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Exact Outage Probability of Dual-Hop CSI-Assisted AF

Relaying over Nakagami-m Fading Channels
Minghua Xia, Yik-Chung Wu, and Sonia Aı̈ssa, Senior Member, IEEE

Abstract—In this paper, considering dual-hop channel state informa-
tion (CSI)-assisted amplify-and-forward (AF) relaying over Nakagami-m

fading channels, the cumulative distribution function (CDF) of the end-

to-end signal-to-noise ratio (SNR) is derived. In particular, when the
fading shape factors m1 and m2 at consecutive hops take non-integer

values, the bivariate H-function and G-function are exploited to obtain
an exact analytical expression for the CDF. The obtained CDF is then

applied to evaluate the outage performance of the system under study.

The analytical results of outage probability coincide exactly with Monte-
Carlo simulation results and outperform the previously reported upper

bounds in the low and medium SNR regions.

Index Terms—Amplify-and-forward (AF) relaying, channel state in-

formation (CSI)-assisted, distribution function, dual-hop, Nakagami-m
fading.

I. INTRODUCTION

F
OR dual-hop amplify-and-forward (AF) relaying systems, the

gain of relaying node aims to invert the first-hop (source-to-

relay) channel and is determined by the channel state information

(CSI) of the first hop. According to the amount of CSI obtained

at the relay, there are three different AF schemes that can be

implemented: blind, semi-blind, and CSI-assisted relaying. Among

them, the theoretical analysis of CSI-assisted relaying is extremely

important since this scheme characterizes the best performance.

Let 1 and 2 be the instantaneous signal-to-noise ratios (SNRs)

of two consecutive hops, respectively, the end-to-end SNR of CSI-

assisted relaying can be derived as end = 12

1+2+1
[1]. However,

due to the existence of the unity in the denominator, which corre-

sponds to the additive white Gaussian noise (AWGN) at the relay,

exact performance analysis was usually considered to be intractable

over arbitrary Nakagami-m fading channels [1]. For the special case

with integer Nakagami-m fading channels, a large number of perfor-

mance analyses were reported (see [2], [3] and references therein).

However, the propagation environments where the Nakagami fading

parameter takes non-integer values are very common in practice, such

as micro-cellular scenarios with strong specular components and land

mobile satellite channels. Therefore, exact performance analysis of

CSI-assisted relaying over arbitrary Nakagami-m fading is of great

practical importance, but it still remains an open problem due to

potential mathematical difficulty [4].
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For the CSI-assisted relaying over arbitrary Nakagami-m fading

channels, in order to obtain analytical performance metrics, two upper

bounds for end are widely exploited in the literature. Specifically, the

upper bounds are end < 12

1+2
and end < min{1, 2} [5]. For

the first bound, the AWGN at the relay is ignored and the distribution

of end is replaced by the distribution of the half harmonic mean

of 1 and 2. Based on this approximate distribution for end, a

number of analyses have been performed [2], [6]–[10]. For the second

bound, it is assumed that 1 and 2 are non-symmetric and the

distribution of end is replaced by the distribution of the minimum

between 1 and 2. This bound is usually exploited to analyze the

average symbol error probability (ASEP) [11], [12], which has the

intuitive meaning that the ASEP of the whole link (source-relay-

destination) is dominated by the worst link between the source-to-

relay and relay-to-destination channels. Recently, the authors of [13]

derive the exact probability density function (PDF) of the end-to-end

SNR in a single-integral form, considering multi-hop CSI-assisted

AF relaying scenario over general Nakagami fading channels.

Although the above bounds seem reasonable at high SNR, they

are loose in the low and medium SNR regions. In this paper, the

exact cumulative density function (CDF) of the end-to-end SNR of

CSI-assisted dual-hop AF relaying is derived in an analytical form,

considering transmission over arbitrary Nakagami-m fading channels.

