
ar
X

iv
:1

21
1.

28
61

v2
  [

he
p-

th
] 

 2
7 

A
pr

 2
01

3

Prepared for submission to JHEP

Exact results for supersymmetric abelian vortex

loops in 2 + 1 dimensions

Anton Kapustin,a Brian Willettb and Itamar Yaakovc

aDepartment of Physics, California Institute of Technology,

1200 E. California Blvd, Pasadena, CA
bInstitute for Advanced Study, Einstein Drive, Princeton, NJ
cDepartment of Physics, Princeton Univerity, Princeton, NJ

E-mail: kapustin@theory.caltech.edu, bwillett@ias.edu, iyaakov@princeton.edu

Abstract: We define a class of supersymmetric defect loop operators in N = 2 gauge theories in 2+1

dimensions. We give a prescription for computing the expectation value of such operators in a generic

N = 2 theory on the three-sphere using localization. We elucidate the role of defect loop operators in

IR dualities of supersymmetric gauge theories, and write down their transformation properties under

the SL(2,Z) action on conformal theories with abelian global symmetries.

Keywords: defect operator, supersymmetry, localization

http://arxiv.org/abs/1211.2861v2
mailto:kapustin@theory.caltech.edu
mailto:bwillett@ias.edu
mailto:iyaakov@princeton.edu


Contents

1 Introduction 1

2 Definition of the abelian vortex loop 2

2.1 Vortex loop in a gauge theory 2

2.2 Global vortex loops and the SL(2,Z) action 3

2.3 Pure Chern-Simons theory 6

2.4 Supersymmetric vortex loops 6

3 Localization in the presence of a vortex loop 9

3.1 Localization of 3d gauge theories 10

3.2 Method 1: using the SL(2,Z) definition of D 11

3.3 Method 2: smearing the defect 12

3.4 Method 3: explicit computation in a singular background 14

3.4.1 Bosons 15

3.4.2 Fermions 16

3.4.3 Solving the eigenvalue equation 18

4 Duality with Vortex Loop Operators 21

5 Discussion 22

Contents

1 Introduction

Quantum field theories admit a variety of operators defined not by insertions of the fundamental fields,

but by constraints which change the domain of the path integral in field space. An operator defined

by such a prescription is called a defect operator. A famous example is the twist operators of 2d

conformal field theory. More generally, one can define a defect operator inserted along a submanifold

L by deleting L and requiring the fields to have prescribed singularities as one approaches L. The

effect of the insertion can be “measured” by evaluating the expectation values of ordinary operators.

When one can detect the presence of the defect from afar (for example, because some field strengths

are now required to belong to a nontrivial cohomology class), the insertion is said to have created

topological disorder.

The first example of a defect operator in gauge theory is probably the ’t Hooft loop operator in

4d gauge theories [1] which can be used as an order parameter for Higgs phases. It also plays an

important role in the context of electric-magnetic duality of N = 4 gauge theories in 3+ 1 dimensions

[2–4]. The duality exchanges states with electric and magnetic charge and therefore exchanges Wilson

loop operators and ’t Hooft loop operators.

There is a somewhat similar story for 3d gauge theories. In such theories there is a often a duality

which exchanges elementary excitations in the Coulomb phase with Abrikosov-Nielsen-Olesen vortices
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in the Higgs phase. A 3d operator creating a very heavy vortex with world line L is a defect loop

operator and may be regarded as analogous to the ’t Hooft loop operator in 4d creating a monopole.

Such a defect operator is defined by the fact that the gauge field has a fixed holonomy around any

small loop linking L. These operators were studied in [5]. In 4d an analogous construction gives a

surface defect [6].

It should be noted that the definition of the vortex loop operator is independent of the existence of

the Higgs phase, or vortex solutions, or even of a dynamical gauge field. The definition makes perfect

sense in the topological pure Chern-Simons theory as a defect in the gauge connection, although the

defect, in that case, can be identified with a Wilson loop [7, 8]. In a theory possessing an abelian

global symmetry, a vortex loop can be defined by gauging a global symmetry using a non-dynamical

flat connection satisfying the holonomy condition. It is also not necessary that the defect be defined

on a closed loop, however, to preserve gauge invariance, an open contour must extent to the boundary

of spacetime.

Much more can be said about defect operators when the theory is supersymmetric. All of the

operators mentioned above have BPS analogues in supersymmetric theories in 2 + 1 and in 3 + 1

dimensions. Extending the definition of a defect so as to preserve a fraction of the supersymmetry

can require imposing conditions on additional fields. This is analogous to the inclusion of fields other

than the connection in the definition of a supersymmetric Wilson loop. In this work, we will define

the supersymmetric analogue of the vortex loop. Exact computation of the expectation value for a

supersymmetric defect may be feasible by employing localization techniques ([9–11]). This was carried

out for the supersymmetric version of the ’t Hooft loop on S
4 in [12]. Here, we extend previous results

for localization of supersymmetric gauge theories in 2+1 dimensions (see [13] for the original derivation

and [14] for a review) to include the supersymmetric vortex loop. We will also discuss the role played

by supersymmetric vortex loops in the context of mirror symmetry.

In section 2, we define several versions of the abelian vortex loop. We discuss the operator’s trans-

formation under Witten’s SL(2,Z) action on conformal field theories. We then extend the definition to

accommodate supersymmetry. In section 3, we employ localization to evaluate the expectation value

of the supersymmetric vortex loop for a generic superconformal N = 2 gauge theory on S
3. The result

can be inferred from the SL(2,Z) action. We provide an independent derivation using the original

definition. In section 4, we demonstrate, with a few examples, the role of the vortex loop in IR duality

of N = 2 gauge theories. We conclude with a discussion of possible extensions.

2 Definition of the abelian vortex loop

2.1 Vortex loop in a gauge theory

Defect loop operators in 3d gauge theories have been previously introduced in the context of Chern-

Simons theories [7, 8]. Such a loop operator is specified by giving a loop γ in the 3-manifold M and

an element β of the Lie algebra g of the gauge group G. The holonomy around any small loop linking

γ of the gauge connection A is required to approach β as we shrink the loop size to zero. With this

condition, A is singular on γ. Separating A into a smooth part A′ and a singular part A′′, we can

write

FA′′ = β ⋆ [γ] (2.1)

where ⋆[γ] is a 2-form current supported on γ whose cohomology class is the Poincarï¿œ dual of

[γ] ∈ H1(M,Z) (we assume that M is orientable). In [6], the authors defined surface operators in

N = 4 SYM theory in 3 + 1 dimensions using a similar prescription. The prescription for a subset of
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these codimension 2 operators, the one in which only the connection is singular, coincides with the

definition above (substitute α for β). As noted there, the data specifying the singularity is actually

only eiβ , and equation 2.1 should be handled with care. If the gauge group G is U(1), β is simply a

real number. To avoid ambiguity it is sufficient to restrict the range of β to the interval (−π, π). In

what follows, we will sometimes assume this restriction. We will also set

q =
β

2π
, q ∈

(

−1

2
,
1

2

)

(2.2)

From now on we will assume that G is abelian and will call such a loop operator a gauge vortex

loop.

2.2 Global vortex loops and the SL(2,Z) action

We can define a similar loop operator if G is a global symmetry group rather than a gauge symmetry

group. To this end we merely set the smooth part A′ of the gauge field to zero and set the singular

part (A′′ above) to be a fixed flat connection whose holonomy along a loop linking γ is eiβ . We will

call such a loop operator a global vortex loop. It appears naturally when we consider the action of

Witten’s SL(2,Z) on Wilson loops.

