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Abstract

Background: The Friedman rank sum test is a widely-used nonparametric method in computational biology. In

addition to examining the overall null hypothesis of no significant difference among any of the rank sums, it is

typically of interest to conduct pairwise comparison tests. Current approaches to such tests rely on large-sample

approximations, due to the numerical complexity of computing the exact distribution. These approximate methods

lead to inaccurate estimates in the tail of the distribution, which is most relevant for p-value calculation.

Results: We propose an efficient, combinatorial exact approach for calculating the probability mass distribution of

the rank sum difference statistic for pairwise comparison of Friedman rank sums, and compare exact results with

recommended asymptotic approximations. Whereas the chi-squared approximation performs inferiorly to exact

computation overall, others, particularly the normal, perform well, except for the extreme tail. Hence exact calculation

offers an improvement when small p-values occur following multiple testing correction. Exact inference also enhances

the identification of significant differences whenever the observed values are close to the approximate critical value.

We illustrate the proposed method in the context of biological machine learning, were Friedman rank sum difference

tests are commonly used for the comparison of classifiers over multiple datasets.

Conclusions: We provide a computationally fast method to determine the exact p-value of the absolute rank sum

difference of a pair of Friedman rank sums, making asymptotic tests obsolete. Calculation of exact p-values is easy to

implement in statistical software and the implementation in R is provided in one of the Additional files and is also

available at http://www.ru.nl/publish/pages/726696/friedmanrsd.zip.

Keywords: Friedman test, Exact p-value, Rank sum difference, Multiple comparison, Nonparametric statistics, Classifier

comparison, Machine learning

Background

The Friedman [1] rank sum test is a widely-used non-

parametric method for the analysis of several related

samples in computational biology and other fields. It is

used, for example, to compare the performance results

of a set of (expression-based) classifiers over multiple

datasets, covering case problems, benchmark functions,

or performance indicators [2–4]. Some recent examples

of the numerous applications of the Friedman test in

bioinformatics include [5–17]. The test is supported by

many statistical software packages and it is routinely dis-

cussed in textbooks on nonparametric statistics [18–23].

The Friedman test procedure is an analysis of variance

by ranks, i.e., observed rank scores or rank scores

obtained by ordering ordinal or numerical outcomes,

that is used when one is not willing to make strong dis-

tributional assumptions. A common approach is to

present the test as a method for identifying treatment ef-

fects of k different treatments in a so-called randomized

complete block design. This design uses n sets, called

blocks, of k homogeneous units matched on some rele-

vant characteristic, for example patients matched on SNP

genotype. The k treatments are assigned randomly to the

k units within each block, with each treatment condition

being administered once within a block. The Friedman
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test is also conducted if the samples concern a repeated

measures design. In such design each experimental unit

constitutes a block that serves in all treatment conditions.

Examples are provided by experiments in which k differ-

ent treatments (classifiers) are compared on a single

experimental unit (dataset), or if k units (e.g., genes, prod-

ucts, candidates) are ranked in order by each of n ‘judges’

(algorithms, panelists). In all these settings the objective is

to determine if the k populations from which the observa-

tions were made are identically distributed.

Applied to classifier comparison, the null hypothesis

for the Friedman test is that the performance results of

the k classifiers over n datasets are samples that have

been drawn from the same population or, equivalently,

from different populations with the same distribution

[18]. To examine this hypothesis, the test determines

whether the rank sums of the k classifiers included in

the comparison are significantly different. After applying

the omnibus Friedman test and observing that the rank

sums are different, the next step is to compare all classi-

fiers against each other or against a baseline classifier

(e.g., newly proposed method or best performing algo-

rithm). In doing so, a series of comparisons of rank sums

(i.e., rank sum difference tests) is performed, adjusting

the significance level using a Bonferroni correction or

more powerful approaches to control the familywise

Type-I error rate [3, 4].

Preferably one should use the exact null distribution of

the rank sum difference statistic in these subsequent

analyses. Only if the decision on the null hypothesis is

based on the exact distribution is the probability of com-

mitting a Type-I error known exactly. However, the

exact distribution and the associated true tail probabil-

ities are not yet adequately known. To be sure, tables of

exact critical values at standard significance levels (e.g.,

[18, 21, 22]) and of exact p-values [24] are available for

small values of k and n, for which complete enumeration

is possible. Also, the lower order moments of the exact

sampling distribution have been documented in detail

[25], and Stuart [26] proved the conjecture of Whitfield

[24] that, on the null hypothesis, the difference between

rank sum values is asymptotically normally distributed

as n tends to infinity. Further, in a recent study Koziol

[27] used symbolic computation for finding the distribu-

tion of absolute values of differences in rank sums. Apart

from these important contributions there is, to the best

of our knowledge, no publication available in the probabil-

ity theory, rank statistics or other literature that addresses

the exact distribution of the rank sum difference statistic.

As the null distribution in the general case is unknown

and exact computation seemingly intractable, it is gener-

ally recommended to apply a large-sample approxima-

tion method to test the significance of the pairwise

difference in rank sums. It is well known, however, that

calculating probabilities using an asymptotic variant of

an exact test may lead to inaccurate p-values when the

sample size n is small, as in most applications of the

Friedman test, and thereby to a false acceptance or false

rejection of the null hypothesis. Furthermore, there are

several large-sample tests available with different limit-

ing distributions, and these tests may vary substantially

in their results. Consequently, there is little agreement

in the nonparametric literature over which approximate

method is most appropriate to employ for the comparison

of Friedman rank sums [22]. This statement refers both to

approximate tests of significance for the comparison of all

(2
k) = k(k − 1)/2 pairs of treatments, and to tests for the

comparison of k − 1 treatments with a single control. Ob-

viously, the utility of the asymptotic tests depends on their

accuracy to approximate the exact sampling distribution

of the discrete rank sum difference statistic.

The purpose of this note is twofold. The foremost aim

is to provide an expression for calculating the exact

probability mass function of the pairwise differences in

Friedman rank sums. This expression may be employed

to quickly calculate the exact p-value and associated sta-

tistics such as the critical difference value. The calcula-

tion does not require a complicated algorithm and as it

is easily incorporated into a computer program, there is

no longer need to resort to asymptotic p-values. We il-

lustrate the exact method in the context of two recently

published analyses of the performance of classifiers and

data projection methods. The second aim is to examine

under what circumstances the exact distribution and the

associated exact statistics offer an improvement over

traditional approximate methods for Friedman rank sum

comparison.

It is important to note at the outset that this article is

not concerned with the Friedman test itself. The Friedman

test is an over-all test that evaluates the joint distribution

of rank sums to examine equality in treatment distribu-

tions. Computation of the exact joint distribution under

the null is discussed by van de Wiel [28], and an efficient

algorithm for computing the exact permutation distribu-

tion of the Friedman test statistic is available in StatXact

[29]. The present paper offers an over-all exact test for

pairwise comparison of Friedman rank sums. The reason

is essentially that researchers are usually not only inter-

ested in knowing whether any difference exists among

treatments, but also in discovering which treatments are

different from each other, and the Friedman test is not de-

signed for this purpose. Although the type of test dealt

with here is not the same as the Friedman test, we will

briefly discuss the latter as the procedures have important

elements in common, such as the global null hypothesis.

Also, we assume in our discussion that the available data

are such that it is appropriate to perform simultaneous

rank sum tests. Hence, we ignore empirical issues such as

Eisinga et al. BMC Bioinformatics  (2017) 18:68 Page 2 of 18



insufficient power (too few datasets), selection bias (non-

random selection of datasets), and like complications that,

as noted by Boulesteix et al. ([30]; see also [31]), tend to

invalidate statistical inference in comparative benchmark-

ing studies of machine learning methods solving real-

world problems. In ANOVA, the term ‘treatment’ is used

as a common term for the grouping variable for which a

response is measured. To accommodate the wide variety

of applications of the Friedman test, the more general

term ‘group’ is used instead of ‘treatment’ in the remain-

der of this paper. The term subject is used hereafter to

include both objects and individuals.

