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Exact Modeling of the Voltage Source Converter
P. W. Lehn, Member, IEEE

Abstract—A discrete time, linear time varying model of the
three-phase voltage source converter (VSC) is developed. The
model is employed to determine the steady-state operating charac-
teristics of a VSC taking all ac–dc side harmonic interactions into
account. The procedure is based on an exact closed form solution
of the system equations and does not rely on iterative techniques.
The steady-state operating curves from the proposed model are
compared with those derived from a conventional continuous time

-frame model. The accuracy of the conventional continuous
time model is shown to be highly dependent on the converter’s
duty cycle.

Index Terms—FACTS, modeling, power electronics, STATCOM,
steady state analysis, VSC.

I. INTRODUCTION

T HE THREE-PHASE voltage source converter (VSC) is
the basic building-block of most new FACTS and custom

power equipment. The converter may be employed as a shunt
compensator, series compensator or a hybrid compensator, as
is the case with the unified power flow controller (UPFC) and
the interline power flow controller (IPFC). Independent of the
specific application, modeling is typically performed using an
approximate continuous time representation of the converter in
the synchronous reference frame [1], [2]. The continuous time
model of the VSC yields an elegant set of three differential equa-
tions which represent the VSC operation with reasonable accu-
racy under most conditions.

There are, however, several limitations to this modeling ap-
proach. These include the inability to

1) represent the inherent discrete time nature of the VSC
switching, which alone limits the closed loop perfor-
mance of the VSC;

2) account for the effect harmonics have on the steady-state
fundamental frequency behavior of the VSC;

3) model resonances, occurring between the ac and dc sides
of the VSC, as well as those between the ac system and
the VSC controls;

4) calculate ac and dc side harmonic injections generated by
the converter switching.

Models based on time averaging theory have been proposed
for both motor control and power supply applications [3], [4].
These models are exceptionally well suited for the develop-
ment of converter controls because of their ability to represent
the inherent discrete time nature of the VSC switchings. Con-
trary to what the name might imply, however, the time averaged
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Fig. 1. The basic VSC circuit.

models do not account for the effects that harmonics may have
on the fundamental frequency behavior of the VSC. Limitations
2) through 4) are, therefore, not addressed by established time
averaged models.

This paper presents a discrete time, linear time varying model
of the basic three-phase VSC which avoids the time averaging
assumption. Focus is on overcoming both limitations 1) and 2)
by employing an exact analytical solution technique to obtain
the steady-state behavior of the VSC, where all harmonic effects
are taken into account. The exact solutions are compared with
the approximate ones as obtained from a continuous time model
[2]. It is demonstrated that the inclusion of harmonics can result
in a significant shift in the fundamental frequency operation of
the converter. Extension of the proposed modeling approach to
address limitations 3) and 4) is under development.

II. EXACT LINEAR TIME VARYING MODEL

Fig. 1 shows the basic three-phase VSC connected through an
interface impedance to an infinite bus. This model is sufficient
for representing most VSC applications, be they series, shunt or
part of a hybrid connected device [1].

The VSC is modeled as a linear network with a topology that
changes depending on the state of the six (ideal) switching de-
vices. The linear time varying modeling techniques used to rep-
resent the VSC follows from basic theory presented in [5] and
extended in [6]. The modeling approach exploits the fact that

• the system is piecewise linear;
• switchings occur at predefined times as determined by the

VSC duty cycle and phase commands.
Consequently, over each interval during which the switches

do not change their state, the circuit equations may be solved
using standard linear techniques. Concatenating many such so-
lutions permits the evolution of the state variables to be deter-
mined as a function of the switching times and the circuit’s ini-
tial conditions. To employ this solution technique, the system
differential equations must be expressed in either theor the

reference frame. -frame modeling does not lend itself to
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Fig. 2. Possible voltage space vectors.

such an approach since the-frame equations are not piece-
wise linear in nature. Modeling is carried out in the-frame
to exploit system symmetry. The transforms used are as follows:

(1)

(2)

where

(3)

Three unique gating signals control the three upper switches
in a VSC while the lower switches are gated in a complimentary
fashion. The three gating signals define the relationship between
ac and dc side quantities [7].

