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ABSTRACT
With the advances of the microfluidic technology, the design
of digital microfluidic biochips recently received significant
attention. But thus far, the corresponding design tasks such
as binding, scheduling, placement, and routing have usually
been considered separately. Furthermore, often just heuris-
tic results have been obtained. In this work, we present a
one-pass synthesis scheme which directly realizes the desired
functionality onto the chip and, at the same time, guaran-
tees minimality with respect to area and/or timing. For this
purpose, the deductive power of solvers for Boolean satisfi-
ability is exploited. Experiments show how the approach
leverages the design of the respective devices.

1. INTRODUCTION
Advances in droplet-based Digital Microfluidic Biochips

(DMFBs) have led to the emergence of biochips for automat-
ing laboratory procedures in biochemistry and molecular bi-
ology. Biochemical assays, such as the dilution of samples
and reagents, crystallization of protein molecules, on-chip
chemistry for DNA sequencing, multiplexed real-time Poly-
merase Chain Reaction (PCR), protein crystallization for
drug discovery, and glucose measurement for blood serum
have successfully been implemented on such biochips [9].

In general, a DMFB consists of a two-dimensional elec-
trode grid and peripheral devices such as optical detectors
and dispensing ports (as schematically shown in Figure 1 [9]).
The sample carriers, so called droplets, are miniaturized
and discretized liquids which are controlled by underlying
electrodes using electrical actuations (i. e. a principle called
electrowetting-on-dielectric (EWOD) [11]). By assigning time-
varying voltage values to turn electrodes on and off, droplets
can be moved around the entire grid to perform fundamental
operations such as dispensing and mixing [13]. These opera-
tions are carried out in a reconfigurable manner. Therefore,
DMFBs offer various advantages including a more flexible
control mechanism, a higher throughput and sensitivity, as
well as a lower sample/reagent volume consumption.

Due to these advantages, DMFBs have attracted signif-
icant attention being devoted to the need in marketplace
from healthcare, environmental, and point-of-care-testing
applications. According to a report released by Research and
Markets in June 2013, the global biochip market will grow
from 1.4 billon in 2013 to 5.7 billion by 2018 [1]. Driven by
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Figure 1: The schematic view of a DMFB

this growth, also the respective applications and, by this, the
design of corresponding DMFBs have become more complex.
As a consequence, a manual design of these devices is not
suitable anymore – particularly under the current time-to-
market constraints. Instead, high quality design and synthe-
sis methodologies are required which relieve the design bur-
den of manual optimizations of bioassays, time-consuming
chip designs, as well as costly testing and maintenance pro-
cedures.

Consequently, researchers have developed a design flow for
DMFBs composed of several steps such as binding, schedul-
ing, placement, and routing (this is reviewed in more de-
tail in Section 2.1). For each of these steps, a number of
corresponding design methods have been separately devel-
oped [4, 7, 10, 15, 12]. However, design gaps among these
four stages do restrict the effectiveness and feasibility of the
entire DMFB realization, which reveals a demand for design
convergence. These design gap problems will become even
more critical with a rapid escalation in the number of as-
say operations incorporated into a single large-scale DMFB.
Furthermore, most of the previous methods are based on
heuristic strategies that sacrifice the optimality requirement
of the problem. To the best of our knowledge, there is no
work in the literature that provides an integrated solution
to deal with all these concerns.

In this paper, we present a one-pass synthesis scheme
which directly realizes the desired functionality onto the
chip and, at the same time, guarantees minimality with re-
spect to the grid-area and/or the overall completion time.
In order to tackle this computationally hard problem, we ex-
ploit the deductive power of solvers for Boolean satisfiability.
Experimental results confirm that, despite the complexity,
minimal results for a given set of benchmarks can be gen-
erated. While these minimal realizations are beneficial on
its own, they also enable more sophisticated studies, e. g. on
the relation between the minimal grid-size and the minimal
computation time of the considered devices.

