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ABSTRACT

In this article we consider cone-beam CT projections along a nonstandard 3-D spiral with variable radius and variable
pitch. Specifically, we generalize an exact image reconstruction formula by Zou and Pan (2004a) and (2004b) to the
case of nonstandard spirals, by giving a new, analytic proof of the reconstruction formula. Our proof is independent of
the shape of the spiral, as long as the object is contained in aregion insde the spiral, where there is a Pl line passing
through any interior point. Our generalized reconstruction formula can aso be applied to much more genera situations,
including cone-beam scanning along standard (Pack, et al. 2004) and nonstandard saddle curves, and any smooth curve
from one endpoint of a line segment to the other endpoint, for image reconstruction of that line segment. In other words,
our results can be regarded as a generalization of Orlov’'s classical papers (1975) to cone-beam scanning.
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1. INTRODUCTION

Cone-beam CT aong nonstandard spirals is much more flexible than standard spiral CT in biomedical imaging
applications. We anticipate major development along this direction for eectron-beam CT/micro-CT (Wang and Ye,
2003), bolus-chasing CT angiography (Wang and Vannier, 2003), and other projects. Approximate reconstruction
algorithms of Feldkamp-type for cone-beam scanning along nonstandard spirals were given in Wang, et al. (1991) and
(1993). However, an exact counterpart in this general case has not been reported yet. An exact cone-beam
reconstruction formula in the filtered backprojection format was proved for cone-beam scanning along standard spirals
(Katsevich 2002, 2003, and 2004). A backprojected filtration counterpart of the Katsevich formula was proposed as
well (Zou and Pan 2004a and (2004b). It is highly desirable to extend these important results to the general case of
nonstandard spirals. Actually, the exact image reconstruction was recently studied in the case of cone-beam data along
a spiral with variable pitch (Zou et al., 2004c).

Let

p(s) = (R(s)coss, R(s)sins,h(s)), a<s<b, (1.1)
be a nonstandard spiral with variable radius R(S) and variable pitch h(S). Assume that R(S) >0 and h'(S) >0 for
any S,with b—a > 47 . Assumethat thereisaregion P inside the spira such that for any point I = (X, Y, Z) upP,
thereis at least one Pl line of the spiral passing through I . Here a Pl line is a line passing through two points P(Sl)
and p(sz) onthespiral, with 0<'s, —s, <277 .
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Consider an object function f(r) whose support is contained in P, i.e, f(r) =0 for any r O P. We will assume
that f (r) is continuous and smooth. For any unit vector f#, define the cone-beam projection of f (r) from a point

p(S) on the spiral by

[

D; (p(s). £) = f (p(s) + tp)ct. 12)

0
Note that this integral is actually taken over afinite interval, because the function f (r) is compactly supported. When
P points away from the support of f (r) , the integral vanishes. In the computation below, we will take the unit vector
J asthe one pointing to apoint 1 [ R from apoint p(s) on the spiral:
r—p\s
pr.s)= ﬁ (L3)
I = p(s)]
For apoint r LJ P, denote the two end points of the Pl line segment by p(sl(r)) and p(sz(r)), where S, = Sl(r)
and s, =S, (r ) are the parameters of these two points on the spiral. We need to use a unit vector along the Pl line;
r))— r
e ()= 2&0)-ls () e

T Ips0) -0

In Zou and Pan (2004a) and (2004b), a formula for exact image reconstruction for cone-beam CT along a standard
spiral

p(s)=(Rcoss,Rsins, sh/(2m)), a<s<b, (15)

was proved. Here R isaconstant radius, and h isaconstant pitch. This standard spiral has a standard Tam-Danielsson
window (Tam etc. (1998) and Danielsson etc. (1997)) on a detection plane. Zou and Pan’s approach for the derivation
of their formula ((3.4) below) uses geometry of the standard spird and its Tam-Danielsson window, and its
generalization to the general case of nonstandard spiralsis not obvious.

In this article, we will not only give a new proof of the formula by Zou and Pan but also generdize it into a more
general case. Our new proof will not be restricted to the standard geometry of the spiral and its associated Tam-
Danielsson window, and rather supports a generalized version of (3.4) for exact image reconstruction with cone-beam
scanning along nonstandard spirals with variable radii and pitches. Algorithm implementation and evaluation based on
this generalization have been reported in Yu et al. (2004a) and (2004b).

