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1. Introduction

Recently, there has been tremendous progress in our understanding of N=2 supersym-

metric field theories [1,2,3,4,5,6] and N=2 supersymmetric type II string compactifications

[7][8][9]. At the same time, our knowledge of strong-coupling phenomena in string theory

has been enriched by exciting work on S-duality and six-dimensional string-string duality

[10,11,12,13,14,15,16].

In this paper, we explore N=2 supersymmetric vacua of the heterotic string in four-

dimensions. We find examples which suggest that many naively distinct heterotic N=2

moduli spaces are in fact connected, in a way which is very analogous to the way the

different type II Calabi-Yau compactifications are connected [8][17]. Moreover as we will

argue some N = 2 vacua have dual realizations as both type II and heterotic compactifi-

cations. This has dramatic implications, as has been suggested by Strominger.

One of the key ideas leading to the resolution of the conifold singularity is the pos-

tulate by Strominger that the absence of neutral perturbative couplings between vector

multiplets and hypermultiplets survives nonperturbative string effects. Since the dilaton

is part of a hypermultiplet in type II compactifications on Calabi-Yau threefolds, it follows

that the tree level prepotential for vector multiplets is exact1, while that of the hyper-

multiplets might get corrected. In the context of N = 2 compactifications of heterotic

strings, since the dilaton now sits in a vector multiplet, it follows from Strominger’s pos-

tulate that the moduli space of hypermultiplets is exact at the tree level while the vector

multiplets can receive quantum corrections. This also implies that if we find an N = 2

string compactification which has realizations both as a type II and as a heterotic string

compactification, then the exact prepotential for the vector multiplets can be computed

using the type II realization at tree level, and the exact hypermultiplet superpotential can

be computed using the heterotic realization at tree level. In particular for our examples

with dual realizations we compute the non-perturbative corrections to the prepotential

for the vector multiplets on the heterotic side, using the known prepotentials of Calabi-

Yau threefolds (thus realizing the speculation by many physicists that there should be a

connection between quantum moduli spaces of heterotic strings and special geometry of

Calabi-Yau threefolds [18][3][19]). The examples we consider include models which have

1 In general, different superpotential terms receive contributions at only a specific order in

the genus expansion, depending on their modular weight. The moduli space geometry is fixed at

genus 0.
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SU(2) as well as SU(3) enhanced gauge symmetry points at the heterotic string tree level.

This in particular gives us a string realization, including gravitational corrections, of [1].

It would be desirable to have more examples of thisN = 2 heterotic/type II duality. In

particular the string-string duality in 6 dimensions relating type IIA compactifications on

K3 to toroidal compactifications of heterotic strings may provide a hint of how dual pairs

can be constructed more systematically [13], which seems to lead to other 4 dimensional

N = 2 type II/heterotic dual examples [20].

In §2 we briefly review the construction of general (0,4) heterotic string compactifi-

cations on K3 × T 2 (in [21] similar techniques were used to construct anomaly free six

dimensional chiral gauge theories). We then discuss several examples in §3, and point out

that “stringy” enhanced gauge symmetry points may provide a way of connecting many

or all N=2 supersymmetric heterotic vacua (including those on asymmetric orbifolds [22]).

In §4 we come to the main focus of this paper. We construct heterotic theories for which

we can propose a specific candidate dual Type IIA string compactification on a Calabi-

Yau manifold, and in some cases we give strong evidence for such a duality. We give our

conclusions in §5.

The importance and implications of duality between N = 2 compactifications of type

II and heterotic strings, as well as the dual interpretation of the conifold singularities as

Seiberg-Witten monopole points, has been independently noted by Ferrara, Harvey and

Strominger.

2. Models on K3 × T 2

There are several different approaches one might take to constructing N=2 heterotic

string vacua. The most straightforward is perhaps to compactify the E8 × E8 or SO(32)

heterotic string on K3 × T 2. We will first discuss this class of compactifications, and then

in §3 will discuss modifications of such vacua based on asymmetric orbifolds [22].

The most familiar way of compactifying the heterotic string on K3 × T 2 is simply

to use the “standard embedding,” equating the spin connection of the manifold with the

gauge connection. For the E8 × E8 string this yields a theory (at generic points in the

moduli space of the torus) with E7 × E8 × U(1)4 gauge group, 10 hypermultiplets in the

56 of E7, and 65 gauge neutral moduli hypermultiplets – 20 moduli of the K3 surface and

45 moduli of the gauge bundle.
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Of course, the adjoint scalar fields sitting in the vectors corresponding to the Cartan

subalgebra of the gauge group are also moduli which can be given nonzero VEVs. At

generic points in the moduli space of these scalars, the theory is characterized by 65

hypermultiplets and 19 vectors (18 coming from vector multiplets including the multiplet

of the dilaton, one coming from the graviphoton). In the following we will denote this by

(65, 19) and in general will describe the spectrum of a theory which at generic points has

M hypermultiplets and N vector fields (including graviphoton) by (M,N). We note now

that in the context of Type IIA strings, such a theory would arise from compactification

on a Calabi-Yau manifold with hodge numbers b11 = N − 1, b21 = M − 1. The additional

hypermultiplet and vector necessary to obtain agreement with the heterotic spectrum

would then come from the dilaton and the graviphoton, respectively.

It is useful to review at this point how one could derive this spectrum just using index

theory. Let us start with an unbroken gauge group G in ten dimensions and break it to a

subgroup G by giving gauge fields on K3 an expectation value in H where G ×H ⊂ G is

a maximal subgroup.

Compactify further on a torus to get a four dimensional N=2 theory. That part of

the matter spectrum which arises from the higher dimensional gauge multiplet can be

determined as follows. Decompose

adj G =
∑
i

(Mi, Ri) (2.1)

where Mi and Ri are representations of G and H respectively. Then it follows from the

index theorem that generically the number of left-handed spinor multiplets transforming

in the Mi representation of G is given by

NMi
=

∫
K3

−
1

2
trRi

F2 +
1

48
dimRi trR

2 = dimRi −
1

2

∫
K3

c2(V) index(Ri). (2.2)

Here V denotes the H bundle parametrizing the VEV of the vacuum gauge fields on K3.