In particular, with novel applications of bivariate G-function and

H-function, an analytical CDF expression for the case with m
taking non-integer values is derived. To the best of the authors’

knowledge, this is the first reported exact analytical CDF of the

end-to-end SNR in CSI-assisted relaying systems with non-integer

Nakagami-m fading parameters, other than the exact single-integral

solution in [13]. The obtained CDF is then applied to evaluate outage

probability of the system under study. Monte Carlo simulations on

outage probability are performed to illustrate the accuracy of our

analytical results regardless of the SNR values and, in particular, our

analytical results outperform the previously reported upper bounds

in the low and medium SNR regions. The novel application of these

two special functions are shown to be powerful tools in analyzing the

performance of wireless systems in general and relaying techniques

in particular.

II. CDF OF THE END-TO-END SNR

For a CSI-assisted dual-hop AF relaying system, the end-to-end

SNR from the source to the destination was shown to be exactly

given by [1]

end =

1

2


1
+ 

2
+ 1

, (1)

where 
1

and 
2

refer to the instantaneous SNRs at the first and

second hops, respectively.

Assuming that the channels at two consecutive hops are subject to

Nakagami-m fading, the probability density function (PDF) of i in

(1), where i = 1, 2, is expressed as [14, Eq.(2. 21)]

fi(i) =
mmi

i

Γ(mi)̄
mi
i

mi−1
i exp

(

−mi

̄i
i

)

, i = 1, 2 (2)
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where mi denotes the Nakagami fading parameter at the ith

hop, Γ( . ) stands for the Gamma function [15, Eq.(8.310)],

̄
1

≜ E{∣ℎ
SR

∣2}E
S
/�2

R = m1(m1 + 1)E
S
/�2

R, and ̄
2

≜

E{∣ℎ
RD

∣2}E
S
/�2

D = m2(m2 + 1)E
S
/�2

D with E{ . } being the

statistical expectation operator. Also, the CDF of i is given by [2]

Fi(i) = 1− 1

Γ(mi)
Γ

(

mi,
mi

̄i
i

)

, i = 1, 2 (3)

where Γ(. , .) stands for the upper incomplete Gamma function [15,

Eq.(8.350.2)]. Finally, by integrating the conditional CDF of end
with respect to 1 over the PDF of 1, the CDF of end is given by

Fend
() = 1− C1

Γ(m2)

∫ ∞

0

Γ

(

m2,
m2

̄2

(

1 +
 + 1

x

))

× (x+ )m1−1 exp

(

−m1

̄1
(x+ )

)

dx, (4)

where C1 ≜ mm1

1 / (Γ(m1)̄
m1

1 ). The integral term in (4) cannot be

calculated directly, since the incomplete Gamma function is involved.

In order to proceed, two different series expansions of the incomplete

Gamma function are exploited and thus two different cases are

discussed in the following, depending on the values of the fading

parameters m1 and m2.

A. Scheme with integer values for m1 and m2

When m2 takes integer values, the expansion of the incomplete

Gamma function in (4) is a finite series [15, Eq.(8.352.7)] and

thus this scheme can be easily analyzed. For the completeness of

exposition, the CDF of the end-to-end SNR is reproduced and it is

given by [3]

Fend
()

= 1− 2C1

m2−1∑

n=0

1

n!

(
m2

̄2

)n

exp

[

−
(
m1

̄1
+

m2

̄2

)



]

×
m1−1∑

p=0

n∑

q=0

(

m1 − 1

p

)(

n

q

)

m1+n−
v1
2

×( + 1)
v1
2

(
m2̄1
m1̄2

) v2
2

Kv
2

(

2
√

̃
)

, (5)

where
(
n

k

)
denotes the binomial coefficient, Kv(x) is the vth-order

modified Bessel function of the second kind [15, Eq.(8.432.6)], v1 ≜

p+ q + 1, v2 ≜ p− q + 1, and ̃ ≜
m1m2(+1)

̄1̄2
.

It is known that the Nakagami-m fading reduces to the Rayleigh

fading when m1 = m2 = 1. Accordingly, putting m1 = m2 = 1
into (5) reduces it to the result previously reported in [16, Eq.(2)].

B. Scheme with non-integer values for m1 and m2

When m2 takes on non-integer values, the expansion of the incom-

plete Gamma function in (4) is an infinite series [15, Eq.(8.354.2)].