Following [15], we consider a conformal field theory in 2+ 1 dimension with a choice of an abelian

global symmetry current J . We couple J to a background gauge field A, and consider the partition

function as a functional of A

Z[A] =

ˆ

DΦeiS[Φ]+i
´ √

gd3xJµAµ+... (2.3)

where “ ...” refers to seagull terms necessary to ensure invariance under gauge transformations of A.

Here Φ and S[Φ] are short hand for the fields and action of the theory. In addition to the seagull

terms, one can add extra terms which are gauge-invariant functionals of A alone. If we wish to preserve

conformal symmetry, a natural choice is the abelian Chern-Simons term

iα

4π

ˆ

A ∧ dA (2.4)

If we want to associate A to a non-trivial principal bundle, then this is only defined for integer α.

However, for now, we will assume that A is a connection on a trivial bundle, and allow arbitrary real

values of α. To the triplet (S[Φ], J, α) we associate the following functional of A:

ZJ,α[A] =

ˆ

DΦeiS[Φ]+i
´ √

gd3xJµAµ+...+ iα
4π

´

A∧dA (2.5)

Witten defined an SL(2,Z) action on such triplets [15]. The action of the T generator is merely

a shift of α by 1. The action of S is defined by first promoting A to a dynamical gauge field and then

replacing J with the topological U(1) current for this new gauge field

Jtop =
1

2π
⋆ dA (2.6)

Together, these operations generate an action of SL(2,Z) on the set of triples. At the level of partition

functions, these operations act as follows:

(T · ZJ,α)[A] = ZJ,α+1[A] (2.7)
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(S · ZJ,α)[A] =

ˆ

DA′DΦeiS[Φ]+i
´ √

gd3xJµA′

µ+...+ iα
4π

´

A′∧dA′+ i
2π

´

A∧dA′

(2.8)

Our first goal is to extend these operations to observables more general than the partition function

ZJ,α. Specifically, we would like to consider insertions of Wilson loops for the background gauge field

A. First, it is useful to define a slight generalization of an abelian Wilson loop. Recall that the abelian

Wilson loop operator is specified by a loop γ : S1 → M and a charge q ∈ R and is defined as an

insertion of

eiq
´

γ
A (2.9)

into the path integral. This can be rewritten as

e
i

2π

´

ω∧A (2.10)

where ω is a closed 2-form current with support along γ, defined so that the integrals in the previous

two expressions agree for all 1-forms A. In local coordinates (r, θ, z) where the loop lies along the z

axis, we can write:

ω = 2πqδγ ≡ qδ(r)dr ∧ dθ (2.11)

Such a term can simply be added to the action, since in the abelian case we do not have to worry

about path ordering the exponential.

We can consider such an insertion for more general 2-form currents ω. Invariance with respect

to infinitesimal gauge transformations forces ω to be closed. Invariance with respect to “large” gauge

transformations (i.e. gauge transformations which are topologically nontrivial maps from the abelian

Lie group G to M) requires the de Rham cohomology class of ω/2π to be integral. This means that

ω arises as the field strength of some connection Aω on a U(1) bundle, and we can write the Wilson

loop as a BF coupling to this new background gauge field:

e
i

2π

´

A∧dAω (2.12)

In the case

ω = 2πqδγ (2.13)

where δγ is a 2-form current supported on γ which is Poincarï¿œ dual to γ, the integrality condition

on ω reduces to the requirement that the class q[γ] ∈ H1(M,R) is integral. In particular, if γ is

homologically trivial, there are no integrality constraints on q. Near γ the connection Aω in suitable

coordinates looks as follows:

Aω = qdθ (2.14)

More generally, if we take ω to be supported in a small tubular neighborhood of γ, we get a regular-

ization of the Wilson loop along γ.

With this in mind, we define a insertion of Wω by

(Wω · ZJ,α)[A] :=

ˆ

DΦeiS[Φ]+i
´ √

gd3xJµAµ+...+ iα
4π

´

A∧dA+ i
2π

´

Aω∧dA (2.15)

Let us see how the SL(2,Z) generators act on it. It is clear that T commutes with Wω , so we only

need to consider
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((S−1WωS) ·ZJ,α)[A] =

ˆ

DA1DA2DΦexp

(

iS[Φ]+ i

ˆ √
gd3xJµA1µ+ ...+

iα

4π

ˆ

A1∧dA1+ (2.16)

+
i

2π

ˆ

A2 ∧ dA1 +
i

2π

ˆ

Aω ∧ dA2 −
i

2π

ˆ

A ∧ dA2

)

(2.17)

We can see A2 enters only via a term
´

(A1 − Aω − A) ∧ dA2, and so the integral over A2 produces

exactly a delta function setting A1 = Aω +A [15]. This leaves

ˆ

DΦexp

(

iS[Φ] + i

ˆ √
gd3xJµ(Aωµ +Aµ) + ...+

iα

4π

ˆ

(A+Aω) ∧ d(A+Aω)

)

(2.18)

= ZJ,α[A+Aω ] (2.19)

Note that, even at A = 0, this gives an insertion of an operator:

exp

(

i

ˆ √
gd3xJµAωµ + ...+

iα

4π

ˆ

Aω ∧ ω
)

(2.20)

In the case where ω = 2πqδγ , Aω is a flat gauge field with a holonomy e2πiq, and this operation has

the same effect on the path integral as prescribing that all fields charged under the current J pick up

a fixed monodromy around the loop γ. There is also an additional α-dependent phase factor related

to the self-linking number of the loop (which must be regularized by specifying a framing). We see

that in this special case the operation S maps the charge-q Wilson loop for the background gauge field

A to the global vortex loop with holonomy e2πiq. More generally, for arbitrary ω satisfying the above

integrality conditions we can define an operation

(Dω · ZJ,α[A]) = ZJ,α[A+Aω] (2.21)

What we have demonstrated is that the operation S maps Wω to Dω:

S−1WωS = Dω (2.22)

More precisely, the equality holds up to a phase factor which depends not only on ω, but also on the

Chern-Simons coupling of the theory on which these operations act.

One can rephrase this result in terms of Wilson loops for dynamical gauge fields. Gauging a

symmetry (without adding a Chern-Simons term) is the same as applying the operation S. The

resulting theory has a new global symmetry U(1)J whose current is ⋆dB/2π, where we denoted by B

the dynamical gauge field, to distinguish it from the background gauge field A which couples to the

U(1)J current. Noting that S2 = C (the charge conjugation), we get

SWω = D−ωS. (2.23)

Applying this to the partition function Zungaged
J,α [B], we learn that

< Wω[B] >= D−ω · Zgauge[A] = Zgauge[A−Aω ]. (2.24)
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In particular, setting ω/2π to be the delta-function supported on a loop γ, we see that a global vortex

loop for the U(1)J symmetry is nothing more than an ordinary Wilson loop in the underlying gauge

field. Similarly, we find

< Dω[B] >=Wω · Zgauge[A] (2.25)

which shows that, in the absence of a Chern-Simons term, the gauge vortex loop by itself is somewhat

trivial: it merely modifies the functional dependence of Zgauge[A] on the background gauge field A

which couples to the U(1)J current.