In the remainder of this paper, the proposed contribu-
tions as well as results are presented as follows: Section 2
provides a brief review on the background needed to make
this work self-contained. Afterwards, Section 3 motivates
the envisioned one-pass synthesis and provides the general
idea of our solution (namely exploiting Boolean satisfiabil-
ity). Based on that, a detailed description of the proposed
SAT formulation is provided in Section 4. Finally, a sum-
mary of the obtained experimental results is provided in
Section 5, while conclusions are drawn in Section 6.
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Figure 2: Conventional synthesis flow of DMFBs

2. BACKGROUND
To keep this work self-contained, this section briefly re-

views the basics of DMFB design as well as Boolean satisfi-
ability.

2.1 Design of Digital Microfluidic Biochips
Thus far, the design of DMFBs is conducted by means

of a two-stage design flow composed of an architecture-level
synthesis and a physical-level synthesis as illustrated in Fig-
ure 2. The input of this design flow is (a) a sequencing graph
which specifies the desired functionality to be implemented,
(b) a module library providing realizations such as mixing,
detecting, etc. as well as their respectively needed grid-size
and timing requirements, and (c) a design objective, i. e. the
available maximal grid-size and the desired maximal comple-
tion time. The objective is to realize the given functionality
onto the given grid and within the maximal completion time
utilizing the available operations from the module library.

During architecture-level synthesis, binding will map the
allocated modules from the module library to the biochemi-
cal operations in the application. Scheduling determines the
order of operations based on the binding result. Then, in
physical-level synthesis, placement determines the actual lo-
cations of the different operations corresponding to different
time intervals. Finally, routing schedules the movement of
each droplet in a time-multiplexed manner.

As a result, a cascade of grid-configurations is obtained
which specify the placement of all entities such as droplets,

dispensers, detectors, and sinks as well as the precise set-
tings of operations such as mixing for each time step t with
1 ≤ t ≤ T and T being the maximal completion time.

Here, a droplet always is of a certain type l (e. g. blood
or urine) and may only appear onto the grid if it is gener-
ated either by a dispenser of the same type or by a corre-
sponding mixing operation. Vice versa, a droplet can only
disappear from the grid if it is mixed with another droplet
or dumped by using a sink. Both, the number of available
dispensers and the number of available sinks may be limited
by the designer (respective limits are denoted by ndispensers,l

and nsinks). Operations can arbitrarily be placed onto the
grid as long as the respective cells do not overlap. Finally,
in order to keep the remainder of this work simple, in the
following we assume mixing and detecting operations only.
Further operations can be incorporated in a similar fashion.

2.2 Boolean Satisfiability
This work exploits solving engines for Boolean satisfiabil-

ity in order to tackle the considered design problem. The
Boolean Satisfiability (SAT) problem is defined as follows:
Let f be a Boolean function. Then the SAT problem is to
determine an assignment for the variables of f so that f
evaluates to true or to prove that no such assignment exists.

Example 1. Let f = (x1 + x2 + x3)(x1 + x3)(x2 + x3).
Then, x1 = 1, x2 = 1 and x3 = 1 is a satisfying assignment
for f . The values of x1 and x2 ensure that the first clause
becomes satisfied while x3 ensures this for the remaining two
clauses.

In the past efficient solving algorithms (so called SAT solvers)
have been proposed (see e.g. [6]) allowing for coping with
problem instances composed of hundreds of thousands of
variables.

3. MOTIVATION & GENERAL IDEA
In this section, first the concept of one-pass synthesis is

introduced and motivated. Afterwards, the general idea of
the proposed solution is sketched. This provides the basis
for the detailed description which follows in Section 4.

3.1 Exact One-pass Synthesis
As reviewed in Section 2.1, the design of digital micro-

fluidic biochips is usually split up into several – more or less
independent – phases such as binding, scheduling, place-
ment, and routing. For most of these steps several – heuris-
tic and exact – approaches have been proposed which de-
termine intermediate results (see e. g. [12] for scheduling or
[15] for place and route). As a consequence, the interac-
tion of the different algorithms is hardly considered. This
led to a quality loss or even impractical results, e. g. where
highly optimized schedulings do not or just badly fit onto
the anticipated target architecture.

Example 2. Consider the sequencing graph shown in Fig-
ure 3(a). The design objective is to realize the given func-
tionality (i. e. mixing four fluids and, afterwards, performing
two detecting operations) onto a 3 × 3 grid with mixers of
size 2 × 2 in the minimal completion time. Solely perform-
ing scheduling would lead to an intermediate result assuming
that M1 and M2 can be scheduled in parallel. This is because
the combined size of the mixers is 8 and the total size of the
grid is 9. However, the succeeding placement step unveils
that such a schedule leads to a placement failure. It is not
possible to have two mixers on the grid in the same time step
(see Fig. 3(b)).

