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ABSTRACT 

 
In this article we consider cone-beam CT projections along a nonstandard 3-D spiral with variable radius and variable 
pitch. Specifically, we generalize an exact image reconstruction formula by Zou and Pan (2004a) and (2004b) to the 
case of nonstandard spirals, by giving a new, analytic proof of the reconstruction formula. Our proof is independent of 
the shape of the spiral, as long as the object is contained in a region inside the spiral, where there is a PI line passing 
through any interior point. Our generalized reconstruction formula can also be applied to much more general situations, 
including cone-beam scanning along standard (Pack, et al. 2004) and nonstandard saddle curves, and any smooth curve 
from one endpoint of a line segment to the other endpoint, for image reconstruction of that line segment. In other words, 
our results can be regarded as a generalization of Orlov’s classical papers (1975) to cone-beam scanning.  
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1.  INTRODUCTION 

Cone-beam CT along nonstandard spirals is much more flexible than standard spiral CT in biomedical imaging 
applications. We anticipate major development along this direction for electron-beam CT/micro-CT (Wang and Ye, 
2003), bolus-chasing CT angiography (Wang and Vannier, 2003), and other projects. Approximate reconstruction 
algorithms of Feldkamp-type for cone-beam scanning along nonstandard spirals were given in Wang, et al. (1991) and 
(1993).  However, an exact counterpart in this general case has not been reported yet.  An exact cone-beam 
reconstruction formula in the filtered backprojection format was proved for cone-beam scanning along standard spirals 
(Katsevich 2002, 2003, and 2004).  A backprojected filtration counterpart of the Katsevich formula was proposed as 
well (Zou and Pan 2004a and (2004b).  It is highly desirable to extend these important results to the general case of 
nonstandard spirals.  Actually, the exact image reconstruction was recently studied in the case of cone-beam data along 
a spiral with variable pitch (Zou et al., 2004c).   
 
Let 

( ) ( ) ( ) ( )( ) ,,,sin,cos bsashssRssRs ≤≤=ρ   (1.1) 

be a nonstandard spiral with variable radius ( )sR  and variable pitch ( )sh . Assume that ( ) 0>sR  and ( ) 0>′ sh  for 

any s , with π4>− ab . Assume that there is a region P  inside the spiral such that for any point ( ) Pzyx ∈= ,,r , 

there is at least one PI line of the spiral passing through r . Here a PI line is a line passing through two points ( )1sρ  

and ( )2sρ  on the spiral, with π20 12 <−< ss  . 
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Consider an object function ( )rf  whose support is contained in P , i.e., ( ) 0=rf  for any P∉r . We will assume 

that ( )rf  is continuous and smooth. For any unit vector β , define the cone-beam projection of ( )rf  from a point 

( )sρ  on the spiral by 

( )( ) ( )( ) .,
0

dttsfsD f βρβρ += ∫
∞

    (1.2) 

Note that this integral is actually taken over a finite interval, because the function ( )rf  is compactly supported. When 

β  points away from the support of ( )rf , the integral vanishes. In the computation below, we will take the unit vector 

β  as the one pointing to a point 3Rr ∈  from a point ( )sρ  on the spiral: 

( ) ( )
( ) .
s

s
,s

ρ

ρ
β

−
−=

r
r

r      (1.3) 

For a point P∈r , denote the two end points of the PI line segment by ( ))(1 rsρ  and ( ))(2 rsρ , where ( )r11 ss =  

and ( )r22 ss =  are the parameters of these two points on the spiral. We need to use a unit vector along the PI line: 

( ) ( )( ) ( )( )
( )( ) ( )( ) .

12

12

rr
rr

re
ss

ss

ρρ

ρρ

−
−=π      (1.4) 

 
In Zou and Pan (2004a) and (2004b), a formula for exact image reconstruction for cone-beam CT along a standard 
spiral 

( ) ( ) ,,)2/(,sin,cos bsashsRsRs ≤≤= πρ    (1.5) 

was proved. Here R  is a constant radius, and h  is a constant pitch. This standard spiral has a standard Tam-Danielsson 
window (Tam etc. (1998) and Danielsson etc. (1997)) on a detection plane. Zou and Pan’s approach for the derivation 
of their formula ((3.4) below) uses geometry of the standard spiral and its Tam-Danielsson window, and its 
generalization to the general case of nonstandard spirals is not obvious. 
 
In this article, we will not only give a new proof of the formula by Zou and Pan but also generalize it into a more 
general case. Our new proof will not be restricted to the standard geometry of the spiral and its associated Tam-
Danielsson window, and rather supports a generalized version of (3.4) for exact image reconstruction with cone-beam 
scanning along nonstandard spirals with variable radii and pitches. Algorithm implementation and evaluation based on 
this generalization have been reported in Yu et al. (2004a) and (2004b). 
 