The ac and dc side converter voltages are related by

(4)

where , , and represent the gating signals applied to the
upper three switches. The gating signals are “1” when an upper
switch is conducting and “0” when it is not. The lower switches
are gated in a complementary fashion.

Eight possible gating combinations exist. Fig. 2 depicts the
voltage space vector associated with each of
the eight gating combinations.

To illustrate, the switching function combination
is associated with the vector in bold. The value

of may then be read off the-axis and the value of
may be read off the beta-axis. As shown in the figure, gating
combinations and

both yield the zero vector. These results are consis-
tent with those obtained from space vector motor control theory
[8]. The ac and dc side currents are related by

(5)

Employing these voltage and current relations, a set of linear
differential equations can be derived for the VSC

(6)

with

(7)

(8)

There are eight possible A matrices associated with the eight
possible combinations of the gating signals, , and .

and are identical, however, as they are both associ-
ated with the same zero voltage space vector. Over any interval

during which no switchings occur, an exact so-
lution to (6) exists, but it is difficult to evaluate. Assuming the
system voltage contains only a fundamental frequency positive
sequence component, the disturbance termsand may be
replaced with an ideal harmonic oscillator. This yields the fol-
lowing augmented set of differential equations

(9)

where the initial conditions on the augmented state variables
and contain the amplitude and phase information of the

system voltage. (Note: the system voltage is related to the addi-
tional states according to .) The aug-
mented system equation (9) may be written in terms of an aug-
mented state vector and system matrix as

(10)

Since the solution of the exact VSC equations depends on
the switching methodology, a specific switching pattern must
be specified before analysis may be carried out. For high-power
applications two switching strategies are economically feasible:

• Type-I operation: switching at 3 or 9 times line frequency
for independent control of dc voltage and reactive power
compensation levels;

• Type-II operation: line frequency switching, yielding a dc
voltage related to reactive power compensation level.

Analysis of the Type-I operation is carried out since Type-II
operation may be considered a subclass of Type-I operation.
For Type-I operation switching at three times line frequency,
two possible switching strategies may be selected . To simplify
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Fig. 3. Converter switching functions.

analysis the switching functions used are those shown in Fig. 3.
From the diagram it may be observed that Type-II operation oc-
curs if the switching times and are set to the same value.

Fig. 3 is broken into six symmetrical 60segments. (Sym-
metry may be identified by the fact that one switching function
always has a notch, or a pulse, in the middle of each interval.)
The symmetry is exploited in the analysis of the converter. Given
the system state values at time , the solution for the states
over the first sixth period is derived

(11)

where

(12)

Using this formulation, the system may be accurately simu-
lated to obtain the steady-state solution as shown in Fig. 4.

III. STEADY-STATE CALCULATION

Steady state occurs when all the dc and ac quantities return to
their initial values after one period, i.e.,

(13)

This is indicated in Fig. 4 by the “O” markings. The rota-
tion of the space vectors can be seen by plottingversus .
Fig. 5 depicts the trajectory of the current space vector in the
steady state. Inspection of the plot shows that no shorter period
of symmetry shorter than 60exists. Over the 60interval the
steady-state equations can be derived to be

(14)

where and is the 60 rotation matrix:

(15)

Fig. 4. Simulation of the converter in the steady state.

Fig. 5. Current space vector with one-sixth period symmetry.

Consequently, only a sixth period analysis is required to deter-
mine the steady-state operating point of the VSC. Imposing the
steady-state constraint equation (13) on the dynamic solution
equation (12) yields

(16)

Partitioning this equation gives

(17)

where is the steady-state solution for the three original
system states to be solved for. is the initial condition
vector of the harmonic oscillator equations. It is a known vector
which contains amplitude and phase information about the
system voltage. The steady-state solution may then be found
using standard linear techniques

(18)

The steady-state solution gives the values of, , and at
the specific time instant . At time the system voltage
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Fig. 6. Exact steady-state operating curves—sampled values.

is assumed to be in-line with the-axis and have an amplitude
. This specifies an initial condition vector .
Although the presented analysis may only be carried out

in the -frame and not the -frame, at discrete instants in
time the two reference frames coincide. This allows a-frame
steady state to be extracted from the-frame solution

for (19)

A steady-state operating point may thus be calculated in terms
of familiar and -axis quantities. Operating points are calcu-
lated as a function of the VSC duty cycle and phase angle. These
quantities are related to the switching timesand according
to

(20)

(21)

For STATCOM operation it is primarily the reactive current
and dc voltage level that are of interest. The-axis current will
simply take on whatever value necessary to compensate losses
occurring within the STATCOM. Associated with each set of
controllable inputs and , the steady-state dc voltage and ac
currents may be calculated in closed form.

