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We describe an embedded density functional theory �DFT� protocol in which the nonadditive kinetic

energy component of the embedding potential is treated exactly. At each iteration of the Kohn–Sham

equations for constrained electron density, the Zhao–Morrison–Parr constrained search method for

constructing Kohn–Sham orbitals is combined with the King-Handy expression for the exact kinetic

potential. We use this formally exact embedding protocol to calculate ionization energies for a series

of three- and four-electron atomic systems, and the results are compared to embedded DFT

calculations that utilize the Thomas–Fermi �TF� and the Thomas–Fermi–von Weisacker

approximations to the kinetic energy functional. These calculations illustrate the expected

breakdown due to the TF approximation for the nonadditive kinetic potential, with errors of 30%–

80% in the calculated ionization energies; by contrast, the exact protocol is found to be accurate and

stable. To significantly improve the convergence of the new protocol, we introduce a density-based

switching function to map between the exact nonadditive kinetic potential and the TF approximation

in the region of the nuclear cusp, and we demonstrate that this approximation has little effect on the

accuracy of the calculated ionization energies. Finally, we describe possible extensions of the exact

protocol to perform accurate embedded DFT calculations in large systems with strongly overlapping

subsystem densities. © 2010 American Institute of Physics. �doi:10.1063/1.3474575�

I. INTRODUCTION

Orbital-free embedded density functional theory

�e-DFT� is an appealing method for calculating the electronic

structure of complex molecular systems. It provides a for-

mally exact framework for dividing the total electronic den-

sity of a system into subsystem densities that can be sepa-

rately calculated.
1–4

This feature of e-DFT allows for the

development of multiphysics strategies in which the elec-

tronic density for the region of central interest is calculated

using high-accuracy methods, while the electronic density

for surrounding regions is obtained using more coarse

approximations.
5–7

However, in addition to the usual approximations for the

basis set and the exchange-correlation functional that appear

in Kohn–Sham �KS� DFT,
8

e-DFT requires the evaluation of

a nonadditive contribution to the kinetic energy from the

subsystem densities.
4

This term, which is typically largest for

cases in which the subsystem densities are strongly

overlapping,
9

is a significant source of error in many e-DFT

calculations, and it generally limits the method to applica-

tions in which the subsystem densities involve nonbonded or

weakly interacting molecular groups.
4,9,10

Although encour-

aging progress towards the accurate calculation

of the nonadditive kinetic energy contribution have been

reported,
9,11–16

more work in this direction is needed.

In this paper, we present a formally exact protocol for

calculating the nonadditive kinetic energy contribution in

e-DFT calculations, and we report calculations in which the

protocol is applied to atomic systems that exhibit strongly

overlapping subsystem densities. These results suggest new

methods to systematically, efficiently, and accurately perform

e-DFT calculations for large systems, which we discuss.

II. ORBITAL-FREE EMBEDDED DFT

Suppose that the entire electronic density �AB for a

closed-shell system is divided into two subsystems, �A and

�B, such that �AB=�A+�B. The one-electron orbitals that

give rise to these subsystem electronic densities obey the

coupled Kohn–Sham equations for constrained electron

density
4 �KSCED�

a�
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�−
1

2
�2 + Veff

KSCED��A,�B;r���i
A�r� = �i

A�i
A�r�, i = 1, . . . ,

NA

2
, �1�

�−
1

2
�2 + Veff

KSCED��B,�A;r���i
B�r� = �i

B�i
B�r�, i = 1, . . . ,

NB

2
, �2�

where NA and NB are the number of electrons in the respec-

tive subsystems

�A�r� = 2 �
i=1

NA/2

	�i
A�r�	2, and �3�

�B�r� = 2 �
i=1

NB/2

	�i
B�r�	2. �4�

In these coupled equations, Veff
KSCED��A ,�B ;r� is the KS ef-

fective potential for subsystem A embedded in subsystem B

Veff
KSCED��A,�B;r� = vne�r� + vJ��AB;r� + vxc��AB;r�

+ vnad��A,�B;r� , �5�

and Veff
KSCED��B ,�A ;r� is the similarly defined KS effective

potential for subsystem B embedded in subsystem A. The

contributions to the KS effective potential include

vne�r� = − �
i

Nnuc
Zi

	r − Ri	
, �6�

vJ��AB;r� =
 �AB�r��

	r� − r	
dr�, and �7�

vxc��AB;r� = ���Exc���

��
�

�=�AB

��r� , �8�

which are the usual nuclear-electron Coulomb potential,

Hartree potential, and exchange-correlation potential, respec-

tively, and Nnuc is the number of nuclei in the system. The

final term in Veff
KSCED��B ,�A ;r� is the nonadditive kinetic po-

tential �NAKP�

vnad��A,�B;r� = ��Ts
nad��A,�B�

��A

��r�

= ��Ts���

��
�

�=�AB

�r� − ��Ts���

��
�

�=�A

�r� ,

�9�

which is obtained from the functional derivative of the non-

additive component of the noninteracting kinetic energy

Ts
nad��A,�B� = Ts��AB� − Ts��A� − Ts��B� . �10�

The total energy functional for the embedded system is

E��AB� = Ts��A� + Ts��B� + Ts
nad��A,�B� + Vne��AB�

+ J��AB� + Exc��AB� , �11�

where the last three terms on the right hand side �RHS� are

the nuclear-electron Coulomb energy, Hartree energy, and

exchange-correlation energy.

