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ABSTRACT The exact region of attraction plays an important role in autonomous nonlinear system, while

the results based on the conventional method, such as Lyapunov function approach, are always conservative.

However, results via the manifold method, which is the main approach studied, are exact. This method

optimizes the distribution of points on the circle through modifying the end point of the former trajectory and

inserting/deleting point on the circle on the basis of trajectory arc length method to improve the accuracy and

efficiency. First, the basic theory ofmanifoldmethod is introduced. Secondly, a methodology for determining

stable manifold are proposed, which is the core of the manifold method in stability boundary determining.

Finally, on this basis, three examples about academic model, power system and aviation system are taken

to illustrate the advantages of the method. The results show that the method can improve the accuracy and

significantly reduce the calculation time, and can be widely used in engineering systems.

INDEX TERMS Region of attraction, manifold theory, trajectory arc method, autonomous nonlinear system.

I. INTRODUCTION

The region of attraction (ROA), also named stability

region, which plays an important role in electrical power

system [1]–[3], aviation [4], [5], economics, ecology, etc., is a

domain around an asymptotically stable equilibrium point,

in which trajectories starting will converge to the equilibrium

point. Of cause, there are lots of methods for ROA determi-

nation, such as Lyapunov function approach [6], reachable

set [3], [7], Monte Carlo [4] and so on. But all of them have

valuable advantages as well as inevitable shortcomings. For

instance, Lyapunov function approach as a well-known and

general method which can obtain the explicit function for the

boundary of the ROA, and it can easily distinguish whether

a point is inside the stability boundary or not. Whereas,

the Lyapunov function is usually too complex to determine

by computer and the conservatism of the ROA also can’t be

acceptable. Theoretically, Monte Carlo approach as a numer-

ical method utilizes a number of points in state space to

estimate the stability region. However, the efficiency of this

method is quite low.

The associate editor coordinating the review of this manuscript and

approving it for publication was Meng Huang .

The exact ROA determination is of critical importance in

improving the system’s performance, however, the results

based on the methods above are always conservative. Another

non-Lyapunov and numerical method for finding the ROA

based on its topological properties to some extent solves

the problem. In 1988 and 1989, Hsiao-Dong Chiang [8],

etc. proposed that the stability boundary of dynamic system

consists of the union of the stable manifolds of all equilibrium

points on the stability boundary and the method presented can

obtain the exact ROA. And it can be also seen in our recent

study [5] about an aircraft to determine the dynamic envelope

based on the method.

Nowadays, with the development of the control theory,

many advanced control theories are wildly used in nonlin-

ear systems, For instance, fuzzy adaptive finite-time fault-

tolerant control for strict-feedback nonlinear systems [9],

event-triggered robust fuzzy adaptive finite-time control of

nonlinear systems with prescribed performance [10], fuzzy

output tracking control and filtering for nonlinear discrete-

time descriptor systems [11],and some theories even been

applied to a robotic airship against sensor faults [12] and

attitude tracking of hypersonic vehicle [13]. ROA as the

stability boundary of the nonlinear system, once the system

exceeds the ROA, the state of the system will diverge, which
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is important to guide the application of nonlinear control

theories. However, consulting similar references about ROA

determination, we found that the method proposed was not

widely used from then on because of the difficulty in comput-

ing the stablemanifolds for the unstable equilibrium points on

the stability boundary. With the development of the computer

technology, the determination for two or even more dimen-

sional manifold is not ever a difficult problem, which gives

the method an opportunity in exact ROA determination and

that is the reason why themethod can be proposed once again.