In addition, for compactifications on K3 there is a universal contribution to the spectrum

of matter hypermultiplets coming from the higher dimensional gravitational fields; this

consists of 20 gauge singlet hypermultiplet moduli.

For the case of the standard embedding, we have chosen V to be an SU(2) bundle

with
∫
K3

c2(V ) = 24. Going through the computations above yields the expected 10 56s

and 45 extra moduli hypermultiplets arising from the higher dimensional gauge fields. But

in general we are free [23][24] to choose more general stable, holomorphic SU(N) bundles
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over K3 in the process of compactification (this corresponds to H = SU(N) in the previous

discussion), subject only to the constraints

c2(V ) = c2(TK3), c1(V ) = 0. (2.3)

More generally, we may wish to choose several different factors Va in the vacuum gauge

bundle and e.g. embed them in different E8 factors. In this case the constraints are simply

∑
c2(Va) = c2(TK3), c1(Va) = 0. (2.4)

When computing the generic spectrum, one only needs to know the number of gauge neutral

moduli hypermultiplets and the rank of the gauge group. The gravitational contribution

is a universal 20, while the number of moduli of an SU(N) bundle with
∫
K3

c2(V ) = A is

AN+1−N2. Using these formulas (and the knowledge that embedding an SU(N) bundle

in the gauge group will reduce the rank by N − 1) it is easy to find the generic spectra of

models of this type.

3. Examples and Observations about their Moduli Spaces

Let us discuss some of the different theories we may obtain in this way. Embedding a

single SU(N) factor with
∫
K3

c2(V ) = 24 in one E8 of the heterotic string breaks this E8

to E7, E6, SO(10), or SU(5) for N = 2, 3, 4, 5 and results in theories with the following

generic spectra:

N = 2 : (65, 19) N = 3 : (84, 18) N = 4 : (101, 17) N = 5 : (116, 16) . (3.1)

One can also compute the spectrum of charged fields in these models at the points where

nonabelian gauge symmetry is classically restored, using the techniques outlined in §2.

The different models listed in (3.1) are of course not unrelated. Starting with the

(65, 19) model, one knows that classically there is a point where an E7 gauge symmetry is

restored and that the spectrum there includes 10 56s of E7. Under the maximal E6×U(1)

subgroup of E7, 56 = 27+27+1+1 with the E6 singlets charged under the U(1). Moving

to the codimension one locus in the moduli space of the Cartan vectors where the scalar

in that U(1) vector multiplet has vanishing VEV, one also therefore finds an extra 20

massless hypermultiplets, charged under that U(1). One can now Higgs the U(1), leaving

19 extra gauge singlet fields – in other words, one is now on a branch of moduli space with
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spectrum (84, 18), the N=3 case of (3.1). One can similarly move from the N=3 case to

the N=4 case and so forth.

It is very amusing to note the similarity between going from the N=4 to N=5 case

and the process described in [8] moving from the moduli space of a Calabi-Yau with hodge

numbers b11 = 2, b21 = 86 to the moduli space of the quintic with b11 = 1, b21 = 101. Note

that these are the same numbers as we would have gotten from N = 4 and N = 5 above

except by an overall shift of 14 in both b11 and b21. The N=4 model has a special point

in the moduli space of vectors where there is an SO(10) × E8 × U(1)4 gauge symmetry.

The charged spectrum there includes 16 16s of SO(10). Under the SU(5) × U(1) ⊂

SO(10), one has 16 = 10+ 5̄+ 1 where the 1 is charged under the U(1). So on a locus of

codimension one in the moduli space of the vectors of the N=4 model, one finds 16 massless

hypermultiplets of fields charged under a single U(1) gauge symmetry. Higgsing this gauge

symmetry leads to 15 more neutral hypermultiplets and one less vector multiplet. This is

precisely the “mirror” description of the process described in [8]! The numbers of vector and

hypermultiplets are however shifted by 14, making it problematic to conjecture a precise

duality between this heterotic process and the type II process described in [8]. However,

if one shifts the numbers of vector and hypermultiplets by 14 in each of the N=2,3,4,5

cases listed in (3.1) one notices that all of them yield numbers which would arise in type

IIA compactification on complete intersection Calabi-Yaus in products of projective spaces

[25]. Since it is precisely this class of manifolds which we know are connected by conifold

transitions, it would be interesting to see if one could somehow explain the shift of 14 and

find a precise duality between these heterotic theories and some type II examples.

We would like to find (0,4) heterotic compactifications for which we can find a dual

type II compactification on a Calabi-Yau threefold, and for which we can give a very

stringent test of the duality. While there are known Calabi-Yau manifolds with the req-

uisite hodge numbers to produce the numbers of vector and hypermultiplets of some of

the theories in (3.1) when used to compactify type II strings, these examples are too com-

plicated to provide a good testing ground for such a duality conjecture. We will come

back to this point, and provide much better examples where we can conjecture and give

extremely strong evidence for such a duality. But first, we find it worthwhile to discuss

the connectedness of the moduli space of (0,4) heterotic theories.

It is now strongly believed that type II compactifications on different Calabi-Yau

manifolds are connected smoothly [7][8] through conifold transitions [17]. In fact it has

been conjectured that all Calabi-Yau compactifications may be connected in this way. In
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order to prove a similar statement for moduli spaces of N=2 heterotic compactifications,

the classes of theories that one has to connect are even more disparate.

The simplest Calabi-Yau compactification which yields an N=2 heterotic compactifi-

cation is K3 × T 2. Different choices of gauge bundles yield theories with different spectra,

but we have seen that often by moving to a special point in the vectors’ moduli space where

charged hypermultiplets become massless, we can move to a new partial Higgs phase and

obtain a model with different numbers of vectors and hypermultiplets. Unlike the situation

in [8], these hypermultiplets arise in the perturbative spectrum of the heterotic string.