Two aspects of the orbital-free embedding DFT

formulation are worth emphasizing. First, like conventional

KS-DFT, it is a theory that is exact in principle, but practical

calculations must employ an approximate form for the un-

known exchange-correlation functional. Second, unlike con-

ventional KS-DFT calculations, the embedding formulation

introduces a NAKP because the KS orbitals for subsystem A

are not necessarily orthogonal to those of subsystem B. With-

out knowledge of the exact functional for the noninteracting

kinetic energy, this creates a second source of approximation

in the e-DFT approach. The significance of the NAKP is

system dependent, with the most severe cases including

those for which the subsystem densities �A and �B greatly

overlap.
4,9,17,18

The noninteracting kinetic energy for the density corre-

sponding to a set of N closed-shell orbitals is

Ts��� = 2�
i=1

N

��i	 −
1

2
�2	�i . �12�

Standard approximations to this kinetic energy functional in-

clude the Thomas–Fermi �TF� result for the homogenous

electron gas
19,20

TTF��� = CTF
 �5/3�r�dr , �13�

where CTF=
3

10
�3�2�2/3, and the von Weizsäcker �vW� result

for the limit of a one-electron density
21

TvW��� =
1

8

 	���r�	2

��r�
dr . �14�

Other approximate kinetic energy functionals can be con-

structed using the strategies from the development of

exchange-correlation functionals. For example, the PW91k

kinetic energy functional
11,12

employs the analytical form of

the Perdew–Wang �PW91� exchange functional,
22

and the

TW02 functional
14

and the PBE2, PBE3, and PBE4

functionals
9

utilize the form suggested by Becke.
23

These

functionals have been shown to successfully describe weakly

interacting systems and coordination compounds.
9

Further-

more, King and Handy
24

have employed the exact relation-

ship between KS orbitals and the kinetic potential to system-

atically parameterize approximate kinetic energy functionals,
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with encouraging results. And kinetic energy functionals de-

veloped using linear response corrections to the homoge-

neous electron gas have been shown to work well for

metals.
15,25,26

However, no approximate kinetic energy func-

tional has been demonstrated to yield accurate results for

embedded subsystems that are connected by covalent

bonds.
9,18,27

III. THE EXACT NONADDITIVE KINETIC POTENTIAL

For each iteration of the KSCED equations �Eqs. �1� and

�2��, ��i
A� and ��i

B� �and thus �A and �B� are known from

either the previous iteration or the initial guess, and the

NAKP must be calculated. We employ a two-step protocol to

obtain the exact NAKP. In the first step, a Levy constrained

search
28 �LCS� or equivalent method is used to determine the

full set of orthogonal KS orbitals, ��i
AB�, that correspond to

the total density �AB. In the second step, the NAKP is calcu-

lated from the orbital sets ��i
AB�, ��i

A�, and ��i
B�.

A. Step 1: The LCS

Given a total electron density �AB, the fully orthogonal

KS orbitals ��i
AB� can be calculated from a LCS, in which

the noninteracting kinetic energy is minimized with respect

to one-electron orbitals that are constrained to yield �AB.
28

Alternatively, we employ the approach of Zhao, Morrison,

and Parr �ZMP�,29–31
in which the full set of KS orbitals are

obtained by solving the one-electron equations

�−
1

2
�2 − �

i

Nnuc
Zi

	r − Ri	
+ Vc

��r���i
AB,��r� = �i�i

AB,��r�, i = 1, . . . ,
NAB

2
, �15�

where NAB=NA+NB,

Vc
��r� = �
 �AB�r�� − �̃AB�r��

	r� − r	
dr�, �16�

�̃AB�r�=2�i=1
NAB/2	�i

AB�r�	2, and Vc
��r� is a potential energy function that restrains the �̃AB�r� to the target density �AB�r�.

Solution of Eq. �15� in the limit �→� is equivalent to performing the LCS.
29–31

In practice, Eq. �15� is solved for six large, but finite, values of �, and the KS orbitals and eigenvalues are obtained via

extrapolation.
29–31

For each value of �, the ��i
��, ��i

AB,��, and ��2�i
AB,�� are calculated and stored on a spatial grid. For the

orbitals, extrapolation to �→� is performed via expansion to third order in �1 /��,

�i
AB,��r� = �i

AB�r� +
1

�
ai

�1��r� +
1

�2
ai

�2��r� +
1

�3
ai

�3��r� , �17�

with a linear least-squares fit of the expansion coefficients ��i
AB�r� ,a

i

�1��r� ,a
i

�2��r� ,a
i

�3��r�� at each value of r. The ��2�i
AB� are

similarly obtained via extrapolation at each value of r, while each �i requires only a single extrapolation. With the ��i
AB� and

��2�i
AB� obtained on the spatial grid, the noninteracting kinetic energy for the total system can be calculated via numerical

integration using Eq. �12�.