Placement failures (as well as routing failures) are a major
obstacle for the existing design flow. Moreover, the even-
tually resulting designs are often far from being optimal –
even if the intermediate results have been generated by exact
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Figure 3: Motivating one-pass synthesis

approaches and, hence, might be optimal individually. Al-
though ensuring optimality is usually computationally ex-
pensive, the corresponding exact synthesis approaches are
of great interest as (1) they allow determining smaller real-
izations than the currently best known, (2) they allow for
the evaluation of the quality of heuristic approaches, and
(3) they allow for the computation of minimal realizations
to be used as basic blocks for larger functionality.

Motivated by this, we propose an alternative design method
for microfluidic biochips which explicitly addresses these short-
comings. More precisely, a methodology is presented which
• employs a one-pass synthesis scheme and considers the

important design steps at once (i. e. for a given se-
quencing graph a suitable placing and routing is de-
termined directly) and, at the same time,
• generates an exact solution in the sense that the ob-

tained result is optimal with respect to area or com-
pletion time.

3.2 General Idea
Performing a one-pass synthesis and, at the same time,

guaranteeing minimality is a computationally hard problem.
For this purpose, all possible placements of entities such as
dispensers, detectors, and sinks as well as the precise settings
of operations such as mixing need to be considered. The
same holds for all possible routing paths of the available
droplets over the entire time span. All these combinations
easily multiply together to a seriously large search space to
be explored.

To cope with this complexity, we propose to exploit the
deductive power of solvers for Boolean satisfiability (SAT).
Their intelligent decision heuristics, powerful learning
schemes, and fast implication methods (see e. g. [6]) en-
able to efficiently traverse large search spaces and have been
proven to be very effective for many practically relevant
CAD problems such as formal verification and automatic
test pattern generation [3]. As shown in this work, this de-
ductive power can also be utilized in order to determine a
valid solution from all the possible combinations discussed
above. Minimality with respect to the area or the comple-
tion time is then ensured by formulating the optimization
problem considered here as a sequence of decision problems.

More precisely, the general idea of the proposed approach
is as follows: For a given sequencing graph, a grid of size
w × h, and a completion time T , the decision problem “Is
there a valid placement and routing onto a w × h grid in T
time steps realizing the functionality of the sequencing
graph?” is formulated as a SAT instance and passed to the
corresponding solving engine. If there is no positive answer,
i. e. if the decision problem is unsatisfiable, the grid size
and/or the completion time is incremented and the process
is repeated. This iteration is stopped when one of the result-
ing decision problems is satisfiable. Then, a valid placement
and routing can be derived from the corresponding solution
of the SAT instance. By initially setting the area and/or the
completion time to 1 (or any available lower bound) and by
iteratively increasing them, minimality is ensured1.

1Note that instead of an incremental scheme also similar
approximations such as a binary search can be applied to
determine the minimum. This is discussed in more detail in
Section 5.
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Following this scheme, a minimal solution can be deter-
mined much faster than by solely enumerating all possible
combinations. In contrast, this scheme requires the respec-
tive decision problem to be formulated as a SAT instance
which can be processed by the mentioned solving engines.
How this SAT instance formulated is described in the next
section.

4. PROPOSED SAT ENCODING
This section describes the proposed SAT encoding. For

a given sequencing graph, a corresponding SAT instance is
formulated which is satisfiable if there exists a valid place-
ment and routing realizing the functionality specified by the
sequencing graph onto a grid of size w × h within T time
steps. This is encoded by means of constraints over variables
representing the position of all droplets, operations, and en-
tities for all time steps. The SAT instance is composed of
the following variables:

Definition 1. Consider an n×n-grid for which a place-
ment and routing over T time steps shall be derived2.
• The variables ctx,y,i with 1 ≤ x, y ≤ n and 1 ≤ t ≤ T

represent whether (ctx,y,i = 1) or not (ctx,y,i = 0) the
(x, y)-cell of the grid is occupied by a droplet or mixer
with the unique identifier i at time step t.
• The variables sinkp and dispenserp,l with 1 ≤ p ≤ 4n

represent whether or not a sink or a dispenser (dis-
pensing a droplet of a given type l) is assumed at posi-
tion p. As sinks and dispensers are positioned outside
of the grid, p is defined by a clockwise enumeration of
all possible positions starting above the (1, 1)-cell.
• The variables detectorx,y,l with 1 ≤ x, y ≤ n represent

whether or not a detector for droplets of given type l is
placed below the (x, y)-cell of the grid.
• The variables detectingti with 1 ≤ t ≤ T represent

whether or not a droplet with the identifier i is being
detected in time step t.