Fig. 6 depicts a family of steady-state operating curves plotted
in the – state plane. Each curve corresponds to a fixed
phase angle and a varying duty cycle . At pu the dc
voltage takes on its minimum value on the curve, as indicated by
the “X” markings. For each pu decrement of the duty cycle
an “O” is plotted on the curve. Thus for (i.e., lagging
the system voltage) and pu, the steady-state operating
point may be read off the plot to be pu and
pu. This point is indicated by an asterisk in Fig. 6.

The system data used to generate Fig. 6, and all other oper-
ating curve diagrams, is given in the Appendix.

Fig. 7. Exact steady-state operating curves—fundamental components.

IV. FUNDAMENTAL FREQUENCYSOLUTION

Analysis thus far has supplied curves which express the
steady state in terms of its initial condition . This would
correspond to the set of system state values at time
in Fig. 4 (left-hand set of “O” markings). To obtain both the
average dc capacitor voltage and the fundamental frequency
component of the VSC current, a Fourier analysis must be
performed. The Fourier integrals may be solved using the
method presented in [5] and extended in [6]. Over one sixth of
a period, the dc voltage may be directly averaged

(22)

The superscript “” indicates the zeroth harmonic. To determine
the positive sequence fundamental frequency component of the
VSC current, a single complex Fourier integral can be evaluated

(23)

Operating curves are recalculated using the average dc
voltage and the fundamental current. They are plotted in Fig. 7.

V. APPROXIMATE CONTINUOUS TIME MODEL

The approximate continuous time VSC model typically em-
ployed for both steady-state and dynamic analysis is summa-
rized in this section. A more complete discussion may be found
in [2].

The approximate modeling approach neglects all switching
operations occurring within the VSC and represents the
converter as an ideal, lossless dc to (fundamental frequency)
ac converter. Equating real powers on the two sides of the
converter and expressing ac side quantities in the-reference
frame yields a set of nonlinear, continuous time differential
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TABLE I
INVERTER CONSTANTS FORCOMMON MODULATION SCHEMES

equations. (The positive-axis is along the positive-axis, and
the positive -axis is along the positive-axis.)

(24)

The two input variables are the firing angle of the converter
and a normalized duty cycle . is the inverter constant.

It represents the ratio between the fundamental component of
the line-to-neutral peak ac voltage and the dc voltage when the
duty cycle is unity. The value of the inverter constant depends on
the type of modulation used as indicated in Table I. An inverter
constant of is used to correspond with the notched
square wave gating patterns of Fig. 3 analyzed in the preceding
section.

For Type-I operation, the converter is switched at three times
line frequency and the duty cycle may be varied between 0 and
1. For Type-II operation, the converter is switched at line fre-
quency and the duty cycle is held constant at its maximum value.

Equating the left-hand side of equation (24) to zero and
solving the resulting nonlinear equations as a function of
duty cycle and phase angle, yields the system’s steady-state
solution as a function of the controllable inputs. To simplify
the solution, the system voltage has been assumed to lie along
the -axis (i.e., )

(25)

From the above equations the STATCOM operating curves
may easily be drawn. They are depicted in Fig. 8.

VI. DISCUSSION OFRESULTS

The -frame model analyzed in the previous section yields
steady-state operating curves assuming ideal ac to dc conver-
sion. This results in total decoupling of the duty cycle and phase
angle. Inspection of Fig. 8 shows that the reactive current level is
controlled only by variations in the firing angle, while the duty
cycle controls only the steady-state dc voltage level.

In contrast, the exact fundamental component curves of Fig. 7
demonstrate that such ideal decoupling does not actually exist

Fig. 8. Approximate steady-state operating curves.