B. Step 2: Exact kinetic potentials from KS orbitals

To calculate the NAKP from the orbital sets ��i
AB�, ��i

A�, and ��i
B�, we extend the approach developed by King and

Handy.
32

Minimization of the electronic energy with respect to the total electron density �AB yields the stationary condition
8

��Ts���

��
�

�=�AB

�r� + vne�r� + vJ��AB;r� + vxc��AB;r� = 	AB, �18�

where 	AB is a Lagrange multiplier that imposes the constraint ��AB�r�dr=NAB. Furthermore, rearrangement of the usual KS

equations yields

2

�AB�r� �
i

NAB/2 �−
1

2
�i

AB�r��2�i
AB�r� − �i�i

AB�r�2� + vne�r� + vJ��AB;r� + vxc��AB;r� = 0. �19�

Comparison of these two results leads to an exact expression for the total kinetic potential
32

��Ts���

��
�

�=�AB

�r� =
2

�AB�r� �
i

NAB/2 �−
1

2
�i

AB�r��2�i
AB�r� − �i�i

AB�r�2� + 	AB. �20�

Analogous results can be derived for each of the embedded subsystems. Specifically, the electron density for subsystem A

also obeys a stationary condition
2
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��Ts���

��
�

�=�A

�r� + vne�r� + vJ��AB;r� + vxc��AB;r� + vnad��A,�B;r� = 	A, �21�

where 	A is the Lagrange multiplier that imposes the constraint ��A�r�dr=NA. Combination of Eq. �21� with Eq. �1� results

in an exact expression for the subsystem kinetic potential

��Ts���

��
�

�=�A

�r� =
2

�A�r� �
i

NA/2 �−
1

2
�i

A�r��2�i
A�r� − �i

A�i
A�r�2� + 	A �22�

which can be compared with kinetic potential for the total

system in Eq. �20�.
Insertion of Eqs. �18� and �21� into Eq. �9� yields

	AB=	A, and since A is an arbitrarily chosen subsystem, we

likewise obtain 	AB=	B, or 	A=	B. This result has a simple

physical interpretation. In the zero temperature limit, the

Lagrange multipliers 	A and 	B, are equivalent to the chemi-

cal potential for the subsystem electronic densities.
8

Solution

to the KSCED equations thus yields densities that are in

equilibrium with respect to the number of electrons in each

subsystem.

Finally, insertion of Eqs. �20� and �22� into Eq. �9� yields

the desired expression for the NAKP

vnad��A,�B;r�

=
2

�AB�r� �
i

NAB/2 �−
1

2
�i

AB�r��2�i
AB�r� − �i�i

AB�r�2�
−

2

�A�r� �
i

NA/2 �−
1

2
�i

A�r��2�i
A�r� − �i

A�i
A�r�2� . �23�

Note that the ZMP protocol generally yields a constant shift

in the calculated set of KS eigenenergies, ��i
��;29

in Eq. �23�,
we see that this leads only to a constant shift in

vnad��A ,�B ;r� and causes no change in any calculated ob-

servables. Throughout this study, the NAKP is shifted such

that it approaches zero at large distances.

Previous work has observed that the NAKP can be ex-

pressed in terms of the stationary condition for the total sys-

tem �Eq. �18�� and a subsystem �Eq. �21��,33,34
and Visscher

et al.
35

have developed an e-DFT strategy in which the total

electronic density from a KS-DFT calculation is used to test

the accuracy of approximate kinetic energy functionals.

However, the approach presented here allows for the calcu-

lation of the total electronic density using e-DFT, without

introducing approximations for the NAKP. It is straightfor-

ward to show that Eq. �23� recovers the limit for weakly

overlapping subsystem densities that is reported in Ref. 33.

In another approach that does not utilize the exact frame-

work of the KSCED equations, Aguado and co-workers
36,37

employ an embedding strategy in which a potential inversion

method such as ZMP is used to restrain the sum of subsystem

densities to a total system density. In its refined version,
37

this approach allows for the simultaneous determination of

the electronic density partition and the embedding potential,

and it has been pursued as a strategy for including local

electron correlation into large systems. However, this method

also requires the input of the total electron density from a

Hartree–Fock or KS-DFT calculation on the full system.