At present, there are several acceptable methods to com-

pute ROA for a dynamic system, of which three are the most

commonly used. The first one is reachability analysis [7],

which can be formulated as an optimal control problems, and

the ROA can be characterized using variants of the Hamil-

ton Jacobi Bellman (HJB) or Isaacs (HJI) partial differential

equations, the accuracy of this method relies on grids of state

space, as the grids of the states grow, the computational load

will increase exponentially, therefore, the calculation time of

this method is very long. The other two methods are trajec-

tory arc length method (it’s also called trajectory reversing

method) and geodesic circle method which are both based on

manifold theory to estimate the ROA [14]. Geodesic circle

method determines the grid position by solving the bound-

ary value problem, the distance between adjacent circle is

determined by the point of the fastest manifold on the former

circle, which ensures the high calculating precision, however,

it has to adjust the distance and recalculate all the points

on the circle when individual points don’t satisfy the angle

constraints. Therefore, it needs to be calculated repeatedly,

which adds extra computation [15]. Trajectory arc length

method first determine the initial manifold near the unstable

equilibrium point, and make the manifold grow uniformly

in all directions, and adjust the points on the circle after a

certain integral time, eventually form the entire manifold.

This method has the merits of simple calculation and high

efficiency, while the accuracy of the calculation decreases

rapidly with the increase of the length of manifold trajectory,

and this makes the manifold far from the equilibrium point

less accurate [16].

This paper optimizes the distribution of points on the circle

through modifying the end point of the former trajectory and

inserting/deleting point on the circle on the basis of trajectory

arc length method to ensure the accuracy and efficiency.

Meanwhile, this paper takes a parallel process to speed up

the computation process. The simulation results show the

feasibility and accuracy of this method, and the examples

shows that this method can be widely used in the engineering

nonlinear system.

The organization of the paper is as follows. Section II

presents introduction of fundamental concepts of manifold

method for determining ROA. And the algorithm for estimat-

ing the stability regions of nonlinear dynamic system is also

presented in the section. The numerical method for manifold

computation, also regarded as calculation for the part of the

stability boundary, is proposed in the section III. Several

engineering examples are proposed in Section IV. Finally,

conclusions are drawn in Section V.

II. BASIC THEORY FOR MANIFOLD

Consider a nonlinear autonomous dynamical system

described by

ẋ = f (x) (1)

where f : Rn → Rn is continuous and sufficiently smooth, and

satisfies Lipschitz condition in x.

Suppose x̂ is the hyperbolic equilibrium point of f , satisfy-

ing that f
(

x̂
)

= 0 and the eigenvalues of Jacobian matrix Df

has no zero real part.

There are two classes of equilibrium points (EP), sta-

ble equilibrium point (SEP) and unstable equilibrium point

(UEP). The anterior one is an equilibrium point, at which

every eigenvalues of the Jacobian matrix only possess neg-

ative real part. And the latter one is an equilibrium point,

at which eigenvalues of the Jacobian matrix possess positive

real part. If the number of eigenvalues with positive real

part is equal to n, the dimension of the system, the UEP is

called a source; or, the UEP is called a saddle. In addition,

type of the UEP is equal to the number of the positive real

part, for example, if a UEP only possess a positive real part

at his eigenvalues; the unstable equilibrium point is called

type-1 UEP.

For a saddle xu, the stable manifold W s (xu) and unstable

manifoldW u (xu) exist which can be defined as the following,

W s (xu) =
{

x ∈ Rn| lim
t→∞

8t (x) = xu

}

W u (xu) =

{

x ∈ Rn| lim
t→−∞

8t (x) = xu

}

(2)

where 8t (x) is called the flow induced by the vector field f ,

also the trajectory.

Moreover, for a SEP xs, there is a stability region, denoted

by A (xs), that is the set of all point which the trajectory

started from converges to xs. And the stability region can be

expressed by,

A (xs) =
{

x ∈ Rn| lim
t→∞

8t (x) = xs

}

(3)

And the boundary of the stability region is denoted by ∂A (xs).

Furthermore, it can be sure that an equilibrium point is a UEP

on the boundary under the condition thatW u
(

x̂
)

∩A (xs) 6= ∅

and W s
(

x̂
)

⊆ ∂A (xs). And based on the method mentioned

above for determining the stability region, the boundary of

stability region ∂A (xs) is the union of the stable manifolds of

equilibrium points on the stability boundary; ∂A (xs) can be

expressed as following

∂A (xs) = ∪
i
W s (xi) (4)

where xi, i = 1, 2, · · · are the equilibrium points on the

stability boundary. And the proof of this theorem can be seen

in Ref.8.

