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Abstract

We introduce a method to solve exactly a first order Markov Random Field optimiza-

tion problem in more generality than was previously possible. The MRF shall have a

prior term that is convex in terms of a linearly ordered label set. The method maps the

problem into a minimum-cut problem for a directed graph, for which a globally optimal

solution can be found in polynomial time. The convexity of the prior function in the

energy is shown to be necessary and sufficient for the applicability of the method.
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To the memory of Dr. Henning Biermann(October 16th, 1972 – July 1st, 2002.)

1 Introduction

It is rarely possible to solve exactly a large combinatorial optimization problem. Yet, there

are exceptional circumstances where one can use a known method to find a global optimum.

For instance, in a situation where the state of the problem is described as a string of linearly

ordered local states, dynamic programming can be used (e.g. Amini, Weymouth, and Jain[1];

Baker and Binford[2]; Geiger, Gupta, Costa, and Vlontzos[6]; Montanari[17]). This paper

points out another such instance and describes a method that can be used; namely, a method

to solve a first order Markov Random Field (MRF) with a prior term that is convex in terms

of a linearly ordered label set. The definition of an MRF is given in the next section.

Simulated annealing has been used to solve certain MRF problems, although it is also

notoriously slow. It is a kind of stochastic optimization: while gradient descent methods go

straight for the nearest minimum as fast as possible, always going downhill and never going

uphill, stochastic optimization algorithms randomly allow occasional uphill jumps, enabling

escape from local minima and the possibility of finding the global minimum (Metropolis et

al[16]). The simulated annealing algorithm initially allows such jumps with a high probabil-

ity; then, according to some “annealing schedule”, it gradually lets the probability decrease

to zero. The probability is usually parametrized by one parameter called temperature. Ge-

man and Geman[7] popularized the MRF in the vision/image processing community. They

use simulated annealing for image restoration by Maximum A Posteriori (MAP) estimation,

and prove the “annealing theorem,” which says roughly that if the temperature decreases like

(log(1 + t))−1 with time t, the algorithm is guaranteed to reach the MAP solution, although

it takes an infinite time to achieve the solution.

The method we describe here is a generalization of the method by Greig, Porteous, and

Seheult[8, 9]. Their method guarantees a global optimum in solving a first order MRF with

two label states. They compare the results of their method with simulated annealing in binary
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image restoration. Although simulated annealing is also theoretically guaranteed to reach

the optimal solution eventually, they found that in practice simulated annealing tended to

over-smooth the noisy image. Here, we generalize their method to MRF’s with three or

more linearly ordered states and convex priors, using a minimum-cut algorithm on a directed

graph, and also give a precise criterion on the form of the problem for the method to be

applicable. Roy and Cox[19] also use a maximum-flow algorithm in a similar way to solve

stereo problems without epipolar lines. (Roy[18] later clarified their method from the point

of view of linear energy minimization.) Boykov, Veksler, and Zabih[4] give an approximate

solution for MRF problems with more than two labels and semi-metric prior functions. We

have used our method in image restoration, segmentation, and stereo[10, 11, 12, 13, 14].

In the next section, we discuss the MRF formulation in more detail and state precisely the

class of problems the proposed method can solve. Then in Section 3, we describe the method

itself, then prove that the method solves exactly the class of problems specified.

2 Markov Random Fields

A graphG = (V, E) consists of a finite setV of vertices and a setE ⊂ V × V of edges.

An edge(u, v) ∈ E is said to be from vertexu to vertexv. An undirected graph is one in

which all edges go both ways:(u, v) ∈ E iff (v, u) ∈ E. A clique is a set of vertices in an

undirected graph in which every vertex has an edge to every other vertex.