Other e-DFT strategies also express the kinetic potential

in terms of the KS orbitals, as we have done here. For ex-

ample, Huang and Carter
38

report an explicit expression for

the kinetic potential in terms of the KS orbitals, using the

assumption that the noninteracting kinetic energy is a linear

functional of the density; an empirical parameter is included

in their result to account for nonlinear effects. The approach

presented here involves no adjustable parameters and no as-

sumptions about the linearity of the kinetic energy func-

tional.

C. Computational details

Calculations are performed on four atomic systems: Li,

Ne7+, Q2.5
−0.5, and Be, where Q2.5

−0.5 is a model three-electron

atom that has a nuclear charge of +2.5. In all e-DFT calcu-

lations, we take �A to be the density for a single 2s electron,

and �B includes all other electrons. The KSCED equations

for each system were solved with �B fixed at the density

obtained from the corresponding orbitals of an unrestricted

KS-DFT calculation on the full system; this is justified for

the cases studied here because solution of the KSCED equa-

tions for �A subject to a fixed �B
�0 �at all r�, where �0 is

the exact ground state density for the full system, ensures the

exact calculation of the ground state energy and ground state

density.
4

All calculations were performed using in-house

codes, and all results are reported in atomic units.

1. Basis sets

All calculations were performed using the fully uncon-

tracted cc-pVTZ basis set of Gaussian-type orbitals

�GTOs�,39
with only the s-type orbitals included. For calcu-

lations on Q2.5
−0.5, the Li basis set was used. For Ne7+, the most

diffuse s-orbital was removed to facilitate convergence. Al-

though not presented, all calculations were also repeated

with Slater-type orbitals �STOs�, which led to somewhat im-

proved convergence but very similar numerical accuracy.

2. DFT implementation details

For all applications considered here, �A is an open shell

system, and the calculations were performed using the unre-

stricted KS formalism. Prior studies have compared the rela-

tive merits of using restricted versus unrestricted open-shell

KS-DFT,
40

but we note that there is no theoretical obstacle to

formulating a restricted KS version of our embedding proto-

col. Details for the unrestricted KSCED equations are given
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in the Appendix. All calculations employ the Slater exchange

functional
41

and the Vosko, Wilk, and Nusair correlation

functional.
42

In calculating Veff
KSCED��A ,�B ;r�, a uniform ra-

dial grid is used to evaluate the exchange-correlation poten-

tial, ��i
AB�, ��2�i

AB�, and the NAKP. Upon convergence of

the KSCED equations, the same radial grid is used to evalu-

ate the exchange-correlation energy and to numerically inte-

grate the kinetic energy. For Be and Li the grid extends from

r=0 to 15, while for Q2.5
−0.5, r=0 to 20 and Ne7+, r=0 to 2. For

Be, Li, and Q the grid density is 2000 points /a0 and for

Ne7+, 20 000 points /a0. We note that future applications that

employ either a nonuniform
43

or variational
44

mesh will re-

quire fewer grid-points to achieve the same level of accuracy.

Unless otherwise stated, the iterative solution of the KSCED

equations was deemed converged when the total energy of

the system changed by less than 10−8 hartree between suc-

cessive iterations.

3. ZMP extrapolation

To examine the extrapolation error associated with the

ZMP method, convergence tests were performed for the case

of the Li atom. The total density for the system, �AB, and the

reference value for the non-interacting kinetic energy were

calculated from a full KS calculation. This �AB was used to

define the restraint potential �Eq. �16��, and the ZMP ex-

trapolation was performed using six equally spaced values of

� �i.e., ���= ��− j��, where j=5,4 , . . . ,0�. For a given pair of

parameters � and �, the noninteracting kinetic energy was

numerically integrated, and the extrapolation error was taken

to be the difference between this result and the reference

value from the full KS calculation. Figure 1 presents this

calculated error as a function � and for various values of �.

These results indicate that the extrapolation error decreases

to within 0.1 mH for �500, and the spacing parameter �

has only a small effect. The error decreases to within 1 	H

for larger values of �. Results reported hereafter employ �

=600 and �=10. The orbitals from Eq. �15� were deemed

converged when all occupied orbital coefficients changed

less than 10−7 between successive iterations.

The ZMP extrapolation scheme used here does not con-

strain the normalization of the orbitals. In general, we found

that extrapolation violated normalization by less then 0.01%,

and it was found that normalizing the orbitals after extrapo-

lation led to less than 0.1 mH change in the total energy. The

results reported here do not include a posteriori orbital nor-

malization.

IV. RESULTS

e-DFT was performed for a series of three-electron sys-

tems, Q2.5
−0.5, Li, and Ne7+, as well as the four-electron Be

atom. For each application, �A was chosen to include a single

2s electron, and the remaining electrons were included in �B.

In addition to using the exact embedding protocol described

here, the NAKP in the embedding calculations was treated

using the approximate TF kinetic energy functional �TTF���,
Eq. �13�� and the TFvW functional with the standard 1/9

mixing parameter �TTF���+
1

9
TvW����. It has been previously

demonstrated that local and semi-local kinetic energy func-

tionals fail to reproduce atomic shell structure,
45–47

so these

applications present a problematic scenario for the approxi-

mate TF and TFvW functionals and a significant challenge

for the new embedding protocol.