However, beyond the K3 × T 2 compactifications, there are many asymmetric orbifold

compactifications which yield N=2 heterotic theories in four dimensions. These are naively

completely non-geometrical (left and right movers live on different spaces!) and one might

despair of obtaining them as smooth deformations of K3 × T 2 compactifications.

For example, one can easily write down, among many other possibilities, orbifolds with

(0, 24) and (4, 20) which one cannot obtain in the manner discussed thus far by choosing

stable bundles over K3. Consider for example a compactification on a Narain lattice given

by Γ4,20 ⊕ Γ2,2 where Γp,p+8k are arbitrary self-dual even lattices. If we choose Γ4,20 to

correspond to SO(8)×SO(40) weight lattices (with difference in the root lattice [26]) and

just consider the Z2 reflection to act only on the SO(8) part together with a v2 = 0 shift

in Γ2,2 we get a model with no hypermultiplets and with 22 + 2 = 24 vector fields. The

(4, 20) model can be obtained by considering Γ4,4 ⊕ Γ2,18 and modding out by a reflection

in Γ4,4 accompanied by a shift in Γ2,18 (to make the left-right level matching work). This

gives us 4 hypermultiplets from the moduli of Γ4,4 and 2 + 18 = 20 U(1) gauge fields.

This latter model does correspond to a model that can be realized geometrically as the

holonomy action is left-right symmetric.

The model with (4, 20) can also be obtained in another way once we recall one of

the most characteristic features of the heterotic string – special singular points in moduli

space where enhanced “stringy” gauge symmetries arise! Consider for example the K3

orbifold obtained as T 4/Z2. The spectrum of this theory has been worked out in detail in

[27]. At this orbifold point an extra SU(2) gauge symmetry appears. Using the standard

embedding one finds hypermultiplets with the following E7 × SU(2) charges:

8 (56, 1), 1 (56, 2), 32 (1, 2), 4 (1, 1) . (3.2)
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These include the familiar ten 56s and 65 moduli of the standard embedding, but some

of them are paired in SU(2) doublets.2 There are also three additional Higgses for the

SU(2) gauge symmetry. If we break the SU(2) by Higgsing, we recover the (65, 19) theory

discussed above. However, we can also give the scalar in the U(1) ⊂ SU(2) vector multiplet

a VEV, moving to the Coulomb phase of the enhanced gauge symmetry. This will give

all of the SU(2) doublets masses, leaving us with 20 vectors (from the Cartan piece of

E8 × E7 × SU(2) × U(1)4) and 4 hypermultiplets! This reproduces the (4, 20) of the

orbifold above.

Similarly, the K3 moduli space at certain Gepner points develops an extra rank 5

enhanced gauge symmetry [29]. For example the 16 Gepner model has an extra U(1)5 gauge

symmetry3. It is easy to check that all of the hypermultiplets are charged under one or

more of these U(1)s, so moving to a generic point in the moduli space of the vectors in this

theory yields a model with (0, 24), just like the asymmetric orbifold example above. Such

examples make it natural to conjecture that most or all N=2 heterotic compactifications

are connected by such transitions from Higgs to Coulomb phases, sometimes going through

points with enhanced stringy gauge symmetries.

4. Heterotic/Type II Duality

4.1. General Remarks

As previously mentioned, some of the examples discussed so far do have potential

Calabi-Yau “duals,” but these manifolds are much too complicated to allow for a really

convincing check of any duality conjecture. On the other hand, we have seen that by

Higgsing using charged fields we can reduce the rank of the unbroken gauge group. If

we reduce the rank sufficiently, we obtain a model which would be dual to a type IIA

compactification on a Calabi-Yau with b11 small. Searching for such Calabi-Yaus is easier

because they are relatively rare. Moreover for such examples, the exact structure of the

moduli space of (1,1) forms has been determined using mirror symmetry4, and we could

2 The SU(2) doublets pair some K3 moduli with moduli of the vacuum gauge bundle, showing

that there is a duality analogous to that of [28] for these K3 theories.
3 The same can be done using the T 4/Z2 example above by choosing the circles to correspond

to SU(2) symmetry points.
4 Alternatively, one could study type IIB strings on the mirror, in which case the tree level

sigma model computes the exact structure of moduli space.
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therefore give stringent tests of any duality conjecture between the string tree level moduli

space of (1,1) forms on such a Calabi-Yau and the exact quantum moduli space of vector

multiplets in a given heterotic model.

We have already seen a hint of heterotic/type II duality in §3. There we saw special

points in the moduli space of vectors where charged hypermultiplets become massless;

giving them VEVs Higgses the gauge symmetry and moves us on to a new branch of the

moduli space. In the spirit of [2], one would expect the “quantum” version of this story to

change: one would expect a “magnetic Higgs phase” in which charged solitons condense to

be responsible for the new branch of moduli space. And the charged black holes of [7][8]

are amenable to exactly such an interpretation. With these general remarks out of the

way, let us move on to construct some explicit examples of heterotic theories which are

dual to type II theories on Calabi-Yau threefolds.

In any N=2 heterotic string, there will be at least two vectors (one vector multiplet) –

the graviphoton and the vector in the supermultiplet of the dilaton. If we want, classically,

to have points with nonabelian gauge symmetry, then we need at least one more vector,

making it desirable to study heterotic models with 3 vectors. A type IIA string compactified

on a Calabi-Yau with b11 = 2 would also give rise to 3 vectors (including the graviphoton).

Similarly, a heterotic model in which all of the gauge symmetry came from the U(1)4 of the

torus (which is enhanced to nonabelian groups at special points) would be dual to a Calabi-

Yau with b11 = 3, perhaps. This makes the strategy clear – we should look for heterotic

models with 3 or 4 vectors, and try to match them to type II compactifications on known

Calabi-Yau manifolds. After discussing in detail specific examples for both the rank three

and four cases, in §4.5 we list several more examples of heterotic compactifications with

the right spectra to be dual to type II compactifications on known Calabi-Yau threefolds.