The details of how to determine the stability boundary are

as follows.
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Step 1: Find all the equilibrium points via solving the

equations f (x) = 0.

Step 2: Identify the stable equilibrium point xs whose

eigenvalues of Jacobian matrix only have negative real part.

Step 3: Identify the unstable equilibrium points xui, i =

1, 2, · · · on the stability boundary via judging whose unstable

manifolds contain trajectories approaching the stable equilib-

rium point xs.

Step 4: Determine the stability boundary posed by all

the stable manifolds of every unstable equilibrium points

obtained from step 3.

From the steps above, we know that step.1 to step.3 are

carried out easily, which will not be discussed in detail, while

there is something difficulty in step.4 due to dynamic char-

acteristic of the system, that is the important reason why the

method of ROA determination is not attached any importance

by most researchers up to now. And the part called manifold

computation will be discussed in Section III.

III. NUMERICAL METHOD OF MANIFLOD

COMPUTION

As known from the manifold theorem, the global manifold

can be evolved to sweep out from a local manifold in it. And

flow belonging to the unstable manifold on the boundary of

the region of attraction, which is also an invariant manifold,

will not depart from it forever. Thus, the global manifold can

be evolved from the initial set around the unstable equilibrium

point on the boundary. The details of the algorithm utilized in

the paper are as following.

Step.1 calculate the eigenvalues ε1, ε2, ε3 and its

eigenvectorsv1, v2, v3 of the Jacobian matrix Jx, (suppose the

real part of ε1 > 0, the real part of ε2, ε3 ≤ 0)

Step.2 Determine the initial normal vector η of the

manifold. If ε2, ε3 are negative real number, η =

v1 × v2; and if ε2 and ε3 are conjugate complex roots,

η = (v2 + v3) × [(v2 − v3)i].

Step.3 Determine the initial circle around the UEP. Con-

sidering that local stable manifold around a UEP belongs to

the stable subspace posed by the stable eigenvectors of the

dynamical system at the UEP, the initial circle as a local

stable manifold can be a circle around the UEP with a very

small radius in the space posed by eigenvectors, of which

eigenvalue possess negative real part.

Step.4 Calculate and modify the end point of the former

trajectory to get a smooth circular trajectory of the next

generation circle. The next generation circle is posed by the

end points integrated in reverse time from the points in the

former generation.

(a) Calculate the endpoint correct time tadd

tadd =
l − lreal

‖f (xend )‖
(5)

where l is the limiting length of the trajectory, lreal is the real

length of the trajectory when the calculation is stopped.

(b) calculate the correction point of the terminal point xnew

xnew = xend + tadd f (xend ) (6)

In the paper, the growing length of the trajectories can be

various rather than constant to accelerate the computation and

strengthen stability of calculation results.

Step.5 Calculate the distance between two adjacent points

and recompose points in the circle. Due to the different

dynamic characteristic in each dimension, distance of adja-

cent points in next generation may be too small or large rather

than equivalent, even though points in the former generation

circle are uniform distribution. Thus, it is necessary to recom-

pose the point in the circle. The method is inserting points in

two adjacent points, if the distance is too large, and deleting

a point in two adjacent points, if the distance is too small.

Define a parameter 1, which represents the ideal distance

between adjacent points, if 0.51 < d < 1.51, keep this

point; if d > 1.51, insert round(d/1) − 1 points; if d <

0.51, delete this point.

Step.6 Build the global manifold by repeating the

step.4 and step.5 until the total increment length is equal to

the premeditated value.

In order to verify the accuracy and precision of the algo-

rithm for manifold computation, we take following examples.

The first one is Lorenz system [9], [10] studied by most

researchers for two-dimensional stable or unstable manifold

computation. And the other is a four-dimensional Hamilto-

nian system studied by Hinke M Osinga [18] for computing

the two-dimensional invariant manifolds in four-dimensional

dynamical systems.