Methods

Friedman data

To perform the Friedman test the observed data are ar-

ranged in the form of a complete two-way layout, as in

Table 1A, where the k rows represent the groups (classi-

fiers) and the n columns represent the blocks (datasets).

The data consist of n blocks with k observations

within each block. Observations in different blocks are

assumed to be independent. This assumption does not

apply to the k observations within a block. The test pro-

cedure remains valid despite within-block dependencies

[32]. The Friedman test statistic is defined on ranked data

so unless the original raw data are integer-valued rank

scores, the raw data are rank-transformed. The rank en-

tries in Table 1B are obtained by first ordering the raw

data {xij; i = 1,…, n, j = 1,…, k} in Table 1A column-wise

from least to greatest, within each of the n blocks separ-

ately and independently, and then to assign the integers

1,…,k as the rank scores of the k observations within a

block. The row sum of the ranks for any group j is the

rank sum defined as Rj = ∑i = 1
n rij.

Null hypothesis

The general null hypothesis of the Friedman test is that

all the k blocked samples, each of size n, come from

identical but unspecified population distributions. To

specify this null hypothesis in more detail, let Xij denote

a random variable with unknown cumulative distribution

function Fij, and let xij denote the realization of Xij.

The null hypothesis can be defined in two ways, de-

pending on whether blocks are fixed or random [33]. If

blocks are fixed, then all the k × n measurement values

are independent. If there are k groups randomly assigned

to hold k unrelated Xij within each block, as in a ran-

domized complete block design, then the null hypothesis

that the k groups have identical distributions may be

formulated as

H0 : Fi1(x) =… = Fik(x) = Fi(x) for each i = 1,…, n,

where Fi(x) is the distribution of the observations in the

ith block [28, 33]. The same hypothesis, but more spe-

cific, is obtained if the usual additive model is assumed

to have generated the xij in the two-way layout [23]. The

additive model decomposes the total effect on the meas-

urement value into an overall effect μ, block i effect βi,

and group j effect τj. If the distribution function is

denoted Fij(x) = F(x − μ − βi − τj), the null hypothesis of

no differences among the k groups may be stated as

H0 : τ1 ¼ … ¼ τk ;

and the general alternative hypothesis as

H1 : τj1≠τj2 for at least one (j1, j2) pair.

Note that this representation also asserts that the

underlying distribution functions Fi1(x),…, Fik(x) within

block i are the same, i.e., that Fi1(x) =… = Fik(x) = Fi(x),

for each fixed i = 1,…, n.

If blocks are random, measurements from the same

random block will be positively correlated. For example,

if a single subject forms a block and k observations are

made on the subject, possibly in randomized order, the

within-block observations are dependent. Such dependency

Table 1 Two-way layout for Friedman test
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occurs in a repeated measures design where n subjects are

observed and each subject is tested under k conditions.

Denote the joint distribution function of observations

within block i by Fi(x1,…, xk). Then the null hypothesis of

no differences among the k groups is the hypothesis of

exchangeability of the random variables Xi1,…,Xik [28, 34],

formulated as

H0 : Fi(x1,…, xk) = Fi(xσ(1),…, xσ(k)) for i = 1,…, n,

where σ(1),…, σ(k) denotes any permutation of 1,…, k.

The model underlying this hypothesis is that the random

variables Xij have an exchangeable distribution. This is a

suitable model for repeated measures, where it is not

appropriate to assume independence within a block

[32, 33]. We also note that this formulation of the null

hypothesis and the one for fixed blocks are consistent

against the same alternative, namely the negation of H0.

For a detailed discussion of this matter, see [35].

Whether blocks are fixed or random, if the null

hypothesis is true, then all the permutations of 1,…, k

are equally likely. There are k ! possible ways to assign

k rank scores to the k groups within each block and

all these intra-block permutations are equiprobable

under H0. As the same permutation argument applies

to each of the n independent blocks, there are (k !)n

equally likely rank configurations of the rank scores

rij in the two-way layout [23]. Each of these permuta-

tions has a probability of (k !)− n of being realized. This

feature is used to evaluate the null distribution of the rank

sums Rj, by enumerating all the permutations of the two-

way layout of ranks.

Friedman test statistic

Under the Friedman null hypothesis, the expected row

sum of ranks for each group equals n(k + 1)/2. The

Friedman test statistic

X2
r ¼

12

nk k þ 1ð Þ
X

k

j¼1

Rj−n k þ 1ð Þ=2
� �2

sums the squared deviations of the observed rank sums

for each group, Rj, from the common expected value for

each group, n(k + 1)/2, under the assumption that the k

group distributions are identical. For small values of k

and n, the exact distribution of Xr
2 has been tabled, for

example, by Friedman [1]. An algorithm for computing

the exact joint distribution of the Friedman rank sums

under the null is discussed in [28]. For the special case

of two paired samples, see [36].

Calculating the test statistic using the null distri-

bution of the (k !)n possible permutations is time

consuming if k is large. However, Friedman [1]

showed that as n tends to infinity, Xr
2 converges in

distribution to χdf = k − 1
2 , a chi-squared random vari-

able with k − 1 degrees of freedom. This result is

used in the asymptotic Friedman test. The Friedman

test rejects H0 at a pre-specified significance level α

when the test statistic Xr
2 exceeds the 100(1 − α)th

percentile of the limiting chi-squared distribution of

Xr
2 with k − 1 degrees of freedom [1]. The test statis-

tic needs to be adjusted if there are tied ranks

within blocks [22, 23]. Also, various modifications of

the Friedman test have been proposed, for example

the F distribution as an alternative to the chi-squared dis-

tribution [37], as well as generalizations, such as the

Skillings-Mack [38] test statistic for use in the presence of

missing data. These and various other adjustments and

nonparametric competitors to the Friedman test (e.g.,

Kruskal-Wallis, Quade, Friedman aligned ranks test) are

not discussed here (see [4, 22, 23]).

Pairwise comparison tests and approximate critical

difference

Frequently, researchers are not only interested in testing

the global hypothesis of the equality of groups but also,

or even more so, in inference on the equality of equality

of pairs of groups. Further, even if one is mainly inter-

ested in H0 and the hypothesis is rejected, a follow-up

analysis may be conducted to determine possible rea-

sons for the rejection. Such analysis may disclose group

differences, but it might also reveal that none of the

pairs is significantly different, despite a globally signifi-

cant test result.

To address these issues it is expedient to test

hypotheses of equality for pairs of groups using simul-

taneous comparison tests. These multiple comparison

procedures may involve, in 1 ×N (or many-one) compar-

isons, testing k − 1 hypotheses of equality of all non-

control groups against the study control or, in N ×N

(all-pairs) comparisons, considering k(k − 1)/2 hypoth-

eses of equality between all pairs of groups. For both

types of comparisons, large-sample approximate tests

have been designed. They are derived for the situation

where n, the number of blocks (i.e., ‘sample size’), is

large.

