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ABSTRACT

In this paper we consider a queue fed by a large number n of independent continuous�

time Gaussian processes with stationary increments� After scaling the bu�er exceedance

threshold B and the �constant� service capacity C by the number of sources �i�e�� B � nb

and C � nc�� we present asymptotically exact results for the probability that the bu�er

threshold is exceeded� We both consider the stationary over�ow probability� and the �tran�

sient� probability of over�ow at a �nite time horizon T � We give detailed results on the

practically important cases in which the inputs are fractional Brownian motion processes

or integrated Gaussian processes�

���� Mathematics Subject Classi�cation� 	
G�� �primary��	
G

� 	
K�� �secondary��

Keywords and Phrases� Gaussian processes� �uid queues� extremes� over�ow probabilities�

exact asymptotics� integrated Gaussian processes� fractional Brownian motion�

Note� Work carried out under the CWI project P��
�� K� D�ebicki was also supported by

KBN under grant � P
�A 
�� �
 ��

���

���






� Introduction

Recent studies indicate that Gaussian processes are a natural choice to model tra�c in

communication networks ���� In for instance �
� ��� it was proved that� under heavy tra�c

environment parameterization� large number of i�i�d� on�o� sources may be approximated

by a Gaussian process �with the same covariance structure as the on�o� process�� More�

over Gaussian processes are endowed with the versatility to incorporate a broad range of

correlation structures and still allow� to some level� explicit analysis� In this sense they

are an attractive compromise� Importantly� fractional Brownian motion �FBM� received

a lot of attention� since it has been proposed to model long�range dependent tra�c with

a self�similar structure� see e�g� �����

An element in a communication network is usually modeled as a queue� fed by some input

process� and emptied at a constant service rate C� Exact analyses of the bu�er content

distribution for Gaussian input processes are restricted to a few special cases� such as for

queues of which the input is Brownian motion or Brownian bridge� see e�g� ����� For other

relevant source models� such as fractional Brownian motion� the queue length distribution

is not available� This motivates the interest in simulation methods and asymptotical

techniques� this paper focuses on the latter�

Asymptotics for tail probabilities� So far most of the asymptotic studies have focused on

the large�bu�er regime� More precisely� one is interested in approximations for large B

of P�Q� � B�� being the probability that the steady�state queue length exceeds level B�

Du�eld � O�Connell ���� proved for the special case of FBM input that log�P�Q� � B��

is asymptotically �for large B� proportional to B����H�� with a proportionality constant I

that depends on service rate C and Hurst parameter H� This type of asymptotics is known

as logarithmic asymptotics� It says that P�Q� � B� � f�B� exp��IB����H��� with an �un�

known� function f��� with the property log f�B� � o�B����H�� as B � �� Obviously�

logarithmic asymptotics o�er important qualitative insight� but the fact that f��� is un�
known makes it less useful for practical purposes� This motivates the research on so�called

exact asymptotics� these provide us with a function g��� such that P�Q� � B��g�B� � ��

for B �� �which we will denote by P�Q� � B� � g�B��� Exact asymptotics for queues

with FBM input were derived by H�usler � Piterbarg ����� and Narayan ��
�� For Gaussian

input process with short range dependence structure exact asymptotics for P�Q� � B� as

B �� were found in �	�� see also ��� and the references therein�

Many�sources asymptotics� An important limitation of large�bu�er regime is that it does

not provide us with insight into over�ow behavior for small or moderately�sized bu�ers�

this regime might be relevant in many practical situations� Another crucial observation is

that often the input tra�c stream can be seen as the superposition of many i�i�d� streams�

These thoughts led to the idea of investigating the so�called many�sources regime� In

this regime n sources feed into the queue� the queueing resources bu�er and bandwidth

are scaled accordingly� B � nb and C � nc� respectively� Under this scaling and fairly

general conditions on the input process� for general b� the steady�state over�ow probability

decays exponentially in n� Logarithmic asymptotics were derived by Botvich � Du�eld
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���� see also Courcoubetis � Weber ��� and Simonian � Guibert ����� for both discrete�

time and continuous�time queues� Exact asymptotics in discrete�time queues were found

by Likhanov � Mazumdar ��	��

Contribution� In discrete time� the derivation of asymptotically exact expansions for the

many�sources regime relies on the fact that there is a unique epoch� say t� � N� at which