For the Lorenz system, the state equations are as follow.

ẋ = a (y− x)

ẏ = cx − y− xz

ż = −bz+ xy (7)

where, a=10, b=8/3, and c=28.

In the case, origin is one of the type-one UEP and has

a two-dimensional stable manifold. Based on the method

above, we visualize the manifold of Lorenz system in Fig-

ure 1(a), of which the initial circle of radius R = 2

and the total trajectory air length L = 120. At the same

time, to illustrate the merits of this method, it’s com-

pared with the geodesic circle method, which has been

verified to have high accuracy. The stable manifold of

Lorenz system based on geodesic circle method is shown

in Figure 1(b).

Where, N represents the number of points on the circle,

TIVP represents the time required to calculate the initial value

of each point.

As we see in Figure 1 and Table 1, the accuracy of stable

manifold calculated by the manifold method is nearly consis-

tent with the geodesic circle method, however, the calculation

of manifold method is significantly less than the geodesic

circle method.
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FIGURE 1. Stable manifold for Lorzen system.

For the four-dimensional Hamiltonian system arising from

control theory, the state equations are as follow.

ẋ1 =
∂H

∂p1
= x2

ẋ2 =
∂H

∂p2
= f (x) −

p2

2µ3
c (x)2

ṗ1 = −
∂H

∂x1
= −2µ1x1 − p2

∂f (x)

∂x1
+

p22
2µ3

c (x)
∂c (x)

∂x1

ṗ2 = −
∂H

∂x2
= −2µ2x2 − p1 − p2

∂f (x)

∂x2
+

p22
2µ3

c (x)
∂c (x)

∂x2
(8)

where,

f (x) =

(

g
/

l
)

sin x1 − 1
2

(

m
/

(m+M)
)

x22 sin 2x1
4
3

−
(

m
/

(m+M)
)

cos2 x1

c (x) = −

(

1
/

(lm+ lM)
)

cos x1
4
3

−
(

m
/

(m+M)
)

cos2 x1

And m = 2, M = 8, l = 0.5, g = 9.8, u1 = 0.1, u2 = 0.05,

u3 = 0.01.

TABLE 1. Comparisons between different algorithms.

FIGURE 2. Projection of stable manifold in (x1, x2, p1) 3-D state space.

FIGURE 3. Projection of stable manifold in (x1, p1, p2) 3-D state space.

In the case, origin is one of the type-two UEP and has

a two-dimensional stable manifold. Based on the method

above, we visualize the manifolds of four-dimensional

Hamiltonian system in Figure 2 and Figure 3, of which the

initial circle of radius R = 1 and the total trajectory air length

L = 30. Considering the similar of the projection in various

3-D state space, which are (x1, x2, p1), (x1, x2, p2), (x1, p1,

p2), and(x2, p1, p2), the two kind of projections are illustrated

in figure 2 for (x1, x2, p1) 3-D state space and figure 3 for

(x1, p1, p2) 3-D state space.

From the Ref.19, we can sure that the method for manifold

computation is correct and has high precision, because of
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TABLE 2. States of the equilibrium points.

the same manifolds of the Lorenz system and Hamiltonian

system based on other approaches and this method. And this

is the important precondition for an exact ROA determination

via manifold method.

IV. EXAMPLES FOR ROA DETERMINATION

Accounting for the advantages for ROA determination via

the manifold method and its characteristics of engineering

application, three examples about academic model studied in

Ref.20, power system studied in Ref.3 and aviation system

mentioned in Ref.21 are taken.

