
March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

International Journal of Foundations of Computer Science
Vol. 23, No. 2 (2012) 407–429
c© World Scientific Publishing Company
DOI: 10.1142/S0129054112400205

EXACT PARALLEL ALIGNMENT OF MEGABASE GENOMIC

SEQUENCES WITH TUNABLE WORK DISTRIBUTION

AZZEDINE BOUKERCHE

School of Information Technology and Engineering, University of Ottawa, Canada

boukerch@site.uottawa.ca

RODOLFO BEZERRA BATISTA∗,
ALBA CRISTINA MAGALHAES ALVES DE MELO†,

FELIPE BRANDT SCAREL‡ and
LAVIR ANTONIO BAHIA CARVALHO DE SOUZA§

Department of Computer Science, University of Brasilia, Brazil
∗rodolfobatista@gmail.com

†albamm@cic.unb.br
‡felipe@cic.unb.br
§lavir@cic.unb.br

Received 24 August 2009
Accepted 22 August 2010

Communicated by El-Ghazali Talbi

Sequence Alignment is a basic operation in Bioinformatics that is performed thousands
of times, on daily basis. The exact methods for pairwise alignment have quadratic time
complexity. For this reason, heuristic methods such as BLAST are widely used. To obtain
exact results faster, parallel strategies have been proposed but most of them fail to
align huge biological sequences. This happens because not only the quadratic time must
be considered but also the space should be reduced. In this paper, we evaluate the
performance of Z-align, a parallel exact strategy that runs in user-restricted memory
space. Also, we propose and evaluate a tunable work distribution mechanism. The results
obtained in two clusters show that two sequences of size 24MBP (Mega Base Pairs) and
23MBP, respectively, were successfully aligned with Z-align. Also, in order to align two
3MBP sequences, a speedup of 34.35 was achieved for 64 processors. The evaluation of

our work distribution mechanism shows that the execution times can be sensibly reduced
when appropriate parameters are chosen. Finally, when comparing Z-align with BLAST,
it is clear that, in many cases, Z-align is able to produce alignments with higher score.

Keywords: Parallel algorithms; dynamic programming.

1. Introduction

In the last decades, we have observed an unprecedented development in molecular

biology. A very high number of organisms have been sequenced in genome projects,

and many of those are waiting for further analysis.

407

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0129054112400205

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

408 A. Boukerche et al.

Direct experimentation is the most reliable method to determine the func-

tion/structure of a newly sequenced organism. However, the experiments that must

take place are very complex and time consuming. For this reason, it is far more

productive to use computational methods to infer biological information from a se-

quence. This is usually done by comparing the new sequence with sequences that

have already had their characteristics determined.

Biological sequence comparison is, therefore, one of the most basic operations in

Bioinformatics. It is in fact a problem of finding an approximate pattern matching

between two sequences, possibly introducing spaces (gaps) into them [13]. As a

result of this operation, one or more alignments are produced.

The most common types of sequence alignment are global and local. To solve a

global alignment problem is to find the best match between the entire sequences. On

the other hand, local alignment algorithms must find the best match between parts

of the sequences. One important issue to be considered is how gaps are treated. A

simple solution assigns a constant penalty for gaps. However, it has been observed

that keeping gaps together represents better the biological relations. Hence, the

most widely used model among biologists is the affine gap model [7], where the

penalty for opening a gap is higher than the penalty for extending it.

The algorithm proposed by Smith and Waterman (SW) [17] is one of the first

exact methods in the literature to locally align two sequences with constant gap

function. It is based on dynamic programming and it calculates a similarity matrix

of size nxn, where n is the size of the sequences. SW has O(n2) time and space

complexity . An algorithm based on SW that uses an affine gap function is proposed

by Gotoh in [7].

Many methods were proposed to reduce space and/or time complexity of the

basic algorithms (SW and NW [14]). An exact method was proposed in [12], based

on [9], to compute optimal global alignments in linear space. If the sequences are

known to be quite similar, faster exact methods such as [6] can be used.

In order to further reduce execution time, heuristic methods such as BLAST

[1] were proposed. These methods combine exact pattern matching with dynamic

programming in order to produce good solutions faster. BLAST can align sequences

in a very short time, still producing good results. Nevertheless, its accuracy is

expected to be worse than the accuracy of the exact methods, that produce optimal

results.

Parallel processing can be used as an alternative to reduce the execution time

of the exact methods. Most of the parallel strategies proposed in the literature

[2, 3, 4, 5] use the wavefront method [15] to calculate the similarity matrix. In this

method, the amount of parallelism is non-uniform, with neighbor communication.

In this paper, aligning huge genome sequences is defined to be the genera-

tion of pairwise alignments for sequences that are equal or longer than 1MBP

(Mega Base Pairs). This is a challenging task since the algorithm to solve

it must be optimized for both time and space. The most popular and pub-

licly available software to generate exact alignments is SSEARCH (available at

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 409

www.biology.wustl.edu/gcg/ssearch.html), which compares a sequence with a ge-

nomic database, but the sequence size is limited to 500KBP (Kilo Base Pairs). For

longer sequences, supermatcher, available at emboss.bioinformatics.nl, is presented

as an alternative. However, the comparison of two 5MBP sequences with super-

matcher fails due to insufficient memory. BLAST can be used to compare huge

sequences, producing alignments in a short time.

