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Exact results for Schrödinger cats 
in driven-dissipative systems and 
their feedback control
Fabrizio Minganti, Nicola Bartolo, Jared Lolli, Wim Casteels & Cristiano Ciuti

In quantum optics, photonic Schrödinger cats are superpositions of two coherent states with opposite 

phases and with a significant number of photons. Recently, these states have been observed in the 
transient dynamics of driven-dissipative resonators subject to engineered two-photon processes. Here 
we present an exact analytical solution of the steady-state density matrix for this class of systems, 

including one-photon losses, which are considered detrimental for the achievement of cat states. We 
demonstrate that the unique steady state is a statistical mixture of two cat-like states with opposite 

parity, in spite of significant one-photon losses. The transient dynamics to the steady state depends 
dramatically on the initial state and can pass through a metastable regime lasting orders of magnitudes 

longer than the photon lifetime. By considering individual quantum trajectories in photon-counting 
configuration, we find that the system intermittently jumps between two cats. Finally, we propose and 
study a feedback protocol based on this behaviour to generate a pure cat-like steady state.

Quantum nonlinear optical systems are an invaluable tool to explore the quantum world and its striking features1. 
Generally, these systems are out-of-equilibrium: photons must be continuously pumped into the system to replace 
those inevitably dissipated. E�ective photon-photon interactions can be mediated by an active medium, such as 
atoms or excitons in cavity QED or Josephson junctions in circuit QED resonators2. �e concepts of reservoir 
engineering3–8 and feedback9–14 emerged to stabilize nonclassical steady states in photonic and optomechanical 
resonators. In particular, new opportunities arise via engineering of two-photon pumping and/or two-photon 
dissipation15,16.

Since their theoretical conception17, Schrödinger’s cats have captured the collective imagination, because they 
are non-classical states at the macroscopic level. In quantum optics, the states of the electromagnetic �eld closest 

to the classical ones are the coherent states α α= ∑
α− −e n n( !)n

n/2 1/22

, having a well-de�ned mean amplitude 
|α| and phase (being |n〉  the n-photon Fock state). Photonic Schrödinger cat states are a quantum superposition 
of coherent states |α〉  and |− α〉 1,18,19:


α α

| 〉 =
± −

±
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α

α
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Contrarily to the coherent states, 
α

±  are eigenstates of the photon-parity operator  = πˆ ˆ
ei n, with =ˆ ˆ ˆ

†n a a the 
photon number operator. In fact, they are a superposition of only even (odd) number states. Two-photon pro-
cesses are known to drive the system towards this kind of photonic states18,19. However, one-photon losses are 
unavoidable even in the best resonators. As a result, the presence of both one- and two-photon dissipations makes 
the life of the cat states more intriguing15,19–21.

In this work, we provide an exact analytical solution for the steady state of this class of systems. We show that 
the rich transient dynamics depends dramatically on the initial state. It can exhibit metastable plateaux lasting 
several orders of magnitude longer than the single-photon lifetime. We demonstrate that, for a wide range of 
parameters around typical experimental ones21, the unique steady-state density matrix has as eigenstates two 
cat-like states even for signi�cant one-photon losses, with all the other eigenstates having negligible probability. 
�e study of individual trajectories reveals that, under photon counting on the environment, the system jumps 
between the two cat states, a property suggesting a feedback scheme to create pure cat-like steady states.
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Results
Theoretical framework and analytic solution. To start our treatment, we consider the master equation 
for the density matrix. For a system interacting with a Markovian reservoir, the time evolution of the reduced 
density matrix ρ̂ is captured by the Lindblad master equation ℏ Dρ ρ ρ∂ = +ˆ ˆ ˆ ˆi H/ [ , ]t . �e operator Ĥ  is the 
Hamiltonian, while  is the Lindblad dissipation super-operator1,22. In the frame rotating at the pump 
frequency,

= −∆ + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † †

⁎
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where ∆  is the pump-cavity detuning and U the photon-photon interaction strength. G is the amplitude of the 
two-photon pump, while γ and η represent, respectively, the one- and two-photon dissipation rates (see Fig. 1). 
�e Lindblad dissipator   = +1 2 is the sum of one- and two-photon loss contributions. �is model has 
been investigated theoretically16,19,23–25 and implemented experimentally21.