Table 2 displays the critical difference (CD) approxi-

mate tests for 1 ×N and N ×N comparisons of Friedman

rank sums, as recommended in highly-cited monographs

and papers and popular textbooks on nonparametric sta-

tistics. The critical difference is the minimum required

difference in rank sums for a pair of groups to differ at

the pre-specified alpha level of significance. It is to note

that in many publications the CD statistic is calculated

using the difference in rank sum averages, i.e., Rj/n,

rather than rank sums. The results are identical, since

each group has n observations, if the test statistic formu-

las are modified appropriately.
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When the null hypothesis of equidistribution of ranks

in n independent rankings is true, and the condition of a

large sample size is met, the differences in rank sums

are approximately normally distributed [26]. Let d = Ri −

Rj, with i ≠ j, be the rank sum difference among a pair of

groups i and j. The support of rank sum difference d is

the closure [−n(k − 1), n(k − 1)]. Under the null hypoth-

esis, the expected value E(d) = 0 and the variance Var(d)

= nk(k + 1)/6 [18, 23, 25]. As the distribution of d is sym-

metric around E(d) = 0, the skewness is zero, as are all

odd order moments. The kurtosis coefficient, derived by

Whitfield [24] as

Kurt dð Þ ¼ 3−
3

5n
−

12

5nk
−

6

5nk k þ 1ð Þ ;

is less than 3 (i.e., negative excess kurtosis), implying

that the discrete rank sum difference distribution has

thinner tails than the normal. Notice, however, that the

kurtosis tends to 3 with increasing n, thus a normal ap-

proximation is reasonable. This implies that d has an

asymptotic N(0, Var(d)) distribution and that the normal

deviate d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var dð Þ
p

is asymptotically N(0, 1).

As can be seen in Table 2, the normal approximate test

is recommended by various authors when all groups are

to be compared against each other pairwise. It is also

discussed by Demšar [2] as a test statistic to be employed

when all groups are compared with a single control. Note

that the normal test procedures control the familywise

Type-I error rate by dividing the overall level of signifi-

cance α by the number of comparisons performed (i.e., c1
in 1 ×N, and c2 in N ×N comparisons). There are more

powerful competitors to this Bonferroni-type correction

available, such as the Holm, Hochberg, and Hommel

procedures. These methods to control the overall false

positive error rate are not elaborated in this paper. For a

tutorial in the realm of classifier comparison, see Derrac

et al. [4].

In addition to the ordinary normal approximation,

simultaneous tests have been proposed that exploit the

covariance structure of the distribution of the values of

differences in rank sums. Whereas the n rankings are mu-

tually independent under H0, the rank sums and the rank

sum differences are dependent and correlated as well. The

correlation among the rank sum differences depends on

the rank sums involved. Specifically, as reported by Miller

[25], when the null hypothesis is true

Cor Ri−Rj;Ri−Rl

� �

¼ 1

2
i≠j≠l

Cor Ri−Rj;Rl−Rm

� �

¼ 0 i≠j≠l≠m:

Hence the correlation is zero for pairs of rank sum dif-

ferences with no group in common, and 0.5 for pairs of

differences with one group in common to both differ-

ences. The number of correlated pairs decreases as k in-

creases. For a study involving k groups, the proportion

of correlated pairs equals 4/(k + 1) [43]. Hence when k =

7, for example, 50% of the pairs are correlated, but when

k = 79 only 5% are correlated.

As noted in various studies (e.g., [23, 25, 39]), for 1 ×N

comparisons this correlation structure implies that, when

H0 is true and n tends to infinity, the distribution of the

differences between the k − 1 group rank sums and the

control rank sum coincides with an asymptotic (k − 1)

-variate normal distribution with zero means. The critical

difference value can therefore be approximated by the test

statistic labeled CDM in Table 2, where the constant

mα;df¼k−1;ρ¼1
2

is the upper αth percentile point for the

distribution of the maximum value of (k − 1) equally cor-

related N(0,1) random variables with common correlation

ρ ¼ 1
2
: The procedure has an asymptotic familywise error

rate equal to α [23, 25].

For N ×N comparisons, it means that the covariance of

the rank sum differences equals the covariance of the differ-

ences between k independent random variables with zero

means and variances nk(k + 1)/12. Thus, the asymptotic dis-

tribution of max Ri−Rj

�

�

�

�

� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk k þ 1ð Þ=12
p

coincides with

the distribution of the range (Qk,∞) of k independent N(0, 1)

random variables. The associated test statistic is CDQ,

Table 2 Recommended critical difference (CD) approximate tests for 1 × N and N × N comparisons of Friedman rank sums

Comparison Critical difference Reference

1 × N CDN ¼ zα=c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk k þ 1ð Þ=6
p

; c1 ¼ k−1 Demšar [2]

CDM ¼ mα;df¼k−1;ρ¼1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk k þ 1ð Þ=6
p

Siegel and Castellan [18], Nemenyi [39], Miller [25], Hollander et al.
[23], Zarr [20]

N × N CDN ¼ z1
2
α=c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk k þ 1ð Þ=6
p

; c2 ¼ k k−1ð Þ=2 Siegel and Castellan [18], Gibbons and Chakraborti [21], Daniel [19],
Hettmansperger [33], Sheskin [22]

CDQ ¼ qα;df¼k;∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk k þ 1ð Þ=12
p

¼
qα;df¼k;∞

ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk k þ 1ð Þ=6
p Nemenyi [39], Miller [25], Hollander et al. [23], Zarr [20], Desu and

Raghavarao [40], Demšar [2]

CDχ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2
α;df¼k−1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk k þ 1ð Þ=6
p

Miller [25], Bortz et al. [41], Wike [42]

Note: The constant mα;df¼k−1;ρ¼1
2
is the upper αth percentile point for the distribution of the maximum of k − 1 equally correlated (ρ=.5) unit normal N(0, 1) random

variables. The constant qα,df = k,∞ is the upper αth percentile point of the Studentized range (q) distribution with (k,∞) degrees of freedom. The references in the

right-most column are ordered by year of publication (of first edition).
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where the constant qα,df= k,∞ is the upper αth percentile

point of the Studentized range (q) distribution with (k,∞)

degrees of freedom [23, 25, 39]. Again, as the test considers

the absolute difference of all k groups simultaneously, the

asymptotic familywise error rate equals α [23, 25].

The Friedman statistic test itself gives rise to the sim-

ultaneous test mentioned in the bottom row of Table 2.

The null hypothesis is accepted if the difference in rank

sums fails to exceed the critical value CDχ2 : This asymp-

totic chi-squared approximation is recommended in some

popular textbooks, although Miller [25] has argued that

the probability statement is not the sharpest of tests.

Statistical power and alternative tests

Note that the CD test statistics presented in Table 2

do not require information about the within-block

ranks as determined in the experiment. Rather, the

simultaneous rank tests all assume that within each

block each observation is equally likely to have any

available rank. When this is true, the quantity (k +

1)(k − 1)/12 is the variance of the within-block rank-

ings and nk(k + 1)/6 the variance of the difference

between any two rank sums [25]. Hence the null dis-

tribution of d in the population has zero mean and

known standard deviation. This is the precise reason

why the normal approximate tests use the z-score as

test statistic. However, it is important to emphasize

in this context that the square root of nk(k + 1)/6 is the

standard deviation of d when the overall null hypothesis is

true, but not when it is false. It holds, similar to p-values,

only in a particular model, i.e. H0; a model that may or

may not be true. If the null hypothesis is false, the quantity

nk(k + 1)/6 is typically an over-estimate of the variance,

and this causes simultaneous tests, approximate and exact,

to lose power.

There are pairwise comparison tests for Friedman

rank sums available that are computed on the observed

rank scores rather than the rank sums. These tests,

such as the Rosenthal-Ferguson test [44] and the popu-

lar Conover test [45, 46], use the t-score as test statistic.

The pairwise t-tests are often more powerful than the

simultaneous tests discussed above, however, there are

also drawbacks. In brief, the Rosenthal-Ferguson test

uses the observed variances and covariance of the rank

scores of each individual pair of groups, to obtain a

standard error of d for the test of significance of the

pairwise rank sum difference. This standard error is

valid whether the null hypothesis of no pairwise differ-

ence is true or not. However, next to the formal con-

straint of the test that n should be larger than k + 1, the

variance of d may be estimated poorly, as there are typ-

ically few degrees of freedom available for (co-)variance

estimation in small-sample Friedman test applications.

