) If the decision algorithm (6.1) is affir-
mative then the state sufficient condition Cx is satisfied.

Therefore, for a particular � , if the decision algorithm (6.1) is
affirmative, this � is a valid clock period; otherwise, we conservatively
assume this � is invalid.

7 Variable Gate Delays and Interval Algebra

If ki’s are constants, we find the minimum cycle time by sweeping
� starting from � = L. At � = L, all terms

�
�k

i

�

�
’s are �1, and

the TBF’s are the steady state TBF’s. Now we decrease � until some
term(s)

�
�k

i

�

�
changes value. Then, we decide whether this � is

valid by resorting to the decision algorithm on Cx . An upper bound
to the minimum cycle time is the minimum � such that the decision
algorithm fails. Effectively, we divide the � -axis into intervals with
points

S
i
f ki
n
; n = 1; : : :g. Within each such interval,

�
�k

i

�

�
is a

constant. Thus, searching the entire � -axis reduces to searching at a
set of points, each of which is in one of those partitioning the � -axis
into intervals of constant

�
�k

�

�
’s.

In reality, ki’s vary within intervals due to delay variations in
manufacturing. Analysis with variable ki’s is similar except it deals
with intervals instead of numbers. First, we define some algebraic
operations on intervals.

DEFINITION 4 1. Denote
�
�k

i

�

�
where ki 2 [kmin

i ; kmax
i ] byj

�I
k
i

�

k
where Ik

i
= [kmin

i ; kmax
i ] is an interval.

2.
j
�Ik

i

�

k
= fj :

j
�kmax

i

�

k
� j �

�
�kmin

i

�

�
g

3. Define Φ(:)(�) to be the Cartesian product of
�
�I

i

�

�
at � , i.e.

Φ(I1; : : : ; In)(�) =
Y
i

j
�Ii

�

k

4. � = (�1; : : : ; �n) 2 Φ(Ik1 ; : : : ; Ikn )(�) is feasible, if there is
an � such thatj

�ki

�

k
= �i; ki 2 [kmax

i ; k
min
i ]; i 2 [1; n]

Equivalently, the following system of inequalities is satisfiable.

�k
i

�
i

� � � �k
i

�
i
+1

kmin
i � ki � kmax

i

i = 1; : : : ; n

Analogous to dividing the � -axis into intervals such that
�
�k

�

�
is constant within an interval, we divide the � -axis into the coarsest

intervals such that
j
�I

k
i

�

k
remains the same within a such inter-

val. To search, we sweep � starting from � = L. In an interval, ifj
�I

k
i

�

k
has more than one element, each element is a possible value

of
�
�k

i

�

�
. Thus, for an interval to be a range of valid � , the decision

algorithm (6.1) on Cx must be affirmative for all possible combina-
tions of Φ(Ik1 ; : : :)(�), unless the combinations that fail the decision
algorithm are infeasible. When there are feasible combinations that
fail the decision algorithm, an upper bound on the minimum cycle
time is the maximum of the linear programmings induced by these
combinations. Symbolically, let Ω be the set of combinations that fail
the decision algorithm. Then, an upper bound for the minimum cycle
time , D̄s, can be found in the following linear program.

D̄s = max
�2Ω

�(�)

�(�) = max t�
�k

i

�

�
= �i

kmin
i � ki � kmax

i

i = 1; : : : ; n

Equivalently,
D̄s = max

�2Ω
�(�)

�(�) = max t
�(��i � 1) + � � ki � �(��i)

kmin
i � ki � kmax

i

i = 1; : : : ; n

where � is an arbitrarily small positive number. But ki is the sum of
delays of the gates on the path associated with ki, i.e. ki =

P
i
di,

where di is the ith gate’s delay. Thus, the linear programming is:

D̄s = max
�2Ω

�(�)

�(�) = max t

�(��i � 1) + � �
P

i
di � �(��i)

dmin
i � di � dmax

i

i = 1; : : : ; n



Dividing the � -axis into the coarsest intervals such that
�
�I

�

�
remains the same within any interval can be done by dividing the

axis with the points f
j
kmin

n

k
; n; i = 1; : : :g

S
f
�
kmax

n

�
; n; i =

1; : : :g. A method to speed up the search for minimum cycle time is
to record the combinations of Φ(:)(�), and skip the ones that have
been considered.