�with overwhelming probability� the over�ow occurs� see e�g� ��	�� Put di�erently� the

asymptotics of the stationary over�ow probability coincide with the probability of over�ow

at t� �given that the system started empty at time 
�� Importantly� this reasoning does

not apply to continuous time� there the probability mass around the most likely epoch

does contribute to the asymptotics� This makes the derivation of exact asymptotics in

continuous�time more involved�

In this paper we �nd exact asymptotics of the over�ow probability in queues with many

Gaussian sources� The techniques used rely on earlier results by Piterbarg � Prisyazhnyuk

����� In addition to the asymptotics of the stationary workload� we also deal with transient

probabilities� i�e�� the probability that the bu�er level exceeds nb at some speci�c �time

horizon� T � It is noted that if T � t�� then the asymptotics of the stationary and transient

probabilities are identical� Also� as can be expected� if T � t�� then most likely epoch of

over�ow is T itself� We will rigorize these ideas in this paper�

Organization� The organization of this paper is as follows� In Section � we set up the

framework for our analysis� we give a model description� we list the necessary assumptions�

and we discuss relevant preliminaries� Section � is an overview of the results of this paper�

the exact asymptotics for the transient and steady�state over�ow probabilities� Section

� presents the asymptotics for the practically important special cases of FBM input and

Integrated Gaussian input� Section � gives the proofs of our results�

� Model description and preliminaries

In this section we set up the framework for our analysis� we specify the tra�c model and

list the assumptions� We also motivate the relevance of our study� and relate our results

to previous work�

��� Tra�c model

Let ���� � ��i�t��t�R be a centered Gaussian stochastic process with stationary increments�
continuous sample paths a�s�� with ��
� � 
 and the standard deviation function

���t� ��
p
Var���t���

By �i���� i � �� � � � � n� we denote a sequence of i�i�d� copies of �����
In this paper we consider a �uid queue fed by the superposition of n i�i�d� sources

������ ���� �n���� where �i��� describes the cumulative amount of tra�c generated by i�th

source� i � �� ���� n� in time interval �
� t�� We assume that the queue has a constant drain

rate C�

�



In classical papers on �uid queues� tra�c is usually modeled as a stationary alternating

on�o� process� see e�g� ���� where the on� and o��times are assumed to be exponentially

distributed� The analysis of queues with Gaussian input is motivated by a central limit

theorem type of argumentation� Under heavy tra�c environment parameterization� large

number of on�o� sources may be well approximated by a Gaussian process with the same

covariance function as the covariance function of the generic on�o� source� see �
� ���� cf�

also ���� A technical drawback is that the Gaussianity of the input processes in principle

allows �negative tra�c�� this is however of minor impact� see for instance ����

Given the applications in communication networks� the following special cases of ���� play
an important role�

� Fractional Brownian motion �FBM� case� ��t� � BH�t�� where BH��� is the fractional
Brownian motion with Hurst parameter H � �
� ��� that is� ���� is a centered Gaussian
process with stationary increments� continuous sample paths� ��
� � 
 a�s�� and variance

function ����t� � t�H �

� Integrated Gaussian �IG� case� ��t� � R t� Z�s�ds� where Z��� is a centered stationary
Gaussian process with continuous covariance function R�t� � C ov�Z�s� t�� Z�s���

The FBM case is motivated by statistical analyses of network traces� where self�similarity

and long range dependence property were observed� e�g� ����� The relevance of the IG

case is motivated in ��� ��� �	�� see also survey ����

��� Assumptions

In this paper we make the following assumptions on the standard deviation function of

the generic process ���t��t�R�

A� The function ����� is �sublinear�� limt�� ���t��t � 
�

A� The function ����� � C���
���� is strictly increasing and strictly concave�

A� The function behaves as a polynomial for small t� for some constant A� � 
 and � � 


lim
t��

����t�

t�
� A��

To short the notation� if ���t��t�R satis�es A��A�� then we will write ���� � A��A��

��� Preliminaries

Assuming that there the is Q�
� � 
 �uid in the queue at time t � 
� the transient

probability distribution that at time T � 
 the amount of �uid in the queue Q�T � exeeds

threshold B has the following representation�

	n�T � � P�Q�T � � B� � P

�
sup

t����T �

nX
i��

�i�t�� Ct � B

�
� �����

Analogously� the stationary over�ow probability equals

	n � P�Q� � B� � P

�
sup

t������

nX
i��

�i�t�� Ct � B

�
� �����

�



Unfortunately� so far for general Gaussian processes no explicit expressions for ����� and