Parallel SSEARCH was used in [11] to compare a sequence of 4KBP with a viral

database of 105MB. Note that this problem is different from the problem of aligning

two huge sequences. In this case, sequences that compose the database are small

and distributed to the nodes. Each node compares a subset of small sequences in a

sequential way.

In a previous paper, we proposed Z-align [2], a parallel exact strategy based

on SW [17] that aligns biological sequences in restricted memory space, with the

affine gap model. In its first version, Z-align used a uniform work distribution policy.

Running on a 16-processor cluster, Z-align was able to compare 3MBP sequences.

Nevertheless, it was observed that, for huge sequences, the idle time of the first

processors was very high.

In the present paper, we evaluate the performance and the results produced

by Z-align in two clusters (32 and 64 processors, respectively). With an adequate

memory allocation strategy, Z-align was able to align two real DNA sequences of

size 24MBP and 23MBP. As far as we know, this is the first time sequences of

this size are aligned with an exact method. Also, we measured the speedups to

compare real 3MBP sequences. In this case, a speedup of 34.35 was achieved for

64 processors. The evaluation of the tunable work distribution mechanism shows

that execution times are highly dependent on the amount of work assigned to each

processor. For work distribution, it must be taken into account that the reduction

of processor idle time increases the amount of communication, for applications such

as Z-align, that use the wavefront method. For this reason, tunable work division

is highly appropriate.

The reminder of this paper is organized as follows. Section 2 presents the bio-

logical sequence alignment problem, the Smith-Waterman algorithm and its serial

variations. Related work is discussed in Section 3. In Section 4, the Z-align strategy

and the work division mechanism are described. Section 5 presents the experimental

results. Finally, Section 6 concludes the paper and presents future work.

2. Biological Sequence Alignment

DNA and protein sequences are treated as strings represented, respec-

tively, by elements of the alphabets ΣDNA = {A, T,G,C} and ΣPROT =

{A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y }. Aligning two biological

sequences is a problem where the goal is to find a given pattern in a given text,

allowing a limited number of errors [13].

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

410 A. Boukerche et al.

2.1. Similarity and alignment

Two basic notions widely used in pairwise sequence comparison algorithms are

similarity and alignment. The similarity is a measure of how similar two sequences

are [13]. In general, very similar sequences present very few errors.

To measure the similarity between two sequences, a score is calculated. Given

an alignment between sequences s and t, the following values are assigned for each

column: ma, if both characters are identical (match); mi, if the characters are not

identical (mismatch); and g, if one of the characters is a space (gap). The score

is the sum of all these values. The similarity between two sequences is the highest

score.

Table 1 presents one possible global alignment between two DNA sequences and

its associated score. In this case, ma = +1,mi = −1 and g = −2.

Table 1. Global alignment and score between sequences s =
ATAGCT and t = GATATGCA.

- A T A - G C T Score
G A T A T G C A
-2 +1 +1 +1 -2 +1 +1 -1 0

The most important types of alignments are global and local. If all the charac-

ters of sequences must belong to an alignment, then we are dealing with a global

alignment problem. On the other hand, a local alignment is used if only parts of

the sequences compose the alignment.

2.2. Smith-Waterman algorithm (SW)

Needleman and Wunsh (NW) [14] proposed one of the first an exact algorithms

to solve the global alignment problem. Smith and Waterman (SW) [17] modified

NW to deal with local alignments. SW is based on dynamic programming and it is

divided in two phases: create the similarity matrix and obtain the best alignment.

2.2.1. Create the similarity matrix

As input, SW receives sequences s and t, with |s| = m and |t| = n, where |s|

represents the size of sequence s.

An array Dm+1,n+1 is built, where D[i][j] contains the value of similarity be-

tween two prefixes of s and t (sim(s[1..i], t[1..j])), where s[1..i] represents the prefix

of sequence s with the first i characters.

At the beginning, the first row and column are filled with zeros. The remaining

elements of D are obtained from Eq. 1. In Eq. 1, p(i, j) = ma if s(i) = t(j) and mi

otherwise. The similarity score between s and t is the highest value.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 411

* G A G C T A T G A G G T

* 0 0 0 0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 1

__?
?

?

0 1 0 0 0 0 1

A 0 0 1 0 0 0 2

__?
?

?

0 0 1 0 0 0

T 0 0 0 0 0 1 0 3

__?
?

?

1oo 0 0 0 1

A 0 0 1 0 0 0 2 1 2 2

__?
?

?

0 0 0

G 0 1 0 2 0 0 0 1 2 1 3

__?
?

?

1 0

G 0 1 0 1 1 0 0 0 2 1 2 4

__?
?

?

2

T 0 0 0 0 0 2 0 1 0 1 0 2 5

__?
?

?

A 0 0 1

__?
?

?

0 0 0 3 1 0 1 0 0 3

G 0 1 0 2

__?
?

?

0 0 1 2 2 0 2 1 1

C 0 0 0 0 3

__?
?

?

1 0 0 1 1 0 1 0

T 0 0 0 0 1 4

__?
?

?

2 1 0 0 0 0 2

A 0 0 1 0 0 2 5

__?
?

?

3 1 1 0 0 0

Fig. 1. Similarity matrix for local alignment between sequences s = GAGCTATGAGGT and
t = TATAGGTAGCTA.