2.3 Pure Chern-Simons theory

Before moving on to the supersymmetric version of the vortex loop, let us briefly comment on how

the gauge vortex loop behaves in pure bosonic Chern-Simons theory. It was argued in [7] that such

a defect operator should be equivalent to a Wilson loop. However, we have seen above that for an

abelian gauge group the gauge vortex loop is somewhat trivial, its only effect being a modification

of the U(1)J current by a c-number term supported on the loop. To see that this agrees with the

behavior of the Wilson loops, we recall the formula for the expectation value of a product of Wilson

loops in U(1) Chern-Simons theory at level k [8]

〈
∏

a

exp(iqa

ˆ

γa

A)〉 = exp

(

2πi

k

∑

a,b

qaqbΦ(γa, γb)

)

(2.26)

where Φ(γa, γb) is the linking number of the loops a and b. The latter can be written in terms of the

corresponding gauge fields Aa, with dAa = ωa the 2-form delta function supported on γa, as

Φ(γa, γb) =

ˆ

γb

Aa =
1

2π

ˆ

Aa ∧ ωb (2.27)

Letting

ω =
1

k

∑

a

qaωa, (2.28)

we can rewrite the expectation value as follows:

〈
∏

a

exp(iqa

ˆ

γa

A)〉 = exp

(

ik

2π

ˆ

Aω ∧ dAω

)

. (2.29)

Thus the insertion of a collection of Wilson loops is equivalent to a phase factor which depends on k

as well as on a flat connection Aω. This is compatible with the claim that a collection of Wilson loops

in pure abelian Chern-Simons theory is equivalent to a gauge vortex loop Dω for some 2-form current

ω, which in turn is trivial up to a phase.

2.4 Supersymmetric vortex loops

We would like to extend the considerations above to the supersymmetric case. Specifically, we will

work with theories with N = 2 supersymmetry (4 real supercharges). It is convenient to work in

N = 2 superspace, with fermionic coordinated θα and a superspace derivative Dα. For the theories of

interest, the dynamical fields can be organized into chiral and vector superfields. The gauge field is

part of a vector multiplet, and all fields in this multiplet take values in the adjoint representation of

the gauge group. A vector superfield V satisfies V = V † and contains a vector field Aµ, a real scalar

σ, a complex spinor λα, and a real auxiliary scalar D. Matter fields live in chiral multiplets and take
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values in some representation of the gauge and flavor groups. A chiral superfield Φ satisfies D̄αΦ = 0,

and contains a complex scalar φ, a complex two component spinor ψα, and an auxiliary complex scalar

F .

We are interested mainly in a class of renormalizable gauge theories with abelian global symmetries.

These are defined by a UV action which includes a kinetic term for the matter fields of the form

Scharged matter kinetic = −
ˆ

d3xd2θd2θ̄
∑

i

(Φi
†e2V Φi) (2.30)

=
∑

i

ˆ

d3x
(

(Dµφ)i(D
µφ)

i
+ iψ̄iγ

µDµψ
i + FiF

i − φiσ
2φi + φiDφ

i − ψ̄iσψ
i + iφiλ̄ψ

i − iψ̄iλφ
i
)

(2.31)

and a supersymmetric Yang-Mills action for the fields in the gauge multiplet

SYang Mills =
1

g2

ˆ

d3xd2θd2θ̄T rf

(

1

4
Σ2

)

(2.32)

=
1

g2

ˆ

d3xTrf

(

1

2
FµνF

µν +DµσD
µσ +D2 + iλ̄γµDµλ

)

(2.33)

where Σ is a linear multiplet defined by

Σ = D̄αDαV (2.34)

Σ† = Σ (2.35)

DαDαΣ = D̄αD̄αΣ = 0 (2.36)

In addition, one can allow supersymmetric completions of Chern-Simons terms. In the abelian case,

these have a very simple superspace expression

Sabelian Chern Simons =
k

4π

ˆ

d3xd2θd2θ̄T rf (V Σ) (2.37)

=
k

4π

ˆ

d3xTrf
(

εµνρAµ∂νAρ − λ̄λ+ 2Dσ
)

(2.38)

As a slight generalization of this, we can also consider a “off-diagonal” Chern-Simons term, also known

as a BF term, coupling two or more different abelian gauge fields. The supersymmetric completion of

this has the form

SBF =
kij
4π

ˆ

d3xd2θd2θ̄T rf
(

ΣiV j
)

(2.39)

=
kij
4π

ˆ

d3x

(

εµνρAj
µ∂νA

i
ρ −

1

2
λ̄jλi +Diσj

)

(2.40)

We will consider the S3 partition function for these theories with insertions of Wilson loop and defect

loop operators. The supersymmetry transformations on S3 are generated by Killing spinors [13]. We
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will need the transformations of the vector multiplet fields under the S3 supersymmetry generated by

a particular killing spinor ε

δAµ = − i

2
λ†γµε (2.41)

δσ = −1

2
λ†ε (2.42)

δD = − i

2
Dµλ

†γµε+
i

2
[λ†, σ]ε+

1

4
λ†ε (2.43)

δλ = (− i

2
εµνρFµνγρ −D + iγµDµσ − σ)ε (2.44)

δλ† = 0 (2.45)

The fermionic symmetry generated by ε will be used in 3 to compute the expectation value of the

defect operator on S3 using localization.

We now attempt to generalize the SL(2,Z) action to the supersymmetric case. To start, it is

natural to define T by simply adding a supersymmetric Chern-Simons term instead of an ordinary

one. For S, we should use the supersymmetric version of the BF term and integrate over the entire

background vector multiplet. It is now a simple exercise to check that the SL(2,Z) relations remain

satisfied for this generalization. We will not use the (ST )3 = C property, so we omit a check of

that relation, but it will be important that S2 = C, so let us sketch the argument. Consider the

supersymmetric version of 2.16 defined via the action 2.39 where all vector fields have been extended

to N = 2 vector multipelts V, V1, V2 and Vω . When we integrate over the second gauge field, the BF

coupling gives us a delta function constraint imposing that the first gauge field is the negative of the

background gauge field, as before. In addition, one can see that the integration over the auxiliary fields

in the second vector multiplet imposes a similar constraint on the auxiliary fields of the first vector

multiplet. Thus we see that the net effect is to set the first vector multiplet equal to the negative of

the background vector multiplet.

Now consider the supersymmetric generalization of the abelian Wilson loop operator. For a certain

class of loops γ preserving supersymmetry, this has the form

exp

(

iq

˛

γ

(A− iσdℓ)

)

(2.46)

For example, on S3, the loops must be great circles which are fibers of the Hopf fibration. This

operator is then invariant under the supersymmetry generated by ε. We define an operator Wγ

inserting a supersymmetric Wilson loop in a background vector multiplet as before. Finally, we define

the supersymmetric vortex loop by the prescription Dγ = S−1WγS.

As before, we can integrate out the auxiliary vector multiplets V1 and V2 to obtain a description

of the defect terms of the original fields alone. To start, let us write the part of the action containing

V2. In terms of component fields the action (in Euclidean signature) looks as follows:

S[Φ, V1, V2] = ...+
i

2π

ˆ

(−A2∧dA1)+
i

2π

ˆ

d3x(−σ2D1−σ1D2+
1

2
(λ†1λ2+λ

†
2λ1))+ iq

ˆ

γ

(A2− iσ2dℓ)
(2.47)

For simplicity we set to zero the background vector multiplet. We see that the integrals over D2 and

λ2 set σ1 and λ1 to zero, while the integrals over A2 and σ2 impose the constraints
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dA1 = 2πqδγ , ⋆D1 = −2πiqδγ ∧ dℓ. (2.48)

Here dℓ is the volume 1-form on γ and δγ is the 2-form Poincarï¿œ dual to [γ], as before. Note that

D1 is purely imaginary, which violates the usual reality condition on D.

