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Abstract

A tractor-trailer robot consists of a carlike tractor towing a passive trailer. Due to its highly
nonholonomic nature, the kinematics of this type of robot are complicated and di�cult to
compute. We present exact closed-form solutions for the kinematic parameters of a tractor-
trailer robot and use them to construct an exact and e�cient motion planner in the absence of
obstacles. This local planner can be employed in a probabilistic global planner, which allows
us to plan motions in the presence of obstacles.

1 Introduction

The motion planning problem is well-known in the �eld of robotics. Its objective is to �nd
collision-free paths for a robot moving amidst a set of obstacles. For free-
ying robots, i.e., robots
without restrictions on the motions they can perform, the motion planning problem is typically
solved by computing a path in the free con�guration space; such a path corresponds to a feasible
free path in the workspace. This approach however is not possible for some motion planning
problems, such as problems involving nonholonomic systems. In this case the robot can perform
only restricted motions even in the absence of obstacles, which means that a path in the free
con�guration space is not necessarily feasible in the workspace. We refer to Laumond [5] for an
introduction to nonholonomic motion planning; a good overview of the general motion planning
problem was given by Latombe [4].

This paper investigates a particular and well-known nonholonomic system: the tractor-trailer

robot. Informally, this robot consists of a carlike tractor towing a passive trailer. The tractor can
perform motions that are similar to those of a car: it drives forwards or backwards while possibly
steering left or right. The trailer follows the path that is dictated by the motion of the tractor.
In Section 2 we �rst formally describe the tractor-trailer robot and discuss its nonholonomic
constraints. We give closed-form solutions for its kinematic parameters and show how we can
explicitly express its con�guration at any given time instant. This makes it possible to construct
an exact motion planning algorithm for the tractor-trailer robot in the absence of obstacles, which
is described in Section 3. Then in Section 4 we brie
y discuss how this local planner can be
employed in a probabilistic framework, which allows us to plan the motion of a tractor-trailer
robot in the presence of obstacles. Finally, in Section 5 we give some conclusions and indicate
open problems and directions of future work.

1.1 Related work

Due to the complex nature of the tractor-trailer robot, most work has focussed on obtaining
approximations for its kinematics. The �eld of Control Theory has produced some recent results [2,
9, 10, 11] on the n-trailer system (a tractor towing n passive trailers) of which the tractor-
trailer robot is a special case, but these approaches are not exact (though a con�guration can be
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Figure 1: A model for the tractor-trailer robot.

approximated arbitrarily close) and/or not e�cient. Furthermore, they tend to have problems
with incorporating (possibly complex) obstacles. Barraquand and Latombe [1] propose a heuristic
brute-force approach to motion planning for tractor-trailer robots. It consists of heuristically
searching a graph whose nodes are small axis-parallel cells in con�guration space. Two such
cells are connected in the graph if there exists a feasible path between two con�gurations in the
respective cells. The main drawback of their method is that when the heuristics fail it requires
an exhaustive search in the discretized con�guration space. Furthermore, the resulting path is
inexact because the solution to the nonholonomic constraints is approximated numerically; this
implies that the goal con�guration is never reached exactly. Our closed-form solution to these
constraints would transform their algorithm into an exact planner. Laumond and Sim�eon [6] �rst
compute a holonomic path in the workspace in disregard of the nonholonomic constraints of the
robot, and then transform it into a feasible path by means of a local method that respects the
robot's nonholonomic constraints. Again, in the case of a tractor-trailer robot, an inexact method
is used. Unfortunately, the local method we are about to present will not work with this approach,
in the sense that the resulting global planner will lack completeness; see Section 4 for details.

2 Preliminaries

In this section we �rst formally describe the tractor-trailer robot; then, in Section 2.1, we derive
solutions for its kinematic parameters. Due to space limitations, we will state various well-known
properties of nonholonomic systems without further explanation.