D[i, j] = max

D[i− 1][j] + g

D[i− 1][j − 1] + p(i, j)

D[i][j − 1] + g

0

. (1)

Figure 1 presents the similarity matrix between two sequences. The arrows

indicate the cell from where the value was obtained.

2.2.2. Obtain the best local alignment

In order to obtain the best local alignment, the algorithm starts from the cell that

has the highest score and follows the arrows until a zero-valued cell is reached. A

left arrow in D[i, j] (Fig. 1) indicates the alignment of s[i] with a gap in t. An up

arrow represents the alignment of t[j] with a gap in s. Finally, an arrow on the

diagonal indicates that s[i] is aligned with t[j].

It must be noticed that multiple optimal local alignments can exist. In Fig. 1,

there are two optimal alignments, that are shown in Table 2.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

412 A. Boukerche et al.

Table 2. Two optimal local alignments between sequences
s = GAGCTATGAGGT and t = TATAGGTAGCTA.

Alignment Score

1 T A T G A G G T 5
1 T A T - A G G T
2 A G C T A 5
2 A G C T A

2.3. Serial variations of the SW algorithm

The algorithm SW (section 2.2) assigns a constant value to gaps. In [7], an algorithm

is proposed by Gotoh where the opening of a gap has a greater penalty than its

extension (affine gap model). In this algorithm, two matrixes are needed (P and Q),

in addition to the similarity matrix. Fig. 2 illustrates the calculation of a similarity

matrix cell in both SW and Gotoh.

Fig. 2. A similarity matrix cell calculation in SW and Gotoh.

The use of Hirshberg’s algorithm [9] is proposed by Myers and Miller [12] to

compute global alignments in linear space. The algorithm uses a divide and conquer

technique that finds a point where the optimal alignment occurs and recursively

splits the similarity matrix to obtain the actual alignment. This approach can double

the execution time [9], when compared with NW. In order to apply this algorithm

to the local alignment problem, we need to find the coordinates of the rectangle that

envelops the local alignment [8], transforming thus the local alignment problem into

a global alignment one.

The method proposed by Fickett [6] tackles the global alignment problem and

considers only similar sequences. It is based on the idea that, if the sequences are

similar, the alignment between them is near the main diagonal. Thus, in order

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-055.jpg&w=225&h=144

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 413

Fig. 3. Use of k-bands in Fickett’s algorithm.

to compute the best alignment, it is sufficient to calculate and store only a small

band (k-band) near the main diagonal. First, an initial band is estimated and the

matrix is computed and stored only for this band (Fig. 3.a). The algorithm then

finds the optimal score and does the traceback over the band. If the alignment is

not contained in the band, it cannot be retrieved. In this situation, the band is

augmented and the whole process is repeated, until the alignment can be retrieved

(Fig. 3.b).

3. Related Work

In the SW algorithm and its variations, most of the time is spent calculating the

similarity matrix D (Fig. 1) and this is the part which is usually parallelized. The

access pattern presented by the matrix calculation is non-uniform and the paral-

lelization strategy used is known as wavefront [15] (Fig. 4).

At the beginning of the computation, only processor P1 is computing (Fig.

4.a). When P1 finishes calculating the values of a border column, it sends them

to processor P2, that can start calculating (Fig. 4.b). In Fig. 4.c, the maximum

parallelism is attained. This parallelism decreases until the end of the computation,

where only P4 computes.

In Fig. 4, the work distribution is uniform because, in a system with p processors,

each processor calculates n/p columns, where n is the size of one of the sequences.

It must be noticed that, although only the column-based assignment is shown in

Fig. 4, row-based and antidiagonal-based assignments are also possible.

Table 3 presents a comparative view of the parallel and distributed strategies

that execute parallel variants of the SW algorithm. Most of the parallel variants

are exact, retrieving optimal alignments, with the exception of [3] and [19]. Also,

most of the strategies [3, 4, 5] use the wavefront method (Fig. 4). All the wavefront-

based solutions use uniform work assignment. The divide and conquer approaches

distribute the work independently. The main difference between [19] and [16] is that

the first one uses heuristics to obtain the alignment whereas the second one is an

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-064.jpg&w=225&h=121

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

414 A. Boukerche et al.

Fig. 4. The wavefront method with uniform work distribution.

exact method. The longest sequence size compared with the algorithms discussed in

this section is 1.1 MBP. The problem treated by [10, 11, 20] is the comparison of a

small query sequence with a genomic database. These databases are often composed

by a great number of sequences and each processor compares the same sequence

with a subset of the sequences that belong to the database. Therefore, even though

a high amount of comparisons is made, the size of the resultant similarity matrices

is not big. For instance, in [20], the maximum size of the query sequence is 2KBP.

Table 3. Characteristics of the parallel/distributed strategies that execute Smith-Waterman
variants.

Size of the
Ref. Comparison type Algo. type Method Parallel strategy longest sequence

[3] seq x seq local heuristic wavefront 400KBP
[19] seq x seq local heuristic divide and conquer 16KBP
[16] seq x seq global exact divide and conquer 1.1MBP
[4] seq x seq local exact wavefront 800KBP
[5] seq x seq global exact wavefront 300KBP
[10] seq x database local exact distributed (coarse) N/A
[11] seq x database local exact distributed (coarse) N/A
[20] seq x database local exact distributed (coarse) N/A

4. The Z-Align Parallel Strategy

The main goal of Z-align is to align huge sequences (≥ 1MBP) with an exact parallel

method. We claim that heuristic methods can achieve very good results when the

sequences compared are small. As long as the size of the sequences increase, we

observed that the heuristic results are not so good and, for closely related sequences,

heuristic methods often produce a high amount of small alignments, since they are

unable to recognize that, in fact, there is a big alignment, composed by sets of

matches/mismatches with gapped regions between them.