Substituting the infinite series into (4) and performing some algebraic

manipulations yield (6) at the top of the next page.

Although the infinite series representation for the incomplete

Gamma function is involved, this series is absolutely convergent for

m2 ≥ 0.5 and converges rapidly because of the factorial term n!
in the denominator. Moreover, the integral term I1 in (6) can be

calculated as [15, Eq.(8.350.2)]

I1 = C1

(
̄1
m1

)m1
∫ ∞

m1

̄1


xm1−1 exp(−x) dx

=
1

Γ(m1)
Γ

(

m1,
m1

̄1


)

. (7)

For the integral term I2 in (6), the Newton’s generalized binomial

theorem (1 + x)m =
∑∞

n=0

(
m

n

)
xn cannot be applied, since the

infinite series on the right-hand side converges only for ∣x∣ < 1
[17, p.28]. Clearly, this condition is not satisfied for the binomials

(1+ 

x
)m1−1 and

(
1 + +1

x

)m2+n
in (6), where 0 < x and  < ∞.

Therefore, how to calculate I2 becomes challenging, which explains

why no analytical CDF for end has been reported in the open

literature till now. In the sequel, we exploit the Fox’s H-function and

the generalized Laplace transform of the product of two H-functions

to tackle this problem, such that an analytical expression for I2 is

obtained.

From the definition of I2 shown in (6), it can be reformulated

as (8) in the middle of the next page, where m̃1 ≜ ⌈m1⌉ − m1

and m̃2 ≜ ⌈m2⌉ −m2 with ⌈ . ⌉ being the integer ceiling operator,

and the binomial expansion was exploited to reach (8). Applying the

equality (1 + x)−� = 1
Γ(�)

H1, 1
1, 1

[

x

∣
∣
∣
∣
∣

(1− �, 1)

(0, 1)

]

with � ≥ 0

[18, p.152] to (8), where H[x ∣ . ] is the Fox’s H-function [18],

we can express I2 as (9) in the middle of the next page. Then,

using the generalized Laplace transform of the product of two H-

functions1 [18, Eq.(2.6.2)], we obtain (10)-(11) in the middle of the

next page, where [20, Eq.(6.4.1)] was exploited to arrive at (11) with

H1 denoting the bivariate H-function and G1 being the bivariate

G-function [19], which are given by

H1 ≜ H1, 1, 1, 1, 1
1, [1: 1], 0, [1: 1]

⎡

⎢
⎢
⎢
⎣

̄1
m1
̄1

m1( + 1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(1 + p+ q −m2 − n, 1)

(1− m̃1, 1); (1− m̃2, 1)

−
(0, 1); (0, 1)

⎤

⎥
⎥
⎥
⎦

(12)

and

G1 ≜ G1, 1, 1, 1, 1
1, [1: 1], 0, [1: 1]

⎡

⎢
⎢
⎢
⎣

̄1
m1
̄1

m1( + 1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 + p+ q −m2 − n

1− m̃1; 1− m̃2

−
0; 0

⎤

⎥
⎥
⎥
⎦
, (13)

respectively.

Finally, substituting (7), (11), and C1 into (6) and performing some

algebraic manipulations, we obtain the CDF of the end-to-end SNR

of dual-hop CSI-assisted relaying systems as (14) in the middle of

the next page, where C2 ≜ 1/ (Γ(m1) Γ(m2) Γ(m̃1) Γ(m̃2)).

The infinite series in (14) is absolutely convergent. This

is demonstrated as follows. Firstly, the bivariate G-function

Gn, v1, v2, w1, w2

p, [t1: t2], s, [q1: q2]

[
x
y ∣.
]

is defined in terms of double Mellin-Barnes

type integrals, and it converges if the following conditions are

satisfied [21, p.62]:

p+ q1 + s+ t1 < 2(n+ v1 + w1), (15)

p+ q2 + s+ t2 < 2(n+ v2 + w2), (16)

∣arg(x)∣ < �[n+ v1 + w1 − (p+ q1 + s+ t1) /2], (17)

∣arg(y)∣ < �[n+ v2 + w2 − (p+ q2 + s+ t2) /2]. (18)

It is easy to show that the parameters of the G-function in (13) satisfy

these sufficient conditions above and, therefore, the G-function

converges in the sense of finite value. Secondly, it is clear that the

infinite series in (14) is an alternating series and thus, by use of the

Leibnitz’s test [17, Theorem 1.5], it is known that this infinite series

is conditionally convergent because of the factorial term n! in the

denominator of the summand. Furthermore, applying the ratio test

to the associated series of positive terms yields the infinite series in

(14) to be absolutely convergent.