Moreover, the observed (co-)variances are different for

each pair of groups. Consequently, it does not follow

from the significance of a difference of a given rank

sum A from another rank sum B, that a third rank sum

C, more different from A than B is, would also be

significantly different. This is an unpleasant feature of

the test.

The Conover test estimates the standard deviation

of d by computing a pooled standard error from the

(co-)variances of the observed rank scores of all

groups, thus increasing statistical power. The method

is similar to Fisher’s protected Least Significant

Difference (LSD) test, applied to rank scores. In this

methodology, no adjustment for multiple testing is made

to the p-values to preserve the familywise error rate at the

nominal level of significance. Rather, the test is protected

in the sense that no pairwise comparisons are performed

unless the overall test statistic is significant. As in the

Fisher protected LSD procedure, the Conover test has the

property of incorporating the observed F-value of the over-

all test into the inferential decision process. However, in

contrast to the Fisher protected LSD, which uses the ob-

served F-value only in a 0–1 (‘go/no go’) manner, the Con-

over test uses the F-value in a smooth manner when

computing the LSD. That is, it has the unusual characteris-

tic that the larger the overall test statistic, the smaller the

least significant difference threshold is for declaring a rank

sum difference to be significant. The Duncan-Waller test

[47] has this same characteristic, but this test advocates a

Bayesian approach to multiple comparisons with Bayes

LSD. As the comparison tests in the second stage are con-

ditional on the result of the first stage, the nominal alpha

level used in the pairwise Conover test has no real prob-

abilistic meaning in the frequentist sense. As noted by

Conover and Iman ([48]: 2), “Since the α level of the

second-stage test is usually not known, it is no longer a hy-

pothesis test in the usual sense but rather merely a con-

venient yardstick for separating some treatments from

others.”

Exact distribution and fast p-value calculation

We present an exact test for simultaneous pairwise com-

parison of Friedman rank sums. The exact null distribu-

tion is determined using the probability generating

function method. Generating functions provide an ele-

gant way to obtain probability or frequency distributions

of distribution-free test statistics [27, 28]. Application of

the generating function method gives rise to the follow-

ing theorem, the proof of which is in Additional file 1.

Theorem 1 For n mutually independent integer-valued

rankings, each with equally likely rank scores ranging from

1 to k, the exact probability to obtain pairwise difference d

for any two rank sums equals

Eisinga et al. BMC Bioinformatics  (2017) 18:68 Page 6 of 18



P D ¼ d; k; nð Þ ¼ k k−1ð Þf g−nW D ¼ d; k; nð Þ;

where

W D ¼ d; k; nð Þ ¼ k k−1ð Þf gn
X
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h¼0

n

h

� 	

1

kh 1−kð Þn
X

h
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� 	
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� 	

k j−ið Þ−d þ h−1
k j−ið Þ−d−h

� 	

is the number of distinct ways a rank sum difference of d

can arise, with d having support on d = [−n(k − 1), n(k − 1)].

Additional file 1 also offers a closed-form expression

for the exact p-value of d. [49−51] The p-value is defined

as the probability of obtaining a result at least as extreme

as the one observed, given that the null hypothesis is true.

It is obtained as the sum of the probabilities of all possible

d, for the same k and n, that are as likely or less likely than

the observed value of d under the null. The exact p-value

is denoted P(D ≥ d; k, n), and it is computed using the

expression

P D≥d; k; nð Þ ¼
X

n

h¼0

n

h

� 	

1

kh 1−kð Þn
X

h

i¼0

X

h

j¼0

−1ð Þ j−ið Þ

h

i

� 	

h

j

� 	

k j−ið Þ−d þ h

k j−ið Þ−d−h

� 	

;

d ¼ −n k−1ð Þ;…; n k−1ð Þ:

Calculating the exact p-value with this triple summation

expression provides a speed-up of orders of magnitude

over complete enumeration of all possible outcomes and

their probabilities by a brute-force permutation approach.

For larger values of n, however, exact calculation is some-

what time-consuming and to extend the practical range

for performing exact tests, it is desirable to compute the

p-value more efficiently.

Also, because in practice multiple comparison tests

are concerned with absolute differences, it is expedient

to compute the cumulative probability of the absolute

value of differences in rank sums. As the number of

mass points of the symmetric distribution of d is an in-

teger of the form 2n(k − 1) + 1, the distribution has an

odd number of probabilities. This implies that, as the

probability mass function of d is symmetric around zero,

the probability mass to the left of d = 0 may be folded

over, resulting in a folded distribution of non-negative d.

Consequently, the one-sided p-value of non-negative d

in the range d = 1,…, n(k − 1) may be obtained as the

sum of the two one-sided p-values of the symmetric

distribution with support d = [−n(k − 1), n(k − 1)]. As

doubling the one-sided p-value leads to a p-value for

d = 0 that exceeds unity, the p-value for d = 0 (only) is

computed as P(D ≥ 0; k, n) = P(D = 0) + P(D ≥ 1), and this

is exactly equal to 1.

To accelerate computation, we transform the double

summation over the indices i and j in the expression for

P(D ≥ d; k, n) to a summation over a single index, s say,

using Theorem 2. The proof is given in Additional file 2.

Theorem 2 For nonnegative integers d and k

X
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:

This reduction to a singly-sum function implies that the

p-value can alternatively be calculated from the much

simpler expression

P D≥ dj j; k; nð Þ ¼

2
X

n

h¼0

n

h
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X

h
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; d ¼ 1;…; n k−1ð Þ

1 d ¼ 0;

8

>

<

>

:

and, as we will show, even for larger values of n in a

computationally fast manner.

Software implementation

Although the two expressions for the exact p-value are

mathematically correct, straightforward computation may

produce calculation errors. Even for moderate values of n

(20 or so), the binomial coefficient that has d in the indi-

ces may become extremely large and storing these num-

bers for subsequent multiplication creates numerical

overflow due to the precision limitation of fixed-precision

arithmetic. One way to address this failure is to use a re-

currence relation that satisfies the generating function [53,

54]. The recursions we examined were all computationally

expensive to run, however, except for small values of n

and/or k. A faster way to compute the exact p-value cor-

rectly is to use arbitrary-precision arithmetic computation

to deal with numbers that can be of arbitrary large size,

limited only by the available computer memory.

The calculation of the p-value of the absolute rank sum

difference d given k and n is implemented in R [55]. The R

code, which requires the package Rmpfr [56] for high pre-

cision arithmetic to be installed, is in Additional file 3. The

script labeled pexactfrsd computes the exact p-value P(D ≥

|d|), and additionally affords the possibility to compute

the probability P(D = |d|), and the (cumulative) number of

compositions of d (i.e., W(D = |d|) and W(D ≥ |d|)). The R

code and potential future updates are also available at

http://www.ru.nl/publish/pages/726696/friedmanrsd.zip.

To illustrate the derivations, Additional file 4 offers a

small-sized numerical example (k = 3, n = 2), and

Additional file 5 tabulates the number of compositions

of d for combinations of k = n = 2,…,6, for inclusion in

the OEIS [52]. As can be seen in Additional file 5, for

small values of n the unfolded, symmetric distribution of

d is bimodal, with modes at + 1 and − 1 [24]. This
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feature rapidly disappears as n increases, specifically, for

k > 2 at n ≥ 6.

Hereafter, unless otherwise stated, we will consider the

value of rank sum difference d to be either zero or posi-

tive, ranging from 0 to n(k − 1), and thus drop the abso-

lute value symbol around d.