As will be seen in the proof, our generalized reconstruction formula (3.4) will apply to a quite general class of scanning 
loci, including but not limited to nonstandard spirals defined by (1.1).  Actually, as long as r  is on a line segment and 

( )sρ  is a smooth curve running from one endpoint ( )( )r1sρ  of the line segment to the other endpoint ( )( )r2sρ , Eq. 
(3.4) would hold. This may be considered as a generalization of Orlov (1975) to cone-beam CT. In particular, our 
Theorem 3.1 can be applied to the cone-beam scanning along a saddle curve as in Pack et al. (2003), or more generally, 
to cone-beam scanning along a nonstandard saddle curve. 
 
 

2.  THE REGION OF PI LINES AND REGION OF UNIQUE PI LINES 

Since the PI line concept is crucial in the Katsevich-type reconstruction, we continue making use of it for exact cone-
beam reconstruction with nonstandard spiral loci.  In this section, we analyze the existence and uniqueness of the PI 
lines in the nonstandard spiral case.  Although the exact reconstruction does not necessarily depend on the uniqueness of 
the PI line, this uniqueness would minimize the redundancy in cone-beam data acquisition. 
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For a standard spiral (1.5) of a constant radius R  and pitch h , it was proved (Danielsson et al. 1997) that for any point 

),,( zyx  inside the spiral, i.e., when 222 Ryx <+ and ππ 22 −≤≤+ bsa , for a  and b  with π4>− ab as 

above, there is a unique PI line passing through ),,( zyx . When the spiral (1.1) is nonstandard, however, one cannot 
expect to have one and only one PI line passing through any given point inside the spiral in general. As pointed out in 
Ye et al. (2004a) and (2004b), one should seek two different kinds of regions inside the spiral (1.1). The region of PI 
lines as above is a region such that for any point in this region, there is one or more PI lines passing through it. The 
region of unique PI lines is a region such that passing through any point there is a unique PI line. We will denote the 
former by P and the latter by U . Clearly PU ⊂ . 
 
The region of PI lines can be determined for a given nonstandard spiral by the union of all PI line segments: 

{ }U
π20

21

12

10)()1()(
<−<

<<−+=
ss

tststP ρρ . 

Our new proof and generalization of the exact reconstruction formula are valid for any point P∈r . To see the 
redundancy in cone-beam data acquisition, let us assume that there are two PI lines passing through a point P∈r . Our 

generalized exact reconstruction formula (3.4) can be applied to the spiral arc from ( )1sρ  to ( )3sρ , as well as to the 

arc from ( )2sρ  to ( )4sρ . Consequently )(rf  will be computed twice. This redundancy has to be corrected by a 
weighted sum during the final image reconstruction. 
 
To determine the region of unique PI lines, we observe that passing through a point there are more than one PI line if 

and only if there are four points ( )jsρ , 4,,1K=j , on the spiral with 4321 ssss <<< , π213 <− ss , and 

π224 <− ss , such that they are on the same plane. In fact, these four co-plane points are the end points of the PI 
lines segments on the spiral. One should exclude the degenerated case of three end points being on the same line, as the 
intersection point r  of the two PI lines would then be on the spiral. This principle can be used to determine a region of 
unique PI lines for any given nonstandard spiral.  Note that regions of unique PI lines have been determined when the 
spiral (1.1) has a variable pitch but a constant radius (Ye et al, 2004a), and when the spiral has a constant pitch but a 
variable radius (Ye et al, 2004b).  
 

3.  EXACT RECONSTRUCTION FORMULA 

First let us define an integral kernel 

( ) ( )( ) ( )
∫

′−⋅⋅=′
3R

rrrerr .sgn
2

1
, 2

νν
ν de

i
K iπ

ππ
   (3.1) 

The integral in (3.1) diverges in the ordinary sense, and hence ( )rr ′,K  is interpreted as a distribution. In this paper, we 

will avoid using distributions in our computation. Therefore the meaning of ( )rr ′,K  is that it defines an integral 

transform from a function g  on 3R  to 

( ) ( ) ( )( ) ( )∫∫∫ ′′⋅=′′′ ′⋅−⋅

333 R

r

R

r

R

rrrerrrr .sgn
2

1
, 22 degde

i
dgK ii νν

νν
ππ

ππ
  (3.2) 

In other words, the integral transform on the left side of (3.2) is by definition a twisted Fourier inverse transform of the 
Fourier transform of g . Note that the order of integration on the right side of (3.2) cannot be interchanged. 
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Given an object function ( )rf  of compact support in P , let us consider a special function g  which is given by 
following expression 

( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )

( )
.,,,,

2

1

∫ −′
′−−′

∂
∂=′

=

r

r r
rrr

s

s sq

ff s

ds
sqDsqD

q
g

ρ
βρβρ  (3.3) 

Note that, because of the upper and lower limits ( )r2s  and ( )r1s , our function ( )r′g  also depends on P∈r . As 

pointed out by Zou and Pan (2004a) and (2004b), ( )r′g  is the weighted cone-beam backprojection of the derivative of 

the filtered data for the point P∈r . It is the subject matter of Zou and Pan (2004a) and (2004b) that one can recover 

( )rf  by applying the integral transform (3.2) to ( )r′g  in (3.3), for cone-beam projections along a standard spiral 
(1.5). In other words, they formulated (3.4) below for the standard spiral (1.5). What we will contribute in this paper is 
to prove (3.4) for a nonstandard spiral (1.1), as well as other smooth curves. 
 