Aligning huge sequences with exact methods is a challenging task due to huge

memory requirements. For instance, in order to compare two sequences of 23MBP

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-073.jpg&w=225&h=79

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 415

with SW, we would need to store a similarity matrix of approximately 2.11PB,

considering that each matrix cell stores an integer (4 bytes).

Of course, Hirschberg [9] could be used since it retrieves global alignments in lin-

ear space. However, in order to transform the local alignment problem into a global

alignment one, we need to calculate the whole matrix once, in order to determine

the coordinates (iend, jend) where the highest score ends. After that, we need to

re-calculate the matrix, from the highest score position to the beginning, in order

to determine the coordinates where the optimal alignment begins (ibegin, jbegin).

In the worst case, the whole matrix is re-calculated. Having these two coordinates

(ibegin, jbegin) and (iend, jend), Hirschberg [9] can be applied. In the worst case, the

area comprised between (ibegin, jbegin) and (iend, jend) will be calculated twice [9].

Therefore, this approach uses linear memory at the expense of a great increase in

the execution time.

4.1. General view of Z-align

In Z-align, we opted to use an alternative strategy, aiming to reduce the execution

time. A general view of the Z-align strategy is shown in Fig. 5.

Z-align produces optimal local alignments with the affine gap model in four

phases, briefly explained in this section. A detailed description of Z-align strategy

can be found in [2].

In the first phase, the sequences to be compared are sent to all processors.

In the second phase (Fig. 5.a), the whole similarity matrices are calculated

with the affine gap model in linear space. Computing starts from the end to the

beginning. Each processor calculates a subset of the columns. By default, uniform

work assignment is used where each processor calculates n/p columns, where n is

the size of one sequence and p is the number of processors. Each set of columns

is further divided into horizontal (h) and vertical (v) slices that define a block,

where each block has size (n/(p ∗ h)) ∗ (m/v). Fig. 6.b illustrates the default work

distribution with v = 8 and h = 2.

Processing is done in a block-basis and only two rows are stored, the one being

calculated and the previous one. Thus, this phase executes in linear space. The

wavefront method (Fig. 4) is used and communication occurs between processors

Pi and Pi+1 when a border column is calculated.

Fickett’s algorithm (Fig. 3) uses a band of width k along the main diagonal

to reduce the processing time needed to retrieve the alignment. In the original

algorithm, the value of k is estimated from the alignment score. In Z-align, phase

2 will calculate the whole similarity matrix in order to obtain the best score. For

this reason, unlike Fickett, we are able to obtain the exact band which contains the

alignment.

Therefore, besides the matrices D, P and Q (Fig. 2), we calculate, in phase 2,

two additional dynamic programming matrices (DIVinf and DIVsup). The DIV

matrices keep track of how the alignments diverge from the main diagonal and they

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

416 A. Boukerche et al.

Fig. 5. General view of the Z-align strategy.

Fig. 6. Uniform work distribution in phase 2, with 2 horizontal and 8 vertical blocks per processor.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-094.jpg&w=225&h=115

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 417

Fig. 7. Divergence matrices for an alignment. The final values (DIVinf = −1 and DIVsup = +1)
refer to the beginning of the alignment.

contain, respectively, the inferior and superior difference between the coordinates

of the best scores obtained so far (Fig. 7).

Phase 2 produces, for each processor, the coordinates of the beginning of the

local alignment(s), the similarity score and the inferior and superior divergence

(DIVinf and DIVsup) of each alignment (Fig. 5.b).

In the third phase, the results are collected and the global best score is known

(Fig. 5.c).

In the fourth phase, the actual optimal local alignment(s) are produced, using

data obtained in phase 2 (Fig. 5.d). In this phase, each processor retrieves one align-

ment, using a self-scheduling policy [18]. The area used to retrieve the alignments is

defined by the DIV values, computed in phase 2. The processor starts calculating

from the beginning to the end, in order to retrieve the coordinates were the optimal

alignment ends. Having the beginning and end coordinates of the alignment, the

processor retrieves the alignment, using the area in grey (Fig. 5.d). The memory

used in this phase is defined by the user and, if the maximum amount of memory

specified is attained, the last row computed (called cache line) is saved in memory

and the rest of the memory is freed. Many rows can be saved this way [2], that will

be used in the traceback process. The number of rows saved depends on the supe-

rior and inferior divergences, the size of the alignment and the maximum amount

of memory specified by the user.

Since Z-align is intended for long-run executions, a checkpoint/restart mecha-

nism was integrated with it. For Z-align, we implemented an application-specific

strategy that tolerates multiple transient failures.

Our mechanism works as follows. After sending each message, the processor

saves to its local disk the iteration number, the last row calculated in matrices

D,P,Q,Divinf and Divsup and the data structure that keeps the highest score.