8 Experimental Results

We implemented the above algorithm and ran all ISCAS bench-
marks on a DECstation 5000. In these benchmarks, we assumed that
the gate delays varied from 90% to 100% of their respective maxima.
For circuits s526, s526n, s820, s832, s953, s15850, and s38584, their
combinational delays,e.g. single vector and transition (2-vector), give
pessimistic upper bounds of their minimum cycle times by as much
as 25%, while for the rest, the upper bounds on minimum cycle times
are equal to their single vector delays and transition delays. These
circuits, e.g. s526 and etc, consist of about 20% of the benchmark
suite. The fact that many benchmarks have equal bounds on the min-
imum cycle time and single vector delays and transition delays might
have three implications. First, the ISCAS benchmarks we ran simply
do not contain good samples of designs in this respect; second, most
current designs do not make use of the sequential aspects of minimum
cycle times; or third, single vector delays are tight upper bounds for
minimum cycle times.

The following table gives selected benchmarks; those not given
have equal topological delays, single vector delays, transition delays,
and the bounds on minimum cycle time . In the following table, the
second column shows the topological delays of the combinational
circuits of the finite state machines, while the third and the fourth
columns show the single vector delays [3, 9], and the respective CPU
times in seconds. The fifth and the sixth columns show the exact
transition delays and their respective CPU times [6]. The seventh and
the last columns give the upper bounds on the minimum cycle times,
and the corresponding CPU times.

Note that the single vector delays and the transition delays are
exactly the same for all the circuits, including those whose minimum
cycle times are shorter than their single vector delays. This implies
that the tighter bounds on minimum cycle times result from sequential
aspects, which can not be discovered by combinational delays like
single vector and transition delays.

In the last circuit s38584, the minimum cycle time is less than
a fourth of the topological delay; so multiple cycles of inputs exist
on the long paths if the circuit operates at the minimum cycle time,
and the periodic nature of inputs plays a role in this circuit, further
contributing to the pessimism of combinational delays. In addition, a
correct upper bound given by 2-vector delay computation can only be
as tight as a half of the topological delay, i.e. 189:2, larger than the
actual minimum cycle time by more than 200%.

Circuit Top. D Float CPU Trans. CPU MCT CPU

s444 22.8 22.8 0.36 22.8 0.2 22.8 0.31
s526z 22.5 22.5 0.26 22.5 0.15 18.4 10.5

s526nz 23.4 23.4 0.26 23.4 0.14 18.8 8.03
s641x 42.7 42.5 1.97 42.5 1.44 42.5 1.53
s713x 44.5 43.4 1.49 43.4 10.73 43.4 12.23
s820z 29.6 29.6 0.48 19.6 0.28 27.9 1.5
s832z 29.1 29.1 0.51 29.1 0.3 28.8 1.49
s953z 29.7 29.7 0.44 29.7 0.26 28.2 2.42

s1196x 37 35.8 0.94 35.8 0.54 35.8 0.87
s1238x 42.9 41 3.09 41 1.69 41 2.22
s1423 119.8 119.8 3.26 119.8 1.91 119.8 51.13
s1494 36.2 36.2 0.73 36.2 0.44 36.2 0.69

s5378x 42.4 42 11.71 42 7.64 42 50.62
s9234x 58.4 56.7 215.65 56.7 211.88 –y –

s15850xz 128.8 127.4 1047.02 127.4 814.79 127.2y –
s35932 436.3 436.3 29.26 436.3 19.21 436.3 49.93
s38417 128.8 128.8 205.34 128.8 132.08 –y –
s38584 378.4 –y – –y – 82.0y –

y: memory out; the last value is reported.

z: single vector and transition delays give pessimistic upper bounds.
x: topological delays > single vector, transition delays.

9 Conclusions and Future Directions

In current research, the minimum cycle times of finite state ma-
chines are estimated by computing the delays of the combinational
logic in the finite state machines. Many of these use sophisticated new
methods for dealing with false paths. However, these methods ignore
the sequential and periodic nature of minimum cycle times, and hence
may give pessimistic results. First we proved conditions under which
combinational delays are correct upper bounds on minimum cycle
times. Then we presented a sequential approach to computing the
minimum cycle times of finite state machines, taking into account the
effects of gate delay variations, reachable state space, initial states,
unrealizable transitions, multiple cycle false paths, and periodicity of
the present state vector sequences. From the ISCAS benchmarks, we
showed that in almost 20% of all ISCAS circuits, their combinational
delays, e.g. floating (viability), and transition delays, give pessimistic
upper bounds for cycle times by as much as 25%. The problem of
computing the exact minimum cycle times of finite state machines was
formulated and solved using Timed Boolean Functions; then, we gave
an efficient algorithm to solve for upper bounds on minimum cycle
times. The exact formulation with Timed Boolean Functions provides
not only a framework for further improvements on existing algorithms
on computing the minimum cycle times, but also opens the possibility
of bringing these analysis techniques into the synthesis of high speed
sequential circuits. Extensions to circuits with level-sensitive latches
are another direction for the future.
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