We have corrected §4.5 in light of comments and work which appeared after the preprint

version of this paper. Therefore, we only give examples of heterotic compactifications

with spectra which match those of type II compactifications on Calabi-Yau threefolds

which are K3 fibrations. Such threefolds appear to be the relevant class in understanding

heterotic/type II duality [30][31], and as the list of such manifolds in [30] is quite short,

any matches are highly suggestive.
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4.2. A Rank Three Example and Its Dual

We begin our search for heterotic/type II dual pairs with a rank three example. Since

the most familiar K3×T
2 compactifications automatically yield at least a rank four gauge

group (from the U(1)4 of the torus), we must somehow remove some of the gauge symm-

metries coming from the torus to get only a rank three gauge group at low energies.

One way of doing this is to start with the E8 × E8 string and first compactifying

to eight dimensions on a 2-torus with τ = ρ, which yields an E8 × E8 × SU(2) × U(1)3

gauge group. Upon further compactification on K3 down to four dimensions, we can now

use the extra SU(2) gauge symmetry in satisfying (2.4) by also turning on gauge fields of

this SU(2). We embed SU(2) bundles with
∫
K3

c2 = 10 in each E8 and an SU(2) bundle

with
∫
K3

c2 = 4 in the SU(2). This leaves an E7 × E7 × U(1)3 gauge symmetry. The

hypermultiplets include 3 56s of each E7 and 59 gauge neutral moduli. Higgsing the E7s

completely yields 2× (3× 56− 133) = 70 extra gauge neutral moduli, leaving a spectrum

of 129 hypermultiplets and 3 vectors (2 vector multiplets). It may appear to the reader

that we have a lot of room in choosing the c2’s of various SU(2)’s. This is not so. In fact,

if we wish to break the full E8 × E8 × SU(2) by Higgsing there is only one other choice!

This rigidity is in accord with the relative scarcity of low b11 Calabi-Yau manifolds.

We obtained this model by compactifying to eight dimensions on a torus with τ = ρ,

and then breaking the resulting SU(2) enhanced gauge symmetry completely. This removes

the modulus which would take one away from τ = ρ, leaving one with a moduli space for

these τ = ρ tori which consists of only one copy of the fundamental domain of SL(2,Z).

When τ = ρ = i there is an SU(2)× SU(2) enhanced gauge symmetry on the torus, and

one of these enhanced SU(2)s will still be present in our theory. Therefore, if we denote

the two vector multiplets in this compactification by τ and S (S denotes the dilaton; the

third U(1) comes from the graviphoton), then we see that τ = i should be a point where

one obtains pure SU(2) N=2 gauge theory. Thus, we are studying the closest heterotic

string analogue of the N = 2 Yang-Mills theory recently solved in the work of Seiberg and

Witten [1].

Can we find a conjectural type II dual for this heterotic theory? There is apparently a

unique known Calabi-Yau manifold M with b11 = 2 and b21 = 128. It is the hypersurface

of degree 12 in WP 4
1,1,2,2,6 (another realization of this manifold is discussed in [32]). Given

the scarcity of known Calabi-Yau manifolds with b11 = 2, this match is highly suggestive.

Luckily, the moduli space of vector multiplets in type IIA compactification on this manifold
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has been studied in great depth in [33][34] using mirror symmetry. We will now provide

extremely strong evidence that the heterotic compactification described above is dual to

the type IIA string on M . In fact, we claim the moduli space of vector multiplets on M is

the quantum moduli space of the dual heterotic string!

As we remarked above, in the classical heterotic theory the moduli space of the τ

vector multiplet is given by one copy of the fundamental domain of SL(2,Z). In the full

theory with τ and S we therefore expect that as S → ∞ (weak coupling) we should find a

copy of the fundamental domain of SL(2,Z) embedded in the moduli space, even the exact

quantum moduli space. We also expect a singular point on this moduli space, when τ = i,

where classically the U(1) gauge symmetry is enhanced to SU(2).

It is useful at this point to review some results of [33][34]. The complex moduli of the

mirror of M can be represented roughly speaking as φ and ψ in the defining polynomial

p = z121 + z122 + z63 + z64 + z25 − 12ψz1z2z3z4z5 − 2φz61z
6
2 (4.1)

where the zi are the coordinates of theWP 4 (our choice of notation in this equation for the

complex moduli of the mirror follows [34]). The authors of [34] actually find it convenient

to introduce the large complex structure coordinates

Y1 =
(12ψ)6

2φ
(4.2)

Y2 = (2φ)2 . (4.3)

They then compute Y1,2 as functions of the (exponentiated) complexified Kahler forms q1,2

of M .

We will also find it convenient to use results of [33], so we need to provide a notational

dictionary. In appendix A.1 of [33], the notation x̄ and ȳ is used for the complex moduli

of the mirror. The dictionary translating between [33] and [34] is simply given by

x̄ = −
1

864

φ

ψ6
= −

1728

Y1
(4.4)

ȳ =
1

φ2
=

4

Y2
. (4.5)

We must now decide what we should check, to decide whether or not this type II

moduli space is providing a description of the quantum moduli space of our heterotic

model. Classically, the heterotic theory has an SU(2) enhanced gauge symmetry at τ = i.
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Therefore we should expect to recover a structure reminiscent of SU(2) N=2 gauge theory

in the weak coupling S → ∞ limit where the gravitational effects are not significant. More

precisely, it is shown in [1] that in the case of SU(2) N=2 gauge theory, the isolated singular

point in the perturbative theory (where SU(2) is restored) splits into two singular points

in the full quantum theory, where monopoles become massless. So we also expect that as

the string coupling is turned on, we will see a single singular point at τ = i being split into

two singular points.

Does this picture hold? The discriminant locus of this model has been studied by

[33][34] where they find it is given by

(1− x̄)2 − x̄2ȳ = 0 . (4.6)

The first thing we notice is that (4.6) is quadratic in x̄, which is necessary for a picture

like that of [1] to hold. This suggests that x̄ parametrizes the τ space in some way. At

ȳ = 0 the two solutions for x̄ merge, so we should identify ȳ = 0 with S = ∞ and x̄ = 1

with the SU(2) point. This means that x̄ = 1 should be identified with τ = i, at least

at ȳ = 0. Note that ȳ = 0 corresponds to the large radius limit of M , where the leading

behavior of the metric on moduli space is the same as that expected for the dilaton.