1There are several conditions need to be satisfied. They were carefully
checked but omitted here due to space limitation.
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Fend
() = 1− C1

∫ ∞

0

(x+ )m1−1 exp

(

−m1

̄1
(x+ )

)

dx

︸ ︷︷ ︸

I1

+
C1

Γ(m2)

∞∑

n=0

(−1)n

n! (m2 + n)

(
m2

̄2


)m2+n

×
∫ ∞

0

(x+ )m1−1

(

1 +
 + 1

x

)m2+n

exp

(

−m1

̄1
(x+ )

)

dx

︸ ︷︷ ︸

I2

. (6)

I2 = m1−1( + 1)m2+n exp

(

−m1

̄1


)∫ ∞

0

x−(m2+n) exp

(

−m1

̄1
x

)(

1 +
x



)m1−1(

1 +
x

 + 1

)m2+n

dx

= m1−1( + 1)m2+n exp

(

−m1

̄1


)∫ ∞

0

x−(m2+n) exp

(

−m1

̄1
x

)(

1 +
x



)⌈m1−1⌉−m̃1
(

1 +
x

 + 1

)⌈m2+n⌉−m̃2

dx

= exp

(

−m1

̄1


) ⌈m1−1⌉
∑

p=0

⌈m2+n⌉
∑

q=0

(

⌈m1 − 1⌉
p

)(

⌈m2 + n⌉
q

)

m1−p−1( + 1)m2+n−q

×
∫ ∞

0

xp+q−(m2+n) exp

(

−m1

̄1
x

)(

1 +
x



)−m̃1
(

1 +
x

 + 1

)−m̃2

dx. (8)

I2 = exp

(

−m1

̄1


) ⌈m1−1⌉
∑

p=0

⌈m2+n⌉
∑

q=0

(

⌈m1 − 1⌉
p

)(

⌈m2 + n⌉
q

)

m1−p−1( + 1)m2+n−q

× 1

Γ(m̃1)Γ(m̃2)

∫ ∞

0

xp+q−(m2+n) exp

(

−m1

̄1
x

)

H1, 1
1, 1

[

x



∣
∣
∣
∣
∣

(1− m̃1, 1)

(0, 1)

]

H1, 1
1, 1

[

x

 + 1

∣
∣
∣
∣
∣

(1− m̃2, 1)

(0, 1)

]

dx. (9)

I2 =
exp

(

−m1

̄1

)

Γ(m̃1)Γ(m̃2)

⌈m1−1⌉
∑

p=0

⌈m2+n⌉
∑

q=0

(

⌈m1 − 1⌉
p

)(

⌈m2 + n⌉
q

)

m1−p−1( + 1)m2+n−q

(
m1

̄1

)m2+n−p−q−1

H1 (10)

=
exp

(

−m1

̄1

)

Γ(m̃1)Γ(m̃2)

⌈m1−1⌉
∑

p=0

⌈m2+n⌉
∑

q=0

(

⌈m1 − 1⌉
p

)(

⌈m2 + n⌉
q

)

m1−p−1( + 1)m2+n−q

(
m1

̄1

)m2+n−p−q−1

G1. (11)

Fend
() = 1− 1

Γ(m1)
Γ

(

m1,
m1

̄1


)

+ C2 exp

(

−m1

̄1


) ∞∑

n=0

(−1)n

n! (m2 + n)

(
m2

̄2


)m2+n

×
⌈m1−1⌉
∑

p=0

⌈m2+n⌉
∑

q=0

(

⌈m1 − 1⌉
p

)(

⌈m2 + n⌉
q

)(
m1

̄1


)m1−p−1(
m1

̄1
( + 1)

)m2+n−q

G1. (14)

Note that the bivariate G-function cannot be directly computed by

popular mathematical softwares such as Matlab and Mathematica.