Formally, a tractor-trailer robot A consists of two (arbitrarily shaped) solid bodies A1;A2 in
the Euclidean plane that are connected by a revolute joint; see Figure 1. The tractor A1 (resp.
trailer A2) has a front point F1 (F2) and a rear point R1 (R2) �xed to it; the distance between
these points is given by L1 (L2), called the length of the tractor (trailer). We assume that R1 = F2
is the revolute joint connecting A1 with A2. The tractor can be modelled as a four-wheel front-
wheel-drive vehicle, where F1 (R1) is the midpoint of the two front (rear) wheels. Similarly, the
trailer is a two-wheel passive vehicle with R2 as the midpoint of the wheels.

Any placement of a tractor-trailer robot can be uniquely described by a tuple
�
x; y; �; �

�
, where

(x; y) 2 R2 are the coordinates of both R1 and F2, � 2 [0; 2�) is the orientation of the tractor
(given by the direction of the vector F1 - R1), and � is the orientation of the trailer relative to
that of the tractor. Hence, its con�guration space is homeomorphic to R2� S1� S1. The possible
con�gurations of the tractor-trailer robot are restricted by a mechanical stop on the revolute joint
connecting its two bodies. We limit the relative bend of the trailer � in absolute value to a
maximal bending angle �max 2 [0; �). This corresponds to the sharpest bend the trailer can make,
expressed relative to the orientation of the tractor.

We assume that A moves in a plane and that the contact between each wheel and the ground
is a pure rolling contact. These assumptions restrain the set of possible velocities that can be
achieved by the robot as follows. For a given con�guration c of the robot, let l1(c) be the line
through F1 and R1, and l2(c) the line through F2 and R2. Now exactly those velocities of A are
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possible for which

1. the direction of R1's velocity points (forwards or backwards) along l1(c),

2. the direction of R2's velocity points along l2(c), and

3. the angle � between l1(c) and the direction of F1's velocity is in absolute value bounded by a
constant �max 2 [0; �

2
), which we refer to as the tractor's maximal steering angle. Intuitively,

this de�nes the sharpest turns the tractor is allowed to make.

These restrictions on the tractor-trailer's motions give rise to two nonholonomic constraints that
limit the set of achievable velocities at any point in con�guration space.

2.1 Nonholonomic constraints

The velocity constraints described in the previous section can be expressed by a set of equations
involving the derivatives of the robot's kinematic parameters x(t), y(t), �(t), and �(t). These
equations can easily be derived from the geometry of the robot. If we denote the velocity of
the tractor's rear point R1 at any time instant t as v(t) 2 R and its steering angle as �(t) 2
[-�max; �max], then

x 0(t) = v(t) cos �(t) (1)

y 0(t) = v(t) sin �(t) (2)

� 0(t) =
v(t)

L1
tan�(t) (3)

� 0(t) = -
v(t)

L2
sin
�
�(t) - �(t)

�
(4)

The constraints expressed by these equations are of nonholonomic nature, which means that in
general it is impossible to integrate them. If however we assume the functions v and � constant,
say v(t) = v0 and �(t) = �0, it turns out to be possible to integrate the equations. Provided1 �0 6=
0, integration of the �rst three equations gives the solutions shown by Equations (5) to (7) in
Table 1 for arbitrary constants Cx, Cy, and C�. Equation (4) is a di�erential equation in �(t),

x(t) = Cx +
L1

tan�0

�
sin
�
�(0) +

v0t

L1
tan�0

�
- sin �(0)

�
(5)

y(t) = Cy -
L1

tan�0

�
cos
�
�(0) +

v0t

L1
tan�0

�
- cos �(0)

�
(6)

�(t) = C� +
v0t

L1
tan�0 (7)

�(t) = 2 arctan

 
(tan�0 L2)

-1

�
tan

�
-v0

p
� (t L1 +C� v0 tan�0)

2 L21 L2

� p
� - L1

�!
(8)

where

� = tan2�0 L
2
2 - L21 (9)

Table 1: Solutions for the kinematic parameters of a tractor-trailer robot.