These tests have given us some idea of what to expect, in terms of identifying the

type II parametrization of the moduli space with the heterotic parametrization. Now we

give much stronger evidence for the interpretation offered above, based on a surprising

observation of [34]. There, in §7, it was noted that at ȳ = 0 the mirror map giving the

relation between x̄ and the special coordinates on the moduli space of M is given by the

elliptic j-function! More precisely

x̄ =
1728

j(τ1)
(4.7)

where τ1 parametrizes a kahler modulus of M in this limit. This was noted as an unex-

plained “curiosity” by the authors of [34]. From (4.7) we see that, since j(i) = 1728, the

point corresponding to x̄ = 1 is precisely τ1 = i! This means we should identify τ = τ1 at

least for weak coupling. Then (4.7) implies that

x̄ =
1728

j(τ)
. (4.8)

Since ȳ = 0 corresponds to S = ∞, we also propose

ȳ = e−S (4.9)
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to leading order in the coupling.

But we can check more. Since we are conjecturing that the type II vector moduli

space is the fully quantum corrected version of the heterotic vector moduli space, we

should also check that the one-loop corrections to the prepotential are reflected in the

ȳ → 0 limit of the moduli space of M . The one-loop correction to the prepotential F

in similar N=2 heterotic theories has been computed in [35][36](and one could directly

compare with their computations in the next example). For our example, predictions

for the full non-perturbative third derivatives of the prepotential directly follow from the

formulas of [33][34]. Specializing to the ȳ → 0 limit, we should be able to recover the

string one-loop corrections. In particular, using the formulas of appendix A.1 of [33] (and

remembering to restore the factor of the discriminant (4.6) in the denominators!) and the

dictionary (4.8)(4.9), we see we are predicting

Fτττ =
j3τ

j(τ)(j(τ)− j(i))2
(4.10)

FSττ =
j2τ

j(τ)(j(τ)− j(i))
(4.11)

where jτ denotes the derivative of j with respect to τ . FSSτ and FSSS vanish in the limit

of weak coupling that we are considering, as expected from perturbative string theory.

Actually, the formulas (4.10) and (4.11) are not quite the final story. In string theory,

we expect the gauge coupling function, obtained by taking two derivatives of the prepoten-

tial, to really be a function (and not a section of some bundle). This means that the third

derivatives F̃τττ and F̃Sττ for our example should really be a modular forms of weight

2 and 0 with respect to the SL(2,Z) symmetry acting on τ . This has been obscured by

the gauge choice made for the ‘Yukawa couplings’, but we can restore the correct modular

properties by simply recognizing that the appropriate gauge for the ‘Yukawa couplings’

must be5

F̃τττ =
Fτττ

E4(τ)
(4.12)

F̃Sττ =
FSττ

E4(τ)
(4.13)

5 It would be desirable to see why this is natural also from the type II side using the results

of [33][34]. Note that the gauge independent quantity Fτττ/FSττ = jτ/(j(τ)− j(i)) agrees with

what one expects from the heterotic string.
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where E4(τ) is the fourth Eisenstein series (which is 1/240-th of the theta function for the

E8 lattice), and we know it must appear due to the uniqueness of weight four modular

forms. So the true formulas we are predicting for the third derivatives of the prepotential

are:

F̃τττ =
j3τ

E4(τ)j(τ)(j(τ)− j(i))2
(4.14)

F̃Sττ =
j2τ

E4(τ)j(τ)(j(τ)− j(i))
. (4.15)

How do (4.14) and (4.15) compare with expectations? Based on its singularity prop-

erties and asymptotic behavior alone (for similar arguments see e.g. [37][35][36]), we know

we can fix the gauge coupling function F̃ττ to be

F̃ττ ∼ S + log(j(τ)− j(i)) . (4.16)

This means that we expect

F̃τττ ∼
jτ

(j(τ)− j(i))
. (4.17)

Remarkably, the elliptic j-function satisfies the identity

j2τ = −960π2j(τ)(j(τ)− j(i))E4(τ) (4.18)

which makes it clear that (4.14) is in fact of the expected form (4.17)! Similarly, we see

using the identity (4.18) that FSττ ∼ 1 at weak coupling, as expected. So we see our

results agree not only with the classical heterotic string picture but also with the expected

one-loop string correction.

In identifying the algebraic variables x̄ and ȳ with τ and S beyond the leading order

it is natural to conjecture that they continue to be related by the mirror map.

4.3. New Stringy Phenomena

So far we have given strong evidence for the identification of our heterotic model

with the Type IIA string on M . Our main interest is to use these results to see how

nonperturbative string corrections modify the classical string picture. For example, there

might be qualitatively new effects due to the presence of gravity. Here we will make a few

preliminary remarks, leaving the full story to future work.

For finite ȳ, the singular locus already “knows” that the moduli space is the funda-

mental domain of SL(2, Z). But for very small ȳ this may not be the case. In this region of
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infinitesimal ȳ, we can hope to recover in much greater detail the results of [1](perhaps by

considering a double scaling limit). We might also see stringy corrections to these results.

This is presently under investigation [38].

Alternatively, for finite ȳ we might also probe qualitatively new stringy modifications

due to nonperturbative effects present in string theory but absent in field theory. In fact,

in addition to the discriminant locus (4.6) which is the locus of conifold singularities, there

is an additional singular locus at ȳ = 1 where the manifold acquires a complicated point

singularity [34].6 Note that with the identification (4.9) the locus ȳ = 1 corresponds to

S → 0, i.e. infinitely strong coupling. Moreover, along this locus the threefold becomes

birationally equivalent to the (2, 6) complete intersection in WP 5
1,1,1,1,1,3 [34], suggesting

that there should be a smooth transition similar to [8]. It would be interesting to unravel

the physics of this transition, from the type II side. One concrete hint is the singularity

structure in the one-loop computation of R2, which gives the net number of massless

hypermultiplets [9].

