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Abstract

Exact results are given for the processing power in a multibus multiprocessor with constant
memory cycle times and geometric interrequest times. Both uniform and non-uniform memory
accesses are considered. Such results have not previously been obtained. In order to derive these
results we use a method of introducing time into Petri Nets, called Generalized Timed Petri Nets
(GTPN), that we have developed. We describe the GTPN and how it is applied to the multi-
processor interference question. We reach several new conclusions. A commonly used definition
of processing power can lead to substantial underestimation of the true processing power of the
system. If the real system has a constant memory access time and any number of buses, then as-
suming an exponential access time can lead to substantial errors when estimating processing power
probability distributions. In multibus systems with only a few buses a critical memory interrequest
time exists. Performance close to that with a crossbar is attainable when the interrequest time is
larger than the critical value. Obtaining these results illustrates the advantages, for moderate size
state spaces, of the GTPN over simulation with respect to both model design and running time.

This research was partially supported by the National Science Foundation under grants DCR-
8402680 and MCS81-05904.



1. Introduction.

Due to their potential for increased performance through parallelism, multiprocessor systems (sys-
tems with more than one processor and with shared memory) have been studied for many years. In
this paper we are interested in MIMD multiprocessors with multiple independent memory modules
and with a single-stage multibus interconnection network. A key issue in such a system is the extent
to which contention for the shared memory modules and the buses causes performance degradation.
An extensive literature has developed addressing this issue with stochastic models[1][2][3]. Until
now, however, no one has used exact solution methods to derive performance measures for any

model that contains four important and realistic properties. These properties are:
1) both bus and memory contention are considered
2) the amount of time spent actively accessing memory per request is a constant
3) variable and non-zero processing time between memory requests
4) a not necessarily uniform distribution of accesses across the memory modules

We have developed a model which can be used to derive performance estimates for a system
containing these properties. The solution method is based on the global state transition diagram
(i-e. discrete time Markov Chains). Previous researchers[3][4] have concluded that this approach
is computationally infeasible except for very small systems. We demonstrate that this approach is
feasible for useful size systems if the Markov Chain is properly formulated. In particular, we derive
results for several models (with up to 16 processors and 16 memories) with the four properties

listed above.

To aid in the definition and generation of the Markov Chain we used a high level description
based on Petri Nets. Petri Nets are a graph model of computation [5]. Modifying Petri Nets so
that time is represented has recently been an active research area. We have generalized the method
of representing time that has been suggested by Zuberek [6] and Razouk and Phelps [7]. We call
our version of Petri Nets, Generalized Timed Petri Nets (GTPNs) [8,9]. The GTPN analyzer
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automatically generates the associated discrete-time Markov Chain and calculates the requested

performance estimates.

We do not mean to underestimate the importance of approximate solution techniques and
simulation. As more functionality is encoded in a model, the Markov Chain generated using the
GTPN analyzer can still become prohibitively large. Our point is that the GTPN allows symmetries
to be discovered and used to reduce the model complexity. Thus, with careful model formulation,
the Markov Chain does not become prohibitively large as soon as with earlier models. Because of

the smaller state spaces, there is more opportunity for exact results.

By using the GTPN model we reached several new conclusions about the effect of memory
and bus interference in multiprocessors. First, a widely used definition of the processing power of
a multiprocessér does not accurately reflect the true increase in power of a multiprocessor over a
single processor. Second, if the real system has a constant memory access time and any number
of buses, then to assume that it has an exponentially distributed access time can lead to large
errors in the estimation of the probability distributions of processing power. We introduce a new
definition of processing power that does accurately reflect the increase in power. Third, with respect
to speedup, we have identified the phenomenon of critical memory interrequest times in multibus
systems. As long as the mean interrequest time is longer than the critical value, only a very few

buses are needed to attain nearly the same performance as a crossbar.

In Section 2 we describe the behavior of the multiprocessors we study and review the relevant
previous work in stochastic modeling of these systems. In Section 3 we briefly describe the GTPN
model. The GTPN is defined in detail and compared with Stochastic Petri Net (SPN) models in
[8,9]. In Section 4 we present our multiprocessor model and results. Section 5 summarizes the

important contributions of our work and suggests some directions for future research.



2. Background

2.1. Multiprocessor Characteristics

Figure 2.1 illustrates the multiprocessor systems we consider. The shared memory is divided
into independent modules, each of which permits only one access at a time. The processors are
connected to the memory modules through a single-stage multibus (in contrast to multiple-stage

networks such as banyan networks).