Figure 2 presents the �A obtained in these e-DFT calcu-

lations. For reference, Fig. 2 also includes the 2s orbital den-

sity from the full KS-DFT calculation. Absolute agreement

between the KS-DFT results and the e-DFT results would

only be expected if all results were obtained with the exact

exchange-correlation functional. Nonetheless, since all cal-

culations in this study employ the same approximate

exchange-correlation functional, comparison of the e-DFT

and KS-DFT results tests the accuracy of the various NAKP

descriptions.

Figure 2 clearly demonstrates the sensitivity of e-DFT

calculations to the method of treating the NAKP. In compari-

son to KS-DFT, the e-DFT results from the approximate TF

and TFvW functionals are peaked at significantly shorter ra-

dial distances, and they qualitatively fail to capture the nodal

structure. The vW correction to the TF functional actually

worsens the agreement with the KS-DFT reference. The ex-

act embedding protocol describe here, however, is graphi-

cally indistinguishable from the KS-DFT result.

Further evaluation of the e-DFT methods can be ob-

tained by comparing the calculated one-electron ionization

energies �IEs� for the various methods. The e-DFT IE is cal-

culated from the difference between the total electron energy

from Eq. �11� and the energy from a full KS-DFT calculation

performed on the ionized �N−1 electron� system. These re-

sults are presented in Table I, which again illustrates the

qualitative shortcomings of the approximate NAKP treat-

ments. For the approximate NAKP descriptions, the relative

error between the e-DFT result and the KS-DFT result for

the IEs ranges from 30% to 60% for three-electron systems,

and up to 80% for Be. As has been observed previously,
48

including the vW gradient correction decreases the accuracy

FIG. 1. The difference between the noninteracting kinetic energy Ts��� from

KS-DFT and from the ZMP method, plotted as a function of �. The extrapo-

lation is performed using ���= ��− j��, j=5,4 , . . . ,0, and using � of 10

�red�, 20 �green�, and 40 �blue�. See text for details. Energies are reported in

atomic units.
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of the IE calculation. The exact embedding protocol almost

completely eliminates these differences with the reference

calculation, with errors of less than 0.2% for Q2.5
−0.5, Li, and

Be and with an error of less 4% for Ne7+.

The lower accuracy of our embedding protocol for the

case of Ne7+ arises from the description of the nuclear cusp.

The KSCED equations converged slowly for this case, and

the convergence threshold had to be raised to 10−5 hartrees.

By changing from GTOs to STOs �results not shown�, the

convergence problem was removed, and it was found that for

all four applications, the IEs obtained using our e-DFT pro-

tocol were within 1% of the full KS-DFT result. Below, we

describe how the use of a simple switching function for the

NAKP in the cusp region also removes these convergence

problems for the GTOs, while preserving the accuracy of the

IE calculation.

We note that the ionization of the closed shell Be atom

presents an electronic structure challenge that is similar to

the homolytic cleavage of a covalent bond. From the per-

spective of the NAKP, this atomic system is especially chal-

lenging since both electrons in the 2s “bond” are co-

localized on a single attractive center. The difficulty of this

particular case is confirmed by the especially poor descrip-

tion provided by the TF and TFvW functionals for the IE of

the Be atom. The excellent accuracy of the new embedding

protocol for this case suggests that the method will allow for

accurate e-DFT calculations in which the subsystems are

linked by covalent bonds.

Figure 3 illustrates the KSCED potentials,

Veff
KSCED��A ,�B ;r�, and the corresponding NAKPs,

vnad��A ,�B ;r�, that are obtained from the exact embedding

calculations. For each system, the similarity between these

two potentials illustrates the dominance of the NAKP at short

distances. However, the NAKP decays rapidly, and the

KSCED potential is dominated at larger distances by the

Coulombic terms �Eq. �5��. Although it is not visible from

the scale of the plots in Fig. 3, the vnad��A ,�B ;r� term com-

prises less than 1% of the Veff
KSCED��A ,�B ;r� for distances

greater than 3 a.u. for all cases. �For Ne7+, this regime is

reached at 0.43 a.u.�
Comparison of the NAKPs in Figs. 3�e�–3�h� with the

densities in Fig. 2 illustrates that the nodal structure in the 2s

electron density is enforced by the NAKP. For each system,

the large outer peak in the NAKP coincides with the nodal

feature in the 2s density. Unlike the KS-DFT results, we note

that the densities obtained using e-DFT in Fig. 2 do not

exhibit a genuine radial node, since �A corresponds to the

ground-state eigenvector of Eq. �1�. A large peak in the

e-DFT effective potential is therefore essential to achieve the

FIG. 2. The 2s electron density ��A� for �A� the Q2.5
−0.5 ion, �B� the Li atom,

�C� the Ne+7 ion, and �D� the Be atom. Calculations performed using e-DFT

with the nonadditive kinetic energy calculated using our exact protocol

�red�, the TF functional �blue�, and the TFvW functional �green�. The black

curve, which is nearly indistinguishable from the exact protocol, presents

the results from the full KS-DFT calculation. All quantities are reported in

atomic units.