An MRF consists of an undirected graphG = (V, E) without loop edges (i.e., edges of

the form(v, v)), a finite setL = {l1, . . . , lk} of labels, and a probability distributionP on

the spaceX = LV of label assignments. That is, an elementX of X, sometimes called a

configuration of the MRF, is a map that assigns to each vertexv a labelXv in L. Let Nv

denote the set of neighbors{u ∈ V | (u, v) ∈ E} of vertex v. Also, for a configuration

X ∈ X andS ⊂ V , let XS denote the event{Y ∈ X |Yv = Xv,∀v ∈ S}. By definition, the
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probability distribution must satisfy the condition:

P (X) > 0 for all X ∈ X

P (X{v}|XV \{v}) = P (X{v}|XNv).

This condition states that the assignment of a label to a vertex is conditionally dependent on

the assignment to other vertices only through its neighbors.

Note that the MRF is a conditional probability model. A theorem(Besag[3], Kinderman

and Snell[15]) connects it to a joint probability model: a probability distributionP onX is an

MRF exactly when it is a Gibbs distribution relative toG:

P (X) ∼ e−E(X),

E(X) =
∑
C∈C

EC(X),

whereC denotes the set of cliques in G andEC a function onX with the property thatEC(X)

depends only on values ofX onC.

In computer vision and image processing, many problems can be put in terms of MRF.

We often wish to find a configuration with the minimum energy, or solve the MRF problem.

Note that in the above definition no data or observation, such as the image, appears. Any data

or observation that affects the statistics is implicit in the probability distribution.

The simplest interesting case is when only the edges and vertices, the two simplest kinds

of cliques, influence the potential:

E(X) =
∑

(u,v)∈E

g(u, v, Xu, Xv) +
∑
v∈V

h(v, Xv). (1)

This is called a first order MRF. The first term in (1) is sometimes called the prior, as it often

derives from the prior model in a MAP optimization problem. What is solved in [8, 9] is

the case with a label setL = {0, 1} and the first order energy (1) withg(u, v, Xu, Xv) =

αuv(1− δXu,Xv), whereαuv ≥ 0, αuv = αvu andδX,Y gives1 if X = Y and0 otherwise.

In this paper, we add to the class of first order MRF problems that can be exactly solved
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those with more than two labels and energies of the form:

E(X) =
∑

(u,v)∈E

αuv g(ι(Xu)− ι(Xv)) +
∑
v∈V

h(v, Xv), (2)

whereαuv ≥ 0, αuv = αvu, andg(x) is a convex function. The functionι gives the index of

a label:

ι(li) = i.

Althoughι might seem a strange function, it just expresses that there is a linear order among

the labels and that the prior depends only on the difference of their ordinal numbers.

By definition, a real-valued functiong(x) on the real numbers is convex ifg(ax + (1 −
a)y) ≤ ag(x) + (1− a)g(y) for all x, y, and0 ≤ a ≤ 1. When we deal with a function on a

discrete set, this condition holds for a convex functiong(x) wheneverx, y andax + (1− a)y

are in the set. It is natural to make it into the definition of convexity on a discrete set:

Definition. A real-valued functiong(x) on a setA of real numbers is convex if

g(ax + (1− a)y) ≤ ag(x) + (1− a)g(y)

holds for anyx, y ∈ A and0 ≤ a ≤ 1 such thatax + (1− a)y ∈ A.

Note that the convexity of a function depends on the set it is defined. It is easy to see that

for a functiong(x) on a set of consecutive integers to be convex, it is necessary and sufficient

that all second differences are nonnegative:

g(x + 1)− 2g(x) + g(x− 1) ≥ 0.

Coming back to our energy functional, we note here as a particular case that ifL =

{l1, . . . , lk} is a set of evenly spaced real numbers in ascending (or descending) order and

ĝ(x) is a convex function, an MRF with energy

E(X) =
∑

(u,v)∈E

αuv ĝ(Xu −Xv) +
∑
v∈V

h(v, Xv)
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satisfies the condition, asι is an affine function in that case and thus the functiong(x) defined

by g(ι(l)− ι(l′)) = ĝ(l − l′) is convex if and only if̂g(x) is.