Aswill be seen in the proof, our generalized reconstruction formula (3.4) will apply to a quite general class of scanning
loci, including but not limited to nonstandard spirals defined by (1.1). Actualy, aslong as I is on aline segment and
p(S) is a smooth curve running from one endpoint p(sl (r )) of the line segment to the other endpoint p(s2 (r )) Eq.

(3.4) would hold. This may be considered as a generalization of Orlov (1975) to cone-beam CT. In particular, our
Theorem 3.1 can be applied to the cone-beam scanning along a saddle curve as in Pack et al. (2003), or more generaly,
to cone-beam scanning along a nonstandard saddle curve.

2. THE REGION OF PI LINESAND REGION OF UNIQUE PI LINES

Since the PI line concept is crucial in the Katsevich-type reconstruction, we continue making use of it for exact cone-
beam reconstruction with nonstandard spiral loci. In this section, we analyze the exigence and uniqueness of the Pl
lines in the nonstandard spiral case. Although the exact reconstruction does not necessarily depend on the uniqueness of
the Pl line, this uniqueness would minimize the redundancy in cone-beam data acquisition.
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For a standard spiral (1.5) of a constant radius R and pitch h, it was proved (Danielsson et al. 1997) that for any point
(X,Y,2) inside the spirdl, i.e, when X* + y* <R®and a+271<s<b-27, for a and b with b—a > 4nas
above, there is a unique PI line passing through (X, Y, Z) . When the spiral (1.1) is nonstandard, however, one cannot

expect to have one and only one PI line passing through any given point inside the spira in genera. As pointed out in
Ye et al. (2004a) and (2004b), one should seek two different kinds of regions insde the spiral (1.1). The region of Pl
lines as above is a region such that for any point in this region, there is one or more Pl lines passing through it. The
region of unique Pl linesis aregion such that passing through any point there is a unique Pl line. We will denote the
former by P andthelatter by U . Clearly U O P.

Theregion of Pl lines can be determined for a given nonstandard spiral by the union of all Pl line segments:
P= Ufte(s) +@-tp(s)0<t<1}.

O<s,—s <21
Our new proof and generalization of the exact reconstruction formula are valid for any point r L1P . To see the
redundancy in cone-beam data acquisition, |et us assume that there are two Pl lines passing through apoint r L1 P . Our

generalized exact reconstruction formula (3.4) can be applied to the spiral arc from p(Sl) to p(%), as well asto the
arc from p(SZ) to p(S4). Consequently f(r) will be computed twice. This redundancy has to be corrected by a
weighted sum during the final image reconstruction.

To determine the region of unique PI lines, we observe that passing through a point there are more than one Pl line if
and only if there are four points p(sj), j=1...,4, on the spiral with S, <S,<S;<S,, ;-5 <277, and

S, —S, < 21T, such that they are on the same plane. In fact, these four co-plane points are the end points of the PI

lines segments on the spiral. One should exclude the degenerated case of three end points being on the same line, asthe
intersection point I of the two PI lines would then be on the spiral. This principle can be used to determine aregion of
unique Pl lines for any given nonstandard spiral. Note that regions of unique Pl lines have been determined when the
spiral (1.1) has a variable pitch but a constant radius (Ye et al, 2004a), and when the spiral has a constant pitch but a
variableradius (Ye et d, 2004b).

3. EXACT RECONSTRUCTION FORMULA

Firg let usdefine an integral kernel
K(r,r')= 2—;_ RLszgn(v &, (r)e?™ " dv. (31)

Theintegral in (3.1) divergesin the ordinary sense, and hence K(r,r’) isinterpreted as a distribution. In this paper, we
will avoid using digtributions in our computation. Therefore the meaning of K(r,r’) is that it defines an integral

transform from afunction g on R® to
1 . .
K [ [ 1 — 27iv(0 1\ A—27iv(D l. .
RL (r,r')g(r')dr o RLszgn(v & (r)e dvRLg(r )e ™" dr (32

In other words, the integral transform on the left side of (3.2) is by definition atwisted Fourier inverse transform of the
Fourier transform of g . Note that the order of integration on the right side of (3.2) cannot be interchanged.
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Given an object function f(r) of compact support in P, let us consider a specia function g which is given by
following expression

N , , ds
gr) = %{)a—q(Df (p(a). (", ) - D, (p(a)-A(r",5))) ol (33)

Note that, because of the upper and lower limits sz(r) and sl(r), our function g(r’) aso dependson r LIP. As

pointed out by Zou and Pan (2004a) and (2004b), g(r ') is the weighted cone-beam backprojection of the derivative of
the filtered data for the point I L1 P . It is the subject matter of Zou and Pan (2004a) and (2004b) that one can recover
f(r) by applying the integral transform (3.2) to g(r’) in (3.3), for cone-beam projections along a standard spiral
(1.5). In other words, they formulated (3.4) below for the standard spiral (1.5). What we will contribute in this paper is
to prove (3.4) for anongtandard spiral (1.1), as well as other smooth curves.