Processor 1 Processor 2 Processor n

Module 1| | Module 2] = Module m

Figure 2.1. The Multiprocessor System

The process associated with each processor can be in three states: running on its processor,
waiting for a memory module, or accessing a memory module. The processing time between
memory requests is the processor’s interrequest time. In much of the literature we reference below,
the interrequest time is assumed to be a geometric random variable. In this case, the parameter of
that random variable is the memory request probability(MRP). The MRP is the probability that an
actively executing processor will generate a request in the next memory cycle. A process with an
outstanding request blocks until it obtains an arbitrary bus and the desired memory module. The
amount of time spent actively accessing memory per request is the memory access time. When the
memory access time is a constant, time is said to be divided into cycles and the memory access
time is sometimes called the memory cycle ttme. The distribution of accesses across the memory

modules by a processor is that processor’s memory access probabilities.

Memory utilization is the fraction of time that a memory module is being accessed by some
process. Processor utilization is the fraction of time that a processor has its associated process
running on it (versus accessing a memory or waiting for a memory). Processor productivity is the
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probability that a typical process is doing productive work (executing on its processor or accessing a
memory, not waiting for a memory). Memory utilization summed over all memories is the expected
number of busy memory modules or the effective memory bandwidth. Processor utilization summed
over all processors is sometimes called processing power[10,11,12,13]. Effective memory bandwidth
and processing power (as defined above) are the main performance estimates obtained in the studies

cited below.
2.2. Previous Results: Bhandarkar

Bhandarkar[1] is an important early work. He uses discrete time Markov Chains to obtain
performance estimates for up to a 16 processor/16 memory system. The key assumptions of his

model are:
1) all of the processors are statistically identical
2) the memory access time (memory cycle time)is a constant

3) MRP is 1, i.e. a process is never actively executing on its own processor. When its current

request is satisfied, it always generates another request at the start of the next cycle.
4) the interconnection network is a crossbar

5) requests made by each processor have an independent and equal probability of being directed

to any one of the modules, i.e. uniform memory access probabilities.

In spite of these simplifying assumptions, the state space of his Markov Chain grows rapidly.
For example, the 16 processors/16 memories system has 300,540,195 states. Bhandarkar did not
attempt to solve the steady state equations for a system with 300,540,195 states. He solves the
steady state equations for a much smaller state space that takes advantage of the fact that the
processors are identical. However, the only way he was able to compute the transition probabilities

in the smaller state space was by building and collapsing the larger state space.

Bhandarkar considered loosening assumption 3 so that the MRP is less than one, i.e. a processor
might spend some time executing between requests. This would have implied a larger state space

so he did not attempt an exact solution.



Most of the research in less restrictive stochastic models of multiprocessors since Bhandarkar’s
work has focused on approximate solution techniques. The studies are divided into categories

according to which of the above assumptions (2, 3, 4, or 5) are relaxed.
2.3. Less Restrictive Models

Bhandarkar[1], Strecker[14], and Wulf and Bell[15] deal with the basic case of a constant
memory access time, uniform access probabilities, a crossbar, and a MRP of 1. One logical change
is to consider to what extent performance is degraded due to having fewer buses than in a crossbar.
Towsley|3| gives approximate solutions and simulation values for this case. Alternatively, a crossbar
could be assumed and a MRP less than one considered. This is a reasonable change, because
presumably each processor has some local memory or a cache that it is using for most of its
memory activity. Baskett and Smith[16], Rau[17], Yen, Patel, and Davidson[4], and Towsley|3]

give approximate solutions for this case.

More recent studies combine these two changes, i.e. they have constant access time, uniform
access, a MRP less than one, and multibuses. Lang, Valero, and Alegre[18] provide simulation
results. Bhuyan[19], and Mudge, Hayes, Buzzard, and Winsor[20], Towsley[3], and Goyal and

Agerwala[2] give approximate solutions.

Some studies assume an exponentially distributed memory access time, an exponentially dis-
tributed interrequest time, and use continuous time Markov Chains in the solution. Approximate
solutions of these models are in Bhandarkar and Fuller[21], Marsan and Gerla[11], Marsan, Balbo,
and Conte[12], Marsan, Balbo, Conte, and Gregoretti[13], Onyiiksel and Irani[22], and Jacobson
and Lazowska[23]. Exact solutions are in Irani and Onyiiksel[24], Molloy[25], and Marsan, Balbo,
and Conte[10]. Several of these studies [25,13,10] are of special interest because they use a form
of Petri Nets, called Stochastic Petri Nets, to derive their continuous time Markov Chains. We
defer further discussion until Section 4. Mudge and Al-Sadoun [26] is an approximate solution that
allows the memory access time to be any discrete time random variable that has first and second

moments.