����� have been found � results are available only for speci�c cases� such as Brownian

motion and Brownian bridge� see e�g� ���� Eq� ��������� Therefore� research has focused

on asymptotics� in particular large bu�er asymptotics� that is for B � �� we refer to
���� ��� �
� ��� for FBM input� and �	� �� �
� ��� �	� for IG tra�c�

In this paper we examine another asymptotic regime� namely the regime in which the

number of sources grows large� We rescale the bu�er threshold and link capacity with the

number of sources� B � nb and C � nc� This regime� introduced in the seminal paper

by Weiss ��
�� leads itself to asymptotic analysis� It turned out that under very general

conditions the stationary over�ow probability 	n decays exponentially in n� where the

decay rate I�b� c� is given by

� lim
n��

�

n
log 	n �� I�b� c� � inf

t�R�
sup
�
�
�b� ct�� log E exp�
��t���

� inf
t�R�

sup
�

�

�b� ct�� �

�

�����t�

�

� inf
t�R�

m��t�

�
� with m�t� ��

b� ct

���t�
�����

see Botvich � Du�eld ���� The drawback of this result is that it provides us only with

logarithmic asymptotics and does not give us a function g��� such that 	n�g�n� � � as

n � �� For the relevant case of on�o� sources� the decay rate I�b� c� can be given quite
explicitly� see ��
� ����

In discrete time� exact asymptotics were found� see e�g� Likhanov � Mazumdar ��	�� The

above continuous�time relation for the decay rate still holds� but with the in�mum over N

rather than R	 � Calling the optimizing argument in ����� t
�� we get that

	n � P

�
sup
t�N

nX
i��

�i�t�� Ct � B

�
�  �m�t��pn� �����

as n�� with

 �x� ��

Z �

x

�p
�	

e�
�

�
y�dy�

being the complementary standard normal distribution function� Let us recall that  ���
obeys the following asymptotic equivalence�

 �x� � �

x
p
�	

e�
�

�
x� � �����

The exact asymptoics given in ����� can be interpreted as follows� With the Bahadur�Rao

��� result� it follows that the asymptotically exact expression in ����� is the same for

P

�
nX
i��

�i�t
��� nct� � nb

�
�

So t� can be interpreted as the most likely epoch of over	ow� apparently only the probabil�

ity mass in t� plays �for large n� as signi�cant role� in that we can neglect the probability

of over�ow at other epochs�
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In continuous time� there is again the notion of most likely epoch of over�ow� However�

now the probability mass around this epoch cannot be neglected� if we are interested in

asymptotically exact rather than logarithmic asymptotics� This makes the analysis of the

continuous�time case more involved� In this paper we rely on techniques developed by

Piterbarg � Prisyazhnyuk ���� to �nd asymptotically exact asymptotics�

� Exact asymptotics

In this section we present the results of this paper� Proofs are provided in Section �� Our

results consist of the exact asymptotics of ����� and ����� as n��� The asymptotics of
the transient probability 	n�T � strongly depends on the play between value of the time

horizon T and the optimizing argument t� in ������ We therefore distinguish between three

cases� ��� T � t�� ��� T � t�� ��� T � t�� The stationary probability 	n coincides with

the case T � t� �as it can be interpreted as T � ���

Remark ��� As follows directly from ������ t� is determined by

c���t
�� � �b� ct����

��t��� ���	�

In the following lemma we show that under A��A� equation ���	� has a unique root�

Lemma ��� Let ���� � A��A�� Then m��t� � 
 has exactly one root� say t�� Moreover�

m�t� is strictly decreasing on t � �
� t�� and strictly increasing on t � �t�����

Proof� De�ne ��t� �� ���t����
��t�� t� Since

m��t� �
c���t�� �ct� b���

��t�
����t�

�

it su�ces to prove that for each b� c � 


��t� �
b

c
���
�

has a unique root t� and ���� is strictly increasing�
Due to A� it follows that limt��m�t� �� and limt��m�t� �� for each b� c � 
� Thus

equation ���
� has at least one solution� Moreover

���t� �
���

��t��� � ���t���
���t�

��� ��t���
� � � ����t���

���t�
��� ��t���

� 
�

since �����t� � 
 due to the strict concavity� cf� A�� Thus ���� is strictly increasing� This
completes the proof� �

In the asymptotics presented below so�called Pickands constants ���� play a crucial role�

they are de�ned by the following limit�

H� �� lim
T��

�

T
� E exp

�
sup

t����T �

�p
�B����t�� t�

��
�

�



where � � �
� ���

In case ��� the most likely epoch of over�ow �in the in�nite�horizon system� t� lies before

time horizon T � Heuristically� this says that� on �
� T �� over�ow will occur most likely at

time t�� We get the following result�

Theorem ��� Let ���� � A��A� and T � t��


i� If 
 � � � �� then� for n���

	n�T � � H�p
	

�
����t

��

��� ���t��
����� A�

�����t
��

����

�m�t���
�

�
�� � n �

�
� �

� 
�
m�t��

p
n
�
�


ii� If � � �� then� for n���

	n�T � �
s
� �

��� ��t���� � ��� ��
���
���t���� ���t��

� �m�t��pn��
In case ��� the most likely epoch of over�ow �in the�in�nite�horizon system� t� and the

time horizon T coincide� Therefore� on �
� T � over�ow will occur most likely at time T� It

can be expected that� given over�ow in the in�nite�horizon system� half of the probability

mass will be before T � This heuristically explains the following result �cf� Theorem �����

Theorem ��� Let ���� � A��A� and T � t��


i� If 
 � � � �� then� for n���

	n�T � � H�

�
p
	

�
����T �

��� ���T �
���� � A�

�����T �

����

�m�T ��
�

�
�� � n �

�
� �

� 
�
m�T �

p
n
�
�


ii� If � � �� then� for n���

	n�T � � �

�

s
� �

��� ��T ��� � ��� ��
���
���T ��� ���T �

� �m�T �pn��
In case ��� the most likely time of exceeding bu�er level nb �in the in�nite�horizon system�

t� majorizes the horizon T � Therefore� the most likely time of over�ow in time interval

�
� T � is T � The following result describes the asymptotics for this case�

Theorem ��� Let ���� � A��A� and T � t��


i� If 
 � � � �� then� for n���

	n�T � � H�

�
A�

�����T �

����
�
�m�T ��

�

�
��

�m��T �

�
� n �

�
��
 
�
m�T �

p
n
�
�


ii� If � � �� then� for n���

	n�T � �
�
�� A�

�����T �

m�T �

m��T �

�
� �m�T �pn��


iii� If � � � 	 �� then� for n���

	n�T � �  
�
m�T �

p
n
�
�

	



As motivated above� the asymptotics of the stationary over�ow probability 	n coincides

with case ���� T � t��

Theorem ��� Let ���� � A��A�� and T � t�� Then� for n���

	n�T � � 	n�

Due to ������ the above results implies that� for T 
 t�� the transient over�ow probability

	n�T � is asymptotically proportional to n����� exp��nm��t����� �as a function of n��

This type of asymptotics also holds in the stationary regime� i�e�� for 	n� Notice that

this is essentially di�erent from the discrete�time asymptotics ������ which are of the

form n���� exp��nm��t������ Noticing that � � �
� ��� this qualitative argument con�rms
the evident property that the over�ow probabilities in continuous�time are larger than

in discrete time� In fact� our continuous�time result gives insight into the probability of

excursions between the gridpoints exceeding nb�

For T � t�� the transient over�ow probability 	n�T � resembles n
������� exp��nm��t�����

for 
 � � 	 �� and n���� exp��nm��t����� for � � � 	 ��

� Special cases

In this section we consider two speci�c� practically relevant� input processes� fractional

Brownian motion �FBM� sources and integrated Gaussian �IG� sources�

��� Fractional Brownian motion sources

In the following propositions we give the exact asymptotic both for 	n�T � and 	n as

n�� for �uid queues fed by superposition of many FBM sources� It is easily seen that

assumptions A��A� are met� with � � �H and A� � �� It is straightforward to derive

t� �
H

��H
� b
c

and

m �� m�t�� �

�
b

��H

���H � c

H

�H
�

It is now a matter of inserting these expressions in the formulas of Theorems �������� This