As before, we can generalize this operator to account for more general background gauge multiplet

configurations. We to specialize to S3, and pick a supercharge δ corresponding to the Killing spinor

ǫ. Then the BPS condition for an abelian vector multiplet is [13]

0 = (iγµ(− ⋆ Fµ + ∂µσ) − (D + σ))ǫ (2.49)

We would like to find configurations for which only F and D are non-zero. Using vµγµǫ = ǫ, where vµ

is the Killing vector along the Hopf fibration as in [13], we see we can take:

F = 2πf(x) ⋆ v, D = −2πif(x) (2.50)

for a function f : S3 → R. The normalization is for later convenience. Note that the Bianchi identity

implies

0 =
1

2π
dF = d(f ⋆ v) = df ∧ ⋆v = ⋆(vµ∂µf) (2.51)

so that f must be constant along the fibers of the Hopf fibration. Equivalently, we impose that f

arises from a function f̃ : S2 → R by:

f = f̃ ◦ π (2.52)

where π : S3 → S2 is the projection map of the Hopf fibration. Thus, the operator is really labeled

by the function f̃ on S2. When f̃ approaches a delta-function on S2, the corresponding operator

approaches the supersymmetric vortex loop wrapping a fiber of the Hopf fibration.

If we apply this construction to the U(1)J symmetry, we get an operator which is a natural

generalization of the supersymmetric Wilson loop:

Of̃ = exp

(

i

ˆ

S3

√
gd3xf(x)(vµAµ − iσ)

)

(2.53)

That this operator is supersymmetric follows from

δ(vµAµ − iσ) = 0 (2.54)

as can be easily checked. The condition vµ∂µf = 0 is necessary for gauge-invariance. Taking f̃ to be

a delta function on S2, so that f is a delta function supported along a great circle in S3, one recovers

the ordinary supersymmetric Wilson loop. Note that we have picked the normalizations so that when

f̃ is a delta function on S2 integrating to 1, so that f integrates to 2π on S3, we recover the charge 1

Wilson loop.

3 Localization in the presence of a vortex loop

In this section we compute the expectation value of the global vortex loop on S3 by localization. The

global symmetry is assumed to be a U(1) subgroup of the flavor symmetry group. We will present

three approaches to the calculation which yield the same result. Applying the localization procedure
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in the presence of the defect requires some regularization and the agreement of the approaches pre-

sented below gives us confidence in the validity of the computation. We begin with a quick review of

localization for 3d gauge theories. Additional details can be found in [13].

3.1 Localization of 3d gauge theories

The expectation value of BPS operators in 3d N = 2 superconformal gauge theories can be computed

by localization on S3. The relevant result, derived in [13], is that deformation invariance allows us

to reduce the computation of the infinite dimensional path integral with BPS operator insertions

to a matrix model with the integration domain given by the Lie algebra of the gauge group. The

data entering the computation is a UV action with gauge group G, Lie algebra g and Chern-Simons

levels ki, a set of representations Ri for the chiral matter multiplets and the IR conformal dimensions

(equivalently R-charges) ∆i for each chiral multiplet. The integration measure for the matrix model

is then
1

Vol(G)
da|a∈Ad(g) (3.1)

The contribution of a level k Chern-Simons term (for a simple gauge group factor associated to a) is

e−iπkTr(a2) (3.2)

A Fayet-Iliopoulos term with coefficient η contributes

e2πiηTr(a) (3.3)

Every dynamical gauge multiplet contributes

Zgauge multiplet
1 - loop (a) = detAd(g) (2 sinh(πa)) =

∏

ρ∈roots(g)

2 sinh(πρ(a)) (3.4)

and every dynamical chiral multiplet contributes

Zchiral multiplet
1 - loop (a,∆) =

detOF√
detOB

=
∏

ρ∈R

exp (ℓ (z(ρ(a),∆))) (3.5)

where ρ are the weights of R and

ℓ(z) = −z log
(

1− e2πiz
)

+
i

2

(

πz2 +
1

π
Li2

(

e2πiz
)

)

− iπ

12
(3.6)

z(ρ(a),∆) = iρ(a)−∆+ 1 (3.7)

abelian flavor parameters can be incorporated by shifting ρ→ ρ+m. The insertion of a supersymmetric

Wilson loop in a representation R gives a factor of

W (a) =
1

dim(R)
TrR

(

e2πa
)

(3.8)

which for an abelian Wilson loop of charge q reduces to

e2πqa (3.9)

Integration with the measure 3.1 of the product of all relevant contributions yields the exact expecta-

tion value.
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In computing 3.5 we have implicitly assumed a standard δ exact term, and hence standard kinetic

operators (OF ,OB), for the fields in the chiral multiplet [13, 16]. In the presence of the flavor vortex

loop, the kinetic term of a charged chiral multiplet is altered by a background gauge field created by

the loop. The new term and the revised 1-loop contribution are derived below. The contribution of

the vector multiplet is unaffected because it is not charged under flavor symmetries.

3.2 Method 1: using the SL(2,Z) definition of D

The simplest way to extract the effect of inserting a supersymmetric defect line operator is by using

the definition of the operation D as

Dq = S−1WqS (3.10)

whereDq is the vortex loop with holonomy exp(2πiq). There are no integrality constraints on q because

the large circle on S3 is homologically trivial. Since we can perform the operations on the RHS at the

level of the matrix model, it should be possible to compute the LHS indirectly this way. Explicitly,

suppose we compute the partition function as a holomorphic function of a flavor deformation m (and

possibly other parameters which we suppress):

Z(m) (3.11)

This is the analogue of Z[A] in section 2. The operation S then tells us to treat this flavor parameter

as a gauge parameter, and integrate over it, with a coupling to an FI parameter η:

(S · Z)(η) =
ˆ

dmZ(m)e2πiηm (3.12)

The operation W1 tells us to insert a charge-q Wilson loop in the background field corresponding to

η:

(WqS · Z)(η) = e2πqη
ˆ

dmZ(m)e2πiηm (3.13)

Finally, S−1 tells us to integrate over η and insert a new FI term, which we will denote m′, with the

opposite sign:

(S−1W1S · Z)(m′) =

ˆ

e−2πiηm′

e2πqη
ˆ

dmZ(m)e2πiηm (3.14)

Now to integrate out the variables η and m, we simply note that the integral over η imposes a delta

function which sets m = m′ + iq. Thus we are left with:

(Dq · Z)(m) = Z(m+ iq) (3.15)

Indeed, this result can be inferred from the 4d perspective by considering Wilson and ’t Hooft loops

ending on a 3d boundary [17, 18]. This argument was rather indirect; it also raises the question about

the interpretation of poles in the partition function for special values of m + iq. We now proceed to

present two more explicit derivations of this result.
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3.3 Method 2: smearing the defect

We return to the smeared Wilson loop

Of = exp

(

i

ˆ

S3

√
gd3xf(x)(vµAµ − iσ)

)

(3.16)

where f is some real function on S3 constant along the fibers of the Hopf fibration, as above. It is

convenient to decompose f(x) as

f(x) =
q

π
+ fo(x) (3.17)

where

ˆ

S3

√
gd3xfo = 0 (3.18)

and q is constant, specifically, q = 1
2π

´

S3

√
gd3xf . Note that this normalization agrees with the case

where f is a delta function supported on a great circle, since the integral of f should give 2π times

the charge of the Wilson loop.