The last group of studies consider nonuniform access probabilities. All assume constant cycle
time, and a crossbar. Those that only allow a MRP of one are Sethi and Deo [27] and Du and
Baer|28]. The papers that allow memory request probabilities less than one are: Hoogendoorn[29],
Mudge and Makrucki[30], Siomalas and Bowen[31], Towsley|[3], and Bhuyan[32]. All the solutions
are approximate except one of the ones given in Du and Baer. The exact solution method in Du
ahd Baer is a modification of Bhandarkar’s exact method. Perhaps this is why they only consider

a crossbar and a MRP of 1.

In Section 4 we develop a GTPN model of multiprocessors which can be modified easily (pri-
marily by changing a few parameters) to reflect the various assumptions made in the above studies.
We will compare the performance estimates obtained from exact analysis of the GTPN with some of
the results cited in this section. We will also use the GTPN model to obtain results not previously

reported. First we introduce the GTPN.

3. The GTPN Model

This section describes the Generalized Timed Petri Net (GTPN). The GTPN belongs to the class
of deterministic t-Timed Petri Nets [33,34], and removes restrictions on the net in earlier methods
for analyzing performance [6,7]. The GTPN model was introduced in [8] and described more

completely in [9]. The reader is referred to both references for further details.

3.1. The Net

A GTPN is a Petri net which includes: 1) a deterministic firing duration associated with each
transition, 2) a mechanism for specifying next state probabilities for conflicting transitions, and 3)
a set of named resources associated with each transition which are used to calculate performance
estimates. Thus, the GTPN is formally defined by the following tuple: Letting S denote the set of
reachable states, ®* denote the positive reals, and P denote the power set, the model is formally
defined as follows:

GTPN = (P,T, A, Mo, D, F,C, R)

where



P={p1,p2,---yPn} (places)

T = {t1,t2,-- ., tm} (transitions)
A:{PxT}u{T x P} — {0,1,2,..} (directed arcs)

My: P — {0,1,...} (initial marking)

D:T x 8 — ®t u {0} (firing durations)
F:Tx 8 —®tu{0} (firing frequencies)

C:T — {yes,no} (CntComb boolean flags)
R:PUT — P({ri,r2,--+,7k}) (resources)

The first four components of the tuple are identical to the constructs in an untimed Petri Net

(see [35] for more details). Important properties of the remaining four components are summarized

below.

Petri Nets are often illustrated graphically. Figure 3.1 shows an example GTPN including the

initial state distribution of tokens. Each transition is labeled with, from left to right, its firing

duration expression, its frequency expression, its CntComb boolean flag, and its list of resources.

L\

T2 —
K1,0.6,yes,(Terminal))

T
((P2%2)+4.73,1.0,n0,(Server))

T1
(0,0.4,yes,0)

P2

Figure 8.1.Example of a GTPN net

A transition’s firing duration and frequency are expressions containing immediate values (real

and integer), names of places (which represents the number of tokens in that place in the current

state), names of transitions (which represents the value one if at least one firing of that transition
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is in progress in the current state and is otherwise zero), and arithmetic, relational, and logical
operators. Thus, a transition’s firing duration and frequency can be state-dependent, but for a given
state they are deterministic. The CntComb boolean flag is used in computing state probabilities
as explained later. The set of resources are used to compute performance measures as explained

later.
3.2. Next States and Their Probabilities

The multiplicity of an input place is the number of arcs from that place to that transition. An
output place’s multiplicity is defined analogously. N enablings of a transition exist if each of its

input places contains a number of tokens equal to at least N times its multiplicity.

An enabling of a transition can start firing by removing from each input place a number of
tokens equal to its multiplicity. After start firing, the firing is in progress until end firing. While the
firing is in progress, the time to end firing, called the remaining firing time (RFT), decreases from
the transition’s firing duration to zero. At end firing a number of tokens equal to its multiplicity is

put on each output place.