Since the checkpoint file is removed at the failure-free execution, its existence

is sufficient to detect that a failure occurred. When this happens, the checkpoint

file is used for recovery. In this case, all processors except P1 execute a blocking

receive primitive. Processor P1 computes its row and sends its border to P2, that

computes its row and sends its border to P3, and so on. In this way, the wavefront

is reestablished.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-103.jpg&w=225&h=76

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

418 A. Boukerche et al.

4.2. Tunable work distribution mechanism

4.2.1. Block cyclic attribution

When Z-align uses uniform work distribution, the first processors finish processing

much earlier than the last ones, remaining idle for a long period of time. In order

to illustrate this situation, consider 4 processors with h = 1 and v = 4, as shown in

Fig. 8. In the point of the wavefront calculation shown in Fig. 8.d, P1 has already

finished processing but 37.5% of the matrices remain to be calculated (white blocks

in Fig. 8.d). This problem gets worse when the number of processors is big and the

size of the sequences is huge. For instance, when comparing 24MBP x 23MBP with

64 processors using the uniform work distribution, processor P1 remained idle for

more than one day.

For this reason, we propose here the use of a tunable work distribution mech-

anism, called block-cyclic attribution, where a set of columns is assigned to each

processor in a block cyclic way. The main idea is to divide the dynamic program-

ming matrices in sections, called splits, and use the uniform distribution inside each

split. The split value is a parameter of Z-align and must be provided by the user.

If no value is provided, the default value (split = 1) is used, which corresponds to

the original work distribution.

Fig. 8. Idle time for processor P1 when executing Z-align with h = 1 and v = 4.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-112.jpg&w=225&h=320

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 419

Figure 9 illustrates this work assignment mechanism for 4 processors with split =

2. In this case, the dynamic programming matrices are divided in two sections. The

first section contains the first half of the matrices and the second one contains the

last half. As shown in Fig. 9.a,b,c, the matrices are processed as in the uniform work

distribution case, until processor P1 finishes its first split. When this happens, P1

starts processing its second split, receiving the border columns from P4 (Fig. 9.d).

In a similar way, when P2 finishes its first split, it receives the border column from

P1 (Fig. 9.e) and so on.

In the case shown in Fig. 9, processor P1 finishes computing when there are

6 non-calculated blocks (Fig. 9.f), which corresponds to 18.75% of the matrices.

Therefore, the area that comprises the non-processed cells is half the area left

when the mechanism is not used (Fig. 8). Nevertheless, it must be noticed that the

work division shown in Fig. 9 doubles the amount of communication between the

processors.

Fig. 9. Reduction of the idle time with the tunable work distribution mechanism (split = 2).

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-121.jpg&w=225&h=320

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

420 A. Boukerche et al.

Fig. 10. Possible load imbalance when split = 2, v = 1 and h = 5.

Load imbalance can occur when the split parameter is used with some h and v

configurations. Fig. 10 illustrates a situation that occurs when split = 2, h = 1 and

v = 5. In this case, processor P1 is overloaded, since it has not finished to process

its first split yet but processor P4 has finished calculating the border column and

wants to send it to P1. To avoid such situations, if split > 1, we set the values h

and v in such a way that a square division is obtained. In the case presented in Fig.

10, the value h = np would be used.

4.2.2. Impact of the v parameter

In the original Z-align, the parameters h (horizontal) and v (vertical) are used to

set the size of the block of the dynamic programming matrices (Fig. 6.b). The

v parameter also defines the amount of data exchanged in each communication

between neighbor processors. A high value of v means a high number of messages

with less data in each message. In addition, a high value of v reduces the amount of

idle time of the processors, at the expense of an increase in the number of messages.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 421

Therefore, if the original Z-align parameter v is tuned in such a way that an

appropriate value is used, the amount of idle time is expected to decrease, leading

to a reduction on the total execution time.

5. Experimental Results

5.1. Experimental environment

The algorithm proposed in section 4 was implemented in C++ and MPI and it

is publicly available at https://launchpad.net/zalign. Our tests were conducted on

two clusters:

(1) Cluster-SITE-Ottawa: a dedicated 32-node cluster, where each node contains

an Intel Xeon 3.4GHz Dual Core, 2 GB RAM and 120 GB disk. The nodes are

interconnected by a Gigabit Ethernet switch. All the processors execute Linux

Fedora Core 4, kernel 2.6.11-1.1369 FC4smp and LAM 7.1.1/MPI,

(2) Cluster-IE-UnB :a dedicated 32-node cluster, where each node contains a dual

Core AMD 64 3.0GHz, 1 GB RAM and 120 GB disk. The nodes are intercon-

nected by a Gigabit Ethernet switch. All the processors execute Solaris and

mpich.

The following parameters were set in both Z-align and BLAST: 1 (match), -3

(mismatch), -5 (gap opening), -2 (gap extension). In our tests, memory in the fourth

Z-align phase was restricted to 64MB.

Real DNA sequences obtained from the NCBI web page (www.ncbi.nlm.nih.gov)

were used in the tests. The sequences compared, their size and the NCBI accession

number are shown in Table 4.

5.2. Performance results

The results presented in this section were obtained with the Cluster-SITE-Ottawa.

Wallclock execution times, divergences and the size of the alignments obtained for

the sequences analyzed are shown in Table 5. Z-align was executed exclusively in

64 processors for comparisons of 7Mx10M, 23Mx24M and 35Mx5M. Note that the

times presented here are the sum of the time spent in all four phases and that

the checkpoint/restart mechanism was disabled. Z-align took more than four days

to align the Drosophila chromosomes (23Mx24M) with 64 processors. As far as we

know, this is the first time optimal affine-gap alignments are generated for sequences

longer than 2MBP.