For general f , we can decompose Of = OqOfo , so it suffices to study them separately. Actually,

we will find that it is only Oq which contributes to the localized path-integral. Specifically, we claim

that the operator Ofo can be absorbed into a shift of the action by a total δ-variation. To see this, let

us pick a function g : S3 → R and consider:

δ(

ˆ √
gd3xǫ†γµ(∂µg)λ) =

ˆ √
gd3xǫ†γµ(∂µg)(iγ

ν(−1

2
ǫνρσF

ρσ + ∂νσ)− (D + σ))ǫ) (3.19)

=

ˆ √
gd3x(∂µg)

(

i(gµν + iǫµντvτ )(−
1

2
ǫνρσF

ρσ + ∂νσ)− vµ(D + σ)

)

(3.20)

The term involving D+σ is proportional to vµ∂µg and vanishes if we impose that g, like f , is constant

along the fibers. The remaining terms can be expanded to give:

ˆ √
gd3x(∂µg)

(

− i

2
ǫµρσFρσ + Fµνvν + i∂µσ − iǫµνρ∂νσvρ

)

(3.21)

Integrating by parts, the first and last terms can be seen to vanish, and the others give

ˆ √
gd3x

(

Aµ(
1

2
∇ν(vµ∂νg − vν∂µg))− iσ(∇2g)

)

(3.22)

The quantity multiplying Aµ can be expanded as:

∇νvµ(∂νg) + vµ∇2g − (∇νvν)∂µg − vν∇ν∂µg (3.23)

Using ∇µvν = ǫµνρv
ρ, this can be simplified to:

vµ∇2g −∇µ(vν∇νg) (3.24)

The second term vanishes when we impose that g is constant along the fibers, and we are left with:

ˆ √
gd3x(∇2g)(vµAµ − iσ) (3.25)
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which agrees with the exponent of the operator Ofo above, provided we can find a g such that:

fo = ∇2g. (3.26)

This clearly requires
´

S3

√
gd3xfo = 0, so that one cannot use this trick to remove the constant part

of f . However, if this condition is met, then the equation can be solved, and g will indeed be constant

along the fibers.1 This proves that the non-constant part of the operator can be discarded, as δ-exact

terms do not affect the path integral, i.e. we can replace a Wilson loop localized on a loop by one that

is smeared uniformly over the entire S3; these differ only by a δ-exact insertion.

Thus without a loss of generality we can restrict to the case f = q
π (a constant). Then the

background vector multiplet we must couple the flavor symmetry current to is given by:

F = 2q ⋆ v, D = −2iq (3.27)

Since dv = 2 ⋆ v, the corresponding gauge field can be taken to be

A = qv (3.28)

The δ-exact gauged action of a chiral multiplet of conformal dimension 1/2 is given by [13]

Sδ =

ˆ √
gd3x

(

φ†(−DµD
µ + σ2 + iD +

3

4
)φ+ ψ†(iγµDµ − iσ)ψ + F †F

)

(3.29)

Let us couple this to an ordinary BPS background, with σ = −D = σo, as well as the background

vector multiplet described above, with A = qv and D = −2iq. We find:

Sδ =

ˆ √
gd3x

(

φ†(−∇2−2iqvµ∂µ+q
2+σo

2−iσo+2q+
3

4
)φ+ψ†(iγµ∇µ−qγµvµ−iσo)ψ+F †F

)

(3.30)

The bosonic operator has the form:

OB = −∇2 + aivµ∂µ + b (3.31)

with a = −2q and b = q2 + σo
2 − iσo + 2q + 3

4 , which has determinant [13]

√

detOB =
∞
∏

ℓ=0

( ℓ/2
∏

m=−ℓ/2

(

ℓ(ℓ+ 2)− 2am+ b

))ℓ+1

(3.32)

=
∞
∏

ℓ=0

( ℓ/2
∏

m=−ℓ/2

(

ℓ(ℓ+ 2) + 4qm+ q2 + σo
2 − iσo + 2q +

3

4

))ℓ+1

(3.33)

Meanwhile, for the fermions, the operator has the form:

OF = iγµ∇µ + icγµvµ + d (3.34)

with c = −q and d = −iσo, which has determinant:

1This can be seen most easily by working with a mode expansion fo =
∑

ℓ,m,n cℓ,m,nYℓ,m,n, where Yℓ,m,n

are spherical harmonics on S3, satisfying ∇2Yℓ,m,n = −ℓ(ℓ + 2)Yℓ,m,n and vµ∂µYℓ,m,n = imYℓ,m,n. Then g =
∑

ℓ,m,n
1

ℓ(ℓ+2)
cℓ,m,nYℓ,m,n, which is well defined since f has no ℓ = 0 component by assumption, and, like f , has

cℓ,m,n = 0 for all m 6= 0.
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detOF =

∞
∏

ℓ=0

(

(ℓ−c−d+3/2)(ℓ+c−d+3/2)

ℓ/2−1
∏

m=−ℓ/2

(

ℓ(ℓ+2)−4cm−2c+d+c2−d2+3/4

))ℓ+1

(3.35)

=

∞
∏

ℓ=0

(

(ℓ+q+iσo+3/2)(ℓ−q+iσo+3/2)

ℓ/2−1
∏

m=−ℓ/2

(

ℓ(ℓ+2)+4qm+2q−iσo+q2+σo2+3/4

))ℓ+1

(3.36)

We see that most modes cancel, and we are left with:

Z1−loop =
detOF√
detOB

=

∞
∏

ℓ=0

(

(ℓ+ q + iσo + 3/2)(ℓ− q + iσo + 3/2)

(ℓ(ℓ+ 2)− 2qℓ+ 2q − iσo + q2 + σo2 + 3/4)

)ℓ+1

(3.37)

=

∞
∏

ℓ=0

(

(ℓ+ q + iσo + 3/2)(ℓ− q + iσo + 3/2)

(ℓ+ 1 + q + iσo +
1
2 )(ℓ + 1 + q − iσo − 1

2 )

)ℓ+1

(3.38)

=

∞
∏

ℓ=0

(

ℓ+ i(σo + iq) + 3/2

ℓ− i(σo + iq) + 1/2

)ℓ+1

(3.39)

Note that σo and α appear in the combination σ + iq, so that we can just make this replacement in

the ordinary one-loop determinant to find:

Z1−loop = eℓ(
1

2
+iσ−q) (3.40)

In fact, this computation goes through with minimal changes for chiral multiplets of arbitrary dimen-

sion (one merely shifts σo by an imaginary amount), and we find:

Z1−loop = eℓ(1−∆+iσ−q) (3.41)

Note we have obtained the same result as in the indirect argument above. We will now turn to an

even more explicit argument, where we do not smear out the defect over the sphere but instead work

directly with a (regularized) delta function background.

3.4 Method 3: explicit computation in a singular background

Let us now focus on the specific case where the function f̃ is a delta function, corresponding to the

dual of an ordinary (unsmeared) Wilson loop. Although we have argued that one can replace the

delta function by a constant which has the same integral over S2, we would like to gain better physical

insight into the vortex loop by explicitly finding the modes in a singular background. For simplicity

we will focus on the case where the matter has canonical dimension, although it is straightforward to

generalize this.

Recall that the smeared vortex loop on S3 can be obtained by coupling to a background F = 2πf⋆v

and D = −2πif , where f is some function on S3 constant along the fibers of the Hopf fibration. Here

we compute the modes and 1-loop determinant explicitly in the case where f is a (infinitessimally

smeared) delta function supported on a single fiber.

We will work in toroidal coordinates on S3, with η ∈ [0, π/2] and θ and φ in [0, 2π). Explicitly,

we can relate these coordinates to the unit sphere S3 ⊂ R
4 via:
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x = cos η cos θ, y = cos η sin θ, z = sin η cosφ, w = sin η sinφ (3.42)

The surfaces of constant η are torii, which degenerate to great circles at η = 0, π2 .