Example 3. Consider the 4×4-grid shown in Figure 4(a)
and representing a possible placement of droplets, operations,
and entities for a time step t. This placement is represented
by setting all variables listed in Figure 4(b) to 1 while all
remaining variables are set to 0.

Having all these variables, it is up to the solving engine
to assign values for each time step t. By doing so, the SAT
solver creates a placement and, considering all time steps
1 ≤ t ≤ T together, a routing for the given grid and its
droplets, operations, and entities. For this purpose, it ob-
viously has to be ensured that (1) only assignments rep-
resenting valid placements/routings are chosen and (2) the

2For brevity, in the remainder of this paper, an n × n-grid
is assumed. However, the proposed encoding works on arbi-
trary w × h-grids.
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resulting placements/routings realize the given functional-
ity specified in the sequencing graph. This is achieved by
applying constraints to these variables as described next.

Encoding Consistency, Placement, and Movement
First, it is constrained that all droplets and operations may
not be placed arbitrarily onto the grid, but obey certain con-
sistency properties. This is accomplished by the following
consistency-constraints.

• A cell may not be occupied by more than one droplet
or mixer i per time step, i.e.

∧
1≤t≤T

1≤x,y≤n

(∑
i c

t
x,y,i ≤ 1

)
,

• each droplet i may occur in at most one cell per time

step, i. e.
∧

1≤t≤T

(∑
1≤x,y≤n ctx,y,i ≤ 1

)
,

• in each position p outside of the grid, there may be at
most one dispenser (this applies for all types l) or sink,
i. e.

(
sinkp +

(∑
l dispenserp,l

))
≤ 1, and

• each cell may be occupied by at most one detector,
i. e.

∧
1≤x,y≤n

(∑
l detectorx,y,l ≤ 1

)
.

All non-reconfigurable parts such as sinks, dispensers, and
detectors also have to be placed properly. This is accom-
plished by the following placement-constraints:
• For detectors, we ensure that, over all possible (x, y)-

cells, for every type l of fluids a detector is placed, i. e.∧
l

(∑
1≤x,y≤n detectorx,y,l = 1

)
.

• For dispensers and sinks, we proceed analogously: For
every possible outside position p of the grid and every
type of fluid l, we ensure that the desired amount of
entities (ndispensers,l and nsinks) is placed, i. e.∧

l

(∑
p dispenserp,i = ndispensers,l

)
∧
(∑

p sinkp = nsinks

)
.

The occurrences of the droplets on the grid (and, there-
fore, their movement) is encoded by a movement-constraint.
This states that, if a droplet i is present at a certain cell
(x, y) at a time step t (i. e. if ctx,y,i = 1), it has to be ensured
that either

a) in the previous time step t− 1 the droplet was already
present at the same cell or one of the neighboring cells
(denoted by N),

b) the droplet is next to a dispenser which is creating this
droplet in the current time step, i. e. a dispenser for the
corresponding type l is at a position p next to (x, y),
or

c) the droplet is the result of a mixing operation, i. e. in
the previous time step, the cell (x, y) was occupied by
the corresponding mixer m and the droplet i was not
present in the neighborhood N .

Altogether, the constraint

ctx,y,i ⇒
(∨

(x′,y′)∈N ct−1
x′,y′,i

)
∨
(∨

p dispenserp,l
)

a) b)

∨
(
ct−1
x,y,m ∧ ¬

(∨
(x′,y′)∈N ct−1

x′,y′,i

))
c)

has to be satisfied. An illustration of this constraint is pro-
vided in Figure 5.