As can be observed in Table 5, the scores of the alignments produced for the

1MBP and 5MBP comparisons were very high. In order to produce these align-

ments, Z-align used four and seven cache lines (Section 4), for the 1MBP and

5MBP comparisons, respectively. To produce the other alignments, no cache lines

were used.

The speedups obtained are shown in Fig. 11. It can be observed that very good

speedups were achieved for sequences with size equal or less than 500KBP. For

sequences of 1MBP and 3MBP, speedups of 30.73 and 33.54 were obtained, re-

spectively. These speedups are considered appropriate, since the Z-align application

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

422 A. Boukerche et al.

Table 4. Organisms compared, ranging from 150KBP (Kilo base-pairs) to 35MBP (Mega
base-pairs).

Comp. Size S1 NCBI Name Size S2 NCBI Name
Number Number

150Kx 162114 NC 000898 Human 171823 NC 007605 Human

150K herpesvirus 6B herpesvirus 4

500Kx 542869 NC 003064 Agrobacterium 536165 NC 000914 Rhizobium sp.

500K tumef. str.C58 plasmid
plasmid AT pNGR234a

1Mx 1044459 CP000051 Chlamydia 1072950 AE002160 Chlamydia

1M trachomatis muridarum

A/HAR-13 Nigg
3Mx 3147090 BA000035 Corynebact. 3282708 BX927147 Corynebact.

3M efficiens glut ATCC
Ys-314 DNA 13032

5Mx 5302044 AE016879 Bacillus anthr. 5303436 AE017225 Bacillus anthr.

5M str. Ames str. Sterne

7Mx 7247732 NC 005027 Rhodopirellula 10604090 NC 003997 Bacillus anthr.

10M baltica SH 1 Ames complete
genome

23Mx 23340351 NT 033779 Drosophila 10604090 NT 037436 Drosophila

24M melanog. melanog.

chromos. 2L chromos. 3L
35Mx 35765263 NC 000022 Homo sapiens 5312606 NC 005957 Bacillus thur.

5M chromos. 22 ser. konkukian

complete seq. str. 97-27

Table 5. Divergence values, scores and execution times in seconds (1, 2, 4, 8, 16, 32, 64 processors).

Comp. Div. Score 1 2 4 8 16 32 64

150Kx (0,0) 18 1117 573 256 146 74 39 22
150K
500Kx (0,0) 96 9760 4989 2506 1256 638 328 176
500K
1Mx (4027,-99) 471621 32094 23460 11757 6055 3118 1726 1,044
1M
3Mx (40,-43) 14537 294000 146885 74737 55511 28474 15139 8764
3M
5Mx (109,-137) 5220960 — — — — 76143 41064 23234
5M
7Mx (6,-1) 172 — — — — — — 55656
10M
35Mx (0,0) 38 — — — — — — 132271
5M

23Mx (5,0) 9063 — — — — — — 400863
24M

presents a medium communication rate between neighbor processors due to the

wavefront method.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 423

 1 2
 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

sp
ee

du
p

processors

linear
150KBP
500KBP

1MBP
3MBP

Fig. 11. Speedups for sequences ranging from 150KBP to 3MBP.

We also measured the average CPU load and RAM memory occupation for the

pairwise comparisons in Table 5. The results are shown in Figs. 12 and 13. As

shown in Fig. 12, the average amount of CPU used at the most compute-intensive

phase of the Z-align application does not depend on the sizes of the sequences

being compared. It ranges from 81.4% (3 MBP x 3 MBP) to 85.4% (24 MBP x

23MBP). It was observed that, in general, the time the processors were not com-

puting, they were waiting at the MPI Recv primitive. This happened because we

used the Cluster-SITE-Ottawa, which is composed of Dual Core machines and,

thus, the communication system is heterogeneous. Intra-node communication oc-

curred faster and the processor waited for inter-node communication. However, this

phenomenon did not lead the system to a severe load imbalance since more than

80% of the total execution time of the second phase was spent with computations,

which is a very good result.

5.3. Quality of the alignments

Since Z-Align is an implementation of Smith-Waterman with affine-gap, it always

returns the alignment(s) that has (have) the highest score. BLAST, on the other

hand, is an heuristic method, so there is no guarantee that the alignment(s) with

best score will be found. Nevertheless, BLAST is able to produce good results and,

for this reason, it is widely used all over the world. In this section, we compare the

alignments produced by Z-align with the ones produced by the heuristic method

BLAST [1]. We used the publicly available bl2seq program with blastn, gaps enabled

and searching only the top strand of the sequences.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

424 A. Boukerche et al.

Fig. 12. Percentage of CPU and Communication in phase 2, for the 3Mx3M, 5Mx5M, 7Mx10M,
35Mx5M and 24Mx23M sequence comparisons.

Fig. 13. Amount of memory (in MB) used in phase 2, for the 3Mx3M, 5Mx5M, 7Mx10M, 35Mx5M
and 24Mx23M sequence comparisons.

Table 6. Alignments generated by Z-align and BLAST.