The usual round metric takes the following form in these coordinates:

ds2 = dη2 + sin2 ηdθ2 + cos2 ηdφ2 (3.43)

⇒ ∇2 =
1

sin η cos η

∂

∂η
sin η cos η

∂

∂η
+

1

sin2 η

∂2

∂θ2
+

1

cos2 η

∂2

∂φ2
(3.44)

The Killing vector v is given in these coordinates by:

v =
∂

∂θ
+

∂

∂φ
(3.45)

or, as a 1-form, by:

ṽ = sin2 ηdθ + cos2 ηdφ (3.46)

It satisfies:

dv = 2 cos η sin ηdη ∧ dθ − 2 cos η sin ηdη ∧ dφ = 2 ⋆ v (3.47)

We take the defect to be supported on the great circle at η = 0. We define a regularized delta function

supported on the loop by:

f =
g(η/ǫ)

2πǫ sin η cos η
(3.48)

where g(x) has support in 0 ≤ x . 1 and integrates to 1 on [0, π
2ǫ ], so that f integrates to 2π. This

approaches a delta function supported on the great circle at η = 0 for ǫ → 0. Then the background

field-strength we need to consider is

F = 2πq f ⋆ v =
q

ǫ
g(η/ǫ)dη ∧ (dθ − dφ) (3.49)

which is solved by a background vector potential

A = qG(η/ǫ)dθ − q(G(η/ǫ)− 1)dφ (3.50)

where G′ = g with G(0) = 0, so that G(x) → 1 for large x, and we pick the constants so that this is

everywhere well-defined. We also have a background auxiliary scalar

D = −2πiqf = − iq g(η/ǫ)

ǫ sin η cos η
(3.51)

3.4.1 Bosons

First consider the bosonic operator on S3:

OB = −DµD
µ + σ2 + iD +

3

4
(3.52)

We will couple to a defect background, as above, as well as an ordinary σ = −D = σo background.

Using the form of D above, along with:
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Aµ∂µ =

(

q G(η/ǫ)

sin2 η

∂

∂θ
− q(G(η/ǫ)− 1)

cos2 η

∂

∂φ

)

(3.53)

A2 =

(

q2G(η/ǫ)2

sin2 η
+
q2(G(η/ǫ)− 1)2

cos2 η

)

(3.54)

and looking for an eigenfunction OBφ = λφ of the form φ = f(η)eimθ+inφ, we get the following

equation:

− 1

sin η cos η

d

dη

(

sin η cos η
df

dη

)

+

(

(m+ qG)2

sin2 η
+
(n− q(G− 1))2

cos2 η
+

qg(η/ǫ)

ǫ sin η cos η
+
3

4
+σo

2−iσo−λ
)

f = 0

(3.55)

Before solving this equation, let us consider the fermions, as we will see their components satisfy a

very similar equation.

3.4.2 Fermions

The operator in this case is

OF = iD/ − iσ (3.56)

It is convenient to use a left-invariant vielbein. One computes this in toroidal coordinates as:

eLi =











































sin(θ + φ)
∂

∂η
+ cos(θ + φ)(cot η

∂

∂θ
− tan η

∂

∂φ
) i = 1

− cos(θ + φ)
∂

∂η
+ sin(θ + φ)(cot η

∂

∂θ
− tan η

∂

∂φ
) i = 2

∂

∂θ
+

∂

∂φ
i = 3

(3.57)

Then the Dirac operator can be written as:

i∇/ =

(

i∂3 − 3
2 i∂1 + ∂2

i∂1 − ∂2 −i∂3 − 3
2

)

(3.58)

which, in toroidal coordinates, becomes:

i∇/ =









i
∂

∂θ
+ i

∂

∂φ
− 3

2
e−i(θ+φ)

(

− ∂

∂η
+ i

(

cot η
∂

∂θ
− tan η

∂

∂φ

))

ei(θ+φ)

(

∂

∂η
+ i

(

cot η
∂

∂θ
− tan η

∂

∂φ

))

−i ∂
∂θ

− i
∂

∂φ
− 3

2









(3.59)

We should also couple to the gauge field, which amounts to the replacement ∂
∂θ → ∂

∂θ + iqG, ∂
∂φ →

∂
∂φ − iq(G− 1), as well as the constant σo. Then if we look for eigenspinors of the form

ψ = eimθ+inφ

(

ψ1(η)

ei(θ+φ)ψ2(η)

)

(3.60)

we get the following coupled first-order equations for ψ1 and ψ2:
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(
d

dη
− (m+ qG) cot η + (n− q(G− 1)) tan η)ψ1 = −(m+ n+ q − λ− iσo +

1

2
)ψ2 (3.61)

(− d

dη
− (m+ qG+ 1) cot η + (n− q(G− 1) + 1) tan η)ψ2 = (m+ n+ q + λ+ iσo +

3

2
)ψ1

Solving for ψ2 using the first equation and plugging into the second one, we get a second order equation

in terms of ψ1 alone:

(

− d

dη
−(m+qG+1) cot η+(n−q(G−1)+1) tan η

)(

d

dη
−(m+qG) cot η = (n−q(G−1)) tan η

)

ψ1 =

(3.62)

= −(m+ n+ q − λ− iσo +
1

2
)(m+ n+ q + λ+ iσo +

3

2
)ψ1. (3.63)

This can be rearranged to

− 1

sin η cos η

d

dη

(

sin η cos η
dψ1

dη

)

+

(

(m+ qG)2

sin2 η
+
(n− q(G− 1))2

cos2 η
+

qg(η/ǫ)

ǫ sin η cos η
−(λ+iσo+

1

2
)2+1

)

ψ1 = 0

(3.64)

which is precisely the same equation as satisfied by the bosonic modes, with the following relation

between the eigenvalues:

λB + (iσo +
1

2
)2 = (λF + iσo +

1

2
)2 (3.65)

This is a quadratic equation for λF with two solutions λF±. Their product can be read off as the

constant term, and one can see that this is simply λB .

In principle, we can take ψ1 to be the scalar eigenfunction for a given choice of λB , take one of

the solutions λF± to the equation above, and plug these into the first equation in (3.61) to solve for

ψ2. For each λB and pair of solutions λF± for which this procedure goes through, we can see that the

contribution to the partition function, λF+λF−/λB = 1, is trivial.

However, there are two exceptions we must be more careful with. First, we must also allow

solutions with ψ1 = 0, but ψ2 non-vanishing. Then we see that (3.61) reduces to:

(m+ n+ q − λ− iσo +
1

2
)ψ2 = 0

(− d

dη
− (m+ qG+ 1) cot η + (n− q(G− 1) + 1) tan η)ψ2 = 0

Thus the eigenvalue in these cases is λ = m+ n+ q − iσo +
1
2 , and ψ2 satisfies:

d

dη
logψ2 = −(m+qG+1) cot η+(n−q(G−1)+1) tanη =

{ −(m+ 1) cot η + ... near η = 0

−(m+ q + 1) cot η + (n+ 1) tan η in the bulk
(3.66)

⇒ ψ2 =

{

sin−(m+1) η + ... near η = 0

sin−(m+q+1) η cos−(n+1) η in the bulk
(3.67)
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Regularity at the endpoints implies that m and n should be negative integers. But then for −(q+1) <

m < 0, the bulk solution is singular as it approaches the loop. We will return to this point in a

moment. These solutions correspond to extra fermionic modes that we have not accounted for before,

so their eigenvalues should be included in the numerator of the partition function.

The other exception occurs when the differential operator acting on ψ1 in the first equation in

(3.61) annihilates our choice of ψ1. Then we must pick ψ2 = 0, and there will not be two choices of

λF , but only one, and so the cancellation with the corresponding bosonic mode will not be complete.