leads to the following results�

Proposition ��� Let ���� be FBM input�


i� If T � t�� then

	n�T � � H�H

	
� �p

H���H�
�
�
mp
�

� �

H
��
� n���H���� �mpn�� as n���


ii� If T � t�� then

	n�T � � H�H

�	
� �p

H���H�
�
�
mp
�

� �

H
��
� n���H���� �mpn�� as n���







iii� If T � t� and H � �
� ����� then

	n�T � � H�H � T
�H���b� cT ���H��

cT �H�b� cT �
� n

���H��

����H
 

�
b� cT

TH
� pn

�
� as n���


iv� If T � t� and H � ���� then

	n�T � �
�
�� �

�T �H�� �
b� cT

cT �H�b� cT �

�
� 
�
b� cT

TH
� pn

�
� as n���


v� If T � t� and H � ����� ��� then

	n�T � �  
�
b� cT

TH
� pn

�
� as n���

Combination of Theorem ��� with Proposition ��� gives the following asymptotics for the

stationary bu�er over�ow�

Proposition ��� Let ���� be FBM input� Then

	n � H�H

	
� �p

H���H�
�
�
mp
�

� �

H
��
� n���H���� �mpn�� as n���

��� Integrated Gaussian sources

In this section we focus on the IG input process� Recall that in this case ���� has the
following form ��t� �

R t
� Z�s�ds� where Z��� is a centered stationary Gaussian stochastic

process with covariance function R���� We make the following assumptions on R����

IG� R��� � C���
���� and R�t� � 
 for all positive t�

IG� R��� is strictly decreasing�

IG� limt��R�t� � 
�

Since ���� is IG� it follows that

����t� � �

Z t

�
ds

Z s

�
R�v�dv� �����

In view of ���	� the most likely epoch of over�ow t� may be found as the unique solution

of

�c

Z t

�
ds

Z s

�
R�v�dv � �ct� b�

Z t

�
R�v�dv�

In the following proposition we present the exact asymptotics of transient over�ow prob�

abilities for IG input processes ���� satisfying IG��IG�� The results are in terms of the
covariance function R����
We use the notation !����t� and ��

�
��t� for the �rst and second derivative of �

�
��t� respectively�

Notice that we have

��
��t� �

!����t�

�
q
����t�

and ��
���t� �

�

�

������t��
�
��t�� � !����t���
�����t��


��
�����

�



for each t 
 
� Also

!����t� � �

Z t

�
R�v�dv� �����t� � �R�t��

���
��

�
�t� � �R��t�� ����
�

where R���� exists due to IG��

Proposition ��� Let ���� be IG input such that IG��IG� are satis�ed�


i� If T � t�� then

	n�T � �
vuut �R�t���R�
��

R t�
� ds

R s
� R�v�dv

R�t��
R t�
� ds

R s
� R�v�dv � �

��
R t�
� R�v�dv��

� 
	

 b� ct�q

�
R t�
� ds

R s
�R�v�dv

p
n

�
A�

as n���


ii� If T � t�� then

	n�T � � �

�

vuut �R�t���R�
��
R t�
� ds

R s
� R�v�dv

R�t��
R t�
� ds

R s
� R�v�dv � �

��
R t�
� R�v�dv��

� 
	

 b� ct�q

�
R t�
� ds

R s
�R�v�dv

p
n

�
A�

as n���


iii� If T � t�� then

	n�T � �  
	

 b� cTq

�
R T
� ds

R s
� R�v�dv

p
n

�
A�

as n���

Proof� Since the three cases are based on an analogous argumentation� we only treat the

case T � t�� First we check that if ���� is IG and satis�es IG��IG�� then ���� � A��A��

� In order to prove that A� is satis�ed it su�ces to show that limt�� ����t��t
� � 
�

In view of ����� we have

����t�

t�
�
�
R t
� ds

R s
� R�v�dv

t�
	 �

R t
� R�v�dv

t
� �

	

R

p
t

� R�v�dv

t
�

R tp
tR�v�dv

t

�
A �

Now A� follows from the fact that
R pt
� R�v�dv 	 R�
�

p
t and

lim
t��

R tp
tR�v�dv

t
� 
�

the latter limit holds due to IG��

� A� can be proven as follows� First combine ����� with IG�� yielding that ����� is
C���
���� and scrictly increasing� In order to prove concavity of ����� note that due
to ����� it su�ces to show that

f�t� � ������t��
�
��t��

�
!����t�

��
� 


�



for t � 
� This follows from f�
� � 
 and the fact that for t � 


f ��t� � �
���
��

�
�t�����t� � �R

��t�����t� � 
�

using ����
� and IG��IG��

� Following ����� we immediately conclude that assumptionA� is satis�ed� with � � �
and A� � R�
� �use L�H"opital�s rule twice��

Since A��A� are satis�ed� part �ii� of Theorem ��� yields

	n�T � �
s
� �

��� ��t���� � ��� ��
���
���t���� ���t��

� 
�
b� ct�

���t��

p
n

�
�

as n��� Using ����� we haves
� �

��� ��t���� � ��� ��
���
���t���� ���t��

�

s
�����t

�� � �����t
��� ���� ��
���

������t
������t

��� � !�����
�

Now from ����
� and the fact that ���
��
��� � R�
�� we obtain

	n�T � �
vuut �R�t���R�
��

R t�
� ds

R s
� R�v�dv

R�t��
R t�
� ds

R s
� R�v�dv � �

� �
R t�
� R�v�dv��

� 
	

 b� ct�q

�
R t�
� ds

R s
� R�v�dv

p
n

�
A�

as n��� This completes the proof� �

Combining Theorem ��� with Proposition ��� we obtain the exact asymptotics of the

stationary bu�er over�ow probability�

Proposition ��� Let ���� be IG input such that IG��IG� are satis�ed� Then

	n �
vuut �R�t���R�
��

R t�
� ds

R s
� R�v�dv

R�t��
R t�
� ds

R s
� R�v�dv � �

��
R t�
� R�v�dv��

� 
	

 b� ct�q

�
R t�
� ds

R s
� R�v�dv

p
n

�
A�

as n���

� Proofs

In this section we present the proofs of Theorems �������� In the following by the at�

tached bar we always mean the standardized process� that is #X�t� � X�t���X �t� for some

Gaussian process X���� Moreover let

HR
� �� lim

S��
E exp

�
sup

t���S�S�
B����t�� �� �R�t�

�
�

and

FR
� �� lim

S��
E exp

�
sup

t����S�
B����t�� �� �R�t�

�
�

The idea of the proofs of Theorems ���� ��� and ��� is based on an appropriate use of

Theorem � in Piterbarg � Prisyazhnyuk ����� Since this result plays the crucial role in

the following analysis� we present it in the form that is suitable for us�

�




Theorem ��� Let �
�t��t����T � be a centered Gaussian process with continuous sample

paths a�s� and variance function ��	 ��� such that the maximum of �	��� on �
� T � is attained
at a unique point t� with �	�t

�� � �� Make the following assumptions�


a� �	��� is polynomial in a neighborhood of t�� there exist A� � � 
 such that

�� �	�t� t�� � Ajtj
�� � o���� as t� 
�


b� Local stationarity� there exist D�� � 
 such that

�� C ov
�
#
�t�� #
�s�

�
� Djt� sj� � o �jt� sj�� as s� t� t��


c� Regularity� there exist C��� � 
 such that� for s� t � �
� T ��
E �
�t�� 
�s��� 	 Cjt� sj�� �

Then�


i� if � � �� with G��
 �� H�$�����D
������A���
� as u���

P

�
sup

t����T �

�t� � u

�
� u

�

�
� �

� �u� �
�
� � G��
 if t� � �
� T ��
G��
 if t� � 
 or t� � T �


ii� if � � �� with R �� A�D� as u���

P

�
sup

t����T �

�t� � u

�
�  �u� �

�
HR

� if t� � �
� T ��
FR
� if t� � 
 or t� � T �


iii� if � � �� as u���

P

�
sup

t����T �

�t� � u

�
�  �u��

Before presinting the proofs of Theorems ������� we give some technical lemmas�

Lemma ��� Let ���� � A�� Then� for each T � �
� t���

�i� �� m�t��

m�t� t��
� ���

���t��
����t��

� t� � �� � o���� as t� 
�

�ii� �� m�T �

m�T � t�
� �m

��T �
m�T �

� t � �� � o���� as t � T �

Proof� First we prove �i�� Because of A�� we can represent ����� around t� by a second

order Taylor expansion�

�� m�t��

m�t� t��
�
���t

���b� c�t� t���� ���t� t���b� ct��

���t���b� c�t� t���

�
���t

���b� c�t� t����
�
���t

�� � ��
��t��t� ��

���t� � 
�t�� t
�

�

�
�b� ct��

���t���b� c�t� t���

� ���
���t� � 
�t��

����t��
� b� ct�

b� c�t� t��
� t�� ������

��



where 
�t� � �
� t�� and ������ is due to Remark ���� Hence� taking t� 
� we complete the