An interesting point to notice is that there is an extra Z6 symmetry for all ȳ at x̄ = ∞,

which at ȳ = 0 corresponds to τ = 1

2
+ i

√
3

2
. This is the quantum Z6 symmetry of the

Landau-Ginzburg theory [34], and we see that it survives string nonperturbative effects.

Moreover, if we tune the coupling constant properly (and with a particular choice of τ for

the heterotic compactification) we get an enhanced Z12 symmetry point on moduli space

(corresponding to φ = ψ = 0).

4.4. A Rank Four Example and its Dual

Having met with success in finding a dual for a rank three example, we now move on

to a rank four example. Let us start with the heterotic E8 × E8 string. Embed a rank 2

bundle with
∫
K3

c2(V ) = 12 in each E8; this gives rise to a theory with 4 56s in each E7

and a total of 62 gauge neutral moduli hypermultiplets. Now Higgs both E7s completely

by giving VEVs to the charged fields. This gives an extra 4× 56− 133 = 91 neutral fields

from each factor, leaving us with 244 hypermultiplets and just the U(1)4 gauge symmetry

of the torus (a U(1)2 of which is enhanced to SU(2)×U(1), SU(2)×SU(2) and SU(3) at

special points).

We would like to find a Calabi-Yau manifold X with b11 = 3 and b21 = 243, on which

type II strings could be dual to the heterotic theories we have just described. And in fact,

6 We would like to thank S. Hosono for helpful correspondence on this point.
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such a manifold X does exist! It is the degree 24 hypersurface in WP 4
1,1,2,8,12 which has

been studied (using mirror symmetry) in [33].

X is defined by an equation of the form

a1z
2
1 + a2z

3
2 + a3z

12
3 + a4z

24
4 + a5z

24
5 − 12αz1z2z3z4z5 − 2βz63z

6
4z

6
5 − γz124 z

12
5 (4.19)

where the zi are the weighted projective space coordinates. It is actually convenient to

define

x̄ = −
1

3456

a31a
2
2β

α6
(4.20)

ȳ =
4a4a5
γ2

(4.21)

z̄ = −
1

2

a3γ

β2
(4.22)

which serve as the complex structure coordinates of the mirror.

There are several things we expect to be true for this model, which we would like to

check. For example, we expect that in an appropriate weak coupling limit, there should

be a copy of the τ and ρ moduli spaces of T 2 (a product of two copies of the fundamental

domain of SL(2, Z)) embedded in the Kahler moduli space of X . In this weak coupling

limit, we can also make several statements about the singularity structure. At generic

points in the moduli space, the left-movers of the toroidal compactification are responsible

for a U(1)2 gauge symmetry. But on the locus τ = ρ this is enhanced to an SU(2)×U(1)

gauge symmetry while the points τ = ρ = i and τ = ρ = 1

2
+ i

√
3

2
have further enhancement

to SU(2)×SU(2) and SU(3) gauge symmetry, respectively. We therefore expect a singular

locus, at very weak coupling, which looks like the τ = ρ copy of the fundamental domain

of SL(2, Z), with two special points.

We now give a description of the good coordinates on the moduli space. The SL(2,Z)

invariances tell us that we should work with j(τ) and j(ρ), as they map the fundamental

domain of SL(2,Z) bijectively to the complex plane. There is also a Z2 exchanging τ and

ρ, so the really good coordinates are

u = j(ρ) + j(τ) (4.23)

v = 4j(ρ)× j(τ) . (4.24)

The codimension one singularity, at weak coupling, should be at τ = ρ which is the same

as the locus

u2 − v = 0 . (4.25)
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We expect to have a double point at weak coupling when τ = ρ for generic τ and ρ, since

we have an SU(2) enhanced gauge symmetry. So we really expect a discriminant locus of

the form

(u2 − v)2 = 0 (4.26)

at zero coupling.

The discriminant locus of X is given by 7

(1− x̄)4 − 2x̄2z̄(1− x̄)2 + x̄4z̄2(1− ȳ) = 0 . (4.27)

First of all, note that at ȳ = 0 the equation becomes

((1− x̄)2 − x̄2z̄)2 = 0 (4.28)

which is of the form (4.26) expected from the heterotic string, where roughly speaking

u ∼ x̄ and v ∼ z̄. To check in more detail this duality, one would like to find a relationship

at ȳ = 0 between x̄, z̄, and the j functions. At our request, Hosono has investigated

this question using the results of [33] and has found some preliminary evidence suggesting

such a relationship. Very detailed checks for this example must await further investigation

of this question [38]. Nevertheless, we will try to proceed with some further qualitative

checks.

Another qualitative fact we would like to explain is the presence of codimension two

singularities which should occur (at weak coupling) at the SU(2) × SU(2) and SU(3)

points. In fact, there are further singular loci in the moduli space of X , one of which is

given by

(1− z̄)2 − ȳz̄2 = 0 . (4.29)

This intersects weak coupling (ȳ = 0) at z̄ = 1. Furthermore, there is an intersection of this

locus with the τ = ρ locus at two points. One intersection occurs at x̄ = ∞, z̄ = 1 where

there is a Z6 symmetry; we would like to identify this with the SU(3) point. The other

intersection is at x̄ = 1

2
, z̄ = 1. We would like to identify this point with the SU(2)×SU(2)

point. The symmetry properties of this moduli space unfortunately have not been worked

out. This would be crucial for a better understanding of the nature of the z̄ = 1 singularity.

However, for generic τ , ρ with ǫ = τ−ρ small, we have checked using the results of [33] that

7 There is a misprint in the discriminant locus presented in appendix A.1 of the hep-th version

of [33], corrected in the published version. We thank S. Hosono for informing us of this.
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the requisite singularity structure of the third derivatives of the prepotential is reproduced.

In particular,

Fǫǫǫ ∼
1

ǫ
(4.30)

FǫǫS ∼ 1 (4.31)

with FǫSS and FSSS vanishing.