We see that in this case (3.61) gives:

(
d

dη
− (m+ qG) cot η + (n− q(G− 1)) tan η)ψ1 = 0

(m+ n+ q + λ+ iσo +
3

2
)ψ1 = 0

Now we find λ = −(m+ n+ q + iσo +
3
2 ), and ψ1 satisfies:

d

dη
logψ1 = (m+ qG) cot η − (n− q(G− 1)) tan η =

{

m cot η + ... near η = 0

(m+ q) cot η − n tan η in the bulk
(3.68)

⇒ ψ1 =

{

sinm η + ... near η = 0

sin(m+q) η cosn η in the bulk
(3.69)

Now regularity at the endpoints forces m and n to be nonnegative integers, and the bulk solutions

are singular for 0 ≤ m < −q. These are modes for which there is only one solution, say λF+, to

the equation (3.65), and so the cancellation with the bosons is not complete. The net contribution is

λF+/λB = 1/λF−, and one can read this off from (3.63) as λF− = m+ n+ q − iσo +
1
2 .

Putting this together, we see all modes cancel out of the partition function except for the special

cases noted above, and these give:

Z =

∏

m,n<0(m+ n+ q − iσo − 1
2 )

∏

m,n≥0(m+ n+ q − iσo +
1
2 )

(3.70)

=

∞
∏

ℓ=0

(−ℓ+ q − iσo − 3
2

ℓ+ q − iσo +
1
2

)ℓ+1

(3.71)

= eℓ(
1

2
+q−iσo) (3.72)

Thus we have obtained the result for the 1-loop determinant without ever having to solve the

second order differential equation. However, note that this function may have poles, e.g. when q = 1
2 .

To get a better understanding of the origin of these singularities, we will now solve the differential

equation explicitly.

3.4.3 Solving the eigenvalue equation

Consider the following second order equation, which has come up for both the bosons and fermions:

− 1

sin η cos η

d

dη

(

sin η cos η
df

dη

)

+

(

(m+ qG)2

sin2 η
+

(n− q(G− 1))2

cos2 η
+

qg(η/ǫ)

ǫ sin η cos η
+1− (ℓ+1)2

)

f = 0

(3.73)
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where, for later convenience, we have written the eigenvalue in terms of a parameter ℓ. This is related

to the eigenvalues by:

λB = (ℓ+ 1)2 − (iσo +
1

2
)2, λF± = ±(ℓ+ 1)− iσo −

1

2
(3.74)

Near Loop Region Let us start by focusing on the region 0 < η . ǫ, as this will determine what

boundary conditions to impose on the bulk solution. We start by defining ξ = η/ǫ, and expanding the

equation above to leading order in ǫ:

− 1

ξ

d

dξ

(

ξ
df

dξ

)

+

(

(m+ qG(ξ))2

ξ2
+
qg(ξ)

ξ

)

f = 0 (3.75)

One solution can be immediately obtained, independent of the functional form of g and G, by noting

that this equation follows from the first order equation:

df

dξ
=
m+ qG

ξ
f (3.76)

as can be easily checked using G′ = g. Then, using G → 0 as χ → 0 and G → 1 as χ → ∞, we see

that:

f(ξ) ∼
{

ξm ξ → 0

ξ(m+q) ξ → ∞ (3.77)

For m ≥ 0, this is the regular solution we want. We can match with the solution in the bulk by looking

at the behavior in the the large ξ region, and we see that we should take the bulk solution which goes

as f(η) ∼ η(m+q). Note that if q < 0, for 0 ≤ m < −q, the bulk solution would appear to be singular

right up until we reach the near loop region, at which point the presence of the defect modifies the

solution to go as η−m and be regular. For m ≥ −q, we take the regular solution, as in the absence

of a defect. Note that this behavior does not depend on the precise functional form of g, only that it

correctly reproduces a delta function in the ǫ→ 0 limit.

It remains to understand what happens when m < 0. Here, the first order equation does not have

any non-trivial solutions regular at ξ = 0, so we must return to the second order equation. Then we

can find a regular solution, but it appears it depends non-trivially on g and G. Specifically, we find:

f(ξ) ∼
{

ξm ξ → 0

A(g,m, q)ξ|m+q| +B(g,m, q)ξ−|m+q| ξ → ∞ (3.78)

for some constants which depend non-trivially on g, m, and q, and in particular are generically both

non-zero, unlike in the previous case.

Nevertheless, if we reinstate the ǫ dependence, we see that to match with the bulk, we should take

the solution there to go as:

f(η) ∼ A(g,m, q)η|m+q|ǫ−|m+q| +B(g,m, q)η−|m+q|ǫ|m+q| (3.79)

and for ǫ→ 0, the first term will dominate, and so we should take the regular solution.

Thus we should always take the regular solution, f ∼ η|m+q|, except in the case where the

coefficient of the regular part is precisely zero, which happens only when 0 ≤ m < −q, and in

these cases we take the singular solution f ∼ η−|m+q|.
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Bulk Since G = 1 and g = 0 everywhere except an infinitessimal region near η = 0, in the bulk the

equation reduces to:

− 1

sin η cos η

d

dη

(

sin η cos η
df

dη

)

+

(

(m+ q)2

sin2 η
+

n2

cos2 η
+ 1− (ℓ + 1)2

)

f = 0 (3.80)

It is convenient to look for an f of the form:

f(η) = sinm̃ η cosñ ηh(sin2 η) (3.81)

for m̃, ñ we will choose in a moment. Plugging this in, we find the following equation for h(x):

x(1−x)h′′+(m̃+1−(m̃+ñ+2)x)h′− 1

4

(

(m+ q)2 − m̃2

x
+
(n− q)2 − ñ2

1− x
+(m̃+ñ+1)2−(ℓ+1)2

)

h = 0

(3.82)

The greatest simplification is achieved by setting m̃2 = (m+ q)2 and ñ2, with the sign of m̃ and ñ to

be fixed later. Then we are left with the hypergeometric equation:

x(1 − x)h′′ + (c− (a+ b+ 1)x)h′ − abh = 0 (3.83)

where:

c = m̃+ 1, a+ b = m̃+ ñ+ 1, ab =
1

4
((m̃+ ñ+ 1)2 − (ℓ+ 1)2) (3.84)

⇒ a, b =
1

2
(m̃+ ñ+ 1± (ℓ+ 1)) (3.85)

The solutions can be written in terms of hypergeometric functions 2F1(a, b; c;x):

2F1(a, b; c;x) =

∞
∑

n=0

(a)n(b)n
(c)nn!

xn (3.86)

where (a)n = a(a+ 1)...(a+ n− 1). Provided this is well-defined2, it converges for all |x| < 1, and for

|x| = 1 if Re(c− a− b) > 0.

In general, there are two linearly independent solutions, but if we impose regularity at the bound-

ary at x = 1 this restricts us to the solution:

h(x) = 2F1(a, b; a+ b+ 1− c; 1− x) (3.87)

=
Γ(a+ b+ 1− c)Γ(1 − c)

Γ(a+ 1− c)Γ(b + 1− c)
2F1(a, b; c;x)+

Γ(a+ b+ 1− c)Γ(c− 1)

Γ(a)Γ(b)
x1−c

2F1(a+1−c, b+1−c; 2−c;x)
(3.88)

= C1(a, b, c) 2F1(a, b; c;x) + C2(a, b, c) 2F1(a+ 1− c, b+ 1− c; 2− c;x) (3.89)

we should also set ñ = |n| to ensure f(η) is regular.