In order to �nd a general and analytic solution for the steady-state density matrix ρ̂
ss

, we used the formalism of 
the complex P-representation26. Details about the derivation of our solution are in the Methods section. In spite 
of the several parameters in the model, our solution depends only on two dimensionless quantities, namely 
c =  (∆  +  iħγ/2)/(U −  iħη) and g =  G/(U −  iħη). �e former can be seen as a complex single-particle detuning 
∆  +  iħγ/2 divided by a complex interaction energy U −  iħη; g is instead the two-photon pump intensity normal-
ized by the same quantity. Hence, our exact solution for the steady-state density matrix elements in the Fock basis 
reads

∑ρ〈 | | 〉 = + +
=

∞


 


ˆ

⁎
n m

n m
g c n g c m
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where   is the normalization factor, chosen such that ρ =ˆTr[ ] 1
ss

.  = − − − g c i g F c c( , , ) ( ) ( , ; 2 ; 2)2 1 , 2F1 
being the Gaussian hypergeometric function. Notably, =g c( , , ) 0  for  odd, meaning that, for any �nite value 
of the system parameters, there will be no even-odd coherences in the steady state. In what follows, all the quan-
tities marked with a tilde will refer to steady-state values.

To further characterise the steady-state, we consider the spectral decomposition of the density matrix 
ρ = ∑ Ψ Ψκ κ κ κ
ˆ p , with |Ψ κ〉  the κth eigenstate of ρ̂ with eigenvalue pκ. �e latter corresponds to the probability 
of �nding the system in |Ψ κ〉 . �e eigenstates are sorted in such a way that pκ ≥  pκ+1. For a pure state, p1 =  1 and 
all the other probabilities pκ are zero. We numerically diagonalised the density matrix ρ̂

ss
 in a truncated Fock 

basis, choosing a cuto� ensuring a precision of 10−14. For our calculations, we chose a set of parameters around 
typical experimental ones21, i.e. ∆  0, ηU ,  ηG , and γ η. In this regime, for the steady state (5) only 
two eigenstates dominate the density matrix. As shown in Fig.  2(a), typically + ≃� �p p 1

1 2
, and 

ρ Ψ Ψ + Ψ Ψ≃ � � � � � �ˆ p p
ss 1 1 1 2 2 2 . �e aforementioned absence of even-odd coherences implies that Ψ̃1(2)  is com-

posed of only even (odd) Fock states. Furthermore, we �nd that Ψ
α

+� ≃1  and Ψ
α

−� ≃2  for an appropriate 

choice of α. For the parameters of Fig. 2(d), Ψ − ×
α

+ − −� ≃ (1 8 10 )1(2)
( ) 6  for α ≈ .

.e2 7 i2 0 . We have varied  

∆ /ħη between − 0.2 and 0.2, G/ħη between 0 and 15, γ/η between 0 and 5, U/ħη between 1 and 10, always �nding 
that − − <

− p p1 10
1 2

2. Moreover, in these ranges, we verified that there exists a value of α such that 
Ψ > .
α

+ − 0 981(2)
( ) . Hence, we can conclude that for a broad range of parameters the eigenstates of ρ̂

ss
 are two 

cat-like states of opposite parity.