A. ROA FOR ACADEMIC MODEL

ẋ1 = −
1

1 + x22 + x23

[

−
5

6
x41 + 4x21 − 4 −

1

2

(

x22 + x23

)

]

ẋ2 = −
2x2

(

1 + x22 + x23
)2
V3

ẋ3 = −
2x3

(

1 + x22 + x23
)2
V3 (9)

where,

V3 = −
1

2
x1 − V1

V1 = −
1

6
x51 +

4

3
x31 − 4x1

In this example, there are four equilibrium points showed

in the Table 2. And the point A is an SEP, while the other

points are UEP, whose type can be seen in Table 1. In addition,

it can be verified that the point B is on the stability boundary

of the point A. In order to verify the accuracy of the ROA

based on the manifold method, the ROA of the same dynamic

models mentioned above is also determined via Monte Carlo

method, which can yield an exact ROA around the SEP at

a certain range. And for illustrating clearly, the ROA based

on the manifold method is drawn as line and that of the

Monte Carlo is plotted as colorful surface. And the results

are drawn in Figure 4. And in the figure, results determined

based on manifold method and Monte Carlo have the same

trend, which can be regarded as the proof for feasible and

accurate of the manifold method.

B. ROA FOR POWER SYSTEM

This is an application example about single machine infinite

bus system (SMIB) in power system, of which dynamic

FIGURE 4. ROA of three-order system in Ref.13.

model can be represented as follow.

T ′
doĖ

′
q = Ef − E ′

q −
(

Xd − X ′
d

)

Id

Tjω̇ = Pm − Pe − D (ω − 1)

δ̇ = ωb (ω − 1) (10)

where,

Id =
(

E ′
q − U cos δ

)/

(

X + X ′
d

)

Iq = U sin δ
/(

X + Xq
)

Pe = E ′
qIq −

(

X ′
d − Xq

)

Id Iq

X = Xl + Xt

where, ω is the relative speed of the generator; ωb is the

reference speed of the generator; δ is the power angle of the

generator; Xd is d-axis reactance of the generator; Xq is q-axis

reactance of the generator; X′d is d-axis transient reactance

of the generator; Xt is reactance of the transformer; Xl is the

reactance of the transmission line; T ′
do is the time constant

of the excitation winding; Tj is the inertia constant; E
′
q is the

q-axis transient voltage; Pm is the mechanical input power; Pe
is the active power delivered by the generator; Id is the d-axis

current; Iq is the q-axis current; D is the damping coefficient;

U is the infinite bus voltage. In addition, ω, δ and E ′
q are the

variable state of this dynamic system and the other parameters

above are constant, of which the values are as follow.

Xq = 0.72 Tj = 8.75

Xd = 1.0354 T ′
do = 8.0

X ′
d = 0.36 D = 3.0

Xl = 0.413 U = 1.0

Xt = 0.15 Pm = 0.7

ωb = 2π × 50 (11)

There are two equilibrium points showed in the Table 3.

And the point A is an SEP, while the point B is a type-

one UEP. Figure 5 is the ROA determined via the manifold

method.

In addition, the manifold method is suitable for the system

with some uncertain parameters. And in order to provide a
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TABLE 3. States of the equilibrium points.

FIGURE 5. ROA of three-order SMIB.

FIGURE 6. Stability boundary with ±10 uncertainty.

good proof, the same SMIB system, of which the infinite

bus voltage is under ±10 uncertainty, is taken as an example.

Of course, the method is also suitable for the system of other

uncertain parameters. The stability boundaries with uncertain

parameters are both drawn in the Figure 6. As we can see

in the figure, the rule of ROA change is coincident with

the effect of the infinite bus voltage change, and the ROA

enlarges when the infinite bus voltage increases and the ROA

reduces when the infinite bus voltage decreases.

C. ROA FOR NASA’S GENERIC TRANSPORT MODEL

This is an example about a condition, about which there are

more than two equilibrium points on the stability boundary

and one of these points are not the type-1 UEP. The example

is about the NASA’s Generic Transport Model (GTM) in avi-

ation, of which longitudinal dynamic model can be expressed

as follow.


