Theorem 3.1. Consider a nongtandard spiral (1.1) with a region P of PI lines. Let f (r) be a function of compact
support in P, whose 5th partial derivatives are absolutely integrablein R3. Then

f(r)= J;K(r,r’)g(r’)dr’, (3.)

where the integral transform is defined in (3.2), g(r') isgivenby (3.3), D, (p(q), #(r', s)) by 1.2), and B(r,s) by
(1.3).

We remark that in Theorem 3.1 we may simply assume that f (r) is a smooth function of compact support in P, and

hence all its partial derivatives exist and are continuous. The theorem is formulated in the present form because we will
need this sronger version of the theorem in a subsequent work on exact reconstruction for discontinuous object
functions.

4. PROOF OF THEOREM 3.1
With (3.2), theright side of (3.4) is
2—;_ RL son(vie, (r))e?™ ® av' RL g(r)e ™ ar’

:2_;' RL son(v' @, (r))e”™ " ov' RL o2 gy »
s(r) P .

" dyoq DI SITRARGARE TRV
q(r)aq( (p(a). p(r',s)) (p(a)-p(r S)))q:s|r e

We will first compute the expression on the right side of (4.1) contributed by D (p(q), p (r ', S)) Computation of the
expression contributed by — D (p(q),—ﬂ(r', S)) issimilar.

Denote by
F(v)= | f(r)e® dr (4.2)

the Fourier transform of f (r) . Then
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20, (la s j ORI
(4.3
=2 [Fp)emwae g o
0 6q R® g=s
by Fourier’ sinversion formula. We take the derivative under theinner integral to get
(aiq D, (p(q). p(r',s j = 27i j dt | [ j (v)e2 WD gy, (4.4
g=s

As we assumed that the 5th partial derivatives of f( ) are absolutely integrable in R , its Fourier transform F(v) is
bounded by O((1+ | v [) ), by the Riemann-Lebesgue theorem. Consequently, the inner integral on the right side of

(4.3) is dominated byIR3(1+ |v[)dv , while the inner integral on the right side of (4.4) is dominated by a

convergent integral IR3 (1+|v|)™dv. This proved that it is legitimate to interchange the order of differentiation and
the inner integral in (4.3), and hence (4.4) isvalid.

Substituting (4.4) to the right side of (4.1), the expression on the right side of (4.1) contributed by D (p(q), p (r ! S))
becomes

Isgn(v' €, (r))e™ ™ dv I e gr!
R3

r 4.5
j dsjdt I[ Qd_P(S)j F (v) el sl gy, 2

S o rv 08
where we changed variablesto t' = t/|r - p(S)| using (1.3).

As f (r) is of compact support, we can differentiate the right side of (4.2) under the integration. This way one can see
that F(v) is a smooth function, and its partial derivatives are also bounded by O((1+|v [)™) . Therefore, the
function (v mp(s)/ds) F(v) and its partial derivatives are smooth and bounded by O((1+ |v [)™) . Using this fact,
we may apply integration by parts many times to the innermost integral in (4.5) by differentiating (v mp(s) /dS) F (v)
and integrating the exponential function. Each application of integration by partswill yield alinear function of t" in the

denominator. This consequently proves that the innermost integral in (4.5) is a rapidly decreasing function of t'.
Consequently we can legitimately interchange the integrals with respect to S and t' in (3.5). Since the innermost

integral in (4.5) is dominated by IR3 (1+]v )™ dv, we can further interchange the integrals with respect to S and v
in (4.5).

Now the innermost integral becomes

s(r)
| [v Jdp—(s)jez" ) g (4.6)

Changing variablesfrom S to U = Eb( ) we get
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du = [v Bdﬁst,

ds
and (4.6) becomes
ipls() 21t )a(s(r)) _ g2i0-t)p(s(r)
e gy = — (4.7)
(s () 27i1-t)
Using (4.7) and (4.5), we now get the expression on the right side of (4.1) contributed by D (p(q), p’(r ; S)) as
Isgn(v' @, (r))e™ v [ e " dr’
" (4.8)

f e [fg2vi(alr)) _ g2l gy,
", 276t 2

by setting t =1—1".