Without loss of generality, we can assume the labels to be consecutive integersL =

{1, . . . , k} so thatι becomes an identity, since we can always redefineh(v, l) by h(v, ι−1(l)).

Thus the energy (2) becomes:

E(X) =
∑

(u,v)∈E

αuv g(Xu −Xv) +
∑
v∈V

h(v, Xv). (3)

In this paper, we propose a method that uses a minimum cut algorithm to solve exactly

this class of MRF problems.

3 Solving MRF by Minimum Cut

3.1 Maximum Flow and Minimum Cut

Here, we remind the reader of the formulation of the maximum flow and minimum cut prob-

lem.

The maximum flow problem and its dual, the minimum cut problem, are classical combi-

natorial problems with a wide variety of scientific and engineering applications. The maxi-

mum flow problem and related flow and cut problems have been studied intensively for over

three decades and are standard in textbooks (e.g., [5]).

Consider a graphG = (V, E) with a functionc on V × V such thatc(u, v) = 0 if

(u, v) /∈ E. We call the function the capacity function. Choose two special vertices, a source

s and a sinkt. A flow with respect to the triple(G, s, t) is a functionf : V × V → R such

that:

1. f(u, v) ≤ c(u, v) for all u, v ∈ V .

2. f(u, v) = −f(v, u) for all u, v ∈ V .

3.
∑

v∈V f(u, v) = 0 for all u ∈ V \ {s, t}.



EXACT OPTIMIZATION FOR MARKOV RANDOM FIELDS WITH CONVEX PRIORS 7

The value|f | of a flowf is defined as

|f | =
∑
v∈V

f(s, v).

A maximum flow is a flow with the maximum value.

For the same triple(G, s, t), a cut is a partition ofV into two subsetsS andT = V \ S

such thats ∈ S andt ∈ T . For a given cut, thetotal costof the cut is defined as∑
u∈S,v∈T

c(u, v).

When an edge has its tail inS and head inT , the edge is said to bein thecut. A minimum

cut is a cut with the minimum total cost.

The max-flow min-cut theorem says that by finding a maximum flow, a minimum cut can

be found. When the capacity function always takes nonnegative values, a maximum flow,

therefore a minimum cut, can be found in polynomial time using several known algorithms.

In the following subsections, we describe the method to efficiently obtain global optimum

for any MRF problem with this form of energy.

3.2 The Graph

The main idea of the method is to define a graph such that

1. there is a one-to-one correspondence between configurations of the MRF and cuts of

the graph, and

2. the total cost of the cut is exactly the same as the total energy of the configuration.

With such a graph, we can find a minimum energy configuration of the MRF by finding a

minimum cut of the graph.

As we mentioned above, without loss of generality we can assume the labels to be the

consecutive integers:L = {1, . . . , k}. Also, we can assume that the functionh(v, l) takes

nonnegative values, since otherwise we can always redefine it by taking its minimum value
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Figure 1:Data edges are depicted as black arrows. Four of them are in the cut here, representing the assign-

mentsX1 = 1, X2 = 2, X3 = 2, andX4 = 3. Penalty edges are represented by horizontal arrows. By crossing

consecutive penalty capacities, the cost is added linearly, realizing the priorg(x) = |x|. With more edges, any

convexg(x) can be used. Constraint edges are depicted as dotted arrows. They ensure that the assignmentXv

is uniquely determined for eachv. These edges cannot be in the cut, and thus they prevent the cut from “going

back”.

over all possible pairs ofv ∈ V andl ∈ L and subtract it from the function without changing

the optimization problem. Define a graphG = (V, E) as follows.

V = V × L ∪ {s, t} = {uw,i | w ∈ V ; i ∈ L} ∪ {s, t},

E = ED ∪ EC ∪ EP.
(4)

Below, each of the three subsets of edgesED, EC, EP is defined and their capacities are spec-

ified. The reader is referred to Figure 1 for illustration.