A marking and the set of current RFT’s defines a state of the net. Given a particular state,
the basic rule for finding the possible next states is straightforward. Find how many enablings of
each transition exist. Find the maximal sets 1 of the enablings that can start firing simultaneously.
Each maximal defines a next state. The time spent in the original state is zero. The new RFT’s are
set to their transitions’ durations. If there are no enablings, but there are some firings in progress,
then the next state is generated by the end firing of all firings in progress with the smallest RFT
( Tmin). The time-in-state value in this case is Tmin. If there are no enablings and no firings in

progress, then the net remains in the current state forever.

The rules for assigning probabilities to next states are now given. Multiple next states can only
occur when the next states are due to start firings. In this case, we need to assign a probability to

each maximal set of enablings that can start firing together. Two transitions whose sets of input

1 a set with property « is a maximal set with property « if it is not a proper subset of any other set with
property c.



places intersect are in the same conflict set. The transitive closure of the property of intersecting
input places defines an equivalence relation on the set of transitions. This equivalence relation

partitions the set of transitions into disjoint sets called generalized conflict sets.

A maximal is the union of a set of independent local mazimals, one from each generalized
conflict set. The probability for a maximal is the product of the probabilities for the associated
local maximals (since the local maximals are independent). To compute the probability of a local
maximal, take the product of the frequencies of all the enablings (the result of evaluating the
frequency expression of the enabled transition) in the maximal. Multiply this product by the
number NumComb when appropriate as discussed below. Finally, for each maximal, normalize the

product by dividing it by the sum of the products over all the maximals.

NumComb means number of combinations and is the number of ways tokens can be removed
from input places in order to implement a local maximal. In some cases, multiplying by this value is
needed in order to derive an intuitively reasonable probability. The boolean flag CntComb (Count
Combinations) associated with each transition specifies whether this should be done. Only if the

flag is yes for all transitions in the maximal, is NumComb used.
3.3. Resources and Reachability Graphs

Each transition has a set (possibly empty) of named resources. A named resource can be
associated with more than one transition. Whenever one of those transitions is firing, the resource
is in use. The number of those transitions firing simultaneously is the current number of usages of

that resource.

By using the rules above for generating next states, we can determine the set of reachable
states for a given initial state. By placing directed edges from parent states to child states, the
set of reachable states can be viewed as a reachability graph. By building and analyzing the net’s
reachability graph we can find the average number of uses of a resource over time. This average, if
properly implemented and interpreted, can be used to obtain a variety of meaningful performance

estimates.



3.4. An Example

The example in Figure 3.1 models users at terminals who, with a geometric think time, generate
requests for a server. There is one token on place P1 for each user. Transitions T1 and T2 implement
the think time. Note that the GTPN can represent geometric, as well as constant, holding times.
Transition T3 implements a load-dependent server with a firing duration that depends on the

number of tokens on P2.

In Figure 3.2 and Table 3.1 we show the reachability graph for the net in Figure 3.1 assuming
there is only one user. The labels on the edges of the graph are the next state probabilities. The
labels on the vertices of the graph are the values for time-in-state. The marking vectors are shown
in the table. The RFT sets are shown as a list of pairs with one pair per in progress firing of a
transition. The first component of each pair is the name of the transition. The second component
is the remaining firing time. The resources used and their number of uses are also shown in the

table.

Figure 8.2.Reachability Graph for example

Table 3.1.Reachable States for example

States Marking RFT Set Resources
P1 | P2 | P3
0 1 0 1 {1 {}
1 0 0 1 {(T1,0.0)} {}
2 0 0 1 {(T2,1.0)} {Terminal(1)}
3 0 |1 1 {} {}
4 0 0 0 {(T3,6.73)} {Server(1)}
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4. Multiprocessor Analysis

We have analyzed the performance of mutiprocessor systems using the GTPN. In this section
we define our performance measure of speedup, describe the GTPN model used, and summarize
the results of our experiments. We modeled several systems that have been studied previously
for the sake of comparison. First, we conducted four sets of validation experiments. Second,
we compared our results with those of Marsan, Balbo,and Conte[10] which assume exponential
access time. The important measure of speedup has not been studied in the stochastic modeling
literature cited in Section 2. Consequently, our third set of experiments look at speedup for some
representative systems. Finally, we examine the performance of a particular class of non-uniform

access probabilities called favorite memory.
4.1. Meagures and the GTPN net

Recall that previous evaluations of multiprocessors using stochastic models have studied ef-
fective memory bandwidth and a measure of processing power defined as: processor utilization
summed over all processors. We are more interested in a different measure of processing power:
processor productivity summed over all processors. To avoid confusion in the discussion below, we
will call our measure speedup, since it is the same as the speedup measure used in the non-stochastic
literature on multiprocessors. We will use the term processing power in the sense defined in pre-
vious studies. We argue that speedup is a more important single measure of system performance
because the goal of multiprocessing is speeding up a program, not achieving high memory or pro-
cessor utilization. Effective memory bandwidth and processing power are also easily computed for

our GTPN models as we show below.