Figure 6: Placements for a 2× 3 mixing operation

Note that this constraint implicitly encodes dispensing op-
erations, i. e. no explicit encodings are required for them.
Furthermore, all droplets available in the first time step may
only origin from dispensers. Hence, only part b) of the move-
ment constraint is applied for this time step.

Encoding Operations
In a second series of constraints, the correct execution of
the actual operations, i. e. mixing, detecting, and sinking
of droplets, is encoded. We start with the consideration
of the mixing operation which requires the most complex
constraints.

A mixing operation m takes two droplets iin,1, iin,2 and,
after a given duration d of time steps, generates a new
droplet i. For this purpose, a fixed number of cells (either
a w× h-subgrid or a w×w-subgrid) is occupied during this
time. Depending on the cell where the new droplet appears
(i. e. the “output”-cell of the mixing operation), several op-
tions on the precise placement of these subgrids exist. Those
are summarized in the set M(x, y,m) with (x, y) being the
“output”-cell.

Example 4. Consider a 2×3 mixing operation m and the
“output”-cell (1, 1). As illustrated in Figure 6, there are two
subgrids (i. e. sets of cells) g1 and g2 that could be occupied by
the mixing operation: g1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1),
(3, 2)} and g2 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}.
Hence, M(1, 1,m) = {g1, g2}.

The choice of the subgrid is implicitly encoded, i. e. if the
new droplet i appears on cell (x, y) at a time step t (with
t ≥ d + 2), then it is only ensured that

a) the two “input”-droplets iin,1, iin,2 were present in the
neighborhood N of (x, y) right before the mixing op-
eration started at time step t− (d + 1),

b) the two“input”-droplets iin,1, iin,2 disappeared right af-
ter the start of the mixing operation at time step t−d,
and

c) one of the possible subgrids stored in M(x, y,m) be-
comes occupied for the total duration of the mixing
operation.

Combining the points above gives the following constraint,
for which an illustration is provided in Figure 73.

∧
d+2≤t≤T

∧
1≤x,y≤n ctx,y,i ∧

(∑
1≤x′,y′≤n ct−1

x′,y′,i = 0
)
⇒

∧
j∈{iin,1,iin,2}

( ∑
(x′,y′)∈N

c
t−(d+1)

x′,y′,j = 1 ∧
∑

1≤x′,y′≤n

ct−d
x′,y′,j = 0

)
a) b)

∧
(∨

G∈M(x,y,m)

(∧
t−d≤t′<t

∧
(x′,y′)∈G ct

′
x′,y′,m

))
c)

Next, the constraints ensuring the correct execution of de-
tecting operations are provided. For this purpose, it has to

3Note that some further consistency constraints for the mix-
ing operation are used, e. g. to enforce that no cells beyond
this subgrid are inconsistently set to be occupied by the
mixer m. However, those are rather straightforward and
do not provide further insights into the proposed encoding.
Hence, they have been omitted for reasons of brevity.
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be ensured that the droplet to be detected and the detec-
tor are placed accordingly and that the detection time is
considered. More precisely, if there shall be a detecting op-
eration on droplet i (of type l) starting at the time step t
(i. e. detectingti = 1 and detectingt−1

i = 0) and, at the same
time, droplet i is on cell (x, y), then

a) a corresponding detector has to be placed at cell (x, y)
and

b) for the duration d of the detecting operation, the droplet
must not leave the cell and the detection must be con-
tinued.

This is encoded by the following constraint.
detectingti ∧ ¬detectingt−1

i ∧ ctx,y,i ⇒

detectorx,y,l ∧
∧

t≤t′≤t+d

(
ct

′
x,y,i ∧ detectingt

′
i

)
a) b)

Finally, the disappearance of droplets needs to be en-
coded. Droplets may disappear either when they leave the
grid through a sink or are absorbed by a mixing operation.
Hence, if a cell (x, y) was occupied by a droplet i at time
step t − 1, which is not present in the neighborhood N of
(x, y) at time step t anymore (a), then there must either
be a sink at a reachable position p (b) or a mixing opera-
tion m absorbing i was started in the neighborhood N of
(x, y) at time step t (c). The corresponding constraint is

ct−1
x,y,i ∧ ¬

(∨
(x′,y′)∈N ctx′,y′,i

)
⇒
(∨

p sinkp
)
∨

a) b)(∨
(x′,y′)∈N ctx′,y′,m ∧ ¬

(∨
(x′,y′)∈N ct−1

x′,y′,m

))
.

c)

If the droplet is not to be mixed with another droplet (e. g. it
is only used by a detecting operation), the part c) is substi-
tuted by 0.