proof of �i��

Similarly� to prove �ii� notice that

�� m�T �

m�T � t�
�

���T � � �b� c�T � t��� ���T � t� � �b� cT �

���T ��b� c�T � t��

�
���T � � �b� c�T � t��� ����T �� ��

��T � 
�t��t� � �b� cT �

���T ��b� c�T � t��

� ����T �c� �b� cT � � ����T � 
�t��

���T ��b� c�T � t��
� t

where 
�t� � �
� t�� Now notice that
���T �c� �b� cT � � �� ��T �

���T ��b� cT �
�
m��T �
m�T �

and m��T � � 
 for T � t� �apply Lemma ����� This completes the proof� �

Lemma ��� Let ���� � A��A�� Then


i� If � � �� then� for each T � 
�

�� C ov �#��s�� #��t�� �
A�

�����T �
jt� sj� � o �jt� sj�� as s� t� T �


ii� if � � �� then� for each T � 
�

�� C ov �#��s�� #��t�� �
���

��
��� � ��� ��T ���
�����T �

jt� sj� � o
�jt� sj�� as s� t� T �

Proof� The case �i� is due to Lemma ��� in D�ebicki � Rolski ��
�� It follows directly from

A� and

lim
s�t�T

�� C ov �#��s�� #��t��

jt� sj� �

� lim
s�t�T

�
����t� s�

����s����t�
� ����t�� ���s��

�

����t����s�

�
jt� sj�� ������

� lim
s�t�T

�
����t� s�

����s����t�

�
jt� sj�� � A�

�����T �
�

assuming� without loss of generality� t � s�

Notice that this reasoning does not go through for � � �� as in that case

lim
s�t�T

����t�� ���s��
�

����t����s�
jt� sj�� � ���

��T ���

�����T �
� 
�

In order to prove the case �ii� note that

�� C ov���s�� ��t�� �
����jt� sj�� ����t�� ���s��

�

����t����s�
�

��



Thus

lim
s�t�T

�� C ov �#��s�� #��t��

jt� sj� �
�

�����T �
lim
s�t�T

����jt� sj�� ����t�� ���s��
�

jt� sj�

�
���

��
��� � ��� ��T ���
�����T �

�

This completes the proof� �

Lemma ��� Let ���� � A�� Then for each T � 
 there exist constants GT � 
 and

�� � 
 such that

E

�
#��t�

m�t��

m�t�
� #��s�m�t

��

m�s�

��

	 GT � jt� sj�� ������

for all s� t � �
� T ��

Proof� Let T � 
 be given� It is straightforward to show that the left hand side of ������

equals

m��t��E

�
��t�

ct� b
� ��s�

cs� b

��

�
m��t��

�b� ct���b� cs��
E ��cs� b���t� � �b� ct���s��� �

This expression is majorized as follows�

	 m��t��

b�
E ����t� � ��s���b� cs�� ��s��ct� cs���

	 m��t��

b�

�
�E ����t� � ��s���b� cs��� � �E ���s��ct� cs���

�
������

�
m��t��

b�
�
�����jt� sj��b� cs�� � �����s�c

�jt� sj�� �
where ������ follows from the fact that �x � y�� 	 �x� � �y� for all x� y� Thus from A��

for �� � min��� �� we have that there exists a constant GT � 
 such that the above is not

larger than GT � jt� sj�� for all s� t � �
� T �� �

We will now present the basic idea behind our proof� By a number of simple transforma�

tions we translate the probabilities 	n and 	n�T � into the framework of Theorem ���� We

will focus on the transient probabilities 	n�T �� the stationary probabilities 	n are treated

similarly� Observe that

	n�T � � P

�
sup

t����T �

nX
i��

�i�t�� nct � nb

�

� P

�
sup

t����T �

Pn
i�� �i�t�p

n
� �

b� ct
�
p
n

�

� P

�
sup

t����T �
��t� � �

b� ct
�
p
n

�
������

� P

�
sup

t����T �

��t�

���t�
� m�t

��

m�t�
� m�t��

p
n

�
�

��



were ������ follows from the fact that �i��� are Gaussian i�i�d� copies of ����� Let