Theorem 3.1.  Consider a nonstandard spiral (1.1) with a region P of PI lines. Let ( )rf  be a function of compact 

support in P , whose 5th partial derivatives are absolutely integrable in 3R . Then 

( ) ( ) ( ) ,,∫ ′′′=
3R

rrrrr dgKf     (3.4) 

where the integral transform is defined in (3.2), ( )r′g  is given by (3.3), ( ) ( )( )sqD f ,, r′βρ  by (1.2), and ( )s,rβ  by 

(1.3). 
 

We remark that in Theorem 3.1 we may simply assume that ( )rf  is a smooth function of compact support in P , and 
hence all its partial derivatives exist and are continuous. The theorem is formulated in the present form because we will 
need this stronger version of the theorem in a subsequent work on exact reconstruction for discontinuous object 
functions. 

4.  PROOF OF THEOREM 3.1 

With (3.2), the right side of (3.4) is 

( )( ) ( )

( )( )

( ) ( )( ) ( ) ( )( )( ) ( )( )
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.,,,,
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2

1
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2
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s sq

ff

ii

ii

s

ds
sqDsqD
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degde
i

ρ
βρβρ

ν'ν'

ν'ν

ν'ν'

νν'

ππ
π

ππ
π

π

π

 (4.1) 

We will first compute the expression on the right side of (4.1) contributed by ( ) ( )( )sqD f ,, r′βρ . Computation of the 

expression contributed by ( ) ( )( )sqD f ,, r ′−− βρ  is similar. 

 
Denote by 

( ) ( )∫
⋅−=

3R

r rr defF iν
ν

π2      (4.2) 

the Fourier transform of ( )rf . Then 
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( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )
∫ ∫

∫

∞

=

′+⋅

∞

==

∂
∂=

′+
∂
∂=




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 ′
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dtdeF
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dt,stqf
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sqsq
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r
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βρβρ
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  (4.3) 

by Fourier’s inversion formula. We take the derivative under the inner integral to get 

( ) ( )( ) ( ) ( ) ( ) ( )( )
∫ ∫
∞

′+⋅

=








 ⋅=






 ′
∂
∂

0

,2 .2,,
3R

rr νν

ρ
νβρ

βρν deF
ds

sd
dtisqD

q
stsi

sq

f
ππ  (4.4) 

As we assumed that the 5th partial derivatives of ( )rf  are absolutely integrable in 3R , its Fourier transform ( )νF  is 

bounded by )|)|1(( 5−+ νO , by the Riemann-Lebesgue theorem. Consequently, the inner integral on the right side of 

(4.3) is dominated by νν d5|)|1(
3

−
∫ +

R
, while the inner integral on the right side of (4.4) is dominated by a 

convergent integral νν d4|)|1(
3

−
∫ +

R
. This proved that it is legitimate to interchange the order of differentiation and 

the inner integral in (4.3), and hence (4.4) is valid. 
 

Substituting (4.4) to the right side of (4.1), the expression on the right side of (4.1) contributed by ( ) ( )( )sqD f ,, r′βρ  

becomes 

( )( )

( ) ( ) ( ) ( )( )( )

( )

( )
,

sgn

2

1 0

2

22
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∫∫
∞

−′′+⋅

′⋅−⋅







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′⋅
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3

33

rre
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s

stsi

ii

deF
ds

sd
tdds

dede

νν

ρ
ν

ν'ν'

ρρν

ν'ν'

π

ππ
π

   (4.5) 

where we changed variables to ( )stt ρ−′=′ r  using (1.3).  

 

As ( )rf  is of compact support, we can differentiate the right side of (4.2) under the integration. This way one can see 

that ( )νF  is a smooth function, and its partial derivatives are also bounded by )|)|1(( 5−+ νO . Therefore, the 

function ( )( ) ( )νρν Fdssd /⋅  and its partial derivatives are smooth and bounded by )|)|1(( 4−+ νO . Using this fact, 

we may apply integration by parts many times to the innermost integral in (4.5) by differentiating ( )( ) ( )νρν Fdssd /⋅  

and integrating the exponential function. Each application of integration by parts will yield a linear function of t ′  in the 
denominator. This consequently proves that the innermost integral in (4.5) is a rapidly decreasing function of t ′ . 
Consequently we can legitimately interchange the integrals with respect to s  and t ′  in (3.5). Since the innermost 

integral in (4.5) is dominated by νν d4|)|1(
3

−
∫ +

R
, we can further interchange the integrals with respect to s  and ν  

in (4.5). 
 