The GTPN model used in the analysis assuming uniform access probabilities and a multibus is
shown in Figure 4.1 and Table 4.1. The net for the non-uniform access case is a slight modification
of this one. The net shown is for a system with three processors, two memories, and one bus (P2).

It is the model in Marsan, Balbo, and Conte[10], modified to support discrete time.

The tokens are shown in the initial state. The tokens in P5 represent free memories. The tokens
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Figure 4.1. GTPN net for a 3 processor/2 memory/1 bus system. Uniform access.

Table 4.1. The attributes of each transition in Figure 4.1.

Transition | Duration Frequency Cnt Combs Resources
T1 0.0 MRP yes (Spd,PP)
T2 1.0 1-MRP yes 0
T3 0.0 P7/3 no 0
T4 0.0 P8/3 no 0
T5 0.0 P5/3 no 0
T6 1.0 (P2=0)1P4=0)1P5=0)) & no (Spd, MemBdwth)
P3=0)&(T1=0))*1.0
T7 1.0 same as T6 no (Spd, MemBwdth)
T8 1.0 same as T6 no (Spd, MemBwdth)

in P3 represent processors that are active locally. The tokens in P2 represent free buses. Transitions
T1 and T2 implement a geometric processing time between memory requests. (Note that the GTPN
can represent geometric, as well as constant, holding times.) With probability equal to the memory
request probability, each token in P3 moves to P4. A token in P4 represents a processor making a
memory request. The places along the bottom represent lengths of memory queues. Because the
memory modules are statistically identical we are just interested in the possible combinations of
queue lengths. For example, a token in the leftmost place signifies that all three processors are

waiting for the same memory module. In this case, there can be no other tokens along the bottom
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places. We want each token on P4 to have its memory request uniformly distributed among the
memory modules. If only one transition can start firing at a time, then the frequency expressions
for T3, T4, and T'5 ensure uniformity. The place P1 is used to enforce that only one token on P4 at
a time moves to the bottom row (with zero delay). As tokens move across the bottom, processors
have their memory requests granted and return to P3. The last processor to use a memory module

(T8) returns the bus token to P2.

The frequency expressions for the transitions along the bottom enforce that none of the transi-
tions along the bottom row start firing until all possible tokens on P4 are moved into the memory
subsystem. In these frequency expressions a vertical bar represents a logical or. When the number
of tokens on P2 or P4 or P5 is zero and the number of tokens on P3 is zero, and there are no
firings of T'1, the expression evaluates to one, otherwise it evaluates to zero. The Cnt Combinations
column of Table 4.1 contains the value of the flag that determines how probabilites for maximals
are to be calculated for each transition that may appear in a maximal. Three resources are used to
derive performance measures. Spd generates speedup. PP generates processing power. MemBdwdth

generates the effective memory bandwidth.
4.2. Model Validations

We first consider four previous studies that assume constant cycle time and uniform access, in
order to validate our model. Bhandarkar[l] gives exact numerical results for the effective memory
bandwidth up to a 8 processor/8 memory/crossbar and memory request probability (MRP) of 1.

In Table 4.2 we present his numbers and the results from our GTPN; they agree.

The GTPN model for 16 processors and 16 memories yielded a Markov Chain with 8115 states.
Bhandarkar’s approach yielded a Markov Chain with 300,540,195 states. As mentioned in section
2.1, Bhandarkar needed this large state space as a means of indirectly reaching a smaller state
space. The GTPN allows us to describe the system such that we can directly derive the smaller
state space. This explains the difference in state space sizes. A similar direct method was used
by the GSPN[10]. We feel that it is quite likely that deriving the smaller state space without the
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Table 4.2. Effective memory bandwidth. Crossbar. MRP = 1.

Processors | Memories | Bhandarkar | GTPN
2 2 1.5000 1.5000

4 4 2.6210 2.6210

6 6 3.7809 3.7809

8 8 49471 4.9471

10 10 | e 6.1150

12 | 7.2835

14 4 | e 8.4527

16 16 | e 9.6225

Table 4.8. Effective memory bandwidth. 16 processor/16 memories/Multibus. MRP = 1.