Comparison Number of Number of Score of Score of
Z-align Alignments BLAST Alignments Z-align BLAST

150Kx150K 1 9 18 18
500Kx500K 2 19 96 92
1Mx1M 1 1,593 471,621 10,763
3Mx3M 1 5,057 14,537 5,329
5Mx5M 1 10,658 5,220,960 36,159
7Mx10M 2 329 172 157
24Mx23M 1 60,828 9,063 7,085
35Mx5M 1 40 38 24

Table 6 presents the number of alignments and the score obtained by both Z-

align and BLAST. It can be noticed Z-align generates less alignments than BLAST.

This was expected, since we opted to retrieve only the alignments with optimal score.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-181.jpg&w=225&h=123
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-182.jpg&w=226&h=120

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 425

Fig. 14. Plot of the alignments retrieved by BLAST for the anthrax sequences (5MBP). Sequences
AE016872 and AE0177225 (Table 4) are represented in the horizontal and vertical axes, respec-
tively. Only alignments with score higher than 10,000 are plotted.

On the other hand, the alignments produced by Z-align have higher score than the

alignments produced by BLAST, with the exception of the 150KBP comparison,

where both methods retrieved exactly the same alignment. For the 5MBPx5MBP

sequences, the score of the alignment found by Z-align is 144.38 times higher than

the one produced by BLAST.

Figures 14 and 15 present a plot of the alignments found by Z-align and BLAST,

respectively, when comparing two Bacillus anthracis (5MBP). For BLAST, only

the alignments with score higher than 10,000 were plotted (Fig. 14). BLAST found

10,658 alignments (Table 6) that are close to each other whereas Z-align actually

recognizes them as only one alignment, with score=5,220,960 (Fig. 15).

In Fig. 16, we can see the detail of the Z-align alignment, where a gapped

region of size 408 was detected. In this case, the DNA region contained in

(2,534,026-2,534,434) in AE017225 (Bacillus anthracis Sterne) does not occur in

AE016879 (Bacillus anthracis Ames). This is a strong evidence of evolutionary

phenomena. When using BLAST, the region that appears in Fig. 16 was considered

as two separate alignments.

5.4. Evaluation of the tunable work distribution mechanism

In order to evaluate the gains of the tunable work distribution mechanism, we

compared the Z-align execution times with original work assignment (split = 1)

with the Z-align execution times obtained when the block-cyclic mechanism is active

(split > 1). We also hand-tuned the value of the v parameter in the following

way. We executed the 150Kx150K, 500Kx500K, 1Mx1M and 3Mx3M comparisons

several times, increasing the value of v until the execution time got higher than the

previous execution. When this happened, the value of v was set to the value that

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129054112400205&iName=master.img-194.jpg&w=225&h=170

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

426 A. Boukerche et al.

Fig. 15. Plot of the alignment retrieved by Z-align for the anthrax sequences (5MBP).
Sequences AE016872 and AE0177225 (Table 4) are represented in the horizontal and vertical axes,
respectively.

Fig. 16. Detail of the Z-align alignment for the anthrax sequences (5MBP). Sequences AE016872
and AE0177225 (Table 4) are represented in the horizontal and vertical axes, respectively. In both
sequences, only the positions that range from 2,533,000 to 2,535,000 are shown.

led to the smallest execution time. Since this is a very time-consuming process, the

comparisons of 5Mx5M, 7Mx10M, 24Mx23M and 35Mx5M were not executed in

this section.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 427

Table 7. Values of the parameters used for the original (split-orig, h-orig, v-orig),
block cyclic (split-cyc, h-cyc, v-cyc) and hand-tuned (split-orig, h-orig, v-tuned) work
distribution.

Comparison split-orig h-orig v-orig split-cyc h-cyc v-cyc v-tuned

150Kx150K 1 20 p 2 1 64 128
500Kx500K 1 60 p 3 1 64 192
1Mx1M 1 150 p 4 2 64 256
3Mx3M 1 200 p 5 4 64 1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

ex
ec

ut
io

n
tim

e
(s

)

sequence size

original
block_cyclic

v_tuned

Fig. 17. Comparison between the uniform and block cyclic approaches.

Table 7 shows the values of the parameters used for each comparison. The results

presented in this section were obtained with the Cluster-IE-UNB.

We compared the wallclock execution times obtained for the original, the block-

cyclic and hand-tuned approaches, when using 64 processors to compare sequences

whose size ranged to 150K to 3M, as shown in Table 8. A graphic of these results

is shown in Fig. 17.

As long as we augmented the sequence size, better performance gains are

obtained with the block-cyclic approach over the original one. The 150Kx150K

comparison is the only case where the execution time of the uniform approach is

lower than the block-cyclic (Table 8). In the other three comparisons, performance

gains are obtained with the block-cyclic approach over the original Z-align parame-

ter values. For the 3Mx3M comparison, the execution time is reduced from 9,841.25s

to 6,077.01s, achieving a performance gain of 38.3%. In this case, a reduction of

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

428 A. Boukerche et al.

Table 8. Execution times for the uniform and block cyclic approaches
(64 processors).

Comparison time original (s) time block cyclic (s) time hand-tuned (s)

150Kx150K 26.36 26.65 19.92
500Kx500K 269.50 213.66 179.38
1Mx1M 1,365.28 1,074.92 928.85

3Mx3M 9,841.25 6,077.00 4,931.62

more than one hour was obtained, when using the block cyclic tunable work divi-

sion mechanism. Nevertheless, when we carefully hand-tuned parameter v, we were

able to obtain gains over the block-cyclic approach, as can be seen in Table 8.