Incomplete rankings

Because the n rankings {1,2,…,k} are mutually independent,

we may divide them into two (or more), equal or unequal

sized parts, labeled (D1; k, n1) and (D2; k, n2), with ∑t= 1
2 Dt =

D, and Dt denoting the differences in rank sums of the two

parts. The exact p-value can be obtained using

P D≥d; k; nð Þ ¼ P D≥d; k; n1; n2ð Þ

¼
X

n1 k−1ð Þ

i¼−n1 k−1ð Þ
P D1 ¼ i; k; n1ð Þ

�P D2≥ d−ið Þ; k; n2ð Þ;

where – as indicated by the summation’s lower bound –

calculation is performed using the p-value expression

that allows for negative d. A unique and useful property

of the exact method, which is not shared by the approxi-

mate methods discussed, is that it is easy to calculate p-

value probabilities for designs with unequal block sizes

k; e.g., designs in which n1 has ranks {1, 2,…, k1}, and n2
ranks {1, 2,…, k2}, with k1 ≠ k2. A general expression for

calculating the exact p-value in incomplete designs with

j unequal sized parts is

P D≥d; k1; n1; k2; n2;⋯; k j; nj
� �

¼
X

n1 k1−1ð Þ

i1¼−n1 k1−1ð Þ

X

n2 k2−1ð Þ

i2¼−n2 k2−1ð Þ
⋯

X

nj−1 k j−1−1ð Þ

ij−1¼−nj−1 k j−1−1ð Þ
P D1 ¼ i1; k1; n1ð Þ �

P D2 ¼ i2; k2; n2ð Þ �⋯ � P Dj−1 ¼ ij−1; k j−1; nj−1
� �

�

P Dj≥ d−i1−i2⋯−ij−1
� �

; k j; nj
� �

;

where ∑t = 1
j Dt =D, and an example in which n is subdi-

vided into three parts, each with a unique value of k (k1,

k2, k3), is

P D≥d; k1; n1; k2;n2; k3; n3ð Þ ¼
X

n1 k1−1ð Þ

i¼−n1 k1−1ð Þ

X

n2 k2−1ð Þ

j¼−n2 k2−1ð Þ
P D1 ¼ i; k1; n1ð Þ �

P D2 ¼ j; k2; n2ð Þ � P D3≥ d−i−jð Þ; k3; n3ð Þ:

Although the sum functions slow down calculation,

this unique feature of exact p-value computation enables

one to conduct valid simultaneous significance tests

whenever some within-block ranks are missing by de-

sign. Such tests would be hard to accomplish using one

of the large-sample approximation methods. An empir-

ical example will be given in the Application section.

Exact and mid p-values

As pairwise differences with support on d = [−n(k − 1),

n(k − 1)] are symmetrically distributed around zero

under H0, doubling one-sided p-value is the most natural

and popular choice for an ordinary exact test. A test

using exact p-value guarantees that the probability of

committing a Type-I error does not exceed the nominal

level of significance. However, as the Type-I error rate is

always below the nominal level, a significance test with

exact p-value is a conservative approach to testing, espe-

cially if the test involves a highly discrete distribution

[57]. The mid p-value, commonly defined as half the

probability of an observed statistic plus the probability

of more extreme values, i.e.,

Pmid D≥d; k; nð Þ ¼ 1

2
P D ¼ dð Þ þ P D > dð Þ;

ameliorates this problem. The mid p-value is always

closer to the nominal level than the exact p-value, at the

expense of occasionally exceeding the nominal size.

Tied rankings

The mid p-value may also be used to handle tied rankings.

When ties occur within blocks, the midrank (i.e., average

of the ranks) is commonly assigned to each tied value. If,

as a result of tied ranks, the observed rank sum difference

is an integer value d plus 0.5, the p-value may be obtained

as the average of the exact p-values of the adjacent inte-

gers d and d + 1, i.e., 1
2
P D≥dð Þ þ P D≥ d þ 1ð Þ½ �; and this is

equivalent to the mid p-value. It is to note that the result-

ing probability is not exactly valid. Exact p-values repre-

sent exact frequency probabilities of certain events, and

mid p-values have no such frequency interpretation.

It may be argued, however, that this interpretational

disadvantage is of little practical concern and that

using mid p-values is an almost exact frequency ap-

proach. For a discussion of other treatments of ties in

rank tests, see [21].

Results and discussion

Time performance

The R program computes the exact p-value P(D ≥ d; k, n)

at a fast speed. It takes about half a second, for example,

to calculate the exact p-value for the rather demanding

problem d = k = n = 100, on a HP desktop computer using

the interpreted R language running under Windows 7

with an Intel Core i7 processor at 2.9GHz. To examine

the effects of d, k and n on the algorithm’s runtime, we

measured the time it takes to calculate the exact p-value

of d = 1 and d = n(k − 1) − 1, for n = 2,…, 100, and k = 10

and k = 100. The two support values next to the endpoints

of the distribution were taken as the p-values of the lower

and upper support boundaries can be trivially obtained as
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1 and 2{k(k − 1)}− n, respectively. The computation time

(in seconds) is shown in Fig. 1.

The figure indicates that running time is no limitation

when it comes to calculating the exact p-value, even for

larger problems. Computation time is moderately affected

by the magnitude of the computed p-value. The smaller

the p-value is, the faster the computation speed. For rank

sum difference d = 1 running time increases polynomially

(of maximum order 3) with increasing n, and for d =

n(k − 1) − 1 it increases virtually linearly. Also, for d = 1,

the minor runtime difference between k = 10 and k = 100

increases slowly with increase in value of n. For d =

n(k − 1) − 1 the time to do the calculation is essentially

the same for k = 10 as for k = 100. In sum, these timing

results show that the exact method admits an algorithm

that is fast for all k and n values typically encountered in

empirical studies testing differences in Friedman rank

sums, such as those comparing classifiers. This quality

makes the algorithm for exact calculation appealing, com-

pared to alternative asymptotic approximations. Indeed,

the algorithm is (considerably) faster than the one used

here for evaluating the multivariate normal-approximate

critical difference (CDM).

Exact distribution examples

We present some examples to illustrate the frequency

probability distribution of rank sum difference d. The

left panel of Fig. 2a displays the mass point probabil-

ities P(D = d; k, n) for k = 5 and n = 5, over the entire

support interval d = [0, 20]. The right panel shows the

exact p-values P(D ≥ d; k, n) for k = n = 5, i.e., the tail-

probability at and beyond the value of d. The steps in

the (cumulative) probability distributions are due to

the discreteness of d, implying that events are concen-

trated at a few mass points. To adjust the p-values for

discreteness, one might opt to obtain mid p-values.

The mid p-value is less than the exact p-value by half

the mass point probability of the observed result, and

it behaves more like the p-value for a test statistic with

a continuous distribution.

The jumps at the steps decrease with increase in value

of k and/or n. To exemplify this point, the left panel of

Fig. 2b displays the less discrete p-value distribution for

k = n = 10. The powerful benefit of exact calculation is

shown in the right panel of the same figure. The graph

displays the log10-transformed p-values obtained by

exact calculation, with the cumulative normal density

superimposed. As can be seen, the continuous normal is

imperfect for estimating probabilities in the long right tail,

where d values are large and p-values are small. Note that

the error increases as the p-values decline. Compared to

exact calculation, the cumulative normal is overly conser-

vative in that it tends to over-predict the true p-value and

thus understate the evidence against the null.