From D, (p(s)-p) = Ifm f (p(s) +1t)dt , we can see that the contribution of — D, (p(q),~(r", s)) to the right
side of (4.1) equals

—Isgnv @ ( )) '@ (i J‘e2mmdr

(4.9
I ei(-thT E(ezmv@(sz(r)) — 2ip(s(r ))) dv
Therefore theright side of (4.1) isnow equal to the sum of (4.8) and (4.9):
I%n(vl ”(r ))eZIiv' Iil dvu I e—ZIiv' o' drl
R R
(4.10)

[N 2 2ol () _ g2vn(s()
x _L sgn(1-t) o RL F(v)e E(e e )dv.
By similar arguments as before, we can interchange order of integration in (4.10). This way we can change variables
from r' to s=(1—t)r' with dr'=dg|1-t [, and then from v to g =v'/(1—t) with dv' =|1—-t ] du and
sgn(v' ,,(r )) = sgn(,u Eﬂ( ))sgn(l— t) . Consequently, (4.10) becomes

J'_ %n ,u@ )) Zm(l—t),umdlu

x Ie 211w 4g IF » ezm@ [(ezmv@(sz(r ) _ ezmv@(sl(r)))dv
(4.11)

el 271 (1-t) pulo)
2m sgn(u (&,(r))e du

L e (f (s+1p(s,(r)) — (s +tp(s.(r)))ds,

by the Fourier inversion formula The innermost integral on the right side of (4.11) can be written as

J' f (S) (e—zﬁuf(lS—tp(Sz(r))) — e—ZﬁﬂmS_tP(sl(r))))ds =F (ﬂ) (eZm;uD(sZ(r)) L CIO) )
R3
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Therefore (4.11) and hence theright side of (4.1) becomes

. Py . dt
F nlue (r eZH#m eZHtuf(Jp(%(r))—r) _ @27itullp(s(r))-r) . (4.12)
[Fmsn(uce, () duf )
Now we need aclassical integral formulato compute the inner integral in (4.12):
Y o\ dt
[(erma —em) = =1, (4.13)
27t

—00

for a>0>b . Since r is on the PI line beween p(s,(r)) and p(s,(r)) . alp(s,(r))-r) and

H mp(sl(r ))— I') are of opposite signs, while the sign of the former is indeed sgn(,u @”(r )) . Using (4.13), (4.12)
isimmediately simplified to

[Fwe™ du=1(),

which completes the proof of Theorem 3.1.

5. DISCUSSION AND CONCLUSION

Our analytic proof of the extended Katsevich-type reconstruction formula has not only confirmed the exactness of the
backprojected-filtration methodology for cone-beam reconstruction from a standard cone-beam spiral scan but aso
revealed the feasibility of backprojected-filtration-based exact cone-beam reconstruction from anonstandard cone-beam
spiral scan. As argued by Zou and Pan (2004a) and (2004b), exact Katsevich-type reconstruction from the data in the
Tam-Danielson window is doable using a backprojected filtration algorithm. According to our above findings, exact
image reconstruction from the cone-beam data within the generalized Tam-Daniel son window in the nonstandard spiral
case should be equally doable. We are working along this direction to study the numerical stability and optimize our
algorithms (Yu et al. 2004a and 2004b). Furthermore, in the case of other types of scanning loci such as saddle curves
(Pack, et al. 2003), the recongtruction formula as given in Theorem 3.1 should hold as well, as long as the generaized
Tam-Danielson window can be appropriately adapted to allow the minimum data are included. Relevant results will be
reported in other publications.

In conclusion, we have studied exact cone-beam CT reconstruction from projections along a nonstandard 3D spird with
a variable radius and variable pitch by generalizing a Katsevich-type formula by Zou and Pan (2004a) and (2004b),
from the standard spira cone-beam scanning to the cone-beam scanning along nonstandard spirals, standard and
nonstandard saddle curves, and virtually any smooth curves. Our proof has avoided explicit handling of the signum
function, and is independent of the specific shape of the scanning locus under the condition that the object is contained
inaregion of Pl lines, and the data are contained in an appropriately extended Tam-Daniel son window.
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