6. Conclusion and Future Work

In this paper, we evaluated the Z-align parallel exact strategy for the comparison

of huge DNA sequences (≥ 1MBP) in two clusters. Due to its memory allocation

strategy, Z-align was able to align 23MBPx24MBP sequences. In this case, a speedup

of 33.54 was obtained.

When comparing the Z-align results with the ones produced by BLAST, it is

clear that Z-align, being an exact method, is able to obtain more significant align-

ments, with a higher score. This strongly suggests that the use of exact methods

can drastically improve the quality of the alignments, being a fundamental tool to

help biologist in the task of deciphering the genomic message encoded inside the

sequences.

The evaluation of our tunable work distribution mechanism indicates that very

good performance gains can be obtained if the appropriate value for each parameter

is used, when huge sequences are compared.

As future work, we intend to use Z-align to align human and ape chromosomes

(sizes higher than 35MBP) in a massively parallel system. Also, we intend to inves-

tigate a way to improve the use of CPU by Z-align in clusters of multi-cores.

References

[1] S. F. Altchul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, Basic local
alignment search tool, J. Comput. Mol. Bio.. 215(3)(1990) 403–410.

[2] R. B. Batista, A. Boukerche and A. C. M. A. Melo, A parallel strategy for biological
sequence alignment in restricted memory space, J. Parallel Dist. Comput.. 68(2008)
548–561.

[3] A. Boukerche, A. C. M. A. Melo, M. Ayala-Rincon and M. E. M. T. Walter, Parallel
Strategies for Local DNA Comparison in a Cluster of Workstations, 4th Int. Workshop

on Experimental Algorithms, LNCS 3503 (2005) 464–475.
[4] C. Chen and B. Schmidt, Computing large-scale alignments on a multi-cluster IEEE

Int. Conf. on Cluster Comput. (2003).

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

March 9, 2012 15:20 WSPC/INSTRUCTION FILE S0129054112400205

Exact Parallel Alignment of Megabase Genomic Sequences 429

[5] A. Driga et al. Fastlsa: a fast, linear-space, parallel and sequential algorithm for
sequence alignment. Int. Conf. Parallel Processing (2003) 48–56.

[6] J. W. Fickett, Fast optimal alignments. Nucleic Acids Research, 12(1) (1984)
175–179.

[7] O. Gotoh, An improved algorithm for matching biological sequences, J. Mol. Biology,
162 (1982) 705–708.

[8] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology, Cambridge University Press (1997).
[9] D. S. Hirschberg, A linear space algorithm for computing longest common subse-

quences. Commun. Assoc. Comput. Mach. 18(6) (1975) 341–343.
[10] A. Jacob et al., Whole Genome Comparison on a Network of Workstations, Int.

Symposium on Parallel and Distributed Computing (2007).
[11] C. Janaki and R. R. Joshi, Accelerating Comparative Genomics using Parallel Com-

puting, In Silico Biology, 3(4) (2003) 429–440.
[12] E. W. Myers and W. Miller, Optimal alignments in linear space, Computer Applica-

tions in the Biosciences, 4 (1988) 11–17.
[13] G. Navarro, A guided tour to approximate string matching, ACM Computing Surveys,

33(1) (2001) 31–88.
[14] S. B. Needleman and C. D. Wunsch, A general method applicable to the search for

similarities in the amino acid sequence of two proteins, J. Mol. Biology, 48 (1970)
443–453.

[15] G. Pfister, In Search of Clusters: The Coming Battle for Lowly Parallel Computing,
Prentice Hall Inc (1995).

[16] S. Rajko and S. Aluru, Space and Time Optimal Parallel Sequence Alignments, IEEE
Trans. on Parallel and Dist. Syst., 15(2) (2004) 1070–1081.

[17] T. F. Smith and M. S. Waterman. Identification of Common molecular subsequences,
Journal of Mol. Biol., 147(1) (1981) 195–197.

[18] P. Tang and P. C. Yew. Processor Self-scheduling for multiple parallel nested loops,
Int. Conf. on Parallel Proc. (1986) 528–535.

[19] F. Zhang, X. Qiao, and Z. Liu. A parallel smith-waterman algorithm based on divide
and conquer. ICA3PP (2003).

[20] M. Noorian et.al., Performance Enhancement of Smith-Waterman Algorithm Using
Hybrid Model: Comparing MPI and Hybrid Programming Paradigm on SMP Clus-
ters, IEEE Int. Conf. on Systems, Man, and Cybernetics (2009).

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
12

.2
3:

40
7-

42
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
64

.4
1.

20
1.

21
4

on
 0

2/
27

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

	Introduction
	Biological Sequence Alignment
	Similarity and alignment
	Smith-Waterman algorithm (SW)
	Create the similarity matrix
	Obtain the best local alignment

	Serial variations of the SW algorithm

	Related Work
	The Z-Align Parallel Strategy
	General view of Z-align
	Tunable work distribution mechanism
	Block cyclic attribution
	Impact of the v parameter

	Experimental Results
	Experimental environment
	Performance results
	Quality of the alignments
	Evaluation of the tunable work distribution mechanism

	Conclusion and Future Work