In general, it has to be computed by its definition in terms of the

double Mellin-Barnes type integrals [19], such as the Mathematica

algorithm recently developed in [22]. Unfortunately, this definition

is non-analytical and computationally intensive. In the following, we

develop a general analytical expression to compute the bivariate G-

function in the form of (13), which can also be applied to address

other theoretical problems.

Since the convergence of the bivariate G-function in the form of

(13) is guaranteed as per (15)-(18), according to [19, Eq.(2.3)], it

can be expanded as (19)-(20) at the top of the next page, where in

(19) the symbol (a)b = Γ(a + b)/Γ(a) denotes the Pochhammer

operator, and we used the symbolic operators proposed in [23] to

derive (20), which is a single series of the product of two generalized

hypergeometric functions [15, Eq.(9.14.1)]. Note that the parameters

a, 1 − b1, and 1 − b2 cannot take negative integers since Gamma

function is involved in (19)-(20), which is satisfied when non-integer

m1 and m2 are applied to (13). Although it seems complicated,

(20) involves only common special functions and it can be easily

evaluated in a numerical way. The accuracy of (20) is corroborated

by simulation results in the next section.

Remark II.1. (The PDF of the end-to-end SNR) After obtaining the

CDF of the end-to-end SNR of CSI-assisted relaying over arbitrary

Nakagami-m fading channels, its corresponding PDF can be readily

obtained by taking the derivative of Fend
() with respect to . More

specifically, the derivative of Kv() in (5) with respect to  can

be obtained by using [15, Eq.(8.486.12)]. On the other hand, as a

special case of bivariate H-function [20, Eq.(6.4.1)], the derivative

of G1 in (14) can be obtained by exploiting the derivative of bivariate

H-function shown in [20, Eq.(6.5.7)].
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G1, 1, 1, 1, 1
1, [1: 1], 0, [1: 1]

⎡

⎢
⎢
⎢
⎣

x

y

∣
∣
∣
∣
∣
∣
∣
∣
∣

a

b1; b2

−
0; 0

⎤

⎥
⎥
⎥
⎦

= Γ(a) Γ(1− b1) Γ(1− b2)

∞∑

p=0

∞∑

q=0

1

p! q!
(a)p+q (1− b1)p (1− b2)q (−x)p (−y)q (19)

= Γ(a) Γ(1− b1) Γ(1− b2)

∞∑

r=0

1

r!
(a)r (1− b1)r (1− b2)r

×xryr
2F0 (a+ r, 1− b1 + r; −; −x) 2F0 (a+ r, 1− b2 + r; −; −y) , (20)

III. OUTAGE PROBABILITY

Once the CDF and PDF of the end-to-end SNR have been obtained,

they can be widely applied to evaluate the system performance

in terms of different performance metrics. Based on the CDF, for

example, the outage probability, outage capacity, and codeword error

probability can be analytically obtained. On the other hand, by

exploiting the PDF, the ergodic capacity and the output statistics such

as the moments of the output SNR can be numerically evaluated.

Herein, due to page limitation, we only demonstrate the accuracy

of our main result (14) using outage probability. In all simulations,

without loss of generality, the variances of the AWGN at the relay

and at the destination are assumed to be identical, that is, �2
R = �2

D .

Furthermore, the values of (14) are computed with the first 9 terms

of the infinite series, in which the function G1 is also computed with

its first 9 terms as per (20). Further test results show that, when more

than 9 terms from the infinite series in (20) are involved, both the

proposed method and that in [22] yield almost the same output.

Outage probability, P (th), is defined as the probability that the

instantaneous output SNR falls below a pre-defined threshold th.