Buses | Towsley Approx | Towsley Sim | Exact
8 7.93 7.96 7977

9 8.73 8.80 8.825
10 9.27 9.34 9.357
11 9.53 9.58 9.566
16 9.62 9.66 9.623

GTPN is possible. Our point is that the GTPN aids in seeing and expressing the symmetry which

allows the direct derivation.

We use the Power Method, an iterative sparse matrix algorithm, to solve for our results. The
iterations terminate when the sum over all states of the absolute value of the difference between the
last two iterations, is less than the convergence criterion. With our default convergence criterion,
5x107°, all of our values agreed with Bhandarkar’s except in the 8 processor/8 memory case, where
we reached 4.9469. We repeated the analysis with a smaller convergence criterion, 5 x 10-8, and
reached Bhandarkar’s value. We have used our default convergence criterion in all of the other
experiments reported in this paper. The default should be accurate to at least three digits. We
round all of our remaining results to three digits. This should also be sufficiently accurate since all

of the remaining comparisons are to simulations and approximate solutions.

Towsley[3] gives approximate solutions and simulation values for effective memory bandwidth
for a 16 processor/16 memory system with a MRP of one and a multibus interconnect. Our exact
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results are compared with his results in Table 4.3. Our values are in each case within the 90%
confidence interval of his simulation, and provide further evidence that the approximate analysis
is accurate. A reasonable conclusion is that up to 6 buses can be removed from the crossbar with
only a small performance degradation. Lang, Valero, and Alegre is another study that arrives at a

similar conclusion.

Table 4.4. Effective memory bandwidth. 8 processor/8 memory. MRP = 0.5.

Buses | Lang Sim | Bhuyan Approx | Mudge Approx | Exact
1 1.00 1.00 0.98 1.000
2 2.00 1.97 1.88 2.000
3 2.87 2.79 2.57 2.898
4 3.33 3.27 2.99 3.352
5 3.45 344 3.16 3.458
6 3.47 3.47 3.22 3.469
7 3.47 347 3.23 3.469
8 3.47 347 3.23 3.469

Table 4.5. Effective memory bandwidth. 16 processor/16 memory.

Buses | Mean IRT | Goyal Sim | Goyal Approx | Exact
1 8 1.00 0.9997 0.9998
16 0.8584 0.8719 0.8588

32 0.4794 0.4811 0.4745

2 4 2.0000 2.0000 1.9983

8 1.6616 1.6655 1.6560

16 0.9316 0.9331 0.9365

32 0.4852 0.4847 0.4793

We now present two validations that involve a MRP of less than one and a multibus. First,
we consider a 8 processor/8 memory system with a MRP of 0.5. Effective memory bandwidth is
the measure reported in previous papers. Table 4.4 gives the simulation values in Lang, Valero,
and Alegre[18], the approximate values of Bhuyan[19], the approximate values of Mudge, Hayes,
Buzzard, and Winsor[20], and our exact results. Our exact values are within the 99% confidence
intervals of the simulation results in all cases, and provide still better values for evaluation of
approximate results. Note that, again, the number of buses can be reduced substantially from a
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crossbar with minimal effect on performance.

Second, we consider a 16 processor/16 memory system with one or two buses. In Table 4.5 we
show Goyal and Agerwala’s[2] values and ours. In this table we adopt their convention of using the
mean interrequest time (mean JRT = 3k — 1) instead of the memory request probability. Our

values and theirs agree within the range of statistical error.
4.3. Comparison with Exponential Memory Access Time Models

Recall from Section 2 that several studies have assumed an exponential memory access time
and have derived exact performance estimates using continuous time Markov Chains. There are
two possible reasons for the exponential assumption. One, is that the multiprocessor under study
has an exponential memory access time. Two, is that the multiprocessor under study has a con-
stant memory access time, but that assuming an exponential memory access time is a reasonable
approximation which yields models that can be solved exactly. In this paper we are interested in the
stochastic modeling of multiprocessors with constant memory access times. Consequently, we are
interested in the second reason. One would expect from queueing theory (as noted in Marsan and
Gerla [11]) that the model with constant access time will give higher predictions for speedup. We
conducted several experiments to see how large a difference the assumption of exponential access

time makes.