Figure 1. A sketch of the considered class of systems. �e picture represents a photon resonator subject to 
one-photon losses with rate γ. Via an engineered reservoir, the system is coherently driven by a two-photon 
pump with amplitude G and has two-photon losses with rate η. We also consider an additional selective 
dissipation channel with rate γf acting only on odd states. U quanti�es the strength of the photon-photon 
interaction. On the right, we sketch the e�ects of the previous mechanisms on the Fock (number) states |n〉 .
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Using the linearity of the trace, for any operator Ô one can write ρ= +≃ � �� � �ˆ ˆO O p O p OTr[ ]
ss 1 1 2 2, where 

= Ψ Ψ
κ κ κ

  ˆO O . In Fig. 2(b) we plot, as a function of the pump amplitude G, the steady-state mean density n, 
together with its contributions n1,2. For weak pumping one has ≃�n 01  and ≃�n 12 , in agreement with what one 
would obtain for the even and the odd cat by taking the limit α →  0 of Eq. (1). �ese two contributions become 
equal in the limit of a very large number of photons. As shown in Fig. 2(c), the two contributions to the mean 
parity 1,2 always stay clearly di�erent, being 

α

±  orthogonal eigenstates of ̂  with eigenvalues ± 1. A valuable 

tool to visualise the nonclassicality of a state is the Wigner function β ρ=

π β βˆ ˆ ˆ ˆ
†

W D D( ) Tr[ ]
2  , de�ned in terms of 

the displacement operator27 β β= −β
ˆ ˆ ˆ† ⁎D a aexp( ). Indeed, negative values of W(β) indicate strong nonclassical-

ity1. �e Wigner function corresponding to the density matrix (5) is always positive [cf. Eq. (12) in Methods], 
while the separate contributions βW ( )1  and βW ( )2  exhibit an interference pattern with negative regions, typical of 
cat states [cf. Fig. 2(d–f)].

We emphasize that for �nite γ the considered system has always a unique steady state. However, the tem-
poral relaxation towards the steady state depends dramatically on the initial condition. �is is revealed by the 
time-dependent �delity with respect to the steady state, presented in Fig. 3, obtained by numerical integration 
of the master equation. In particular, initialising the system in one of the coherent states |± α〉  composing the 
steady-state cats, it persists nearby for a time several orders of magnitude longer than 1/γ and 1/η. Hence, the 
“multiple stable steady states” in21 are actually metastable.

Quantum trajectories. We now examine the quantum trajectories of the system, which give an insight on 
the pure states that the system explores during its dynamics28–30. In principle, keeping track of all the photons 
escaping the cavity allows to follow the system wave function (cf. Methods)28,31. A photon-counting trajectory is 
presented in Fig. 4, where in panels (a,b) we follow, respectively, the time evolution of the photon number n̂  and 
of the parity ̂ , starting from the vacuum state as initial condition. On a single trajectory, two-photon processes 
initially dominate, driving the system towards 

α

+ . Indeed, ≃ �n̂ n1 and = =
ˆ 11  . Two-photon losses do 

not a�ect a state parity, indeed  α=
α α

± ±â2 2 . �is is why the system persists nearby the even cat until a 
one-photon loss occurs. At this point, the state abruptly jumps to the odd manifold24, since ∝

α α

± â   . A�er 
the jump, two-photon processes stabilise 

α

− , so that ≃ �n̂ n2 and = = −
ˆ 12  . When another one-photon 

jump takes place, the system is brought back to the even manifold, and so on. Hence, if the quantum trajectory is 
monitored via photon counting31, the system can only be found nearby 

α

+  or 
α

− . �e probability of being in 
each cat is given by the corresponding eigenvalue of ρ̂

ss
, namely p

1
 and p

2
. Since ≈ n n1,2 , it is impossible to dis-

cern the cats’ jumps by tracking the photon density. A parity measurement, instead, would be suitable32. In 
Fig. 4(a,b) we also present the average over 100 trajectories, which, as expected, converges to the master equation 
solution (also shown). �e latter corresponds to the full average over an in�nite number of realizations22. �e 
fully-averaged and single-trajectory evolutions of the Wigner function are shown in Fig. 4(c). In the averaged one, 