1The case for �0 = 0 is easy to solve and has been omitted. The corresponding motion (a tractrix) has �rst
been utilized by Laumond and Sim�eon [6] to constructively prove full controllability of tractor-trailer robots.
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and was previously considered impossible to integrate. With the aid of the Maple computer
algebra system we succeeded in deriving the solution given by Equation (8) in Table 1. (A
derivation of this solution is beyond the scope of this paper and has been omitted.) Again the
constant C� can be chosen arbitrarily. We want to use these equations to compute A's path
from some given start con�guration

�
x0; y0; �0; �0

�
, assuming constant velocity v0 and a constant

steering angle �0. By solving the equations x(0) = x0, y(0) = y0, �(0) = �0, and �(0) = �0 we
obtain the results given by the equations shown in Table 2.

Cx = x0 (10)

Cy = y0 (11)

C� = �0 (12)

C� = 2
arctan

�
�-1=2

�
- tan

�
1
2
�0
�
tan�0 L2 - L1

��
L21 L2p

� v20 tan�0
(13)

Table 2: Constants for the path of a tractor-trailer robot starting from a con�gura-
tion

�
x0; y0; �0; �0

�
, assuming constant velocity v0 and constant steering angle �0.

Using these constants, we can express A's con�guration at time t under the assumptions of
constant steering angle and velocity as

�
x(t); y(t); �(t); �(t)

�
, as given by Equations (5) to (8).2

To our knowledge, this is a new result that makes it possible to construct an exact motion planner
for the tractor-trailer robot.

3 An exact motion planner

In this section we use the results of the previous section to devise an exact motion planning
algorithm for a tractor-trailer robot in the absence of obstacles. To this end we introduce two
special constructs: rotational motions and translational motions, both of which leave the relative
orientation of the tractor with the trailer constant. Next we introduce motions that are used to
move the robot from a translational motion to a rotational motion and vice versa, called stretches
and bends.

We de�ne a path for a tractor-trailer robot to be a continuous (except for discontinuities of � and
� in 0 and 2�) function of type [0; 1]! C, mapping time t to con�gurations

�
x(t); y(t); �(t); �(t)

�
.

A path is said to be feasible for a tractor-trailer robot A if and only if it respects A's constraints.

3.1 Simple path constructs

Recall that � represents the orientation of the trailer relative to that of the tractor. We call a
path p : t 7! �

x(t); y(t); �(t); �(t)
�
�-stable if and only if � is a constant function. This is the case

if the tractor's instantaneous center of rotation
1 (which is uniquely de�ned by its steering angle)
coincides with the trailer's instantaneous center of rotation 
2 (uniquely de�ned by its bending
angle). When performing a motion along an �-stable path, the tractor-trailer robot behaves as if
it were a single solid body.

Lemma 3.1 A feasible path p : t 7! ��; �; �(t); �(t)� is �-stable with �(t) = �0 if and only if for

all t 2 [0; 1] such that v(t) 6= 0:

�(t) = - arctan

�
L1 sin�0

L2

�
:

2Note that � evaluates to negative values inRfor j�0j < arctan(L1=L2). The equations for �(t) and C� compute
the square root of this expression and therefore have to be evaluated using complex arithmetic.
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Proof. Due to space limitations, we only prove the reverse implication. To this end, assume that
p : t 7! �

x(t); y(t); �(t); �(t)
�
is a feasible and �-stable path with �(t) = �0, and that v(t) 6= 0.

Then � 0(t) = 0, and therefore

v(t)

L2
sin�0 = -

v(t)

L1
tan�(t):

Solving �(t) from this equation gives

�(t) = - arctan

�
L1 sin�0

L2

�
(14)

as desired.

As a result of this theorem, Equation (14) shows that for every bending angle ~� there exists a con-
stant induced steering angle �stable(~�), such that any feasible path from a con�guration (�; �; �; ~�)
with �(t) = �stable(~�) is �-stable.

For a given bending angle ~� it is possible that j�stable(~�)j > �max, i.e., the resulting path is
not feasible because it violates the constraints on the robot. It can be shown that in this case no
feasible �-stable path with bending angle ~� exists.