Marsan, Balbo, and Conte[10] gives exact results for a 12 processor/2 bus system. They vary
the number of memories and the load. They assume that the interrequest time is exponentially
distributed with rate A and the memory access time is exponentially distributed with rate u. The
load is the ratio, p, of A to u. Our approach can be compared to theirs. We assume a constant
memory access time and an interrequest time which is, strictly speaking, a modified geometric
random variable. The important step is to make our models as similar as possible, so that only the
difference in modeling the memory access time is observed. In particular, we need to represent the

interrequest time distribution accurately.

In the limit, as the time length of a trial goes to zero, a modified geometric random variable
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0240 g Our Procusting Powrt
Br-eme- -3 Murean's Processing Power

#-8

Figure 4.3. Probability Distributions for the 6 memory case of Figure 4.2.

is identical with the exponential random variable with same mean. Consequently, if trials are
“reasonably frequent”, then a modified geometric random variable is a good approximation to the
exponential random variable with the same mean. We can approximate the exponential memory
interrequest time arbitrarily closely in our GTPN model, by decreasing the duration of transition
T2 and adjusting the frequency expressions for transitions T1 and T2 appropriately. Furthermore,
for a selected duration of transition T2 (greater than zero), the variance of the modified geometric
distribution is larger than the variance of the exponential distribution we are approximating. The
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increased contention due to this larger variability will result in lower estimates of processing power
than if the exponential interrequest time were represented exactly. Since we expect (and observe)
that constant memory access time model will have a higher processing power than the exponential
memory access time, the differences we observe due to approximating the interrequest time will be

conservative. (We verified this experimentally.)

In each of the experiments we conducted, a memory access time of 1 and an interrequest time
of 1/p approximated using a duration of 1 for T2, yields a reasonably accurate representation. We
note that this selection of parameters was used successfully in the validation against Goyal and
Agerwala (in Table 4.5). Goyal and Agerwala’s simulation assumed that the interrequest time is

exponentially distributed.

Figure 4.2 shows their estimates of processing power and ours, as the number of memories
is varied, for a 12 processor/2 bus system with load of 0.3. The difference in estimates is 6% at
2 memories and decreases to 2% at 10 memories. Thus, the exponential access time assumption
underestimates but provides a good approximation of the expected value for processing power.
Our estimates for speedup are also shown. These results are qualitatively similar, but substantially
larger than the processing power results. If we are really interested in speedup, processing power

is a poor approximation.

Though expected values are important, the nature of the probability distribution of processing
power is useful in characterizing multiprocessor behavior. In Figure 4.3 we show the constant access
time and approximating exponential access time probability distributions for a 12 processor/2 bus/6
memory system with load of 0.3. The distributions are substantially different. As one might expect,

the distribution assuming an exponential access time has a higher variance.

Marsan and Chiola [36], concurrently with our work, have introduced deterministic firing times
into the GSPN under certain restricted conditions. Those restricted conditions imply that their
multiprocessor models can only allow one bus. They reach conclusions similar to ours for the one
bus case. Thus, our work may be viewed as a generalization of theirs to the case of an arbitrary
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number of buses.
4.4. Critical Memory Request Probability

We now describe the analyses we conducted that are not comparisons with previous studies.
Our first set of experiments measured speedup for a 10 processor/10 memory system. The memory
request probability is varied from 0.1 to 1.0. The number of buses is 1, 2, 3, 4, and 10. Our
results in Figure 4.4 suggest an important conclusion about the effect of the number of buses on
speedup. When the number of buses is small, a critical memory request probability appears to exist.
The horizontal line drawn at speedup = 8.75 indicates approximately where this critical MRP lies
on each curve. Below that probability, speedup is close to that with a crossbar(even for just two
buses). Above that probability, speedup rapidly decreases and is equal to the number of buses in
the limiting case. This rapid decrease is clearly due to the lack of buses. The drop is more gradual
as the number of buses increases and is to a larger and larger extent due to memory contention
instead of bus contention. We note that a functional relationship may exist between the number
of processors, memory modules, and buses, and the critical MRP. Further study is required to

determine whether this is true.
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Figure 4.4. Measure is speedup. 10 processor/10 memory. Uniform access.