Figure 2. Exact results for the steady state. �e corresponding density matrix can be expressed as 
ρ = ∑ Ψ Ψκ κ κ κ

  ˆ p
ss

, where p
1
 and p

2
 are the probabilities of the two most probable eigenstates. Parameters: 

∆  =  0, U =  ħη, γ =  0.1η. Panel (a) residual probability − − p p1
1 2

 versus the two-photon drive amplitude G 
normalized to the two-photon loss rate η, showing that the density matrix is dominated by the �rst two 
eigenstates. Panel (b) as a function of G/ħη, mean number of photons n and its contributions n1 and n2. Panel  
(c) as a function of G/ħη, the mean parity   and its contributions 1  and  2 . Panel (d) for G =  10ħη, contour 
plot of the Wigner function βW( ) for the density matrix ρ̂

ss
. Panel (e,f) for G =  10ħη, Wigner functions βW ( )1  

and βW ( )2  associated to the two most probable eigenstates. For the latter, we also show a 3D zoom of the central 
region |β| ≤  1.6. Note that the fringe pattern changes sign between βW ( )1  and βW ( )2 .
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an even-cat transient appears, but negativities are eventually washed out for ηt, γ t 119,21,24. By following a single 
quantum trajectory, instead, we see that Wt(β) quickly tends to the one of 

α

+ . �en, it abruptly switches to that 
of 

α

− , then back at each one-photon jump.
�e even-to-odd jumps in a photon-counting quantum trajectory deserve a more detailed discussion. Each 

trajectory corresponds to the behaviour of our quantum system on a single-shot experiment22,28. Indeed, to sim-
ulate a quantum trajectory it is necessary to model how an observer measures the environment to probe the 

Figure 3. Metastable versus steady-state regime. �e curves depict the time-dependent �delity of the density 
matrix ρ̂ t( ) with respect to the unique steady-state density matrix ρ̂

ss
 by taking as initial condition a pure 

coherent state, i.e., ρ β β= =ˆ t( 0) . �e �delity is de�ned as ρ ρ ρ ρ ρ=








ˆ ˆ ˆ ˆ ˆf t t[ ; ( )] Tr ( )

ss ss ss
. �e values 

of β and the corresponding colours are indicated in the inset. Panel (a) the phase of the initial coherent state is 
varied (cf. inset). Panel (b) the amplitude is changed (cf. inset). �e dashed lines correspond to the vacuum as 
initial state. Parameters: ∆  =  0, U =  ħη, G =  10ħη, γ =  η.

Figure 4. Dynamics of averaged quantities versus single quantum trajectories. Panel (a) dynamics (time 
is in logarithmic scale) of the photon population for a single quantum trajectory (blue line), an average of 100 
trajectories (orange line) and the fully averaged (green line) density matrix. Panel (b) same as (a) but for the 
expectation value of the photon parity operator. Panel (c) snapshots of the Wigner functions at di�erent times. 
�e system parameters are ∆  =  0, U =  ħη, G =  10ħη, and γ =  0.1η. We stress that, in the single-trajectory Wigner 
functions, the fringe pattern changes sign a�er a parity jump.
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system (in the presented case, by a photon-counting measure). �e same Lindblad equation can be described via 
di�erent measurement protocols, resulting in di�erent single trajectories. �eir average result reproduces the 
master equation solution1,29,30. Our steady state, given by ρ̂

ss
 in Eq. (5), is typically a mixture of an even and an odd 

cat state. To unveil such a mixture at the single-trajectory level, a photon-counting measurement is suitable. But 
this does not mean that any physical system described by the same Lindblad equation would always be in a 
parity-de�ned state. We emphasise that this behaviour is not exclusively caused by the chosen measurement pro-
cess: other systems under the same photon-counting trajectory do not show even-to-odd jumps. For example, if 
one considers a one-photon pump and no two-photon driving, at any given time the trajectories do not show a 
de�ned parity (the state of the system in not an eigenstate of ̂).