V̇ t =
1

m
(Fx cosα + Fz sinα)

α̇ = q+
1

mV t

(−Fx sinα + Fz cosα)

q̇ =
My

Jy

θ̇ = q

(12)











Fx = q̄Sref Cx + 2Tx − mg sin θ

Fz = q̄Sref Cz + 2Tz + mg cos θ

My = q̄Sref c̄Cm

(13)

where Vt is the flight velocity, α is the angle of attack, q is

the pitch rate, θ is the pitch angle, m is the mass, c̄ is the

mean aerodynamic chord, ρ is the atmospheric density, g is

the acceleration of gravity, Sref is the reference wing surface

area, Jy is the moment inertias along aircraft Y axis, q̄ =
1
2
ρV 2

t represents the dynamic pressure. The main structure

parameters can be obtained by consulting full-scale model

of NASA’s GTM-T2 [20] and the detailed polynomial model

parameters of the coefficients Cx , Cz, Cm can be found in

paper which is obtained from flight test [21].

In addition, a pitch hold controller is designed for the

longitudinal dynamic model to bring the aircraft state to

the reference pitch attitude and improve the flight quality;

of cause, maneuvering envelope (stability boundary) of an

aircraft with PID controller also can be determined by this

method. The control law simulated in this paper is expressed

below:

δe = kα1α − kqq+ kθ
(

θref − θ
)

(14)

where1α = α0−α is state error; kα , kq and kθ are the control

coefficients for the state feedback controller; θref is the pitch

angle command. kα = −2, kq = 1 and kθ = −1 are utilized

in order to make the aircraft have better flight quality during

the landing phase.

Consider a landing phase, the speed Vt = 85 m/s, and the

altitude H = 400 m:

Vt0 = 85 m/s

α0 = 3.2086 deg

q0 = 0 deg/s

θ0 = 0.6875 deg

δe = 3.8961 deg

δth = 0.5 (15)

In this example, we regard Vt as a constant. Calculate the

equilibrium point of the aircraft during the landing phase, and

on this basis, estimate the ROA for the three-order system

of α, θ , q.

Except the SEP, there are four unstable equilibrium points

showed in the Table 4. And the type-1 UEP C, E and type-

2 UEP B, D are the UEPs on the stability boundary of the

SEP.
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TABLE 4. States of the equilibrium points.

FIGURE 7. ROA for NASA’s GTM.

FIGURE 8. Comparison between this paper’s method and Monte Carle.

Figure 7 is the ROA determined via the manifold method.

In the figure, the red surface is the stability manifold of the

type-1 UEP E; the blue surface is the stability manifold of

the type-1 UEP C. Shown in the figure, the boundary of

the ROA is the union of the stability manifold of the type-

1 UEP C and E. To illustrate the accuracy of this method,

the ROA of the aircraft is also determined via Monte Carlo

method, as we can find in Figure 8, the ROA obtained by

this method is completely conformity with the Monte Carlo

TABLE 5. Comparison of calculation time.

method. Table 5 shows the calculation time between dif-

ferent methods, and the method proposed in this paper can

significantly reduce the calculation time, and improve the

calculation efficiency.

V. CONCLUSION

In the paper, the main content is the ROA determination

based on the manifold method, which refers that the stability

boundary is the union of the stability manifold of the UEP

on the boundary. The advantages of manifold method are as

follows, which obtained via studying three examples.

(1) ComparingwithMonte Carlomethod, the ROA compu-

tation based on the manifold method is faster, and comparing

other methods is more accurate.

(2) The manifold method can be widely used in the engi-

neering nonlinear system, such as aviation, power system and

so on.

(3) The manifold method can also be applied to estimate

the ROA of the nonlinear system with uncertain parameters.

However, there exists some problem in this method,

for instance, when the dimension of the system is higher,

the accuracy of this method will decrease, at the same time,

it is difficult to visualize the ROA.

In the future work, efforts will be focused on the fur-

ther improvement of the algorithm and the application of

algorithm in engineering practice. In the part of improved

algorithm, we will use adaptive factors to further optimize the

distance between the adjacent circles and the position of the

points in the circle to improve the accuracy. In engineering

practice, we will take the new method to estimate the safe

flight envelope of aircraft quickly and accurately, which can

be used to guide the pilot’s manipulates under abnormal

conditions to avoid loss of control. And it can also be used

to estimate the maneuvering envelope of hypersonic flight

envelope, which is the basis of the application of advanced

modern control theory.
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