Our results are more specific than the conclusion reached by Lang, Valero, and Alegre. With
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respect to the measure of effective memory bandwidth, they concluded that good performance is
possible with the number of buses equal to one half the number of processors with a MRP of 0.5.
Note that their conclusion is supported by Figure 4.4. Furthermore, we conclude that as long as
the memory request probability stays below the critical value, only a few buses are needed to have

close to the performance of a crossbar.
4.5. Non-Uniform Access Probabilities

All of the experiments above assume uniform access probabilities. Many authors have argued
that this assumption is reasonable because the memory modules presumably are interleaved by
the low-order bits of the memory addresses. Rau’s [37] trace driven simulations, however, show
that, at least in some cases, even with memory module interleaving, accesses are not uniform.
Consequently, several studies have considered the non-uniform case. One version of non-uniformity
that is of interest is called favorite memory. In favorite memory, there is one memory module,
say module i, that is accessed with a different frequency than the other modules by all processes.
Module i has probability, «, of being accessed while the probability of each other module being

accessed is uniformly distributed over 1 — «, for all processors.

g or--e
LYy Wil &
41
S
Bay-
€
d
u
p
D' [EECITEICINNS SUINRSTRMEE IR RPRSS SN B y
e--t-=a [ MRP<03
11 Q,_____o ';"MRP'%'O.%* R
& ie8 1 MRP = 0.5
0 1
0.0 02 04 0.6 0.8 1.0
Favorite Memory Probability

Figure 4.5. Favorite Memory nonuniform accesses. 6 processor/6 memory/3 bus.

We conducted an experiment assuming a favorite memory. We considered a system with 6 pro-
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cessors, 6 memories, and 3 buses. Results are given in Figure 4.5 for memory request probabilities
of 0.3, 0.4, and 0.5. Each curve has seven data points for when zero, one sixth, two sixths, up to six
sixths of the memory requests are directed to the favorite memory. Note that a modest favoritism
(i.e. two sixths) has only a small effect on speedup. As expected, the speedup decreases as the
favoritism increases and as the memory request probability increases. In addition, as the memory
request probability increases the importance of favoritism increases, causing speedup to decrease

more rapidly.

This favorite memory experiment illustrates the need to develop approximate solution tech-
niques based on the GTPN. Identifying one memory module as favorite causes a significantly larger
state space than when all the modules are identical. For example, this 6 processor/6 memory /3
bus system has 3384 states while a 6 processor/6 memory/3 bus system without a favorite memory

has only 496 states.

5. Conclusions

We have presented exact performance estimates for models of multiprocessors for which only ap-
proximate and simulations estimates existed. These models include the important properties of
constant memory access time, memory request probabilities less than one, and bus contention.
One form of non-uniformity in the memory access probabilities was also treated. We derived these
results by using a method of introducing time into Petri Nets, called Generalized Timed Petri
Nets(GTPN), that we have developed. This method is efficient for moderate size state spaces.
For example, a multiprocessor model with 12 processors, 10 memc;ries, 2 buses, and a geometric
interrequest time of 5 time units has 2026 reachable states and requires 274 seconds to build the
reachability graph and analyze it for performance estimates. The results we have derived illustrate
the advantages of the GTPN model in specifying instantaneous, constant, and geometric holding
times in analytical system models. If constant delays are not needed, or if they satisfy restrictions
in current SPN models [38,39], then the SPN models may be more advantageous due to smaller
state spaces [8,9].
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The previous stochastic modeling studies of multiprocessor memory and bus interference have
measured effective memory bandwidth, and processing power as defined by: processor utilization
times the number of processors. We suggest a better measure of processing power which is equivalent

to the measure of speedup that is commonly used in other bodies of literature on multiprocessors.

Our multiprocessor performance estimates provided several important insights. One is that
assuming an exponential access time for a model of a multiprocessor with constant memory ac-
cess time and any number of buses causes only a small underestimation of the expected value of
processing power. However, the probability distributions for processing power differ substantially.

The distribution assuming an exponential access time has a higher variance.

Two, is that at low request rates only a few buses are needed to have almost the performance
of a crossbar. However, when only a few buses are used, a critical request rate exists. Exceeding

that critical request rate causes a dramatic collapse in performance.

Many performance questions remain with respect to multiprocessor memory and bus inter-
ference. One focus of our current research is to determine how much more information about

multiprocessor memory and bus interference can be obtained by the GTPN technique.

Our modeling approach does have a major drawback. As in any approach that builds an entire
state space, many interesting models cannot be studied because their state spaces are too large. Our
current implementation supports state spaces with up to 40,000 states. We could raise this limit to
some extent, but the basic problem remains. Approximate solutions must play an important role.
One focus of our future research will be to study how GTPNs can be used to provide approximate

solutions.
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