EXACT OPTIMIZATION FOR MARKOV RANDOM FIELDS WITH CONVEX PRIORS 9

3.3 Data Edges

Data edges implement the data termh(v, Xv) in the energy. They are shown in Figure 1 as

black arrows going up. The set of data edges is defined by:

ED =
⋃
v∈V

Ev
D,

Ev
D = {(s, uv,1)} ∪ {(uv,i, uv,i+1)|i = 1, . . . , k − 1} ∪ {(uv,k, t)}.

(5)

For each vertexv of the original graphG, Ev
D is the series of edgess → uv,1 → uv,2 → · · · →

uv,k → t, which we call the column overv.

The capacities of these edges are defined by

c(s, uv,1) = +∞,

c(uv,i, uv,i+1) = h(v, i); i = 1, . . . , k − 1, (6)

c(uv,k, t) = h(v, k).

These capacities are defined so that the sum of the capacities of data edges in the cut equals

the data termh(v, Xv) in the energy, according to the one-to-one correspondence between

configurations of the MRF and cuts of the graph, which we define next.

3.4 Constraint Edges

Since any cut of the triple(G, s, t) separatess andt, at least one data edge in the columnEv
D

over eachv ∈ G is in the cut. Constraint edges guarantee that each column is cut exactly

once. They are the edges opposite to data edges:

EC =
⋃
v∈V

Ev
C,

Ev
C = {(uv,i+1, uv,i)|i = 1, . . . , k − 1}.

(7)

The capacity of each constraint edge is set to infinity:

c(uv,i+1, uv,i) = +∞, i = 1, . . . , k − 1.
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This precludes more than one data edge being in the cut in each columnEv
D of data edges

over vertexv. To see this, consider how the assignments of vertices toS or T changes as we

proceed froms to t on a column, remembering a cut is simply an assignment of each vertex to

one ofS or T . The first vertexs belongs toS, and the last vertext belongs toT . Thus, there

must be at least one boundary in the progression where the membership changes. Moreover,

the direction of the change must alternate (if you go fromS to T , next time you have to come

back fromT to S.) Suppose that there is more than one boundary. Then the change across

at least one of them must be fromT to S. There is an edge going each way at this boundary.

The edge fromS to T is a constraint edge, and by the definition of a cut, the constraint edge

is in the cut. Therefore, if constraint edges have infinite capacities, there cannot be more than

one boundary on the column. In Figure 1, constraint edges are depicted as dashed arrows,

and none is in the cut.

3.5 Interpretation of Cuts

As discussed in the previous subsection, the constraint edges guarantee that in each column

there is exactly one edge in the cut. Because of this, we can interpret a cut as a configuration of

the MRF. Remember that the spaceX = LV is a set of configurationsX : V 3 v 7→ Xv ∈ L,

and we want to find the configurationX that minimizes the energy (3).

Convention. Given any cut ofG with finite total cost, for eachv ∈ G let uv,i be the

vertex at the tail of the uniquely determined edge in the cut for the column overv. We

interpret the cut as a configurationX such thatXv = i.

If an MRF configurationX ∈ X assigns labeli to vertexv, the data edge(uv,i, uv,i+1) (or

if i = k, (uv,i, t)), whose cost ish(v, li) by (6) is in the corresponding cut. Thus, with the

capacities of the edges defined so far, the total cost of any cut is, if finite, exactly the second

sum in the energy (3) for the MRF configuration.

The rest of the energy, the prior term, is realized by the cost of the cut of a third kind of

edge, the penalty edges.
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3.6 Penalty Edges

Penalty edges go between columns:

EP = {(uv,i, uw,j)| (v, w) ∈ E; i, j ∈ L}.

Figure 1 shows the special case where the capacity of such an edge(uv,i, uw,j) is zero unless

i = j; that is, where only horizontal penalty edges exist. It is easily seen that the number

of horizontal edges that are in the cut between columns over neighboring verticesv and

w is proportional to the change|Xv − Xw| of assignments at the vertices. For instance,

if the assignment does not change, none of the horizontal edges between the two columns

is in the cut. If they change by one, one would be in the cut, as at the leftmost pair of

columns in Figure 1. This is the simplest case. Now, we consider the general case where

each pair(uv,i, uw,j) of vertices in neighboring columns can have an edge between them with

a nonnegative capacity (see Figure 2.)