TABLE I. Total energy �TE� and ionization energy �IE� obtained using

KS-DFT and e-DFT.

Atom Calculation TE IE

Error
a

�%�

Q2.5
−0.5

KS �4.799 405 0.060 142 ¯

TFvW �4.835 122 0.095 258 59.99

TF �4.819 221 0.079 357 33.28

Exact embedding �4.799 510 0.060 247 0.18

Li

KS �7.343 870 0.201 098 ¯

TFvW �7.443 321 0.300 549 49.45

TF �7.408 509 0.265 737 32.14

Exact embedding
b

�7.344 046 0.201 274 0.09

Ne7+

KS �101.964 612 8.754 056 ¯

TFvW �106.413 890 13.203 334 50.83

TF �105.630 042 12.419 486 41.87

Exact embedding
c

�102.294 207 9.083 650 3.77

Be

KS �14.447 017 0.331 698 ¯

TFvW �14.717 243 0.601 924 81.47

TF �14.635 950 0.520 631 56.96

Exact embedding
b

�14.447 463 0.328 900 0.13

a
Percentage error is calculated with respect to the corresponding

KS-DFT IE.
b
KSCED equations converged to 10−7 hartree.

c
KSCED equations converged to 10−5 hartree.
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correct 2s shell structure. The NAKPs obtained from the ap-

proximate TF and TFvW functionals do not exhibit this pro-

nounced peak �not shown�, which leads to the poor descrip-

tions for the 2s electron density �Fig. 2� and the IE �Table I�.
In addition to the pronounced outer-most peak for each

NAKP in Figs. 3�e�–3�h�, oscillations at short distances are

observed. This oscillatory behavior is sensitive to the basis

set representation. Small changes in the orbital coefficients

for regions of low density give rise to large changes in the

kinetic potential �Eq. �23��, resulting in slow convergence of

the KSCED equations. �These oscillations are not observed

when the density vanishes at large distances since the basis

set expansion is dominated by only the slowest-decaying

function in that regime.� Using STOs rather than GTOs, the

NAKP oscillations at short distances were diminished �not

shown�, and the iterative convergence was improved. In fu-

ture applications of the exact embedding protocol with

GTOs, the use of the convergence acceleration algorithms

such as DIIS �Ref. 49� may prove beneficial. However, we

now demonstrate that the problems associated with NAKP

oscillations can be alleviated with a simple modification of

Eq. �23�.
As �A vanishes close to the nucleus, evaluation of the

second term in Eq. �23� becomes unstable, leading to slow

convergence of the KSCED equations. This is avoided by

introducing a switching function that changes from the exact

expression for the kinetic potential of subsystem A to the

corresponding TF approximation near the nucleus

vnad��A,�B;r�

=
2

�AB�r� �
i=1

NAB/2 �−
1

2
�i

AB�r��2�i
AB�r� − �i�i

AB�r�2�
−

2

�A�r� �
i=1

NA/2 �−
1

2
�i

A�r��2�i
A�r� − �i

A�i
A�r�2�

��1 − f��B;r�� − �5

3
CTF�A

2/3� f��B;r� , �24�

where f��B ;r� is the smooth switching function

f��B;r� =
1

e��−�B�r�+�B� � + 1
. �25�

Previous work used a similar function to switch between

approximate expressions for the NAKP in the vicinity of the

nuclear cusp.
48

The parameters �B� and � determine the radial

distance and the abruptness with which switching occurs,

respectively. The parameter �B� was related to the integrated

electron density in the cusp region, setting �B� =�B�r��, where

� = 4�

0

r�

r2�B�r�dr . �26�

e-DFT results obtained using range of values for � and �

were compared to determine robust parameters for the

switching function. Setting �=50, we varied � over the range

from 0.4 to 0.8 for Li and Ne7+, which led to changes in the

total calculated energy of less than 0.4 and 5 mH, respec-

tively. Similarly, setting �=0.6 and varying � over the range

from 50 to 500 led to differences of less than 0.1 mH for

both Li and Ne.

Using the NAKP expression in Eq. �24� with �=0.6 and

�=50, our e-DFT protocol was applied to all four systems,

and the results are presented in Table II. All calculations

reached full 10−8 convergence within 80 iterations of the

KSCED equations, in contrast with the calculations using

Eq. �23�, which was difficult to converge in some cases even

with 2000 iterations. Furthermore, the e-DFT calculations

with the modified NAKP expression in Eq. �24� yields good

accuracy in comparison to the full KS-DFT equations, with

less than 1.5% error in the IE for all cases.