Now the innermost integral becomes 

( ) ( ) ( )

( )

( )

∫
⋅′−








 ⋅
r

r

2

1

.12
s

s

sti dse
ds

sd ρνρ
ν

π     (4.6) 

Changing variables from s  to ( )su ρν ⋅= , we get 
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( )
ds

ds

sd
du 







 ⋅= ρ
ν , 

and (4.6) becomes 
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Using (4.7) and (4.5), we now get the expression on the right side of (4.1) contributed by ( ) ( )( )sqD f ,, r′βρ  as 
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by setting tt ′−=1 . 
 

From ( )( ) ( )( )∫ ∞−
+=−

0
, dttsfsDf βρβρ , we can see that the contribution of ( ) ( )( )sqD f ,, r ′−− βρ  to the right 

side of (4.1) equals 
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Therefore the right side of (4.1) is now equal to the sum of (4.8) and (4.9): 
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By similar arguments as before, we can interchange order of integration in (4.10). This way we can change variables 

from 'r  to ')1( rs t−=  with 3|1|/' tdd −= sr , and then from ν'  to )1/( t−= ν'µ  with µν' dtd 3|1| −=  and 

( )( ) ( )( ) )1sgn(sgnsgn t−⋅=⋅ rere ππ µν' . Consequently, (4.10) becomes 
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by the Fourier inversion formula. The innermost integral on the right side of (4.11) can be written as 

( ) ( )))((2))((2)))(((2)))(((2 1212 )()( rr

R

rsrs

3

ss sitsitstisti eeFdeef ρµρµρµρµ
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⋅⋅−⋅−−⋅− −=−∫
ππππ . 
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Therefore (4.11) and hence the right side of (4.1) becomes 

( )( ) ( )∫∫
∞
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−⋅−⋅⋅ −⋅
it

dt
eedeF sitsiti

π
πππ

π 2
sgn)( )))(((2)))(((22 12 rrrr
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3

re ρµρµµ
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Now we need a classical integral formula to compute the inner integral in (4.12):  

( ) 1
2

22 =−∫
∞

∞− it

dt
ee itbita

π
ππ ,    (4.13) 

for ba >> 0 . Since r  is on the PI line between ( )( )r2sρ  and ( )( )r1sρ , ( )( ) )( 2 rr −⋅ sρµ  and 

( )( ) )( 1 rr −⋅ sρµ  are of opposite signs, while the sign of the former is indeed ( )( )reπ⋅µsgn . Using (4.13), (4.12) 

is immediately simplified to  

)()( 2 r
3R

r fdeF i =∫
⋅
µµ

µπ , 

which completes the proof of  Theorem 3.1. 
 

5.  DISCUSSION AND CONCLUSION 

Our analytic proof of the extended Katsevich-type reconstruction formula has not only confirmed the exactness of the 
backprojected-filtration methodology for cone-beam reconstruction from a standard cone-beam spiral scan but also 
revealed the feasibility of backprojected-filtration-based exact cone-beam reconstruction from a nonstandard cone-beam 
spiral scan.  As argued by Zou and Pan (2004a) and (2004b), exact Katsevich-type reconstruction from the data in the 
Tam-Danielson window is doable using a backprojected filtration algorithm.  According to our above findings, exact 
image reconstruction from the cone-beam data within the generalized Tam-Danielson window in the nonstandard spiral 
case should be equally doable.  We are working along this direction to study the numerical stability and optimize our 
algorithms (Yu et al. 2004a and 2004b).  Furthermore, in the case of other types of scanning loci such as saddle curves 
(Pack, et al. 2003), the reconstruction formula as given in Theorem 3.1 should hold as well, as long as the generalized 
Tam-Danielson window can be appropriately adapted to allow the minimum data are included.  Relevant results will be 
reported in other publications. 

In conclusion, we have studied exact cone-beam CT reconstruction from projections along a nonstandard 3D spiral with 
a variable radius and variable pitch by generalizing a Katsevich-type formula by Zou and Pan (2004a) and (2004b), 
from the standard spiral cone-beam scanning to the cone-beam scanning along nonstandard spirals, standard and 
nonstandard saddle curves, and virtually any smooth curves. Our proof has avoided explicit handling of the signum 
function, and is independent of the specific shape of the scanning locus under the condition that the object is contained 
in a region of PI lines, and the data are contained in an appropriately extended Tam-Danielson window. 
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