Now we need to fix the behavior at the other endpoint. We have:

2Specifically, if c is a negative integer, we must have a or b to be a negative integer greater than or equal to c for this

series to make sense.
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f(η) ∼ C1(a, b, c)η
m̃ + C2(a, b, c)η

−m̃ (3.90)

Thus, depending on the behavior we want here, we should fix the relative values of the Ci which will

impose a condition on ℓ and restrict us to a discrete spectrum. Actually, since we are free to choose

the sign of m̃, we can simply pick m̃ so that the behavior we want is ηm̃, and then the condition is

always C2 = 0. This is ensured if the argument of one of the Gamma functions in the denominator in

C2 is set to a negative integer, which determines:

a, b =
1

2
(m̃+ |n|+ 1± (ℓ+ 1)) = −k, k ∈ Z>0 (3.91)

⇒ λB = (ℓ+ 1)2 + (σo −
i

2
)2 = (m̃+ |n|+ 2k + 1)2 + (σo −

i

2
)2 (3.92)

λF = ±(ℓ+ 1)− iσo −
1

2
= ±(m̃+ |n|+ 2k + 1)− iσo −

1

2
(3.93)

Finally, we recall that the correct choice of m̃ was found above to be:

m̃ =

{−|m− q| 0 ≤ m < −q
|m− q| else

(3.94)

Then the set of eigenvalues is given by taking the expressions above for all integers m,n and non-

negative integers k.

Actually, as above, we need to be more careful with the fermions. Specifically, there will be

eigenvalues in addition to these, as well as some that we have to throw out, corresponding to the cases

where, respectively, the top and bottom components of the fermion vanish. These are precisely the

exceptions noted in the previous section, from which the entire contribution to the partition function

comes.

One interesting property of these eigenvalues is that, since m̃ may be negative, the eigenvalues

may become zero, and the bosonic eigenvalues may even be negative. The first place these zero modes

can occur is for q = − 1
2 , in which case for m = k = σo = 0, λB and λ+F are both zero. Actually

this fermionic eigenvalue is one of the spurious ones that we should throw out, and so in fact there

is a single bosonic zero mode which results in a pole in the 1-loop partition function. For larger q,

one finds negative bosonic eigenvalues, which become difficult to make sense of in the path integral.

We will take the viewpoint that the vortex loop operator is only properly defined for q > − 1
2 (and,

when the matter content is in a self-conjugate representation of the relevant flavor symmetry, this also

forces q < 1
2 ), although the naive result for the determinant gives a natural analytic continuation of

this quantity which may have some physical relevance.

4 Duality with Vortex Loop Operators

Let us now turn to some applications of the vortex loop operator. Since this operator is defined by an

explicit procedure applied to a global U(1) symmetry, then if we know what this symmetry maps to

across a duality, we obtain an identification of loop operators on each side of the duality. This provides

a new operator mapping across duality, although it does not provide any essentially new information

beyond the mapping of global symmetries.

One inter?sting case is when a U(1)J symmetry on one side of the duality is identified with a flavor

symmetry on the dual. This occurs, for example, in 3D mirror symmetry. Let us take the simplest
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case, the duality between N = 4 SQED with one flavor and a free hypermultiplet. Note that there

are Wilson loops on the SQED side, but it is less clear what the corresponding loop operators on the

dual side are, since there is no gauge group.

However, the results above provide the answer: the Wilson loop on the SQED side are the same as

defects in the global U(1)J symmetry. Mirror symmetry dictates that this symmetry is identified with

a U(1)V flavor symmetry under which the two chirals in the hypermultiplet have charge ±1. Then

the Wilson loop in SQED simply maps to a defect operator in this flavor symmetry, supported on the

same loop.

At the level of the matrix model, this follows from the identity:

ˆ

dλ
e2πiηλe2πqλ

2 cosh(πλ)
=

1

2 coshπ(η − iq)
(4.1)

which simply follows from extending the usual self-Fourier-transform property of 1/ cosh to the entire

complex plane.

It is worth noting that the integral on the LHS only converges for |q| < 1
2 . As remarked above,

this is precisely the range in which the defect operator is also well-defined. The divergence on the LHS

as |q| → 1
2 is reflected on the RHS as a bosonic zero mode developing in the defect background. The

RHS gives a natural analytic continuation of this quantity to |q| > 1
2 , but it is not clear what, if any,

physical relevance this has.

We can also consider mirror symmetry applied to SQED with Nf flavors. Here the dual is a quiver

theory with gauge group U(1)Nf /U(1)diag ∼= U(1)Nf−1, with Nf bifundamental flavors (qaq̃a) charged

as (1,−1, 0, ...), (0, 1,−1, ...), ..., (−1, 0, ..., 1), Nf neutral chirals Sa, and a superpotential
∑

a qaSaq̃a.

Here the U(1)J symmetry of SQED maps to a flavor symmetry under which the all the qa have charge
1
Nf

. In particular, the Wilson loop in SQED maps to a defect in this symmetry. Note that, because of

the extra factor of 1
Nf

in this mapping, the restriction on the defect charge now allows us to consider

Wilson loops of charge up to ±Nf

2 . This coincides with the fact that, in the matrix model, the Wilson

loop expectation value now converges for this wider range of charges because of the increased damping

in the integrand from the factor (2 cosh(πλ))−Nf .

Finally, we note that we can also apply this type of argument to theories with U(N) gauge

symmetries for N > 1, provided we restrict only to Wilson loops in the overall U(1) of the gauge

group. For example, in the U(N) versions of Aharony ([19]) and Giveon-Kutasov dualities ([20]), it is

known that the U(1)J current maps to itself, up to a flip of sign, and so a Wilson loop in the overall

U(1) of the gauge group must map to the same Wilson loop, with the opposite charge. One can also

consider such abelian Wilson loops in non-abelian mirror symmetry, where they will map to flavor

defects as above.

5 Discussion

We have defined a set of abelian vortex loop operators which exist in any abelian gauge theory in 2+1

dimensions. The definition can be extended to conformal field theories with abelian global symmetries

by weakly gauging the symmetry currents. Witten’s SL(2,Z) action for this class of theories naturally

extends to loop operators. In fact, abelian vortex loops are the S-duals of the ordinary Wilson loops.

Alternatively, a Wilson loop in a U(1) factor of the gauge group can be viewed as a global vortex loop

for the associated topological U(1)J symmetry.

One of our results was the definition of the supersymmetric version of the vortex loop. This was

accomplished by identifying the fields in the abelian vector multiplet which needed to be turned on
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to create the right type of singularity. It turns out that, besides the singular gauge connection, we

needed to also give an imaginary background value to the auxiliary scalar D. This is an interesting

example of the fact that background fields need not satisfy the reality conditions usually imposed on

the dynamical fields of the theory. We proceeded to evaluate the expectation value of a supersymmetric

defect loop, defined on a great circle on S3, using localization. The result could be anticipated by

considering the SL(2,Z) action and, indeed, had already been derived from the 4d perspective. We

have given, by using and comparing two different regularization methods, an additional microscopic

derivation.

The supersymmetric vortex loop plays a central role in mirror symmetry of 3d gauge theories. This

class of dualities has the property that it exchanges flavor symmetries with the topological symmetries

associated to the abelian factors of the dual gauge group. As a consequence, the duality exchanges (the

supersymmetric versions of) U(1) Wilson loops with abelian vortex loops. Identifying such entries in

the duality dictionary is an important step towards, possibly, proving the duality for the full quantum

theory. We have demonstrated that the expectation values for the dual loop operators match, in simple

examples, by using localization and the matrix model.

The analysis presented here has a natural extension to non-abelian defects. The definition of

such an operator can require additional steps to ensure gauge invariance. For a defect in a global

non-abelian symmetry group the definition is similar to the abelian case and the results can be read

off from Section 3 by conjugating the defect data into the Cartan of the flavor group. When the defect

appears in a dynamical gauge field, the localization procedure for the vector multiplet is modified. The

result in the case of pure Chern-Simons theory is known to require a quantization of the data entering

the definition of the defect, the overall effect being, again, the insertion of a Wilson loop operator in

some representation [7]. A naive analysis would imply that this result is not affected by the presence

of additional charged matter. However, the mapping of such operators under mirror symmetry for

non-abelian theories and under Seiberg-like dualities requires further investigation.
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