For continuous test statistics, p-values are known to

be uniformly distributed over the interval [0,1] when

the null hypothesis is true [58]. Also, uniformly dis-

tributed p-values, with a mean of 0.5 and a variance of

1/12 ≈ 0.0833, produce a linear cumulative distribution

function corresponding to the true overall null hypothesis,

implying that points in the cumulative p-value plot exhibit

a straight line. We generated n = 5 Monte Carlo permuta-

tions of k = 50 integers from 1 to k inclusive, and calcu-

lated the rank sums and the exact p-value of the rank

sum differences. For this particular set of permutations,

the mean of the (2
k) = 1, 225 p-values was 0.512 and the

variance 0.0824. The left panel of Fig. 2c confirms the

intuitive notion that the discrete p-values are approxi-

mately uniformly distributed under H0. The right panel

plots the 1 − p-value against the number of p-values

Fig. 1 Computational time. Time (in seconds) for calculating the exact p-value of d = 1 and d = k(n − 1) − 1, for n = 2,…, 100 and k = 10 (black line)

and k = 100 (red line)
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Fig. 2 (See legend on next page.)
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(i.e., number of hypothesis tests), expressed in terms of

proportions. As can be seen, the ensemble of p-values

in the cumulative plot is close to the diagonal line, as is

to be expected when null hypotheses are all true.

Exact versus approximate critical differences

Table 3 presents the unadjusted and the Bonferroni-

adjusted exact and approximate critical differences for

1 ×N and N ×N comparisons of Friedman rank sums,

for n = k = 5,10,25,50,100, at the familywise error rate of

α=.05. The values for CDM were obtained using the R

package mvtnorm [59], and the other approximate

values using standard distributions available in the R

stats package [55].

The first point to note from Table 3 is that, at the .05

level, the unadjusted normal-approximate critical dif-

ferences (CDN) are identical to the exact CD for almost

all k and n. In the event one chooses not to control the

(See figure on previous page.)

Fig. 2 Distribution of exact mass point probabilities and exact p-values. a Exact mass point probabilities, and exact p-values, for k= n= 5. (b) Exact

p-values, and log10-transformed exact (blue line) and normal approximate p-values (red line), for k= n= 10. (c) Histogram of simulated p-values under the

overall null hypothesis with expected null frequency superimposed, and cumulative distribution function of the simulated 1− p-values with diagonal line

overlay, for k= 50, n= 5.

Table 3 Exact (CD) and approximate critical values of differences in rank sums, at the familywise error rate of α=.05

k n max(d) Unadjusted Bonferroni-adjusted

1 × N comparison N × N comparison

CD CDN CD CDN CDM CD CDN CDQ CD χ
2

5 5 20 11 10 13 13 13 14 15 14 16

10 40 15 14 18 18 18 20 20 20 22

25 100 23 22 29 28 28 32 33 31 35

50 200 32 31 40 40 39 45 45 44 49

100 400 45 44 57 56 55 64 63 61 69

10 5 45 20 19 27 27 26 30 32 31 40

10 90 27 27 38 38 37 44 45 43 56

25 225 43 42 60 60 58 70 70 68 89

50 450 60 60 85 84 82 99 99 96 125

100 900 85 84 120 119 115 141 140 136 177

25 5 120 46 46 70 72 69 83 88 86 141

10 240 65 65 100 102 98 121 124 121 199

25 600 103 102 160 161 154 194 196 191 315

50 1200 145 145 227 227 218 276 278 270 445

100 2400 205 204 321 321 308 392 392 381 629

50 5 245 91 91 146 152 145 175 190 185 376

10 490 128 128 210 215 205 258 268 261 531

25 1225 203 203 337 339 323 417 423 412 840

50 2450 287 286 478 479 457 595 599 582 1188

100 4900 405 405 677 678 646 844 846 824 1680

100 5 495 180 180 304 320 302 368 406 395 1019

10 990 255 255 441 452 427 548 573 559 1441

25 2475 403 403 708 714 676 891 906 883 2278

50 4950 569 569 1005 1010 955 1271 1281 1249 3221

100 9900 805 805 1425 1427 1350 1805 1812 1766 4555

Note: The tabled values satisfy the relation P(D ≥ tabled value) <.05. For presentational purposes, the approximate critical differences were rounded up to the

smallest integer that is not less than the calculated value. Italicized figures in the right-most column represent critical differences exceeding the maximum value

of d, denoted max(d), implying that none of the rank sum differences is significant at the α=.05 level
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familywise error rate, the underestimation by CDN

amounts to 1 at most, at least for the values of k and n

considered here.

The close correspondence of normal-approximate

and exact CD deteriorates once the p-value threshold

for significance is corrected for multiple testing. In 1 ×

N comparisons, the agreement is quite satisfactory as

long as k is small relative to n, but the normal method

overestimates the exact critical value if k is larger than

n. The same goes for N ×N comparisons, but worse. As

can be seen, the normal approximation generally im-

proves as n gets larger, for constant value of k, support-

ing large-sample normal theory. However, the normal

method overestimates the exact critical value consider-

ably if k is larger than n. The disparity is most pronounced

if k is large and n is small. For example, for k = 25 and n =

5, the exact CD is 83, whereas the (rounded) normal ap-

proximate critical difference value equals 88. The normal

approximation produces larger than exact p-values at the

tails and larger than exact critical difference values.

The second point to note is that the ordinary normal

method – while understating the evidence against the

null hypothesis – is, by and large, the most accurate ap-

proximate test of the asymptotic variants studied here.

The CDM for k − 1 comparisons with a control tends to

underestimate the exact CD, even if n is large, which

may lead one to incorrectly reject the null hypothesis.

The same goes, but somewhat less so, for all-pairs com-

parisons with CDQ. The Studentized range critical value

is seen to be too liberal in the sense that it underesti-

mates the critical difference value, even for larger values

of n, and especially if n outnumbers k. The asymptotic

procedure that draws on the chi-squared distribution is

seen to perform inadequately overall. As the inferences

are suspect, this test statistic is not advocated as a criter-

ion for judging whether differences in Friedman rank

sums are significant.

Hence, in general, the normal approximation is overly

conservative if n is smaller than k and the other ap-

proximations are too liberal if n is larger than k, and

this holds even for relatively large values of n. For many

parameter settings the biases are considerable. In any

case, they are large enough to imply that if the observed

rank sum difference is near to the critical value, the

choice between exact and approximate methods can

mean the difference between pairs of groups being con-

sidered significantly different or not. It is equally im-

portant to note that the above results apply to a

familywise error rate of α=.05. The disparity between

exact and asymptotic critical values increases, if the

error rate is set to a lower value (e.g., .01). This issue is

well visualized in the right panel of the earlier discussed

Fig. 2b.

Type-I error and mid p-values

The critical difference values denoted CD in Table 3

were obtained by setting the bound on Type-I error at

5%. For the asymptotic approximate methods, with a

continuous reference distribution, the maximum prob-

ability of rejecting the null when it is in fact true is

equal to α=.05. An exact test, however, keeps the actual

probability of a Type-I error below 5%, as there are only

certain p-values possible when working with discrete data.

Table 4 reports the actual probability of a Type-I error

(i.e., exact p-value) and the mid p-value, for the unadjusted

exact CD values presented in Table 3 (column 4).

Note that, whereas the alpha level was set at 5%, the

actual probability of a Type-I error for the smallest n = k

= 5 is a little above 3%. For larger values of k and n the

ordinary exact test appears only slightly more conserva-

tive than the nominal level. Note further that the mid

p-value minimizes the discrepancy between the exact

p-value and the significance level. The mid p-value

Table 4 Exact and mid p-values for unadjusted exact CD values

k n p-value mid p-value k n p-value mid p-value k n p-value mid p-value

5 5 .0326 .0440 10 5 .0397 .0457 25 5 .0494 .0521

10 .0389 .0471 10 .0496 .0543 10 .0494 .0513

25 .0437 .0489 25 .0468 .0495 25 .0487 .0498

50 .0461 .0498 50 .0492 .0512 50 .0495 .0503

100 .0465 .0490 100 .0484 .0497 100 .0494 .0499

50 5 .0485 .0498 100 5 .0493 .0500

10 .0500 .0509 10 .0493 .0497

25 .0493 .0498 25 .0496 .0498

50 .0493 .0497 50 .0499 .0501

100 .0497 .0500 100 .0499 .0500

Note: Bold figures indicate mid p-values exceeding the nominal level of α=.05.
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occasionally exceeds the nominal level, and still tends to

somewhat underrate the nominal in other instances, al-

though necessarily less so than using the exact p-value. As

can be seen, the difference between exact and mid p-value

diminishes as k and/or n increases and the discreteness of

the sample distribution diminishes.