Hence, evaluating the CDF (5) or (14) at th, we obtain

P (th) = Pr {end < th} = Fend
(th). (21)

For comparison purposes, the outage probability based on the two

upper bounds discussed in Section I are also reproduced here. For the

first bound end < 12

1+2
with the symmetric fading shape factors

m1 = m2 = m, the outage probability is given by [6, Eq.(18)]

P b1(th) =

√
�

22m−3 Γ2(m)

(
m

̄
th

)

×G2, 1
2, 3

[

4m

̄
th

∣
∣
∣
∣
∣

(0, m− 0.5)

(m− 1, 2m− 1, −1)

]

(22)

where the superscript b1 of P b1(th) refers to the first bound, and

G[ . ∣ . ] denotes the Meijer’s G-function [15, Eq.(9.301)]. For the

non-symmetric case with non-integer values m1 ∕= m2, to the best

of our knowledge, no result was ever reported.

For the second bound end < min{1, 2}, the outage probability

is clearly given by

P b2(th) = F1
(th) + F2

(th)− F1
(th)F2

(th), (23)

where the superscript b2 of P b2(th) refers to the second bound.

Figure 1 shows the outage probability of the systems with non-

symmetric non-integer fading parameters (m1, m2) = (4.3, 1.5),
and the threshold th = 0, 5 dB. It is observed that the analytical

results based on (21) coincide perfectly with the simulation results

whereas the second bound (23) yields a small gap at low SNR. Notice

that, since the first bound (22) holds only in the symmetric fading

case (i.e., the fading parameters m1 = m2 = m), it cannot be applied

to this non-symmetric fading scenario (m1 ∕= m2).

Figure 2 presents the outage probability with symmetric non-

integer fading parameters m1 = m2 = 1.5, and the threshold

th = 0, 5 dB. It is observed that the bound (23) performs worst

and it is very loose in the whole SNR region under consideration,

since this bound is derived with the assumption that the SNRs at

consecutive hops are non-symmetric. The first bound (22) performs

a little better than the second bound (23) but it is still loose in the low

SNR region, since the effect of AWGN is ignored. On the other hand,

our analytical result in (21) is always consistent with the simulation

results.

Note that the CDF expression of the non-integer case in (14) cannot

reduce to that of the integer case in (5). This is because we exploited

two exclusive series expansions of the incomplete Gamma functions

Γ(m, x) with respect to the integer and non-integer values of m
[15, Eqs.(8.352.7) & (8.354.2)], respectively. However, when a non-

integer value of m closely approaches an integer value, these two

expansions should have almost the same numerical value; in other

words, the result of (14) should be almost the same as that of (5).

This is illustrated in Fig. 3. This figure shows the outage probability

of different non-integer fading scenarios, compared with the integer

fading scenario where (m1, m2) = (1, 3). For the non-integer cases,

the fading parameter m2 at the second hop is set to m2 = 2.999,

which is almost identical to the integer case with m2 = 3. On the

other hand, the fading parameter m1 at the first hop varies from the

worst case m1 = 0.5 to m1 = 0.9 and finally m1 = 0.98. It is

observed that, the worst fading parameter m1 = 0.5 results in the

highest outage probability. When m1 increases, the outage probability

of non-integer cases decreases and it becomes closer and closer to

that of the integer case. Also, the analytical results coincide perfectly

with the simulation results. This demonstrates the effectiveness of our

derivations.

Finally, comparing Fig. 1 with Fig. 2, we observe that the slopes

of all curves are identical at high SNR. Moreover, the slopes of

the curves in Fig. 3 improve with m1. These observations are in

agreement with the well-known result that the diversity order of dual-

hop AF relaying systems is given by min{m1, m2} [4], [24].

IV. CONCLUSION

Due to the difficulty of mathematical derivation, analyzing the per-

formance of CSI-assisted AF relaying transmission in an exact way

is very challenging, especially when the transmission is performed

over the general Nakagami-m fading channels. In this paper, exact

expression for the distribution function of the end-to-end SNR was

derived. In particular, when m takes non-integer values, the Fox’s

H-function, bivariate H-function and G-function were exploited.

Simulation results of outage probability corroborated all analytical

results and these special functions were shown to be efficient tools

for system performance evaluation.
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