4.5. More Potential Dual Pairs

Since we have been studying very special examples, the reader might wonder how easy

it is to find other examples where one can propose a (testable) duality between heterotic

and type II compactifications. As mentioned in §4.1, this subsection has been revised since

the preprint version of this paper. In light of the very recent work suggesting that CY

threefolds which are K3 fibrations play an important role in heterotic/type II duality, it

makes sense to try and find heterotic duals for the K3 fibrations listed in [30] (which is

a highly restricted list, compared to the lists of all known CY spaces). At the level of

simply matching the numbers of hypermultiplets and vector multiplets, it is not difficult

to construct many such examples, and we provide some below (all on the list in [30]). It

would be extremely interesting to explore some of these examples in more detail to see if

one’s expectations for the heterotic models are reflected in the type II moduli spaces, as

in §4.2. Of course our construction of examples is by no means exhaustive. It might prove

beneficial to check other sorts of examples, or to find a general recipe linking the heterotic

constructions to the dual manifolds.

One nice class of heterotic N=2 compactifications can be constructed as follows. Start

with a compactification to nine dimensions on a Narain lattice Γ1,17 which gives SO(34)×

U(1) gauge group. Further compactify to eight dimensions on a circle, including Wilson

lines which break the SO(34) to an SO(34− 2n)× SO(2n) in a way consistent with level-

matching [39]. This yields a theory in eight dimensions with SO(34−2n)×SO(2n)×U(1)3

gauge group, and upon compactification to four dimensions on K3 we can compute the

resulting spectrum using the techniques of §2. We call the factors of the vacuum gauge

bundle embedded in SO(34− 2n) and SO(2n) V1 and V2 (where we keep the convention

n ≤ 8), and we use the notation

d1 =

∫
K3

c2(V1), d2 =

∫
K3

c2(V2) . (4.32)
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Some examples which fall into this category are the following:

1) Consider the n = 6 case. In the further compactification on K3, choose V1,2 to be SU(2)

bundles with d1,2 = 16 and 8. After Higgsing maximally, leaving an SO(6)×SO(4)×U(1)3

gauge group unbroken, the spectrum at generic points in the moduli space is (144, 8). There

is a known K3 fibration with b11 = 7, b21 = 143 – the hypersurface in WP 4
1,1,4,4,10.

2) Consider the n = 6 case, and in the further compactification on K3 choose V1 to be a

d1 = 20 SU(2) bundle and V2 to be a d2 = 4 SU(2) bundle. After Higgsing as much as

possible one is left with a generic spectrum of (195, 9). The Calabi-Yau hypersurface in

WP 4
1,1,4,8,14 is a K3 fibration with b11 = 8, b21 = 194.

3) Consider the construction above, with the compactification to 8 dimensions done on

a circle at the self-dual radius with no Wilson lines. Then the gauge group is SO(34) ×

SU(2)×U(1)2. Now in compactifying on K3 to four dimensions, embed rank two bundles

with
∫
K3

c2 = 20 and 4 into the SO(34) and SU(2), respectively. Maximally Higgsing

yields a spectrum of (195, 9) again, so as in example 2) this model is appropriate for a dual

to the hypersurface in WP 4
1,1,4,8,14. In particular, it should lie in the same moduli space

as example 2).

We can give more examples by following the same strategy we used with SO(34), this

time with SO(32− 2n)× SO(2n)× U(1)4. We adhere to the same notation, and find the

following examples which have known candidate Calabi-Yau duals:

4) Take n = 0, compactifying on K3 × T2 in the normal way. Take V1 to be a rank

2 bundle with d1 = 24. One is left with SO(28) × SU(2) × U(1)4 gauge group in four

dimensions, with 10 (28, 2)s of SO(28) × SU(2). Higgsing as much as possible, one is

left with an unbroken SO(8) × U(1)4 gauge group and generically a (272, 8) spectrum.

This is appropriate for a dual to the type IIA string compactified on the hypersurface in

WP 4
1,1,4,12,18. This example (and the following one) was mentioned in [31], where an error

in the preprint version of this paper was corrected.

5) Take n = 0, that is consider the SO(32) string compactified to eight dimensions on

a torus, but take the torus to sit at τ = ρ = 1

2
+ i

√
3

2
. Then the gauge symmetry is

SO(32) × SU(3) × U(1)2. Embed an SU(2) bundle with
∫
K3

c2 = 18 in the SO(32)

and an SU(3) bundle with
∫
K3

c2 = 6 in the SU(3). After Higgsing, one obtains the

spectrum (165, 9) which would arise from type IIA compactification on a manifold with

b11 = 8, b21 = 164. Such a K3 fibration does exist – the hypersurface in WP 4
1,1,4,6,12.
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We can also use the E8 ×E8 string as well as the more general groups one can get in

Narain compactification to eight dimensions to try and generate more examples. Here we

present some simple examples using these other possibilities. Below, V1,2 and d1,2 refer to

the bundles embedded in the two E8s.

6) Start with the “standard embedding” compactification onK3×T 2, i.e. with V1 an SU(2)

bundle and d1 = 24. Now Higgs the unbroken E7 completely – the resulting spectrum

(492, 12) would arise from type IIA strings on a Calabi-Yau with b11 = 11, b21 = 491 and

there is such a space, the hypersurface inWP 4
1,1,12,28,42 (note that b21 of this space is given

incorrectly in the list of [30], although b11 and the Euler character are given correctly

there).

7) Start with E8 × E8 × SU(2) × U(1)3 in eight dimensions by compactifying on a torus

with τ = ρ. In the further reduction on K3 choose V1 a rank two bundle with d1 = 20

and also embed a rank two bundle with
∫
K3

c2 = 4 into the SU(2). After Higgsing here,

one obtains a (377, 11) spectrum appropriate to a potential dual for the hypersurface in

WP 4
1,1,8,20,30.

8) Start with E8 × E8 × SU(3) × U(1)2 by compactifying to eight dimensions on a torus

with τ = ρ = 1

2
+ i

√
3

2
. Choose V1 and SU(2) bundle with d1 = 18 and also embed rank

three bundle with
∫
K3

c2 = 6 in the SU(3) when you further compactify on K3. After

Higgsing this is a potential dual to the b11 = 9, b21 = 321 manifold on the list in [30], the

hypersurface in WP 4
1,1,6,16,24.