Fig. 9. Steady-state solutions forD = 1 pu.

if the converter switching is taken into account. This difference
results from the presence of harmonic losses in the exact model,
which are not represented in the approximate continuous time
model. These harmonic losses disturb the delicate energy bal-
ance across the converter. Particularly when the converter is op-
erated at high dc voltage levels, large harmonics result in the ac
side current waveforms. These harmonics will cause additional
real power to be dissipated in the interface inductance.

For extremely high power converters under Type-II operation,
the duty cycle is continuously held at its maximum value ofpu.
Operation of the converter in Type-II mode may be deduced
from the operating curves by drawing a line through the “X”
markings. Fig. 9 compares the various steady-state solutions
when pu. Under this mode of operation the approximate
continuous time model is seen to produce nearly the same results
as the one derived from fundamental frequency components in
the exact model. The sample data solution from the exact model
is also included for comparison. The sample data curve yields
much higher dc voltage levels. This is because the samples are
synchronized with the capacitor voltage harmonics (as seen in
Fig. 4). This curve therefore yields the peak dc voltage, which is
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Fig. 10. Steady-state solutions forD = 0:6 pu.

significantly higher than the average dc voltage since a small dc
side capacitor has been used. The sample data operating curves
are also required for the design of high bandwidth digital VSC
controllers.

For Type-I operation PWM is used. Depending on the reac-
tive current reference, the duty cycle will vary betweenpu
down to as low as pu. Fig. 10 compares the steady-state so-
lutions for pu. In contrast to the previous case, a large
discrepancy now exists between the continuous time model and
the exact fundamental frequency component solution. It may be
concluded that the accuracy of the continuous time model drops
significantly with reductions in the duty cycle.

VII. CONCLUSION

An exact VSC model has been developed based on a sample
data representation of the system equations. The steady-state op-
erating points of a VSC are found in closed form, as a function
of the converter duty cycle and firing angle. Fourier analysis is
applied in order to extract the fundamental frequency compo-
nents associated with the steady-state operating points. Compar-
ison of the proposed model with a conventional continuous time

-frame VSC model shows that the continuous time model is
highly accurate when the converter is operated with a duty cycle
of pu. As the duty cycle decreases, however, a significant error
begins to develop in the continuous time model. This error re-

TABLE II
SYSTEM DATA

sults from the neglected harmonic components that can signifi-
cantly shift the operating point of the VSC at lower duty cycles.

APPENDIX

The data used for the calculation of all operating curves is
summarized in Table II. Individual switch resistances are in-
cluded in the ac side resistance while switch forward voltage
drops and switching losses are neglected.

REFERENCES

[1] A. Sonnenmoser and P. Lehn, “Line current balancing with a unified
power flow controller,” IEEE Trans. Power Delivery, vol. 14, pp.
1151–1157, July 1999.

[2] C. Schauder and H. Mehta, “Vector analysis and control of advanced
static VAR compensators,”Proc. Inst. Elect. Eng., pt. C, vol. 140, pp.
299–306, July 1993.

[3] M. Depenbrock, “Direct self-control of inverter-fed induction machine,”
IEEE Trans. Power Electron., vol. 3, pp. 420–429, Oct. 1988.

[4] P. Lehn and M. Iravani, “Discrete time modeling and control of the
voltage source converter for improved disturbance rejection,”IEEE
Trans. Power Electron., vol. 14, pp. 1028–1036, Nov. 1999.

[5] H. Visser and P. van den Bosch, “Modeling of periodically switched
networks,” inProc. IEEE PESC, 1991, pp. 67–73.

[6] P. Lehn, “Modeling and control of switched circuits for high power ap-
plications,” Ph.D. dissertation, Univ. Toronto, 1999.

[7] G. Séguier and F. Labrique,Power Electronic Converters: DCAC Con-
version. New York: Springer-Verlag, 1993.

[8] P. Vas,Vector Control of AC Machines. New York: Oxford Univ. Press,
1990.

P. W. Lehn (S’95–M’99) received the B.Sc. and M.Sc. degrees in electrical en-
gineering from the University of Manitoba, Canada, in 1990 and 1992, respec-
tively. He received the Ph.D. degree from the University of Toronto, Canada, in
1999.

From 1992 until 1994 he waswith the Network Planning Group, Siemens AG,
Erlangen, Germany. Presently, he is an Assistant Professor at the University of
Toronto.