It is important to note that specifying an assignment at a vertexv, which under the conven-

tion determines the unique data edge that is in the cut in the column overv, also determines

the membership in eitherS or T of all vertices in the column. That is, ifXv = i, the vertices

aboveuv,i belong toT , and the rest of the column belong toS. Therefore, given assignments

Xv andXw at neighboring verticesv andw of the original graphG, the status (in the cut or

not) of each edge between vertices in the columns over these vertices is determined. Thus,

the sum of the capacities of the edges in the cut between the two columns is determined by

Xv andXw.

Suppose we have labelXv = i at vertexv andXw = j at vertexw. By the convention,

this is expressed as a cut that has(uv,i, uv,i+1) and(uw,j, uw,j+1) in it. As a side effect, various

other edges are also in the cut. Among the edges going from the column overv to the one

overw, edges of the form(uv,a, uw,b) with a ≤ i andb > j are in the cut. Similarly, edges of

the form(uw,b, uv,a) with a > i andb ≤ j are in the cut. The sum of the capacities of these
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Xw = j

Xv= i

uv, i

uv, i+1

uw, j

uw, j+1

v w

Figure 2:General penalty edges. Only the edges originating from the column over vertexv are shown. Edges

going from “below”uv,i+1 to “above”uw,j are in the cut, shown here as solid arrows.

edges amounts to:

f(i, j) =
i∑

a=1

k∑
b=j+1

c(uv,a, uw,b) +
k∑

a=i+1

j∑
b=1

c(uw,b, uv,a). (8)

Now, weassumethat the sumf(i, j) depends only on the difference of the labelsi − j.

Under this assumption we define a functiong̃(x) by

g̃(i− j) = f(i, j).

Although we do not even know if there exists a capacity functionc that makes the sum (8)

depend only on the difference betweeni andj (we will see below that it does exist,) here we

just assume such capacity does exist and derive a necessary condition.

Proposition. Assume that the functionf(i, j), defined by (8) as the sum of edge capacities

between neighboring columns, depends only on the difference betweeni andj, and thus can

be written asf(i, j) = g̃(i− j) with a functiong̃(x). Theng̃(x) is convex.
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Proof. The second difference of̃g is

{g̃(x+1)− g̃(x)}−{g̃(x)− g̃(x− 1)} = f(i, j− 1)− f(i, j)− f(i− 1, j− 1)+ f(i− 1, j),

wherei− j = x. When we use the definition (8) and simplify the sum, the second difference

is

c(uv,i, uw,j) + c(uw,j, uv,i). (9)

Since the edge capacity is nonnegative, this shows that the functiong̃(x) must have a non-

negative second difference; thusg̃(x) is convex.

Conversely, suppose we are given a convex functiong(x). (In the rest of this section,

we assumeαuv = 1, since we only look at a particular pair of vertices, and the necessary

modification is obvious even whenαuv depends on(u, v).) We will show that this function

can be realized as the sum (8) of the penalty edges with suitably defined capacities. But

we almost know the capacities: if it can be done at all,g(x) has to have (9) as its second

difference. The trick is to make the sumf(i, j) in (8) depend only on the differencei− j.

Note the following two points. First, sinceL is finite, the range of the target function (i.e.,

any assignment of labels to vertices) is bounded, and so is the range of possiblex, which

is the difference between the two values of the target function at neighboring vertices. In

other words, the behavior ofg(x) outside of this range does not make any difference to the

problem. Specifically, we can assume that the second derivative ofg is zero for large enough

|x|. Second, sinceg(Xu −Xv) andg(Xv −Xu) always appear together in the energy (3), we

can assume thatg(x) is symmetric; otherwise, we can replaceg(x) with (g(x) + g(−x))/2

without changing the energy.