9) Start in eight dimensions just as in example 8), but this time choose V1,2 both of rank

two with d1 = 10, d2 = 8, and also embed an SU(3) bundle with
∫
K3

c2 = 6 into the SU(3).

Completely Higgs the first E8 and Higgs the other down to SO(10), then go to a generic

point in the moduli space of the vectors. This yields a potential dual to the complete

intersection of degree 8 and 12 hypersurfaces in WP 5
1,1,2,4,6,6, which has b11 = 6, b21 = 98.

10) Start with the Narain compactification yielding E8 × SO(20)× U(1)2 gauge group in

eight dimensions. Embed rank two bundles with
∫
K3

c2 = 10 and 14 into the E8 and the

SO(20) factors in the further compactification on K3. Higgsing as much as possible (leaving

an SO(6) subgroup of the SO(20) unbroken), one finds a generic spectrum (149, 5), which

could describe a heterotic dual to type IIA strings on the hypersurface in WP 4
1,1,2,4,8.

11) Start with the compactification on a special torus yielding E8 × E8 × SU(3)× U(1)2

gauge group in eight dimensions. Choose V1,2 to be rank two bundles with d1 = 10 and
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d2 = 8, and embed a rank three bundle with
∫
K3

c2 = 6 into the SU(3). After Higgsing

the first E7 completely and the second E7 down to SO(8), move to a generic point in

the moduli of the vectors. This leaves a spectrum of (102, 6), appropriate for the dual of

the type IIA string compactified on the Calabi-Yau hypersurface in WP 4
1,1,2,4,4 which has

b11 = 5, b21 = 101.

Looking through the list of threefold K3 fibrations for which we have found potential

heterotic duals, one is struck by certain phenomenological patterns which the weights of

the relevant weighted projective spaces exhibit. For example, starting from some examples

with low b11 and shifting the weights of the ambient WP 4 by (0, 0, 2, 4, 6) often yields

another example. Hopefully this is an indication that a general recipe connecting certain

classes of Calabi-Yaus to their heterotic duals is within our reach in the near future.

We would like to close by discussing one other type II model which we believe may

be describing the nonperturbative structure of SU(2) N=2 gauge theory with Nf = 1

matter hypermultiplet in the 2 of SU(2). In such a theory, we expect that the classical

moduli space of the vectors will exhibit a single singular point (where SU(2) is restored

and the charged matter is massless), which splits into three singular points in the quantum

theory [2]. The Kahler moduli space of the hypersurface in WP 4
1,1,1,6,9, studied in depth

in [33][40], is a perfect candidate for the string description of this moduli space. In the

coordinates of [33], its discriminant locus is given by

(1− x̄)3 − x̄3ȳ = 0 . (4.33)

Identifying ȳ with the dilaton in the usual way (4.9), we see that this is precisely the

singularity structure we expect for N=2 SU(2) gauge theory coupled to a single 2 of SU(2).

It would be very interesting to find the heterotic dual of the type II compactification on

this Calabi-Yau hypersurface.

5. Conclusions

We have seen, through examples, that it is possible that the moduli spaces of many

different N=2 heterotic vacua are connected in a large web, in a similar way to type II

string compactifications [8]. For some of these N=2 heterotic models, we have also been

able to construct dual type II string compactifications on Calabi-Yau threefolds.

This raises many interesting questions. The first thing one might wonder about is the

generality of the phenomenon – when do we expect a compactification to have dual heterotic
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and type II descriptions? Given the bound on the rank of the gauge group attainable in

perturbative heterotic strings, it seems unlikely that type II compactifications on Calabi-

Yau manifolds with sufficiently large hodge numbers will have heterotic duals. Similarly,

we have found examples of heterotic compactifications for which there are no presently

known candidate Calabi-Yau duals. In fact, the (0, 24) example of §3 is an example for

which there cannot be a dual Calabi-Yau description – that would require b12 = −1! In

other words, such a theory has no dilaton on the type II side. What we envision is that

the whole moduli space of N=2, d=4 string theories form a connected web. Some regions

have type II descriptions, some regions have heterotic descriptions, some regions have

both (as we have found), and perhaps some regions have neither. Consider for example

the E8 × E8 string broken to E7 × E8 with the standard embedding, as in example 6)

of §4.5. At a Gepner point in its moduli space with enhanced U(1)5 gauge symmetry,

we can move (as discussed in §3) off onto a new branch of moduli space which gives rise

to the spectrum (0, 24). On the other hand, we saw that by Higgsing we could get to

a theory with spectrum (492, 12) for which we have proposed a dual type II Calabi-Yau

compactification with b11 = 11, b21 = 491! This means that there is a path one can follow

from the (492, 12) type II theory which has a Calabi-Yau description to a region with

spectrum (0, 24) which cannot have a Calabi-Yau description. Similarly, starting from the

Calabi-Yau with b11 = 11, b21 = 491 we can move using conifold transitions [8][17] to a

Calabi-Yau with both b11+1 and b21+1 larger than the allowed rank 24 of a gauge group

in perturbative heterotic strings. We could follow the same path starting from the (492, 12)

heterotic string, reaching a theory without a perturbative heterotic string description!

In this paper, we have focused on using the duality between certain heterotic and type

II N=2 compactifications to determine the exact structure of the moduli space of vectors

on the heterotic side in terms of the tree level structure on the type II side. Similarly, one

could compute the exact structure of the moduli space of hypermultiplets on the type II

side using just the tree level results for the moduli space of the heterotic hypermultiplets.

Completely understanding the tree level structure on the heterotic side would involve

answering certain questions about the moduli spaces of stable holomorphic vector bundles

over K3 and about the moduli spaces of Higgs fields (which are probably related as we can

describe the same moduli space in two different ways).

For examples where we have been successful in constructing a dual, there are many

things one would like to learn. There is the exciting possibility of probing stringy non-

perturbative effects in a very quantitative manner, and perhaps uncovering qualitatively
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new physics. Perhaps such effects would have counterparts in other compactifications, for

example compactifications with only N = 1 supersymmetry.
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