For the Li atom, Fig. 4 compares the NAKP, the KSCED

effective potential, and the 2s electron density obtained by

solving the KSCED equations using either Eq. �23� �black�
or Eq. �24� �red� for the NAKP. The black curves in this

figure are the same as those for Li in Figs. 2 and 3. It is clear

FIG. 3. The KSCED effective potential, Veff
KSCED��A ,�B ;r�, for �a� the Q2.5

−0.5

ion, �b� the Li atom, �c� the Ne+7 ion, and �d� the Be atom and the NAKP,

vnad��A ,�B ;r�, for �e� the Q2.5
−0.5 ion, �f� the Li atom, �g� the Ne+7 ion, and �h�

the Be atom using the e-DFT protocol presented here. All quantities are

reported in atomic units.

TABLE II. Total energy �TE� and ionization energy �IE� obtained using

e-DFT with the NAKP switching function �Eq. �24��.

Atom TE IE

Error
a

�%�

Q2.5
−0.5 �4.799 142 0.059 879 0.44

Li �7.342 720 0.199 948 0.57

Ne7+ �101.843 497 8.632 941 1.38

Be �14.443 703 �0.328 383 1.00

a
Percentage error is calculated with respect to the corresponding KS-DFT IE

values reported in Table I.
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from Fig. 4�a� that at short distances, the switching function

produces a relatively featureless, repulsive NAKP due to the

TF approximation; the arrow in this figure indicates the ra-

dial distance r� that corresponds to the parameter �=0.6.

Figure 4�b� illustrates that the repulsive NAKP largely can-

cels the attractive electron-nuclear Coulomb term in the

KSCED effective potential �Eq. �5��. As �A vanishes at the

nucleus, the KSCED effective potential must also approach

zero.
33

The remaining oscillations at short radial distances in

Fig. 4�b� are an artifact of the first term on the RHS of Eq.

�24�. Finally, Fig. 4�c� demonstrates that the 2s electron den-

sity that is obtained using the switching function does not

reproduce the features of the radial node, but it recovers the

exact embedding result for distances beyond 1 a.u. This close

agreement at large distances is expected
50

from the accuracy

of the IE calculations in Table II. In light of the much im-

proved convergence efficiency, use of the NAKP expression

in Eq. �24� compares favorably with exact embedding via

Eq. �23�.

V. EXTENSION TO LARGER SYSTEMS

The calculations reported here demonstrate a proof-of-

principle for the exact calculation of the NAKP. However,

direct application of the presented algorithm to large systems

is expected to be impractical, since most previously reported

applications of the ZMP extrapolation have been limited to

systems with less than 15 atoms.
36,37,51–54

Nonetheless, the

short-ranged nature of the NAKP �see Figs. 3�e�–3�h�� sug-

gests several strategies for employing our e-DFT protocol in

larger systems.

For example, suppose that subsystem B is further di-

vided into fragments �B1 ,B2 , . . . ,B f�, and consider the sum

of the NAKP terms due to the individual fragments
1

vnad��A,�B;r� � �
i=1

f ���Ts���

��
�

�=�A+�Bi

− ��Ts���

��
�

�=�A

� .

�27�

This equation is exact in the limit of one fragment, and its

implementation with our protocol will avoid ZMP extrapola-

tion for anything larger than the union of subsystem A with a

single fragment.

The assumption in Eq. �27� that the NAKP is additive

among the fragments must be tested. However, any error

introduced from this assumption can be partially corrected

using an approximate local or semilocal kinetic energy func-

tional

vnad��A,�B;r�

� ���Ts����appr�

��
�

�=�A+�B

− ��Ts����appr�

��
�

�=�A

�
− �

i=1

f ���Ts����appr�

��
�

�=�A+�Bi

− ��Ts����appr�

��
�

�=�A

�
+ �

i=1

f ���Ts����exact�

��
�

�=�A+�Bi

− ��Ts����exact�

��
�

�=�A

� .

�28�

Here, the first term on the RHS corresponds to the NAKP

obtained from the approximate local or semilocal kinetic en-

ergy functional for the full system. In the second term, the

contribution due to each of the fragments using the approxi-

mate functional is removed, and in the third term, each of the

fragment contributions is replaced using the exact protocol.

The short-ranged nature of the NAKP suggests that distance-

based cutoffs can be employed with summations in Eqs. �27�
and �28�, allowing for significant computational savings.