3.1.1 Rotational paths

The motion described by a feasible �-stable path p : t 7! �
x(t); y(t); �(t); �0) with �0 6= 0 is a

rotation around the shared instantaneous center of rotation 
(p) of the tractor and the trailer.
We refer to such �-stable paths with non-zero bending angle as rotational paths. The radius of
P, denoted by rad(p), is de�ned as the (constant) distance between R1 and 
(p). We will use
rotational paths as `primitive building blocks' of more complex path constructs. Formally, for
con�gurations a; b 2 C we de�ne a function ra;b : [0; 1] 7! C as ra;b(t) =

�
x(t); y(t); �(t); �(t)

�
,

such that

1. ra;b(0) = a, ra;b(1) = b, and for all t 2 (0; 1) : ra;b(t) 6= b,

2. �(t) = �0 and �(t) = �stable(�0), and

3. v(t) = v0.

In other words, ra;b(t) describes the shortest rotational path from a to b with constant velocity.
A tractor-trailer robot A has a minimal turning radius rmin 2 R such that there exist feasible

rotational paths with radius rmin but not with smaller radii. Rotational paths with radii less
than rmin force A to violate the constraints on either its steering angle or its bending angle, and
are hence not feasible. We refer to rotational paths with minimal turning radius as maximally

curved rotational paths; the corresponding � and � are denoted as �min and �min.

3.1.2 Translational paths

The motion described by a feasible �-stable path with a constant bending angle of 0 is a translation

along the line through R1 and R2. We therefore refer to �-stable paths with bending angle equal
to 0 as translational paths.

Like rotational paths, translational paths will be used as primitive building blocks for more
complex paths. We de�ne a function ta;b : [0; 1] 7! C as ta;b(t) =

�
x(t); y(t); �(t); �(t)

�
, such

that:

1. x(t) = xa + t � (xb - xa), y(t) = ya + t � (yb - ya),

2. �(t) = �0, and

3. �(t) = 0;

thus ta;b(t) gives the constant-velocity translational path from a to b.
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3.1.3 Stretches and bends

In this section we introduce two additional primitive path constructs: stretches and bends. They
di�er from rotational and translational motions in that the bending angle of the trailer does not
remain constant during these motions. To compute these paths in an exact way, the solution
for �(t) given by Equation (8) in Section 2.1 is indispensable.

De�nition 3.2 A stretch is a feasible path with �(0) 6= 0, �(1) = 0, v(t) = v0, and �(t) = �0
where j�0j = �max.

In other words, a stretch moves the robot from a con�guration with nonzero bending angle to
one with zero bending angle (the way one stretches its arm). A stretch can thus be used to move
the robot from a rotational to a translational con�guration. We refer to stretches with v0 > 0 as
forward stretches, and such with v0 < 0 as backward stretches. A partial stretch is a connected
sub-path of a stretch, in other words: if s : [0; 1]! C is a stretch, then any function s 0 identical
to s but de�ned only on a closed subinterval of [0; 1] is a partial stretch.

A bend is de�ned as the inverse of a stretch; it moves the robot from a translational to a
rotational con�guration. Similarly, a partial bend is the inverse of a partial stretch.

We now state some properties of stretches (and of bends, implicitly) without proof.

Lemma 3.3 For any con�guration c the forward stretch p with p(0) = c is uniquely de�ned, and

�(0) > 0, �(t) = �max:

Lemma 3.4 For any con�guration c with �stable

�
�(0)

�
in absolute value less or equal to �max,

the backward stretch p with p(0) = c is uniquely de�ned, and �(0) > 0, �(t) = -�max:

In order to minimize the length of a stretch, we have the robot move with maximal steering
angle while stretching. Note that this cannot violate the constraints on the trailer's bending angle
since it decreases monotonically (in absolute value) during a stretch. To compute the forward
stretch p starting at some con�guration c, i.e., p(0) = c, we take �0 = sign(�0)�max and then
solve v0 from Equation (8) in Section 2.1 by substituting �(1) = 0. This gives the following
solution:

v0 = 2L1L2

�
arctan �- arctan

�
�-1=2L1

��
(15)

where

� = �-1=2 tan
�(0)

2
tan�0 L2 + L1 (16)

Substitution of the above expressions for �0 and v0 in the Equations (5) to (8) of Section 2.1 gives
us a de�nition of the forward stretch from c. A backward stretch (if it exists) can be computed
in the same way, but taking �0 = -sign(�0)�max.