We emphasize in this context that the inferential

conservativeness associated with exact p-values is in-

troduced by testing at a pre-specified alpha level of

significance. In practice, it might be preferable to re-

port observed levels of significance rather than testing

at a particular cut-off value.

Normal error and continuity correction

Because the discrete rank sum difference distribution is

approximated by a continuous distribution, a correction for

continuity is advocated by some (e.g., [24]), to bring the

asymptotic probabilities into closer agreement with the

exact discrete probabilities. We restrict the discussion to the

normal approximation and calculate the percentage relative

error of the normal p-values to the true p-values using

R dð Þ ¼ 100
Pnormal d−cð Þ−Pexact dð Þ

Pexact dð Þ


 �

;

where c is equal to 0.5 or 0 for the normal method with

or without continuity correction, respectively. Figure 3

displays the percentage relative error R(d) versus exact

p-values, for n = k = 10,100.

The graphics indicate that the relative error decreases

with increasing n, both for k = 10 and k = 100. They also

show that, for k = 10 and n = 10,100, the normal approxi-

mation without continuity correction underestimates the

true p-value if the exact probabilities are large. However,

small true p-values are overestimated by the normal and

this overestimation increases as the probabilities become

Fig. 3 Error normal approximation. Percentage relative error R(d) of normal approximation with (red line) and without (black line) continuity correction

versus exact p-value, for n = k = 10,100

Eisinga et al. BMC Bioinformatics  (2017) 18:68 Page 13 of 18



smaller. Continuity correction brings large normal p-

values into closer correspondence with the exact p-values,

but for small p-values (i.e., significant results) it may

worsen agreement and increase overestimation by the

normal. For k = 100, the rank sum difference distribution

is less discrete and therefore correction for continuity has

little effect. This suggests that the neglect of the continuity

correction is not a serious matter, and may, indeed, occa-

sionally be an advantage.

Finally, as indicated, the large-sample approximations

are derived for the situation where n is large. Frequently,

however, the number of groups may be quite large

whereas the number of replications per group is limited

[60]. Such ‘large k, small n’ situation is fairly common in

agricultural screening trials [61] for example, and it also

occurs quite often in comparisons of classifiers using

ranked data. Published examples in bioinformatics include

classifier studies with dimensions k = 9 and n = 3 [62], k =

10 and n = 6 [63], and k = 13 and n = 4 [64]. A similar issue

arises in the identification of k genes by ranking using n

different algorithms, for example, k = 13 and n = 5 as in

[65], and k = 88 and n = 12 as in [66]. Such ‘large k, small

n’ data are common in gene-expression profiling studies

[67, 68]. Particularly for these data conditions, the choice

of an appropriate test statistic is vitally important to the

validity of research inferences.

Application

We present two data examples to illustrate potential

non-equivalence of exact and approximate inference,

and the benefit of exact calculation. Recall that we as-

sume that the data are such that it is appropriate to

perform the Friedman test. We pass no judgement on

this, as that would require expertise in the substantive

fields and detailed ‘in-house’ knowledge of selection

and measurement procedures. For a proper statistical

framework for comparison studies see Boulesteix et al.

[30]. This review study also shows that real-world ap-

plications comparing classifiers are often underpow-

ered. That is, in small-sample settings the differences

between the performances of pairs of algorithms are

sometimes so variable that one is unable to draw statis-

tically meaningful conclusions.

To illustrate the benefit of exact calculation, Friedman

rank data on the comparison of qPCR curve analysis

methods were obtained from Ruijter et al. [69]. The aim

of the comparison of the k = 11 methods was to test

their performance in terms of the following (n = 4) indi-

cators: bias, linearity, precision, and resolution in tran-

scriptional biomarker identification. The null hypothesis

is that there is no preferred ranking of the method re-

sults per gene for the performance parameters analyzed.

The rank scores were obtained by averaging results

across a large set of 69 genes in a biomarker data file.

Table 5 displays the Friedman rank sums of the methods

and, in the upper top triangle, the absolute values of the dif-

ferences in rank sums. We obtained the Bonferroni-

adjusted normal-approximate p-value, Bonferroni-adjusted

exact p-value, and Studentized range approximate p-value

for the 55 rank sum differences. The results are presented

in the upper bottom, lower bottom, and lower top triangles

of the table, respectively.

Straightforward comparison shows that the approxima-

tions are conservative estimates of the true probabilities.

That is, the smallest exact p-values are considerably smaller

than both the normal and the Studentized range approxi-

mate p-values. According to the normal approximate test

there is, at a familywise error rate of .05, no evidence that

the methods perform differently, except for Cy0 and FPF-

PCR, the pair of methods with the largest difference in rank

sums. When applying the Studentized range distribution

we find a rank sum difference of d = 31 or larger to be sig-

nificant. The true p-values are smaller however, and exact

calculation provides evidence that the critical difference

value at α=.05 is d = 30, implying that four pairs of methods

perform significantly different. This example illustrates the

practical implication of using exact p-values in the sense

that exact calculation uncovers more significantly different

pairs of methods than the asymptotic approximations, and

may thus lead to different conclusions.

We were reminded by the reviewers of this paper that

the Friedman test assumes that the n blocks are inde-

pendent, so that the measurement in one block has no

influence on the measurements in any other block. This

leads to questioning the appropriateness of the Friedman

test in this application. We do not wish to make any

firm judgement about this, other than making the obser-

vation that the rank scores presented in the source paper

([69]: Table 2) are strongly related. The same goes for

the results of a similar analysis of much the same data

by other researchers ([64]: Table 1).

The second illustration concerns exact calculation in in-

complete designs. Zagar et al. [70] investigated the utility of

k = 12 data transformation approaches and their predictive

accuracy in a systematic evaluation on n = 10 cell differenti-

ation datasets from different species (mouse, rat, and hu-

man) retrieved from the Gene Expression Omnibus. To

compare the predictive accuracy performance of the k = 12

methods on the n = 10 datasets, they used the Friedman

test. Table 6 presents the Friedman ranks obtained by rank-

ing the raw scores presented in Table 1 of Zagar et al. [70].

Note that the ranks of Pathrecon and PCA-Markers

for dataset GDS2688 are missing. Zagar et al. [70] there-

fore decided to exclude all ranks within GDS2688 from

the computation of the rank sums and restricted their

analysis to n = 9 datasets. The rank sums excluding

GDS2688 are displayed in the right-most column of

Table 6.
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Instead of deleting GDS2688, the missing data for

Pathrecon and PCA-Markers could be dealt with by

substitution, for example by imputing the mean of the

observed raw scores, followed by re-ranking the 12

methods according to their scores on GDS2688. How-

ever, as noted by the authors, the score of PCA-Markers

for GDS2688 is not given because “stem cell differenti-

ation markers are not relevant for the process studied in

this dataset” ([70]: 2549). Hence the rank score is miss-

ing by design, and thus imputation is inappropriate at

least for the PCA-Markers method.

An alternative procedure is to divide the n = 10 inde-

pendent ranking into two different parts, one consisting of

k = 12 methods and n = 9 datasets and the other one hav-

ing k = 10 methods and n = 1 dataset. The computation of

exact p-values in such incomplete design is readily accom-

plished, since the probabilities are easily obtained by the

method outlined above. These p-values afford the possibil-

ity to conduct valid significance tests using all available

rank data.