VI. CONCLUSIONS

We have described a general and formally exact protocol

for treating the nonadditive kinetic potential in embedded

density functional theory calculations. In applications to a

series of three- and four-electron atomic systems that exhibit

strongly overlapping subsystem densities, we have demon-

strated that the new approach is accurate and stable, despite

the known failures of the approximate TF kinetic energy

functional for problems of this kind. We have also shown

that improved convergence of the KSCED equations can be

obtained with appropriate switching of the NAKP in the vi-

FIG. 4. �a� The NAKP, �b� the KSCED effective potential, and �c� the 2s

electron density ��A� for the Li atom, obtained using exact embedding

�black� and using the modified NAKP in Eq. �24� �red�. The arrow indicates

the radial distance at which switching occurs. All quantities are reported in

atomic units.
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cinity of the nuclear cusps, and we have described possible

strategies for the scalable implementation of our embedding

protocol in large systems. Ongoing work includes implemen-

tation and testing of the new protocol for molecular systems,

as well as more extensive comparison against approximate

kinetic energy functionals. Natural applications of exact em-

bedding include the rigorous calculation of one-electron

pseudopotentials, the calculation of DFT embedding poten-

tials for use with high-level ab initio calculations on small

subsystems,
5,15,55,56

and the accurate implementation of the

“molecular embedding” strategy in which each molecule

of a large system is assigned to a different embedded

subsystem.
10
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APPENDIX: UNRESTRICTED OPEN-SHELL
E-DFT

For unrestricted open-shell e-DFT calculations, the den-

sity of each subsystem is further partitioned into � and �

spin densities, such that �AB=�A
� +�A

� +�B
� +�B

�. This leads to

the KSCED equations

�−
1

2�2 + Veff
KSCED��A

� ,�A
� ,�B

�,�B
� ;r���i

A,��r� = �i
A,��i

A,��r� , i = 1, . . . ,NA
� , �A1�

�−
1

2�2 + Veff
KSCED��A

� ,�A
� ,�B

�,�B
� ;r���i

A,��r� = �i
A,��i

A,��r� , i = 1, . . . ,NA
� , �A2�

�−
1

2�2 + Veff
KSCED��B

�,�B
�,�A

� ,�A
� ;r���i

B,��r� = �i
B,��i

B,��r� , i = 1, . . . ,NB
� , �A3�

�−
1

2�2 + Veff
KSCED��B

�,�B
�,�A

� ,�A
� ;r���i

B,��r� = �i
B,��i

B,��r� , i = 1, . . . ,NB
� . �A4�

Here, N	
� is the number of electrons in each subsystem, and

�	
� �r�=�i=1

N	
�

	�i
	,��r�	2, where 	� �A,B� and �� �� ,��. The

KSCED effective potential, Veff
KSCED��A

� ,�A
� ,�B

� ,�B
� ;r�, is

Veff
KSCED��A

� ,�A
� ,�B

�,�B
� ;r�

= vne�r� + vJ��AB;r�

+ vxc���A
� + �B

��,��A
� + �B

��;r� + vnad��A
� ,�B

� ;r� �A5�

where vne�r� and vJ��AB ;r� are unchanged from Eq. �5�,
vxc���A

� +�B
�� , ��A

� +�B
�� ;r� is the usual open-shell exchange-

correlation potential for the total system,
8

and the NAKP is

discussed below.

The kinetic energy functional is separable into two dif-

ferent spin contributions
8

Ts��	
�,�	

�� = Ts��	
�,0� + Ts�0,�	

�� , �A6�

where

Ts��	
�,0� = �

i=1

N	
�

��i
	,�	 −

1

2
�2	�i

	,� �A7�

and likewise for Ts�0,���. Therefore, the NAKP depends

only on spin densities corresponding to the same spin, such

that

vnad��A
� ,�B

� ;r� = ��Ts��
�,0�

��� �
��=�

A
�+�

B
�
�r� − ��Ts��

�,0�

��� �
��=�

A
�
�r� , �A8�

vnad��A
� ,�B

� ;r� = ��Ts�0,���

��� �
��=�

A
�+�

B
�
�r� − ��Ts�0,���

��� �
��=�

A
�
�r� . �A9�

The ZMP extrapolation is used to calculate the KS spin orbitals ��i
AB,�� and eigenvalues ��i

AB,�� for the full system, exactly as

is described in the text, except that the total spin density is employed instead of the total electron density. Finally, our exact

expression for the NAKP for open-shell systems is modified from Eq. �23� as follows:
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vnad��A
� ,�B

� ;r� =
1

�AB
� �r�

�
i

NA
�

+NB
�

�− 1

2
�i

AB,��r��2�i
AB,��r�− �i

AB,��i
AB,��r�2�

−
1

�A
� �r�

�
i

NA
�

�− 1

2
�i

A,��r��2�i
A,��r�− �i

A,��i
A,��r�2� . �A10�

The TF approximation for the non-additive kinetic energy in an open-shell calculation is

TTF
nad��A

� ,�B
� � = 22/3CTF
 ��AB

�5/3�r� − �A
�5/3�r� − �B

�5/3�r��dr �A11�

and corresponding result for the TFvW functional is

TTFvW
nad ��A

� ,�B
� � = TTF

nad��A
� ,�B

� � +
1

72

 � 	��AB

� �r�	2

�AB
� �r�

−
	��A

� �r�	2

�A
� �r�

−
	��B

� �r�	2

�B
� �r�

�dr . �A12�
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