Encoding the Objective and Solving the Problem
All constraints outlined above ensure that the solving engine
determines variable assignments representing valid place-
ments and routings. However, additionally it has to be en-
sured that the actually desired operations (as specified by
the sequencing graph) are realized. For this purpose, final
constraints enforcing their execution are added:
• It is enforced that all droplets considered in the se-

quencing graph have to be present for at least one
time step. This can easily be accomplished by the
constraint

∨T
t=1

∨
1≤x,y≤n ctx,y,i. Since this must hold

even for droplets generated by mixing, this constraint
eventually triggers all desired mixing operations.
• In a similar fashion, all detecting operations are trig-

gered. However, as a single detection may take several
time steps, it is enforced that the sum of all detectingti
variables is equal to the duration d of the detecting
operation, i. e.

∑
1≤t≤T detectingti = d.

Combining all constraints introduced in this section, a sat-
isfiability instance results which is satisfiable if there exists a
valid placement and routing realizing the functionality spec-
ified by the sequencing graph. This can efficiently be solved
using the solving engines mentioned in Section 3.2. If a sat-
isfiable assignment is returned, the precise placement and
routing for the considered problem can be derived from the
assignment to the variables defined in Def. 1 as illustrated
in Figure 4. Otherwise, it has been proven that the given
sequencing graph cannot be realized with the current restric-
tions on grid size and completion time.

5. EXPERIMENTAL EVALUATION
The proposed approach has been implemented in Ruby

which, for a given sequencing graph, a grid size w × h, and
a completion time T , generates the satisfiability instance
described above using the SMT-LIB2 format [2] extended by
a logic for cardinality constraints. The extension has been
implemented on top of the open source toolkit metaSMT [8].
As solving engine we utilized the SMT solver Z3 [5].

Afterwards, the resulting approach has been evaluated on
a set of multiplexed in-vitro diagnostic benchmarks taken
from [14] in different configurations w.r.t. the number of
samples and reagents. As target technology we assumed
several grids of different sizes4. The operation completion
times and areas have been taken from [14]. All experiments
have been conducted on an 2.6 GHz Intel Corei5 machine
with 8 GB of memory running 64bit Xubuntu 13.10.

This section summarizes and discusses the results of the
conducted experiments.

5.1 Determining the Minimum
In a first series of experiments, we evaluated how the de-

sired minimal value of the optimization objective can be
determined best. As introduced in Section 3.2, the resulting
optimization problem is addressed by solving a sequence of
decision problems. Here, options exists on how to approach
to the minimum: We proposed an iterative approach, e. g. T
is initially set to 1 and iteratively increased until a satisfying
solution has been determined. But also alternative schemes
(e.g. a binary search additionally exploiting the known prob-
lem bounds) can be applied for this purpose. However, our
experiments unveil that applying the iterative approach is
the most feasible scheme in general.

Table 1 exemplarily shows the results (RES) as well as the
run-time (TIME) of the respective steps for the synthesis of
the multiplexed in-vitro diagnostic benchmark with 2 sam-
ples and 3 reagents on a 3×6-grid. The minimal completion
time for this configuration is 17 time steps. Thus, using
the iterative approach, 17 checks are performed in total. In
contrast, assuming the best case for an alternative approx-
imation (i. e. the minimal depth T = 17 is determined at
the beginning and additionally one check for T = 16 is per-
formed) only two checks are necessary. However, since the
runtimes needed for the first checks of the iterative approach
are small, the total runtime for both approaches differs only
slightly (less than 4%). Similar results have been obtained
for other configurations. Hence, even in the best case, al-
ternative schemes for approaching the minimum do not lead
to significant improvements. Moreover, since such schemes
usually require checks for larger values than the optimum,
the run-time might even increase in these cases. For all re-
maining experiments the iterative approach has been used.

4Note that the solutions are symmetric with respect to the
width and height of the grid, i.e. a solution for a w× h grid
is a valid solution for a h× w grid.