The bottom part of Table 6 presents the exact p-values

obtained for the comparison of the MCE-euclid-FC and

the PLS-AREA-time methods. Additional file 6 has the R

code to reproduce the results. The next-to-last row dis-

plays the exact p-values for the difference d = (73–36=)37

in rank sums, if the ranks for GDS2688 are not included

in the sums. The bottom row shows the exact p-values for

the rank sums difference d = ([73 + 10]-[36 + 1]=)46 if the

two rank sums include the available ranks of the methods

for GDS2688. Note that for this particular comparison at

least, the latter p-values, whether adjusted or not, are con-

siderable smaller than the p-values obtained after listwise

deletion of missing rank data.

The p-value probabilities pertaining to difference of

sums of all available rank data can also be estimated using

permutation testing and most likely also with method-

ology such as Laplace approximation or the saddlepoint

method. However, these stochastic and deterministic

approximations tend to become rather complicated and

more cumbersome to work with than the exact computa-

tion method described here.

Conclusions

We provide a combinatorial exact expression for obtaining

the probability distribution of the discrete rank sum differ-

ence statistic for pairwise comparison of Friedman rank

Table 5 Friedman rank data for k = 11 methods and n = 4 performance indicators (Ruijter et al. [69])

Method Rank sum Cy0 LinRegPCR Standard-Cq PCR-Miner MAK2 LRE-E100 5PSM DART FPLM LRE-Emax FPK-PCR

Cy0 7 3 3 10 11 15 25 27 29 31 33

LinRegPCR 10 1 0 7 8 12 22 24 26 28 30

Standard-Cq 10 1 1 7 8 12 22 24 26 28 30

PCR-Miner 17 1 1 1 1 5 15 17 19 21 23

MAK2 18 1 1 1 1 4 14 16 18 20 22

LRE-E100 22 1 1 1 1 1 10 12 14 16 18

5PSM 32 0.423 1 1 1 1 1 2 4 6 8

DART 34 0.220 0.578 0.578 1 1 1 1 2 4 6

FPLM 36 0.110 0.307 0.307 1 1 1 1 1 2 4

LRE-Emax 38 0.052 0.156 0.156 1 1 1 1 1 1 2

FPK-PCR 40 0.024 0.076 0.076 0.782 1 1 1 1 1 1

Cy0 1 1 0.993 0.985 0.883 0.216 0.130 0.073 0.038 0.019

LinRegPCR 1 1 1 0.999 0.972 0.403 0.271 0.169 0.098 0.053

Standard-Cq 1 1 1 0.999 0.972 0.403 0.271 0.169 0.098 0.053

PCR-Miner 1 1 1 1 1 0.883 0.773 0.631 0.477 0.334

MAK2 1 1 1 1 1 0.923 0.833 0.705 0.554 0.403

LRE-E100 1 1 1 1 1 0.993 0.972 0.923 0.833 0.705

5PSM 0.350 1 1 1 1 1 1 1 1 0.999

DART 0.150 0.514 0.514 1 1 1 1 1 1 1

FPLM 0.057 0.232 0.232 1 1 1 1 1 1 1

LRE-Emax 0.018 0.094 0.094 1 1 1 1 1 1 1

FPK-PCR 0.005 0.033 0.033 0.738 1 1 1 1 1 1

Note: The upper top triangle displays the rank sum differences, upper bottom triangle the Bonferroni-adjusted normal approximate p-values, lower bottom triangle

the Bonferroni-adjusted exact p-values, and lower top triangle the Studentized range approximate p-values. Bold figures indicate p-values ≤ .05
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sums. The exact null distribution contributes to the im-

provement of tests of significance in the comparison of

Friedman rank sums, and constitutes a framework for val-

idating theoretical approximations to the true distribution.

The numerical evaluations show that, in multiple compari-

son testing, determining the exact critical difference and

the true p-value offers a considerable improvement over

large-sample approximations in obtaining significance

thresholds and achieved levels of significance. The empir-

ical applications discussed exemplify the benefit, in practice,

of using exact rather than asymptotic p-values.

Of the large-sample approximation methods consid-

ered in this study, the simple normal approximation cor-

responds most closely to the exact results, both for

many-one and all-pairs comparisons. However, the dif-

ference between exact and normal approximate p-values

can be large for significant events further in the tail of

the distribution. Such events occur, in particular, when-

ever the number of groups k is large and the number of

blocks n is small. In a multiple testing context with ‘large

k and small n’, application of the normal approximation

increases the probability of a Type-II error, hence false

acceptance of the null hypothesis of ‘no difference’. The

exact p-values also greatly improve the ability to detect

significant differences if the observed rank sum differ-

ences are close to the approximate critical value. In such

situation, the choice between exact and approximate

methods can mean the difference between pairs (classi-

fiers) being considered significantly different or not. Fur-

ther, we typically prefer tests that are as accurate as

possible while still being fast to compute. As the exact

p-values can be computed swiftly by the method out-

lined in this note, there is no longer need to resort to

occasionally flawed approximations.

Finally, the rank sum and rank product statistics are

widely used in molecular profiling to identify

differentially expressed molecules (i.e., genes, transcripts,

proteins, metabolites) [67, 68, 71]. Molecule selection by

ranking is important because only a limited number of

candidate molecules can usually be followed up in the bio-

logical downstream analysis for subsequent study. The

non-parametric statistic discussed here is potentially an

additional new tool in the toolbox of methods for making

justified, reproducible decisions about which molecules to

consider as significantly differentially expressed.

Additional files

Additional file 1: Proof of Theorem 1. (PDF 59 kb)

Additional file 2: Proof of Theorem 2. (PDF 51 kb)

Additional file 3: Friedmanrsd. A.zip file providing the script of the

algorithm implemented in R. (ZIP 2 kb)

Additional file 4: Numerical example for k = 3, n = 2. (PDF 67 kb)

Table 6 Friedman rank data for k = 12 methods and n = 10 cell differentiation datasets (Zagar et al. [70])

Method GDS
2431

GDS
2666

GDS
2667

GDS
2668

GDS
2669

GDS
2671

GDS
2672

GDS 586 GDS
587

GDS
2688

Rank sum
excluding GDS2688

MCE-euclid-FC 1 2 1 6 6 1 1 10 8 1 36

PCA-FC 5 1 6 1 1.5 12 8 5.5 1 3 41

PLS-AREA 6.5 8 4 3 4.5 5 6 7.5 3 6 47.5

PCA-AREA 4 6.5 3 2 7 11 7 7.5 2 2 50

MCE-euclid-AREA 3 3.5 2 5 9 3.5 5 11 9 4 51

PLS-FC 9 5 8 4 1.5 3.5 12 5.5 5.5 5 54

SVMRank-FC 11 9 5 8 8 6 3 1 5.5 7 56.5

SVMRank-AREA 9 11 9 7 3 10 2 2 4 8 57

PLS-FC-time 9 3.5 11 11 4.5 8 10 3 10 9 70

PLS-AREA-time 6.5 6.5 12 12 12 9 4 4 7 10 73

Pathrecon 2 12 7 10 11 2 9 9 11 73

PCA-Markers 12 10 10 9 10 7 11 12 12 93

Exact p-values for MCE-euclid-FC vs PLS-AREA-time

d k n k1 n1 k2 n2 unadjusted Bonferroni-adjusted

1 × N comparison N × N comparison

Excluding
GDS2688

37 12 9 0.016 0.174 1

Including
GDS2688

46 12 9 10 1 0.003 0.038 0.230

Note: Bold figures indicate p-values ≤ .05
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Additional file 5: Number of compositions of d for k,n= 2,…,6. (PDF 65 kb)

Additional file 6: Computation of p-values presented in Table 6. A.zip

file providing the R code to reproduce the exact p-values presented in

Table 6. (ZIP 1 kb)
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