Now, we define the capacities of the edges by half the second difference ofg(x):

c(uv,i, uw,j) =
g(i− j + 1)− 2g(i− j) + g(i− j − 1)

2
, (10)

where the right hand side is nonnegative becauseg(x) is convex. Thus, the capacity of an edge

depends only on the label changei− j between the head and the tail of the edge. Therefore,

when there is no boundary effect, i.e., when the columns are of infinite height, the sum also
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(a) (b)

Figure 3:(a) Each penalty edge has a capacity that depends only on the label change. (b) Contributions from

out-of-bounds edges are consolidated.

would only depend on the differencei − j. We know that the sum is finite because of the

assumption that the second derivative ofg(x) vanishes for sufficiently large|x| and we can

thus ignore edges with a large label difference.

The columns, however, have top and bottom. That is, for this argument to work, we have

to add the capacities of edges that have an end that is out of bounds (see Figure 3 (a).) The

problem is that some edges whose capacities are necessary to make the sum depend only

on the label change do not actually exist. Note however that there are only a finite number

of such edges because the capacity is zero for sufficiently large label differences. Therefore

we can just add these capacities to those of other edges that do exist (Figure 3 (b)) without

changing the total cost of any cut. That is, whenever vertices of the formuv,i with i > k

appear, we replace them byt and add the capacity to the existing edge; similarly, we replace

uv,i by uv,1 if i < 1. Note that this does not mean that the result is approximate; the total cost

of any cut stays the same.

Thus we can make the sumf(i, j) in (8) depend only on the differencei−j. This realizes
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a functiong̃(x) by g̃(i−j) = f(i, j). Following the reasoning in the proof of the Proposition,

we obtain the second difference ofg̃(x) as in (9). Substituting the capacity (10), and noting

thatg(x) is convex, we see that the second differences ofg̃(x) andg(x) coincide.

In this way, for a given convex functiong(x), we can realize the sum (8) that has exactly

the same second difference. In other words,g(x) is realized by the sum up to a difference of a

constant and a linear term inx. Sinceg(Xu−Xv) andg(Xv−Xu) always appear together in

the energy (3), the linear difference cancels out. The constant difference results in a constant

in the energy, since there are a fixed number of vertices in the sum, and is therefore immaterial

to the optimization. Thus, by finding a minimum cut, we can find a global optimum of the

MRF. We have proved:

Theorem. Given a label setL = {l1, . . . , lk} and a first order MRF defined by a graph

G = (V, E) and the energy functional

E(X) =
∑

(u,v)∈E

αuv g(ι(Xu)− ι(Xv)) +
∑
v∈V

h(v, Xv)

on the space of assignmentsV 3 v 7→ Xv ∈ L with an index functionι : li 7→ i, a convex

functiong(x), and an arbitrary functionh(v, l), define a graphG as above. Then, cuts of

G with finite costs and configurations of the MRF are in a one-to-one correspondence that

preserves the order of respective cost and energy; and a minimum cut therefore corresponds

to a global minimum energy configuration of the MRF. Moreover, the convexity ofg(x) is

necessary and sufficient for the nonnegativeness of all edge capacities inG, which is sufficient

for computation of minimum cuts in polynomial time.

4 Conclusion

In this paper, we have introduced a method that maps certain MRF optimization problems

into graph problems that have efficient solutions. Because of the use of the minimum cut

algorithm, a globally optimal solution is found in polynomial time. The method can solve

exactly first order Markov Random Field problems in more generality than was previously



16 HIROSHI ISHIKAWA

possible. We also show that the convexity of prior function in the energy is both necessary

and sufficient for the applicability of the method.

The principal limitation of the method is the convexity criterion on the prior function.

Another limitation is the condition that the label set should be such that placing the labels in

a linear order makes sense in terms of the prior. This is a problem for instance when restoring

a color image. Otherwise, the method is completely general.
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