Table 1: Determ. the min.
iterative best case

T Res Time Res Time

1 UNSAT 0.90s – –
2 UNSAT 2.28s – –
3 UNSAT 3.71s – –
4 UNSAT 5.13s – –
5 UNSAT 6.73s – –
6 UNSAT 8.37s – –
7 UNSAT 10.22s – –
8 UNSAT 12.05s – –
9 UNSAT 13.89s – –
10 UNSAT 16.14s – –
11 UNSAT 18.04s – –
12 UNSAT 20.61s – –
13 UNSAT 23.16s – –
14 UNSAT 26.34s – –
15 UNSAT 29.29s – –
16 UNSAT 63.91s UNSAT 63.91s
17 SAT 3152.45s SAT3152.45s

total 3349.94s 3216.36s

Table 2: Exact results
s r (w × h) T Time

2 1 4 × 6 14 51.05s
2 1 5 × 5 14 64.18s
2 1 5 × 6 14 87.52s
2 1 6 × 6 14 185.22s
2 2 2 × 5 16 66.96s
2 2 2 × 6 16 310.38s
2 2 3 × 4 16 173.48s
2 2 3 × 5 15 162.86s
2 2 3 × 6 15 376.0s
2 2 4 × 4 15 277.8s
2 2 4 × 5 15 359.32s
2 2 4 × 6 15 524.48s
2 2 5 × 5 15 503.28s
2 2 5 × 6 15 768.24s
2 2 6 × 6 15 1262.0s
2 3 3 × 6 17 3349.94s
2 3 4 × 6 16 1122.91s
2 3 5 × 6 16 1874.15s
2 3 6 × 6 16 2147.62s
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Figure 8: Area vs. time

5.2 Exact Synthesis Results
Afterwards, the general applicability of the approach has

been evaluated. To this end, the minimal completion time
has been determined for several configurations of the bench-
marks mentioned above as well as different grid sizes. Ta-
ble 2 exemplarily presents some results. The first two columns
provide the number of samples and reagents (denoted by s
and r respectively), while the next two columns show the
grid size. Afterwards the minimal completion time obtained
by the proposed approach as well as the needed (CPU) run-
time are reported.

As can clearly be seen, performing exact one-pass synthe-
sis is computationally expensive. Mostly, this is due to the
generally large complexity of the considered problem as al-
ready discussed in Section 3.2. Nevertheless, it is possible to
determine minimal results for many relevant configurations.
We derived time-optimal placements and routings for grids
with an area of up to 6 × 6. For comparison, the heuristi-
cally generated results from [14] consider grid sizes of merely
up to 2× 18 – while, at the same time, only addressing the
scheduling problem and not guaranteeing minimality. In
fact, the presented results allow for an evaluation of best
case scenarios for the first time. Besides that, they enable
more detailed case studies as presented in the following.

5.3 Further Evaluations
In a final series of experiments, we examined how the ob-

tained minimal results can be exploited for further, more in-
depth, investigations. Exemplarily, the relation between the
grid size and the corresponding minimal completion time has
additionally been evaluated. Using the proposed approach,
we investigated this issue for several benchmark configura-
tions for different amounts of samples and reagents (s and r
respectively). Figure 8 summarizes selected results in terms
of plots. The x-axis denotes the total area (determined by
multiplying the width and the height of the grid), while the
y-axis represents the completion time.

It can be clearly seen from the results that less time steps
are needed to realize the desired functionality, the larger the
available grid (and vice versa). Although this is an expected
result, it is now confirmed by computing the necessary exact
realizations. Moreover, these results also allow for a better
understanding of how to tackle the multi-objective optimiza-
tion problem of minimizing both, the total area and the com-
pletion time. In fact, it can be observed that the area should
be increased before increasing the number of time steps.

6. CONCLUSION
In this work, we proposed a one-pass synthesis scheme

for microfluidic biochips which considers several important
design steps at once and, at the same time, guarantees mini-
mality with respect to area and/or timing. For this purpose,
we utilized the deductive power of solvers for Boolean satis-
fiability. Experimental results confirmed the applicability of
the methodology and provided examples of how this lever-
ages the design of the respective devices. Future work will
focus on extending the proposed approach by a more com-
prehensive support of further operations and their respective
grid-size and timing requirements.
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