A feedback protocol. �e results presented above suggest that, in order to have a cat-like steady state (e.g. 
keep interference fringes in the fully averaged Wigner function), one may try to unbalance the even and odd 
contributions to ρ̂

ss
. �is e�ect can be envisioned through a parity-triggered feedback mechanism11,12,33,34 open-

ing a one-photon loss channel. In practice, this can be implemented via non-destructive parity measurements32,35, 
whose rate must be larger than any other rate in the system. Note that, in general, a parity measurement projects 
the system into the even- or odd-parity manifold, a�ecting the dynamics by destroying the even-odd coherences. 
In the present case, however, those coherences are proven to be always zero in the steady state by the analytic 
solution (5). �us, a high-rate and non-destructive parity measure does not alter signi�cantly the system dynam-
ics and allows to continuously monitor ̂ . When the undesired value is measured, an auxiliary qubit is put into 
resonance with the cavity, inducing the absorption of a photon. A�er the desired parity is restored, the qubit is 
brought out of resonance, closing the additional dissipation channel. Such a qubit acts as a non-Markovian bath 
for the system, and in principle its e�ects can not be simply assimilated to those of a Markovian environment. 
However, if one assumes that the excited-state lifetime of the qubit is shorter than the inverse of the qubit-cavity 
coupling rate, one can safely treat it as an additional Markovian dissipator34,36. In other words, the coupled qubit 
must be engineered to easily lose the photon to the environment, which seems a reasonable task for the present 
experimental techniques9,11,12,25. Under these assumptions, the proposed feedback protocol can be e�ectively 
described by the additional jump operator = −ˆ ˆ ˆa a (1 )f

1

2
 and the corresponding dissipator

 ρ
γ

ρ ρ ρ= − − .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
† † †a a a a a a

2
(2 )

(6)f
f

f f f f f f

Qualitatively, f  leaves the even cat undisturbed, while it enhances the dissipation for the odd one.
In Fig. 5(a) we show the time evolution of ̂  for three di�erent values of γf. �ese results have been obtained 

via numerical integration of the Lindblad master equation with a total dissipator    = + + f1 2 . At the 
steady state, as γf increases so does  , indicating that the positive cat has a larger weight in ρ̂

ss
. In Fig. 5(b) we 

show the corresponding steady-state Wigner functions βW( ). For �nite γf, negative fringes appear in the Wigner 
function. �ey are more pronounced as γf is increased, revealing a highly nonclassical state. In the limit γ γf , 
ρ

α α

+ +ˆ
ss

  . By using, instead, the jump operator = +ˆ ˆ ˆa a (1 )f
1

2
, one can similarly stabilize the odd cat 

state. Note that the Wigner-function negativities in Fig. 5 are those of the full steady-state density matrix. Hence, 
the quantum state of the system is on average nonclassical.

Discussion
In conclusion, we presented the exact steady-state solution for a general photonic resonator subject to one-photon 
losses and two-photon drive and dissipation. Remarkably, the unique steady state appears to be a mixture of two 
orthogonal cat states of opposite parity. We have also shown that the transient dynamics to the unique steady 
state can depend dramatically on the initial condition, revealing the existence of metastable states. Furthermore, 
by monitoring the quantum trajectory of the system via photon counting, we found that it explores the two cat 
states composing the steady-state statistical mixture. On this ground, we proposed to engineer a parity-dependent 
dissipation which allows to stabilize a cat-like steady state.

�e general nature and richness of the results predicted here paves the way to a wide variety of experimental 
and theoretical investigations. As a future perspective, a challenging but intriguing problem is the study of other 
photonic cat-like states in the transient and steady-state regime for arrays of coupled resonators. �e generation 
and stabilization of orthogonal cat-like states is of great interest for quantum computation, since they can be used 
as qubits logic states16,37,38. Besides the implications for quantum information, our results are also relevant for the 
study of exotic phases based on the manybody physics of light2.