��t� ��
��t�

���t�
� m�t

��

m�t�
�

Notice that we are in the framework of Theorem ���� the process ���� has standard devi�
ation function ����� with ���t� � m�t���m�t�� evidently� ������ has t� as unique maximizer
�see Lemma ���� and maxt����T � ���t� � �� So� to prove Theorems �������� we have to

check if Assumptions �a�� �b�� and �c� of Theorem ��� apply�

��� Proof of Theorem ���

Noting that

C ov�#��s�� #��t�� � C ov�#��s�� #��t���

and following Lemmas ���� ���� and ���� we infer that Assumptions �a� and �b� of Theorem

��� are satis�ed with � � �� � � �� and A � ��� ���t�������t��� Moreover from Lemma

��� it follows that Assumption �c� is satis�ed�

� If 
 � � � �� then Lemma ��� states that D � A����
�
��t

��� Since T � t�� Theorem

��� gives the result immediately� using that $����� �
p
	�

� If � � �� then from Lemma ���

D � ���
��
��� � ��� ��T ���
�����T �

�

Thus� using an argumentation similar to the case 
 � � � �� we obtain

P

�
sup

t����T �
��t� � m�t��

p
n

�
�  �m�t��pn� � HR

� �

where

R � �
�
��
���t��

����t��

�
�
�
���

��
��� � ��� ��T ���
�����T �

���
�

���t
����

���t��
��� ��t���� � ��� ��
��� �

Now notice that HR
� �

p
� �R��� according to Konstant � Piterbarg ����� This

concludes our proof� �

��� Proof of Theorem ���

The proof of Theorem ��� is completely analogous to the proof of Theorem ���� except

that t� � T � �

��



��� Proof of Theorem ���

The idea of the proof of Theorem ��� is analogous to the proof of Theorem ��� and thus

we present only the main steps of argumentation�

We de�ne the process �T ��� as follows�

�T �t� ��
��t�

���t�
� m�T �
m�t�

�

By ��T ��� we denote the standard deviation function of �T ���� Following the same argu�
mentation as presented in the proof of Theorem ���� we write

	n�T � � P

�
sup

t����T �
��t� � m�T �

p
n

�
�

Since T � t�� Lemma ��� states that ��T ��� attains its maximum in the interval �
� T � at

t � T � with ��T �T � � �� Due to Lemmas ��� and ��� process �T ��� satis�es conditions �a�
and �b� of Theorem ��� with � � �� � � �� A � �m��T ��m�T �� Moreover� from Lemma

��� it follows that condition �c� is ful�lled�

� If � � �� then Lemma ��� gives D � A����
�
��T �� Using �i� of Theorem ��� we get

part �i� of Theorem ����

� If � � �� again from Lemma ���� D � A����
�
��T �� Using �ii� of Theorem ��� we get

P

�
sup

t����T �
��t� � m�T �

p
n

�
�  �m�T �pn� � FR

� �

where R �� ��m��T ��m�T �� � ������T ��A��� Moreover�

FR
� � � �

Z �

�
P

�
sup

t������

p
�B����t�� �� �R�t � u

�
eudu

� � �

Z �

�
P

�
sup

t������
B����t��

�� �R�p
�

t �
up
�

�
eudu

� � �

Z �

�
exp��u�� �R��eudu � � �

�

R
� ����	�

where ����	� follows from

P

�
sup

t������
B����t�� ct � u

�
� e��cu

for each c� u � 
� This completes the proof of �ii� of Theorem ����

� If � � �� then the stated follows directly from �iii� of Theorem ����

�

��



��� Proof of Theorem ���

Since for each T � 
� n 
 
 we have 	n�T � 	 	n� then it is enough to show that

lim sup
n��

	n�	n�T � 	 �

for some T � t��

Note that� using the same argumentation as in the proof of Theorem ����

	n � P

�
sup

t������

��t�

���t�
� m�t

��

m�t�
� m�t��

p
n

�
�

Using the union bound we have

	n 	 	n�T � � P

�
sup

t��T���

��t�

���t�
� m�t

��

m�t�
� m�t��

p
n

�
�

Due to Lemma ��� there exists a T � t� such that m�t� � m�t���� for t � T � yielding

P

�
sup

t��T���

��t�

���t�
� m�t

��

m�t�
� m�t��

p
n

�
	 P

�
sup

t��T���

��t�

���t�
� �m�t��

p
n

�

	 �%
�
�m�t��

p
n�K

�
� o�	n�T �� ����
�

as n��� where ����
� follows from the Borell inequality �see e�g� Theorem D�� in ������
and K is a constant� This completes the proof� �
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