3.2 A local planner

Having de�ned the various simple constructs, we now discuss how they can be concatenated to
form feasible paths between a given pair of con�gurations and in the absence of obstacles.

For now, consider only the tractor of the tractor-trailer robot, which by itself is a carlike robot.
A feasible path connecting two given con�gurations of the robot can be constructed [3, 4, 8]
by concatenating three sub-paths: circular arcs around both con�gurations, and a straight line
segment touching both arcs. The circular arcs are centered at the instantaneous centers of rotation
of the robot at the respective con�gurations. The radii of these arcs determine the e�ective turning
radius of the robot and can be chosen arbitrarily as long as the robot's constraints are respected; in
order to reduce the length of the resulting path we take them to be equal to the tractor's minimal
turning radius r�max

(induced by its maximal steering angle). The resulting paths will thus be
maximally curved.

Since the bending angle of the trailer remains constant during the rotational and translational
motions described in the previous section, the tractor-trailer can e�ectively be treated as a carlike
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Figure 2: Constructing a feasible path for a tractor-trailer robot.
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Figure 3: A path for a tractor-trailer robot in the presence of obstacles.

robot during these motions (with a turning radius that depends on both the tractor and the trailer,
as described in Section 3.1.1). This means that the we could connect a pair of con�gurations by
concatenating a translational path and two rotational paths. Unfortunately, this would cause
the bending angle of the trailer to jump from nonzero (during the rotational motion) to zero
(during the translational motion) and vice versa. Hence the resulting path transitions would not
be feasible. This problem can be solved by concatenating the two types of paths through the
stretches and bends de�ned in the previous section (one such construction is shown in Figure 2).
Furthermore, additional (partial) stretches and bends will have to be performed to move the robot
from the initial con�guration and to the �nal con�guration. Any path will thus consists of a
(partial) bend b1, followed by a rotational motion r1, a stretch s1, a translational motion t, a
bend b2, another rotational motion r2, and a �nal (partial) stretch s2|some of which can have
zero length. A more detailed description of the path construction can be found in the full paper.

4 Dealing with obstacles

The motion planning algorithm described in the previous section is only a local planner that
constructs paths in the absence of obstacles. A possible way to deal with obstacles in the workspace
is by employing this local planner in the learning paradigm proposed by Overmars and �Svestka [7].
Brie
y, their planner incrementally builds up knowledge about the environment by trying to
connect randomly generated con�gurations through a local planner. The key issue in this is that
the local planner is not required to always �nd a path|it is allowed to fail for some con�gurations.
This means that a local planner that simply disregards the obstacles can be used and is a viable
choice [7]. Therefore we try to connect given con�gurations by constructing a path without taking
the obstacles into account. If the robot does not intersect any obstacles along this path, the
planner has successfully connected the con�gurations; it returns failure otherwise. Although this
approach seems valid, our local planner does not satisfy the so-called �-reachability property [8]
that would guarantee probabilistic completeness of the global planner. (A lengthier discussion can
be found in the full paper.) We are currently investigating a di�erent path construction to meet
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this property.
The algorithm described in this paper has been implemented in C++ on a Silicon Graphics

Indigo II workstation. Although we currently have only a preliminary version, �rst experimental
results indicate that the method works and is fast. For example, Figure 3 shows a path that was
computed (and subsequently smoothed) by the program in approximately 1.5 seconds; the path is
indicated by a number of snapshots of the robot. We expect that the program can be optimized
to run substantially faster.

5 Conclusions and future work

In this paper we presented a closed-form solution for the kinematic parameters of a tractor-trailer
robot. We described an exact motion planner for a tractor-trailer robot in the absence of obstacles
based on this solution. To our knowledge, this is the �rst exact and e�cient algorithm that solves
this problem. This local planner has been integrated into a probabilistic global planner, resulting
in an e�cient motion planner for tractor-trailer robots in the presence of obstacles. Unfortunately,
the way in which we currently construct paths does not satisfy a property that would guarantee
probabilistic completeness. E�ciently constructing paths that have this property remains an
interesting open problem.
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