Methods
Complex P-representation. �e complex P-representation of the density matrix ρ̂ reads26

∫ ∫ρ
α β

β α
α β α β=

′
ˆ

⁎

⁎ P d d( , ) ,
(7) 

where the complex amplitudes α and β de�ne the corresponding (nonorthogonal) coherent states. �e two inde-
pendent and closed integration paths  and ′ must encircle all the singularities of P(α, β) in the complex plane. 
A Lindblad master equation for the density matrix translates into a Fokker-Plank-like di�erential equation for the 
function P(α, β)39. In the case de�ned by Eqs (2–4), one has
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where η= −U iU ℏ . �e corresponding steady-state equation, de�ned by α β∂ =P( , ) 0t , is satis�ed by

α β
α β
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
⁎

⁎P
e

g g
( , )

( ) ( )
,

(9)
c c

2

2 1 2 1

where c and g were introduced in the main text. Taylor expanding the exponential and projecting on the number 
states 〈 n| and |m〉 , we obtain a formal expression for the matrix elements of ρ̂

ss
:
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�e appropriate choice of the integration paths  is a central issue. A suitable one is the Pochhammer con-
tour39, which leads to Eq. (5). Similarly, it is also possible to calculate the general steady-state expectation value of 
the correlation functions

∑〈 〉 = + +
=

∞


 
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
ˆ ˆ† ⁎
a a g c m g c n

1 2
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and the steady-state Wigner function (without feedback)

∑β
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β
= .β− |
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∞
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W e g c( )
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2

0

2
2

N
F

Figure 5. E�ects of the considered feedback. �ese results are obtained by numerical integration of the 
Lindblad master equation, taking the vacuum as initial condition and for same system parameters as in Fig. 4. 
Panel (a) time evolution of the parity mean-value in presence of the feedback described by Eq. (6) for di�erent 
values of γf (cf. legend). Panel (b) steady-state Wigner function (t →  + ∞ ) exhibiting negativities for γf >  0.
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Determination of quantum trajectories. �e Lindblad master equation de�ned by Eqs (2–4) describes 
the evolution of the density matrix if we do not collect any information about the system or the environment. 
Hence, the analytic and numerical solution of a Linbdblad master equation predicts the average outcomes of an 
experimental realisation. Detecting the photons escaping the system would provide more information about the 
time evolution of the system itself29–31. �at is, the evolution of the wave function of an open quantum system can 
be followed gathering information on its exchanges with the environment. �e operator U ℏ= −

ˆ ˆt i t H( ) exp( / )eff  
describes the time evolution of the system state between two detections of a photon emission. For our system, the 
non-hermitian e�ective Hamiltonian reads:

 γ η
= − − .

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
† † †H H i a a i a a aa

2 2 (13)eff

At t =  ti, the emission of vi photons is detected (vi =  1, 2) and the state abruptly changes according to 
ψ δ ψ+ ∝ ˆt t a t( ) ( )i

v
i

i . �is is a quantum jump, which can be simulated stochastically: in the interval [t, t +  δt] 
the probability of one-photon emission is δ γ ψ ψ∝ ˆ ˆ

†t t a a t( ) ( ) , while that of two-photon emission is 
δ η ψ ψ∝ ˆ ˆ

†t t a a t( ) ( )2 2 . A�er a jump, the time evolution continues under the action of −
ˆ t t( )i  until the next 

photon emission. On this ground, a single trajectory is simulated by randomly determining if, at each time step, 
the state jumps or evolves under the action of ̂ . We stress that for perfect detection (all the emitted photons are 
gathered) and a pure initial condition the state |ψ(t)〉  stays pure at any time. For the same Lindblad equation, 
other quantum trajectories than the photon-counting ones can be modelled and simulated1,22,31. However, the 
average over an in�nite number of trajectories will always give the solution of the Lindblad master equation.
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